1
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
2
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Kida J, Chlon TM. Germline DDX41 mutations in myeloid neoplasms: the current clinical and molecular understanding. Curr Opin Hematol 2025; 32:67-76. [PMID: 39564659 PMCID: PMC11781971 DOI: 10.1097/moh.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW DDX41 mutations are the most common cause of germline predisposition to adult-onset myeloid neoplasms. The unique mutational landscape and clinical features indicate a distinct molecular pathogenesis, but the precise mechanism by which DDX41 mutations cause disease is poorly understood, owing to the multitude of DDX41 functions. In this review, we will update DDX41's known functions, present unique clinical features and treatment considerations, and summarize the current understanding of the molecular pathogenesis of the disease. RECENT FINDINGS Large cohort studies have revealed that germline DDX41 variants are heterozygous and predominantly loss-of-function. Acquired mutation of the contralateral DDX41 allele, typically R525H, is present in more than half of patients at disease onset, which occurs after age 50. DDX41 is essential for hematopoiesis and has versatile functions in RNA metabolism and innate immune sensing. Experimental models have suggested that innate immune activation downstream of defects in R-loop resolution and ribosome biogenesis plays a key role in the pathogenesis. SUMMARY While intensive investigations unveiled a strong genotype-phenotype relationship, the optimal therapeutic approach and long-term outcome are undefined. There is an urgent need to scrutinize the patients at single cell and multiomics level and to advance experimental animal and human models to fully elucidate the molecular pathogenesis.
Collapse
Affiliation(s)
- Junichiro Kida
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Winnard PT, Vesuna F, Raman V. DExD-box RNA helicases in human viral infections: Pro- and anti-viral functions. Antiviral Res 2025; 235:106098. [PMID: 39889906 DOI: 10.1016/j.antiviral.2025.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Viruses have co-evolved with their hosts, intertwining their life cycles. As a result, components and pathways from a host cell's processes are appropriated for virus infection. This review examines the host DExD-box RNA helicases known to influence virus infection during human infections. We have identified 42 species of viruses (28 genera and 21 families) whose life cycles are modulated by at least one, but often multiple, DExD-box RNA helicases. Of these, 37 species require one or multiple DExD-box RNA helicases for efficient infections, i.e., in these cases the DExD-box RNA helicases are pro-viral. However, similar evolutionary processes have also led to cellular responses that combat viral infections. In humans, these responses comprise intrinsic and innate immune responses initiated and regulated by some of the same DExD-box RNA helicases that act as pro-viral helicases. Currently, anti-viral DExD-box RNA helicase responses to viral infections are noted in 23 viral species. Notably, most studied viruses are linked to severe, life-threatening diseases, leading many researchers to focus on DExD-box RNA helicases as potential therapeutic targets. Thus, we present examples of host-directed therapies targeting anti-viral DExD-box RNA helicases. Overall, our findings indicate that various DExD-box RNA helicases serve as either pro- and/or anti-viral agents across a wide range of viruses. Continued investigation into the pro-viral activities of these helicases will help identify specific protein motifs that can be targeted by drugs to manage or eliminate the severe diseases caused by these viruses. Comparative studies on anti-viral DExD-box RNA helicase responses may also offer insights for developing therapies that enhance immune responses triggered by these helicases.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508, GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Sun H, Dai Q, Zhou B, Lan X, Qiu Y, Zhang Q, Wang D, Cui Y, Guo J, Hou L, Liu J, Zhou J. DDX21 Promotes PCV3 Replication by Binding to Cap Protein and Inhibiting Interferon Responses. Viruses 2025; 17:166. [PMID: 40006921 PMCID: PMC11861039 DOI: 10.3390/v17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DDX21, which functions mainly through controlling interferon (IFN)-β levels. However, how the interaction between DDX21 and PCV3 Cap regulates viral replication remains unknown. In the present study, upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV3 proliferation via a lentivirus-delivered system, as indicated by reduced replicase (Rep) protein levels and viral titers. Furthermore, DDX21 negatively regulated IFN-β and interferon-stimulated gene (ISG) levels, promoting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX21, and the nuclear localization signal (NLS) of PCV3 Cap and 763GSRSNRFQNK772 at the C-terminal domain (CTD) of DDX21 were indispensable to the interaction. Moreover, PCV3 infection prevented the repression of DDX21 to facilitate its pro-viral activity. Taken together, these results show that DDX21 promotes PCV3 replication by binding to the PCV3 Cap protein and prohibiting IFN-β response, which provides important insight on the prevention and control of PCV3 infection.
Collapse
Affiliation(s)
- Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Parthun M, Long ME, Hemann EA. Established and Emerging Roles of DEAD/H-Box Helicases in Regulating Infection and Immunity. Immunol Rev 2025; 329:e13426. [PMID: 39620586 PMCID: PMC11741935 DOI: 10.1111/imr.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025]
Abstract
The sensing of nucleic acids by DEAD/H-box helicases, specifically retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), plays a critical role in inducing antiviral immunity following infection. However, this DEAD/H-box helicase family includes many additional proteins whose immune functions have not been investigated. While numerous DEAD/H-box helicases contribute to antiviral immunity, they employ diverse mechanisms beyond the direct sensing of nucleic acids. Some members have also been identified to play proviral (promoting virus replication/propagation) roles during infections, regulate other non-viral infections, and contribute to the regulation of autoimmunity and cancer. This review synthesizes the known and emerging functions of the broader DEAD/H-box helicase family in immune regulation and highlights ongoing efforts to target these proteins therapeutically.
Collapse
Affiliation(s)
- Michael Parthun
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Matthew E. Long
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University College of MedicineColumbusOhioUSA
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep MedicineThe Ohio State University College of MedicineColumbusOhioUSA
| | - Emily A. Hemann
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
7
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
8
|
Liu YC, Eldomery MK, Maciaszek JL, Klco JM. Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications. ANNUAL REVIEW OF PATHOLOGY 2025; 20:87-114. [PMID: 39357070 PMCID: PMC12048009 DOI: 10.1146/annurev-pathmechdis-111523-023420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Myeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting ANKRD26, CEBPA, DDX41, ETV6, and RUNX1 are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including SAMD9/9L associated predisposition, GATA2 deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
9
|
Parkes AJ, Anandavijayan S, Lou-Hing A, Downs O, Killelea T, Martin L, Kapllanaj F, Bolt EL. Identification of a novel nuclease activity in human DDX49 helicase. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241891. [PMID: 39698160 PMCID: PMC11651898 DOI: 10.1098/rsos.241891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Human DDX49 is an emerging target in cancer progression and retroviral diseases through its essential roles in nucleolar RNA processing. Here, we identify nuclease activity of human DDX49, which requires active site aspartate residues within a conserved region of metazoan DDX49s that is absent from yeast and archaeal DDX49 homologues. We provide evidence that DDX49 nuclease activity is facilitated by its helicase activity. Using CRISPR-Cas9 genetic editing, we show that a heterozygous (DDX49 +/-) U2OS cell line is defective at cell migration, a phenotype supporting the association of DDX49 with cancer cell invasiveness. Measurement of RNAs in DDX49 +/- indicates that DDX49 is required to sustain levels of 5.8S rRNA.
Collapse
Affiliation(s)
- Ashley J. Parkes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Olivia Downs
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tom Killelea
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Louise Martin
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Bi H, Ren K, Wang P, Li E, Han X, Wang W, Yang J, Aydemir I, Tao K, Godley L, Liu Y, Shukla V, Bartom ET, Tang Y, Blanc L, Sukhanova M, Ji P. DDX41 dissolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617891. [PMID: 39464073 PMCID: PMC11507670 DOI: 10.1101/2024.10.14.617891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages. Using stage-specific Cre models for erythropoiesis, we reveal that Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), noncanonical DNA structures that tend to accumulate in the early stages of erythroid precursors. We show that DDX41 co-localizes with G4 on the erythroid genome. DDX41 directly binds to and dissolves G4, which is significantly compromised in MN-associated DDX41 mutants. Accumulation of G4 by DDX41 deficiency induces erythroid genome instability, defects in ribosomal biogenesis, and upregulation of p53. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, which is detrimental to survival since cGas-deficient and hematopoietic-specific Ddx41 knockout mice are viable without detectable hematologic phenotypes, although these mice continue to show erythroid ribosomal defects and upregulation of p53. These findings are further supported by data from a DDX41 mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 dissolver, essential for erythroid genome stability and suppressing the cGAS-STING pathway.
Collapse
|
11
|
Ma J, Ross SR. Multifunctional role of DEAD-box helicase 41 in innate immunity, hematopoiesis and disease. Front Immunol 2024; 15:1451705. [PMID: 39185415 PMCID: PMC11341421 DOI: 10.3389/fimmu.2024.1451705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box helicases are multifunctional proteins participating in many aspects of cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal roles in innate immune sensing and hematopoietic homeostasis. DDX41 recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, thereby maintaining genome stability by preventing their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting in inflammatory responses that likely influence hematopoietic stem and progenitor cell production and development. Beyond nucleic acid binding, DDX41 associates with proteins involved in RNA splicing as well as cellular proteins involved in innate immunity. DDX41 is also a tumor suppressor in familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia (MDS/AML). In the present review, we summarize the functions of DDX helicases in critical biological processes, particularly focusing on DDX41's association with cellular molecules and the mechanisms underlying its roles in innate immunity, hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
12
|
Hirth A, Fatti E, Netz E, Acebron SP, Papageorgiou D, Švorinić A, Cruciat CM, Karaulanov E, Gopanenko A, Zhu T, Sinning I, Krijgsveld J, Kohlbacher O, Niehrs C. DEAD box RNA helicases are pervasive protein kinase interactors and activators. Genome Res 2024; 34:952-966. [PMID: 38986579 PMCID: PMC11293542 DOI: 10.1101/gr.278264.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
DEAD box (DDX) RNA helicases are a large family of ATPases, many of which have unknown functions. There is emerging evidence that besides their role in RNA biology, DDX proteins may stimulate protein kinases. To investigate if protein kinase-DDX interaction is a more widespread phenomenon, we conducted three orthogonal large-scale screens, including proteomics analysis with 32 RNA helicases, protein array profiling, and kinome-wide in vitro kinase assays. We retrieved Ser/Thr protein kinases as prominent interactors of RNA helicases and report hundreds of binary interactions. We identified members of ten protein kinase families, which bind to, and are stimulated by, DDX proteins, including CDK, CK1, CK2, DYRK, MARK, NEK, PRKC, SRPK, STE7/MAP2K, and STE20/PAK family members. We identified MARK1 in all screens and validated that DDX proteins accelerate the MARK1 catalytic rate. These findings indicate pervasive interactions between protein kinases and DEAD box RNA helicases, and provide a rich resource to explore their regulatory relationships.
Collapse
Affiliation(s)
- Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Eugen Netz
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Sergio P Acebron
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | | | | | - Tianheng Zhu
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
13
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
14
|
Tharshan Jeyakanesh J, Nadarajapillai K, Tharanga EMT, Park C, Jo Y, Jeong T, Wan Q, Lee J. Amphiprion clarkii DDX41 modulates fish immune responses: Characterization by expression profiling, antiviral assay, and macrophage polarization analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109365. [PMID: 38199263 DOI: 10.1016/j.fsi.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.
Collapse
Affiliation(s)
- Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cheonguk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuhwan Jo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
15
|
Liu S, Xu P. Advancements in tyrosine kinase-mediated regulation of innate nucleic acid sensing. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:35-46. [PMID: 38426691 PMCID: PMC10945499 DOI: 10.3724/zdxbyxb-2023-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Innate nucleic acid sensing is a ubiquitous and highly conserved immunological process, which is pivotal for monitoring and responding to pathogenic invasion and cellular damage, and central to host defense, autoimmunity, cell fate determination and tumorigenesis. Tyrosine phosphorylation, a major type of post-translational modification, plays a critical regulatory role in innate immune sensing pathway. Core members of nucleic acid sensing signaling pathway, such as cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1), are all subject to activity regulation triggered by tyrosine phosphorylation, thereby affecting the host antiviral defense and anti-tumor immunity under physiological or pathological conditions. This review summarizes the recent advances in research on tyrosine kinases and tyrosine phosphorylation in regulation of nucleic acid sensing. The function and potential applications of targeting tyrosine phosphorylation in anti-tumor immunity is disussed to provide insights for understanding and expanding new anti-tumor strategies.
Collapse
Affiliation(s)
- Shengduo Liu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Wang D, Gao H, Qin Q, Li J, Zhao J, Qu Y, Li J, Xiong Y, Min Z, Mao Z, Xue Z. MicroRNA-218-5p-Ddx41 axis restrains microglia-mediated neuroinflammation through downregulating type I interferon response in a mouse model of Parkinson's disease. J Transl Med 2024; 22:63. [PMID: 38229084 PMCID: PMC10792813 DOI: 10.1186/s12967-024-04881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been largely considered one of main factors to the PD pathology. MicroRNA-218-5p (miR-218-5p) is a microRNA that plays a role in neurodevelopment and function, while its potential function in PD and neuroinflammation remains unclear. METHODS We explore the involvement of miR-218-5p in the PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. The miR-218-5p agomir used for overexpression was delivered into the substantia nigra (SN) by bilateral stereotaxic infusions. The loss of dopaminergic (DA) neurons and microglial inflammation in the SN was determined using Western blotting and immunofluorescence. Motor function was assessed using the rotarod test. RNA sequencing (RNA-seq) was performed to explore the pathways regulated by miR-218-5p. The target genes of miR-218-5p were predicted using TargetScan and confirmed using dual luciferase reporter assays. The effects of miR-218-5p on microglial inflammation and related pathways were verified in murine microglia-like BV2 cells. To stimulate BV2 cells, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+) and the conditioned media (CM) were collected. RESULTS MiR-218-5p expression was reduced in both the SN of MPTP-induced mice and MPP+-treated BV2 cells. MiR-218-5p overexpression significantly alleviated MPTP-induced microglial inflammation, loss of DA neurons, and motor dysfunction. RNA sequence and gene set enrichment analysis showed that type I interferon (IFN-I) pathways were upregulated in MPTP-induced mice, while this upregulation was reversed by miR-218-5p overexpression. A luciferase reporter assay verified that Ddx41 was a target gene of miR-218-5p. In vitro, miR-218-5p overexpression or Ddx41 knockdown inhibited the IFN-I response and expression of inflammatory cytokines in BV2 cells stimulated with MPP+-CM. CONCLUSIONS MiR-218-5p suppresses microglia-mediated neuroinflammation and preserves DA neurons via Ddx41/IFN-I. Hence, miR-218-5p-Ddx41 is a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
18
|
Bradley L, Savage KI. 'From R-lupus to cancer': Reviewing the role of R-loops in innate immune responses. DNA Repair (Amst) 2023; 131:103581. [PMID: 37832251 DOI: 10.1016/j.dnarep.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cells possess an inherent and evolutionarily conserved ability to detect and respond to the presence of foreign and pathological 'self' nucleic acids. The result is the stimulation of innate immune responses, signalling to the host immune system that defence mechanisms are necessary to protect the organism. To date, there is a vast body of literature describing innate immune responses to various nucleic acid species, including dsDNA, ssDNA and ssRNA etc., however, there is limited information available on responses to R-loops. R-loops are 3-stranded nucleic acid structures that form during transcription, upon DNA damage and in various other settings. Emerging evidence suggests that innate immune responses may also exist for the detection of R-loop related nucleic acid structures, implicating R-loops as drivers of inflammatory states. In this review, we aim to summarise the evidence indicating that R-loops are immunogenic species that can trigger innate immune responses in physiological and pathological settings and discuss the implications of this in the study of various diseases and therapeutic development.
Collapse
Affiliation(s)
- Leanne Bradley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom
| | - Kienan I Savage
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom.
| |
Collapse
|
19
|
Chlon TM, Patnaik MM. Germline DDX41 mutant predisposition syndromes: Slow driver states to hematological malignancies. Am J Hematol 2023; 98:1673-1676. [PMID: 37705260 DOI: 10.1002/ajh.27091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Timothy M Chlon
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Smith JR, Dowling JW, McFadden MI, Karp A, Schwerk J, Woodward JJ, Savan R, Forero A. MEF2A suppresses stress responses that trigger DDX41-dependent IFN production. Cell Rep 2023; 42:112805. [PMID: 37467105 PMCID: PMC10652867 DOI: 10.1016/j.celrep.2023.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.
Collapse
Affiliation(s)
- Julian R Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jack W Dowling
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew I McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Karp
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Discovery PREP, The Ohio State University, Columbus, OH 43210, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Cancer Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Tungalag S, Shinriki S, Hirayama M, Nagamachi A, Kanai A, Inaba T, Matsui H. Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. Int J Hematol 2023; 117:876-888. [PMID: 36780110 DOI: 10.1007/s12185-023-03558-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5'-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.
Collapse
Affiliation(s)
- Saruul Tungalag
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
22
|
Kim K, Ong F, Sasaki K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers (Basel) 2023; 15:344. [PMID: 36672294 PMCID: PMC9857085 DOI: 10.3390/cancers15020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The DEAD-box RNA helicase 41 gene, DDX41, is frequently mutated in hereditary myeloid neoplasms, identified in 2% of entire patients with AML/MDS. The pathogenesis of DDX41 mutation is related to the defect in the gene's normal functions of RNA and innate immunity. About 80% of patients with germline DDX41 mutations have somatic mutations in another allele, resulting in the biallelic DDX41 mutation. Patients with the disease with DDX41 mutations reportedly often present with the higher-grade disease, but there are conflicting reports about its impact on survival outcomes. Recent studies using larger cohorts reported a favorable outcome with a better response to standard therapies in patients with DDX41 mutations to patients without DDX41 mutations. For stem-cell transplantation, it is important for patients with DDX41 germline mutations to identify family donors early to improve outcomes. Still, there is a gap in knowledge on whether germline DDX41 mutations and its pathology features can be targetable for treatment, and what constitutes an appropriate screening/surveillance strategy for identified carriers. This article reviews our current understanding of DDX41 mutations in myeloid neoplasms in pathologic and clinical features and their clinical implications.
Collapse
Affiliation(s)
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Qin XW, Luo ZY, Pan WQ, He J, Li ZM, Yu Y, Liu C, Weng SP, He JG, Guo CJ. The Interaction of Mandarin Fish DDX41 with STING Evokes type I Interferon Responses Inhibiting Ranavirus Replication. Viruses 2022; 15:58. [PMID: 36680100 PMCID: PMC9862065 DOI: 10.3390/v15010058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
DDX41 is an intracellular DNA sensor that evokes type I interferon (IFN-I) production via the adaptor stimulator of interferon gene (STING), triggering innate immune responses against viral infection. However, the regulatory mechanism of the DDX41-STING pathway in teleost fish remains unclear. The mandarin fish (Siniperca chuatsi) is a cultured freshwater fish species that is popular in China because of its high market value. With the development of a high-density cultural mode in mandarin fish, viral diseases have increased and seriously restricted the development of aquaculture, such as ranavirus and rhabdovirus. Herein, the role of mandarin fish DDX41 (scDDX41) and its DEAD and HELIC domains in the antiviral innate immune response were investigated. The level of scDDX41 expression was up-regulated following treatment with poly(dA:dT) or Mandarin fish ranavirus (MRV), suggesting that scDDX41 might be involved in fish innate immunity. The overexpression of scDDX41 significantly increased the expression levels of IFN-I, ISGs, and pro-inflammatory cytokine genes. Co-immunoprecipitation and pull-down assays showed that the DEAD domain of scDDX41 recognized the IFN stimulatory DNA and interacted with STING to activate IFN-I signaling pathway. Interestingly, the HELIC domain of scDDX41 could directly interact with the N-terminal of STING to induce the expression levels of IFN-I and ISGs genes. Furthermore, the scDDX41 could enhance the scSTING-induced IFN-I immune response and significantly inhibit MRV replication. Our work would be beneficial to understand the roles of teleost fish DDX41 in the antiviral innate immune response.
Collapse
Affiliation(s)
- Xiao-Wei Qin
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Zhi-Yong Luo
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Wei-Qiang Pan
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Yang Yu
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Chang Liu
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Shao-Ping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| |
Collapse
|
24
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
25
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting STING for cancer immunotherapy: From mechanisms to translation. Int Immunopharmacol 2022; 113:109304. [DOI: 10.1016/j.intimp.2022.109304] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
26
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
27
|
Shinriki S, Matsui H. Unique role of DDX41, a DEAD-box type RNA helicase, in hematopoiesis and leukemogenesis. Front Oncol 2022; 12:992340. [PMID: 36119490 PMCID: PMC9478608 DOI: 10.3389/fonc.2022.992340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In myeloid malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), patient selection and therapeutic strategies are increasingly based on tumor-specific genetic mutations. Among these, mutations in DDX41, which encodes a DEAD-box type RNA helicase, are present in approximately 2–5% of AML and MDS patients; this disease subtype exhibits a distinctive disease phenotype characterized by late age of onset, tendency toward cytopenia in the peripheral blood and bone marrow, a relatively favorable prognosis, and a high frequency of normal karyotypes. Typically, individuals with a loss-of-function germline DDX41 variant in one allele later acquire the p.R525H mutation in the other allele before overt disease manifestation, suggesting that the progressive decrease in DDX41 expression and/or function is involved in myeloid leukemogenesis.RNA helicases play roles in many processes involving RNA metabolism by altering RNA structure and RNA-protein interactions through ATP-dependent helicase activity. A single RNA helicase can play multiple cellular roles, making it difficult to elucidate the mechanisms by which mutations in DDX41 are involved in leukemogenesis. Nevertheless, multiple DDX41 functions have been associated with disease development. The enzyme has been implicated in the regulation of RNA splicing, nucleic acid sensing in the cytoplasm, R-loop resolution, and snoRNA processing.Most of the mutated RNA splicing-related factors in MDS are involved in the recognition and determination of 3’ splice sites (SS), although their individual roles are distinct. On the other hand, DDX41 is likely incorporated into the C complex of the spliceosome, which may define a distinctive disease phenotype. This review summarizes the current understanding of how DDX41 is involved in this unique myeloid malignancy.
Collapse
|
28
|
Li J, Fang P, Zhou Y, Wang D, Fang L, Xiao S. DEAD-box RNA helicase 21 negatively regulates cytosolic RNA-mediated innate immune signaling. Front Immunol 2022; 13:956794. [PMID: 36032158 PMCID: PMC9399600 DOI: 10.3389/fimmu.2022.956794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-β production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-β. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-β production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-β production and functions to maintain immune homeostasis.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,*Correspondence: Shaobo Xiao,
| |
Collapse
|
29
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
30
|
Badar T, Chlon T. Germline and Somatic Defects in DDX41 and its Impact on Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:113-120. [PMID: 35781188 DOI: 10.1007/s11899-022-00667-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW While DDX41 mutation (m) is one of the most prevalent predisposition genes in adult myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML), most patients do not always present with a family history of MDS/AML. In this review, we will be highlighting epidemiological data on DDX41m, roles of DDX41 in oncogenesis, mechanisms of clonal evolution with somatic DDX41m, and clinical phenotypes and management of MDS/AML in patients harboring DDX41m. RECENT FINDINGS DDX41 encodes a DEAD-box helicase protein that is considered essential for cell growth and viability. High incidence of myeloid malignancies and other cancers in patients bearing DDX41m suggests that defects in DDX41 lead to loss of a tumor suppressor function, likely related to activities in RNA splicing and processing pathways. Seventy percent of cancer cases with DDX41m are associated with MDS/AML alone. More than 65% of familial cases harbor heterozygous germline frameshift mutations, of which p.D140Gfs*2 is the most common. A somatic DDX41m of the second allele is acquired in 70% of cases, leading to hematological malignancy. Myeloid neoplasms with DDX41m are typically characterized by long latency, high-risk disease at presentation with normal cytogenetics and without any additional molecular markers. Recent reports suggests that a subgroup of these patients have an indolent clinical course and have a better long-term survival compared to favorable or intermediate risk AML. Distinct clinical/pathologic features and favorable outcomes in MDS/AML highlight the need for standardized classification and gene specific guidelines that could assist in management decisions in patients with DDX41m.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology & Medical Oncology, Mayo Clinic Cancer Center, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
31
|
S-Y. Kim S, Sim DC, Carissimo G, Lim HH, Lam KP. Bruton’s Tyrosine Kinase phosphorylates scaffolding and RNA-binding protein G3BP1 to induce stress granule aggregation during host sensing of foreign ribonucleic acids. J Biol Chem 2022; 298:102231. [PMID: 35798143 PMCID: PMC9352910 DOI: 10.1016/j.jbc.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/03/2022] Open
Abstract
The Ras-GTPase activating protein SH3 domain-binding protein 1 (G3BP1) plays a critical role in the formation of classical and antiviral stress granules in stressed and virus-infected eukaryotic cells, respectively. While G3BP1 is known to be phosphorylated at serine residues which could affect stress granule assembly, whether G3BP1 is phosphorylated at tyrosine residues and how this posttranslational modification might affect its functions is less clear. Here, we show using immunoprecipitation and immunoblotting studies with 4G10 antibody that G3BP1 is tyrosine-phosphorylated when cells are stimulated with the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid to mimic viral infection. We further demonstrate via co-immunoprecipitation and inhibitor studies that Bruton’s tyrosine kinase (BTK) binds and phosphorylates G3BP1. The nuclear transport factor 2–like domain of G3BP1 was previously shown to be critical for its self-association to form stress granules. Our mass spectrometry, mutational and biochemical cross-linking analyses indicate that the tyrosine-40 residue in this domain is phosphorylated by BTK and critical for G3BP1 oligomerization. Furthermore, as visualized via confocal microscopy, pretreatment of cells with the BTK inhibitor LFM-A13 or genetic deletion of the btk gene or mutation of G3BP1-Y40 residue to alanine or phenylalanine all significantly attenuated the formation of antiviral stress granule aggregates upon polyinosinic:polycytidylic acid treatment. Taken together, our data indicate that BTK phosphorylation of G3BP1 induces G3BP1 oligomerization and facilitates the condensation of ribonucleoprotein complexes into macromolecular aggregates.
Collapse
|
32
|
Deng Y, Wang Y, Li L, Miao EA, Liu P. Post-Translational Modifications of Proteins in Cytosolic Nucleic Acid Sensing Signaling Pathways. Front Immunol 2022; 13:898724. [PMID: 35795661 PMCID: PMC9250978 DOI: 10.3389/fimmu.2022.898724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
The innate immune response is the first-line host defense against pathogens. Cytosolic nucleic acids, including both DNA and RNA, represent a special type of danger signal to initiate an innate immune response. Activation of cytosolic nucleic acid sensors is tightly controlled in order to achieve the high sensitivity needed to combat infection while simultaneously preventing false activation that leads to pathologic inflammatory diseases. In this review, we focus on post-translational modifications of key cytosolic nucleic acid sensors that can reversibly or irreversibly control these sensor functions. We will describe phosphorylation, ubiquitination, SUMOylation, neddylation, acetylation, methylation, succinylation, glutamylation, amidation, palmitoylation, and oxidation modifications events (including modified residues, modifying enzymes, and modification function). Together, these post-translational regulatory modifications on key cytosolic DNA/RNA sensing pathway members reveal a complicated yet elegantly controlled multilayer regulator network to govern innate immune activation.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward A. Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Pengda Liu,
| |
Collapse
|
33
|
Tan HY, Yong YK, Xue YC, Liu H, Furihata T, Shankar EM, Ng CS. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience 2022; 25:104404. [PMID: 35712074 PMCID: PMC9194172 DOI: 10.1016/j.isci.2022.104404] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroinflammation exacerbates the progression of SOD1-driven amyotrophic lateral sclerosis (ALS), although the underlying mechanisms remain largely unknown. Herein, we demonstrate that misfolded SOD1 (SOD1Mut)-causing ALS results in mitochondrial damage, thus triggering the release of mtDNA and an RNA:DNA hybrid into the cytosol in an mPTP-independent manner to activate IRF3- and IFNAR-dependent type I interferon (IFN-I) and interferon-stimulating genes. The neuronal hyper-IFN-I and pro-inflammatory responses triggered in ALS-SOD1Mut were sufficiently robust to cause a strong physiological outcome in vitro and in vivo. cGAS/DDX41-STING-signaling is amplified in bystander cells through inter-neuronal gap junctions. Our results highlight the importance of a common DNA-sensing pathway between SOD1 and TDP-43 in influencing the progression of ALS. Constitutive basal activation of IFN-I was found in the SOD1-ALS animal model SOD1-ALS damaged mitochondria to release mtDNA and RNA:DNA to activate the STING-pathway Blocking cGAS and STING diminishes neurodegeneration in vivo in the SOD1-ALS model Connexin and pannexin channels are required to propagate neuroinflammation in SOD1-ALS
Collapse
Affiliation(s)
- Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia.,School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Chen Seng Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
34
|
Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep 2022; 39:110856. [PMID: 35613581 PMCID: PMC9205463 DOI: 10.1016/j.celrep.2022.110856] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022] Open
Abstract
Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation. cGAS is activated by dsDNA. Singh et al. find DDX41 regulates cGAS activation through unwinding and annealing activities on dsDNA and ssDNA, respectively, and MDS/AML patient mutant R525H causes overactivation of innate immune response due to its unbalanced activities. This DDX41-cGAS-STING pathway may be related to molecular pathogenesis of MDS/AML.
Collapse
Affiliation(s)
- Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Manisha Yadav
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Aanchal Aggarwal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Kannupriya Pandey
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aizhang Xu
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Noreen Rapin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Mark Bosch
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - John DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jim Xiang
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada; Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Susan R Ross
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.
| |
Collapse
|
35
|
Su C, Tang YD, Zheng C. DExD/H-box helicases: multifunctional regulators in antiviral innate immunity. Cell Mol Life Sci 2021; 79:2. [PMID: 34910251 PMCID: PMC8671602 DOI: 10.1007/s00018-021-04072-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
DExD/H-box helicases play critical roles in multiple cellular processes, including transcription, cellular RNA metabolism, translation, and infections. Several seminal studies over the past decades have delineated the distinct functions of DExD/H-box helicases in regulating antiviral innate immune signaling pathways, including Toll-like receptors, retinoic acid-inducible gene I-like receptors, cyclic GMP-AMP synthase-the stimulator of interferon gene, and NOD-like receptors signaling pathways. Besides the prominent regulatory roles, there is increasing attention on their functions as nucleic acid sensors involved in antiviral innate immunity. Here we summarize the complex regulatory roles of DExD/H-box helicases in antiviral innate immunity. A better understanding of the underlying molecular mechanisms of DExD/H-box helicases' regulatory roles is vital for developing new therapeutics targeting DExD/H-box helicases and their mediated signaling transduction in viral infectious diseases.
Collapse
Affiliation(s)
- Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- The Wistar Institute, Philadelphia, PA, USA
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
36
|
Chlon TM, Stepanchick E, Hershberger CE, Daniels NJ, Hueneman KM, Kuenzi Davis A, Choi K, Zheng Y, Gurnari C, Haferlach T, Padgett RA, Maciejewski JP, Starczynowski DT. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell 2021; 28:1966-1981.e6. [PMID: 34473945 DOI: 10.1016/j.stem.2021.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
DDX41 mutations are the most common germline alterations in adult myelodysplastic syndromes (MDSs). The majority of affected individuals harbor germline monoallelic frameshift DDX41 mutations and subsequently acquire somatic mutations in their other DDX41 allele, typically missense R525H. Hematopoietic progenitor cells (HPCs) with biallelic frameshift and R525H mutations undergo cell cycle arrest and apoptosis, causing bone marrow failure in mice. Mechanistically, DDX41 is essential for small nucleolar RNA (snoRNA) processing, ribosome assembly, and protein synthesis. Although monoallelic DDX41 mutations do not affect hematopoiesis in young mice, a subset of aged mice develops features of MDS. Biallelic mutations in DDX41 are observed at a low frequency in non-dominant hematopoietic stem cell clones in bone marrow (BM) from individuals with MDS. Mice chimeric for monoallelic DDX41 mutant BM cells and a minor population of biallelic mutant BM cells develop hematopoietic defects at a younger age, suggesting that biallelic DDX41 mutant cells are disease modifying in the context of monoallelic DDX41 mutant BM.
Collapse
Affiliation(s)
- Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily Stepanchick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Courtney E Hershberger
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Noah J Daniels
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA; Department of Biomedicine and Prevention & PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome, Tor Vergata, Rome, Italy
| | | | - Richard A Padgett
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
37
|
Abstract
Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely probe the local environment and maintain host integrity. Besides pathogen recognition through conserved motifs, several of these receptors also sense aberrant or misplaced self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We review recent literature demonstrating that self-nucleic acid detection through the STING pathway is central to numerous processes, from cell physiology to sterile injury, auto-immunity and cancer. We address the role of STING in autoimmune diseases linked to dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions and cancer. Connections between STING in various cell processes including autophagy and cell death are developed. Finally, we review proposed mechanisms to explain the sources of cytoplasmic DNA.
Collapse
Affiliation(s)
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), Centre National de la Recherche Scientifique (CNRS), UMR7355 and University of Orleans, Orleans, France
| |
Collapse
|
38
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Wang X, Kokabee L, Kokabee M, Conklin DS. Bruton's Tyrosine Kinase and Its Isoforms in Cancer. Front Cell Dev Biol 2021; 9:668996. [PMID: 34307353 PMCID: PMC8297165 DOI: 10.3389/fcell.2021.668996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a soluble tyrosine kinase with central roles in the development, maturation, and signaling of B cells. BTK has been found to regulate cell proliferation, survival, and migration in various B-cell malignancies. Targeting BTK with recently developed BTK inhibitors has been approved by the Food and Drug Administration (FDA) for the treatment of several hematological malignancies and has transformed the treatment of several B-cell malignancies. The roles that BTK plays in B cells have been appreciated for some time. Recent studies have established that BTK is expressed and plays pro-tumorigenic roles in several epithelial cancers. In this review, we focus on novel isoforms of the BTK protein expressed in epithelial cancers. We review recent work on the expression, function, and signaling of these isoforms and their value as potential therapeutic targets in epithelial tumors.
Collapse
Affiliation(s)
- Xianhui Wang
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Leila Kokabee
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Mostafa Kokabee
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| |
Collapse
|
40
|
Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton's Tyrosine Kinase in Inflammatory and Autoimmune Pathologies. Front Cell Dev Biol 2021; 9:668131. [PMID: 34150760 PMCID: PMC8213343 DOI: 10.3389/fcell.2021.668131] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK's function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.
Collapse
|
41
|
Ali MAM. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res 2021; 296:198352. [PMID: 33640359 DOI: 10.1016/j.virusres.2021.198352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicases, the largest family of superfamily 2 helicases, are a profoundly conserved family of RNA-binding proteins, containing a distinctive Asp-Glu-Ala-Asp (D-E-A-D) sequence motif, which is the origin of their name. Aside from the ATP-dependent unwinding of RNA duplexes, which set up these proteins as RNA helicases, DEAD-box proteins have been found to additionally stimulate RNA duplex fashioning and to uproot proteins from RNA, aiding the reformation of RNA and RNA-protein complexes. There is accumulating evidence that DEAD-box helicases play functions in the recognition of foreign nucleic acids and the modification of viral infection. As intracellular parasites, viruses must avoid identification by innate immune sensing mechanisms and disintegration by cellular machinery, whilst additionally exploiting host cell activities to assist replication. The capability of DEAD-box helicases to sense RNA in a sequence-independent way, as well as the broadness of cellular roles performed by members of this family, drive them to affect innate sensing and viral infections in numerous manners. Undoubtedly, DEAD-box helicases have been demonstrated to contribute to intracellular immune recognition, function as antiviral effectors, and even to be exploited by viruses to support their replication. Relying on the virus or the viral cycle phase, a DEAD-box helicase can function either in a proviral manner or as an antiviral factor. This review gives a comprehensive perspective on the various biochemical characteristics of DEAD-box helicases and their links to structural data. It additionally outlines the multiple functions that members of the DEAD-box helicase family play during viral infections.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
42
|
Andreou AZ. DDX41: a multifunctional DEAD-box protein involved in pre-mRNA splicing and innate immunity. Biol Chem 2021; 402:645-651. [PMID: 33711218 DOI: 10.1515/hsz-2020-0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
DEAD-box helicases participate in nearly all steps of an RNA's life. In recent years, increasing evidence has shown that several family members are multitasking enzymes. They are often involved in different processes, which may be typical for RNA helicases, such as RNA export and translation, or atypical, e.g., acting as nucleic acid sensors that activate downstream innate immune signaling. This review focuses on the DEAD-box protein DDX41 and summarizes our current understanding of its roles as an innate immunity sensor in the cytosol and in pre-mRNA splicing in the nucleus and discusses DDX41's involvement in disease.
Collapse
Affiliation(s)
- Alexandra Z Andreou
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| |
Collapse
|
43
|
Shin EM, Huynh VT, Neja SA, Liu CY, Raju A, Tan K, Tan NS, Gunaratne J, Bi X, Iyer LM, Aravind L, Tergaonkar V. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. SCIENCE ADVANCES 2021; 7:7/12/eabe2470. [PMID: 33731348 PMCID: PMC7968844 DOI: 10.1126/sciadv.abe2470] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/29/2021] [Indexed: 05/03/2023]
Abstract
What covalent modifications control the temporal ubiquitination of ERα and hence the duration of its transcriptional activity remain poorly understood. We show that GREB1, an ERα-inducible enzyme, catalyzes O-GlcNAcylation of ERα at residues T553/S554, which stabilizes ERα protein by inhibiting association with the ubiquitin ligase ZNF598. Loss of GREB1-mediated glycosylation of ERα results in reduced cellular ERα levels and insensitivity to estrogen. Higher GREB1 expression in ERα+ve breast cancer is associated with greater survival in response to tamoxifen, an ERα agonist. Mice lacking Greb1 exhibit growth and fertility defects reminiscent of phenotypes in ERα-null mice. In summary, this study identifies GREB1, a protein with an evolutionarily conserved domain related to DNA-modifying glycosyltransferases of bacteriophages and kinetoplastids, as the first inducible and the only other (apart from OGT) O-GlcNAc glycosyltransferase in mammalian cytoplasm and ERα as its first substrate.
Collapse
Affiliation(s)
- Eun Myoung Shin
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Vinh Thang Huynh
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sultan Abda Neja
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Chia Yi Liu
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Kelly Tan
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive,, Singapore 637551, Singapore
| | - Jayantha Gunaratne
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117594, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| |
Collapse
|
44
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
45
|
Qin K, Jian D, Xue Y, Cheng Y, Zhang P, Wei Y, Zhang J, Xiong H, Zhang Y, Yuan X. DDX41 regulates the expression and alternative splicing of genes involved in tumorigenesis and immune response. Oncol Rep 2021; 45:1213-1225. [PMID: 33650667 PMCID: PMC7859996 DOI: 10.3892/or.2021.7951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
DEAD‑box helicase 41 (DDX41) is an RNA helicase and accumulating evidence has suggested that DDX41 is involved in pre‑mRNA splicing during tumor development. However, the role of DDX41 in tumorigenesis remains unclear. In order to determine the function of DDX41, the human DDX41 gene was cloned and overexpressed in HeLa cells. The present study demonstrated that DDX41 overexpression inhibited proliferation and promoted apoptosis in HeLa cells. RNA‑sequencing analysis of the transcriptomes in overexpressed and normal control samples. DDX41 regulated 959 differentially expressed genes compared with control cells. Expression levels of certain oncogenes were also regulated by DDX41. DDX41 selectively regulated the alternative splicing of genes in cancer‑associated pathways including the EGFR and FGFR signaling pathways. DDX41 selectively upregulated the expression levels of five antigen processing and presentation genes (HSPA1A, HSPA1B, HSPA6, HLA‑DMB and HLA‑G) and downregulated other immune‑response genes in HeLa cells. Additionally, DDX41‑regulated oncogenes and antigen processing and presentation genes were associated with patient survival rates. Moreover, DDX41 expression was associated with immune infiltration in cervical and endocervical squamous cancer. The present findings showed that DDX41 regulated the cancer cell transcriptome at both the transcriptional and alternative splicing levels. The DDX41 regulatory network predicted the biological function of DDX41 in suppressing tumor cell growth and regulating cancer immunity, which may be important for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Danni Jian
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yaqiang Xue
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
46
|
Savigny F, Schricke C, Lacerda-Queiroz N, Meda M, Nascimento M, Huot-Marchand S, Da Gama Monteiro F, Ryffel B, Gombault A, Le Bert M, Couillin I, Riteau N. Protective Role of the Nucleic Acid Sensor STING in Pulmonary Fibrosis. Front Immunol 2021; 11:588799. [PMID: 33488589 PMCID: PMC7820752 DOI: 10.3389/fimmu.2020.588799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of interstitial lung disease for which current treatments display limited efficacy. IPF is largely driven by host-derived danger signals released upon recurrent local tissue damage. Here we explored the roles of self-DNA and stimulator of interferon genes (STING), a protein belonging to an intracellular DNA sensing pathway that leads to type I and/or type III interferon (IFN) production upon activation. Using a mouse model of IPF, we report that STING deficiency leads to exacerbated pulmonary fibrosis with increased collagen deposition in the lungs and excessive remodeling factors expression. We further show that STING-mediated protection does not rely on type I IFN signaling nor on IL-17A or TGF-β modulation but is associated with dysregulated neutrophils. Together, our data support an unprecedented immunoregulatory function of STING in lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), CNRS Orleans (UMR7355) and University of Orleans, Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), CNRS Orleans (UMR7355) and University of Orleans, Orleans, France
| |
Collapse
|
47
|
Shrestha MM, Lim CY, Bi X, Robinson RC, Han W. Tmod3 Phosphorylation Mediates AMPK-Dependent GLUT4 Plasma Membrane Insertion in Myoblasts. Front Endocrinol (Lausanne) 2021; 12:653557. [PMID: 33959097 PMCID: PMC8095187 DOI: 10.3389/fendo.2021.653557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Man Mohan Shrestha
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chun-Yan Lim
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Weiping Han,
| |
Collapse
|
48
|
Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol 2020; 11:2064. [PMID: 33133062 PMCID: PMC7550420 DOI: 10.3389/fimmu.2020.02064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
To effectively defend against microbial pathogens, the host cells mount antiviral innate immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal endogenous DNAs, the DNA sensor cGAS synthesizes 2',3'-cGAMP that induces STING (stimulator of interferon genes) undergoing conformational changes, cellular trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal role in preventing microbial pathogen infection by sensing DNAs during pathogen invasion. This review is dedicated to the recent advances in the dynamic regulations of STING activation, intracellular trafficking, and post-translational modifications (PTMs) by the host and microbial proteins.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| |
Collapse
|
49
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
50
|
Spliceosomal factor mutations and mis-splicing in MDS. Best Pract Res Clin Haematol 2020; 33:101199. [PMID: 33038983 DOI: 10.1016/j.beha.2020.101199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Somatic, heterozygous missense and nonsense mutations in at least seven proteins that function in the spliceosome are found at high frequency in MDS patients. These proteins act at various steps in the process of splicing by the spliceosome and lead to characteristic alterations in the alternative splicing of a subset of genes. Several studies have investigated the effects of these mutations and have attempted to identify a commonly affected gene or pathway. Here, we summarize what is known about the normal function of these proteins and how the mutations alter the splicing landscape of the genome. We also summarize the commonly mis-spliced gene targets and discuss the state of mechanistic unification that has been achieved. Finally, we discuss alternative mechanisms by which these mutations may lead to disease.
Collapse
|