1
|
Chiang YH, Emmrich S, Vannini N. Metabolic Alterations in HSCs during Aging and Leukemogenesis. Physiology (Bethesda) 2025; 40:0. [PMID: 40019828 DOI: 10.1152/physiol.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/15/2024] [Accepted: 02/23/2025] [Indexed: 04/26/2025] Open
Abstract
Aging is a multifaceted process associated with a functional decline in cellular function over time, affecting all lifeforms. During the aging process, metabolism, a fundamental hallmark of life (1), is profoundly altered. In the context of hematopoiesis, the proper function of hematopoietic stem cells, at the apex of the blood system, is tightly linked to their energy metabolism, which in turn shapes hematopoietic output. Here, we review the latest developments in our understanding of the metabolic states and changes in aged hematopoietic stem cells, molecular players and pathways involved in aged hematopoietic stem cell metabolism, the consequences of perturbed metabolism on clonal hematopoiesis and leukemogenesis, and pharmacologic/genetic strategies to reverse or rejuvenate altered metabolic phenotypes.
Collapse
Affiliation(s)
- Yi-Hsuan Chiang
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Stephan Emmrich
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
2
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of Stem Cells in Ageing and Age-related Diseases. Mech Ageing Dev 2025:112069. [PMID: 40324541 DOI: 10.1016/j.mad.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Stem cell functions and ageing are deeply interconnected, continually influencing each other in multiple ways. Stem cells play a vital role in organ maintenance, regeneration, and homeostasis, all of which decline over time due to gradual reduction in their self-renewal, differentiation, and growth factor secretion potential. The functional decline is attributed to damaging extrinsic environmental factors and progressively worsening intrinsic genetic and biochemical processes. These ageing-associated deteriorative changes have been extensively documented, paving the way for the discovery of novel biomarkers of ageing for detection, diagnosis, and treatment of age-related diseases. Age-dependent changes in adult stem cells include numerical decline, loss of heterogeneity, reduced self-renewal and differentiation, leading to a drastic reduction in regenerative potential, and thereby drive the ageing process. Conversely, ageing also adversely alters the stem cell niche, disrupting the molecular pathways underlying stem cell homing, self-renewal, differentiation, and growth factor secretion, all of which are critical for tissue repair and regeneration. A holistic understanding of these molecular mechanisms, through empirical research and clinical trials, is essential for designing targeted therapies to modulate ageing and improve health parameters in older individuals.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi-110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi - 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Akshay Bhardwaj
- Global Research Alliances, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
3
|
Lee S, Yang X, Masarik K, Ahmed T, Zheng L, Zhan H. The Immune-Modulatory Function of Megakaryocytes in the Hematopoietic Niche of Myeloproliferative Neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646152. [PMID: 40235969 PMCID: PMC11996561 DOI: 10.1101/2025.04.01.646152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by dysregulated megakaryopoiesis and neoplastic hematopoietic stem cell (HSC) expansion. Using a murine model with MK-specific JAK2V617F expression, we establish an MPN aging model where mutant MKs drive HSC expansion and a progressive decline in wild-type HSC function. Compared to wild-type MKs, JAK2V617F MKs exhibit heightened inflammation and innate immune activation with aging, including increased antigen presentation, elevated pro-inflammatory cytokines, skewed T cell populations, and impaired T cell functions in the marrow niche. Enhanced MK immunomodulatory function is linked to mutant cell expansion and MPN progression in a chimeric murine model with co-existing wild-type and JAK2V617F mutant HSCs. LINE-1 (long-interspersed element-1), a retrotransposon linked to innate immune activation and aging, is upregulated in mutant MKs during aging in murine models. We validated that LINE-1-encoded protein ORF1p is expressed in marrow MKs in 12 of 13 MPN patients but absent in control samples from patients undergoing orthopedic surgery (n=5). These findings suggest that MKs reprogram the marrow immune microenvironment, impairing normal HSC function while promoting neoplastic expansion in MPNs. LINE-1 activation in mutant MKs may be a key driver of immune dysregulation in MPNs. Key Points JAK2V617F mutant MKs reprogram the marrow immune microenvironment to promote neoplastic HSC expansion in MPNs.LINE-1 activation in diseased MKs triggers chronic inflammation and immune dysfunction in MPNs.
Collapse
|
4
|
Pasquier F, Pegliasco J, Martin JE, Marti S, Plo I. New approaches to standard of care in early-phase myeloproliferative neoplasms: can interferon-α alter the natural history of the disease? Haematologica 2025; 110:850-862. [PMID: 39445431 PMCID: PMC11959252 DOI: 10.3324/haematol.2023.283958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/15/2024] [Indexed: 10/25/2024] Open
Abstract
The classical BCR::ABL-negative myeloproliferative neoplasms (MPN) include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. They are acquired clonal disorders of hematopoietic stem cells leading to hyperplasia of one or several myeloid lineages. MPN are caused by three main recurrent mutations, JAK2V617F and mutations in the calreticulin (CALR) and thrombopoietin receptor (MPL) genes. Here, we review the general diagnosis, the complications, and the management of MPN. Second, we explain the physiopathology of the natural disease development and its regulation, which contributes to MPN heterogeneity. Thirdly, we describe the new paradigm of MPN development highlighting the early origin of driver mutations, decades before the onset of symptoms, and the consequence of early detection of MPN cases in the general population for prompt diagnosis and better medical management. Finally, we present interferon-α therapy as a potential, early disease-modifying drug after reporting its good hematologic and molecular efficacies in polycythemia vera, essential thrombocythemia, and early myelofibrosis in clinical trials as well as its mechanism of action in pre-clinical studies. As a result, we may expect that, in the future, MPN patients will be diagnosed very early during the course of disease and that new selective therapies under development, such as interferon-α, JAK2V617F inhibitors and CALRmut monoclonal antibodies, will be able to intercept the mutated clones.
Collapse
Affiliation(s)
| | - Jean Pegliasco
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | - Jean-Edouard Martin
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | - Séverine Marti
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | | |
Collapse
|
5
|
Li C, Zhang C, Li X. Clonal hematopoiesis of indeterminate potential: contribution to disease and promising interventions. Mol Cell Biochem 2025:10.1007/s11010-025-05261-8. [PMID: 40140229 DOI: 10.1007/s11010-025-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/16/2025] [Indexed: 03/28/2025]
Abstract
In clonal hematopoiesis of indeterminate potential (CHIP), subpopulations of blood cells carrying somatic mutations expand as the individual ages, and this expansion may elevate risk of blood cancers as well as cardiovascular disease. Individuals at higher risk of CHIP and therefore of CHIP-associated disease can be identified through mutational profiling, and the apparently central role of inflammation in CHIP-associated disease has emerged as a potential therapeutic target. While CHIP is often associated with negative health outcomes, emerging evidence suggests that some CHIP-related mutations may also exert beneficial effects, indicating a more complex role in human health. This review examines current understanding of the epidemiology and clinical significance of CHIP and the role of inflammation in driving its association with disease risk. It explores the mechanisms linking CHIP to inflammation and risk of cardiovascular and other diseases, as well as the potential of personalizing therapies against those diseases for individuals with CHIP.
Collapse
Affiliation(s)
- Chongjie Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China
| | - Chunxiang Zhang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China.
| | - Xiuying Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Latorre-Crespo E, Robertson NA, Kosebent EG, MacGillivray L, Murphy L, Uddin M, Whitsel E, Honigberg M, Bick A, Reiner AP, Orrù V, Marongiu M, Cucca F, Fiorillo E, Deary IJ, Harris S, Cox S, Marioni R, Schumacher L, Chandra T, Kirschner K. Clinical progression of clonal hematopoiesis is determined by a combination of mutation timing, fitness, and clonal structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640879. [PMID: 40093158 PMCID: PMC11908133 DOI: 10.1101/2025.02.28.640879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Clonal hematopoiesis (CH) is characterized by expanding blood cell clones carrying somatic mutations in healthy aged individuals and is associated with various age-related diseases and all-cause mortality. While CH mutations affect diverse genes associated with myeloid malignancies, their mechanisms of expansion and disease associations remain poorly understood. We investigate the relationship between clonal fitness and clinical outcomes by integrating data from three longitudinal aging cohorts (n=713, observations=2,341). We demonstrate pathway-specific fitness advantage and clonal composition influence clonal dynamics. Further, the timing of mutation acquisition is necessary to determine the extent of clonal expansion reached during the host individual's lifetime. We introduce MACS120, a metric combining mutation context, timing, and variant fitness to predict future clonal growth, outperforming traditional variant allele frequency measurements in predicting clinical outcomes. Our unified analytical framework enables standardized clonal dynamics inference across cohorts, advancing our ability to predict and potentially intervene in CH-related pathologies.
Collapse
Affiliation(s)
- Eric Latorre-Crespo
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
| | - Neil A Robertson
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Mayo Clinic, Rochester, Minnesota, USA
| | - E Gozde Kosebent
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Mayo Clinic, Rochester, Minnesota, USA
| | - Louise MacGillivray
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Heart and Vascular Institute, Massachusetts General Brigham, Boston, MA, USA
| | - Alex Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
- Department of Biomedical Sciences, National Research Council, 08045, Lanusei, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Simon Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Riccardo Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Linus Schumacher
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK
| | | | - Kristina Kirschner
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Marshall CH, Antonarakis ES, Patnaik MM. Radiotherapeutics, clonal hematopoiesis, and risk of hematologic malignancies: The good, the bad, the ugly. Blood Rev 2025; 70:101269. [PMID: 39864960 DOI: 10.1016/j.blre.2025.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
While radiotherapeutics have demonstrated significant clinical benefit across multiple cancer types including thyroid cancer, neuroendocrine tumors, and prostate cancer, hematological toxicities can be frequent and challenging. It remains unknown to what extent the hematologic toxicity is driven by clonal processes that preexist and are selected for by treatment induced selection pressures. In this review, we discuss the background leading to the adoption of radiotherapeutics in the treatment of solid tumor malignancies, the risk of hematologic toxicities and myeloid neoplasms and the evidence pointing to potential precursor lesions that may predispose patients to hematologic toxicities. Additionally, we discuss how prevalent clonal hematopoiesis is among patients with solid tumor malignancies and suggest workflows for patients with cytopenias or clonal hematopoiesis who are receiving or have received radiotherapeutic agents.
Collapse
Affiliation(s)
- Catherine H Marshall
- Johns Hopkins School of Medicine, 201 N Broadway, Box 7, Baltimore, MD 21287, United States of America.
| | - Emmanuel S Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| | - Mrinal M Patnaik
- Mayo Clinic, Division of Hematology, Department of Medicine, 200 1(st) St SW, Rochester, MN 55905, United States of America.
| |
Collapse
|
8
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
9
|
Wen S, Kuri-Morales P, Hu F, Nag A, Tachmazidou I, Deevi SVV, Taiy H, Smith KR, Loesch DP, Burren OS, Dhindsa RS, Wasilewski S, Alegre-Díaz J, Berumen J, Emberson J, Torres JM, Collins R, Carss K, Wang Q, Petrovski S, Tapia-Conyer R, Fabre MA, Harper AR, Vassiliou GS, Mitchell J. Comparative analysis of the Mexico City Prospective Study and the UK Biobank identifies ancestry-specific effects on clonal hematopoiesis. Nat Genet 2025; 57:572-582. [PMID: 39948438 PMCID: PMC11906367 DOI: 10.1038/s41588-025-02085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/09/2025] [Indexed: 03/15/2025]
Abstract
The impact of genetic ancestry on the development of clonal hematopoiesis (CH) remains largely unexplored. Here, we compared CH in 136,401 participants from the Mexico City Prospective Study (MCPS) to 416,118 individuals from the UK Biobank (UKB) and observed CH to be significantly less common in MCPS compared to UKB (adjusted odds ratio = 0.59, 95% confidence interval (CI) = [0.57, 0.61], P = 7.31 × 10-185). Among MCPS participants, CH frequency was positively correlated with the percentage of European ancestry (adjusted beta = 0.84, 95% CI = [0.66, 1.03], P = 7.35 × 10-19). Genome-wide and exome-wide association analyses in MCPS identified ancestry-specific variants in the TCL1B locus with opposing effects on DNMT3A-CH versus non-DNMT3A-CH. Meta-analysis of MCPS and UKB identified five novel loci associated with CH, including polymorphisms at PARP11/CCND2, MEIS1 and MYCN. Our CH study, the largest in a non-European population to date, demonstrates the power of cross-ancestry comparisons to derive novel insights into CH pathogenesis.
Collapse
Affiliation(s)
- Sean Wen
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Pablo Kuri-Morales
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Fengyuan Hu
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Abhishek Nag
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ioanna Tachmazidou
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sri V V Deevi
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Haeyam Taiy
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine R Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Douglas P Loesch
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Oliver S Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan S Dhindsa
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Sebastian Wasilewski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jesus Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Ciudad de México, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Ciudad de México, Mexico
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jason M Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Ciudad de México, Mexico
| | - Margarete A Fabre
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew R Harper
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Clinical Development, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - George S Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
10
|
Verner EL, Jackson JB, Maddox C, Valkenburg KC, White JR, Occean J, Morris L, Karandikar A, Gerding KMR, Sausen M, Koohestani F, Severson EA, Jensen TJ, Caveney BJ, Eisenberg M, Ramkissoon SH, Greer AE. Analytical Validation of the Labcorp Plasma Complete Test, a Cell-Free DNA Comprehensive Genomic Profiling Tool for Precision Oncology. J Mol Diagn 2025; 27:216-231. [PMID: 39818317 DOI: 10.1016/j.jmoldx.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
To help guide treatment decisions and trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers. Over 800 unique sequencing libraries across 27 cancer types were evaluated to establish analytical sensitivity, specificity, accuracy, and precision, reproducibility, and repeatability (PRR). Sensitivity was verified for each variant type, with a median variant allele frequency (VAF) of 1.25% and 1.27% for panel-wide single nucleotide variants (SNVs) and insertions/deletions (indels) (sequence mutations), respectively, with <1% VAF sensitivity observed for clinically actionable variants, 1.72-fold for copy number amplifications (CNAs), 0.48% fusion read fraction for translocations, and 0.47% sequence mutation VAF for microsatellite instability-high (MSI-H). Specificity was 99.9999% for SNVs and 100% for other variant types. PRR resulted in 94.9% average positive agreement (APA) and 99.9% average negative agreement (ANA) for sequence mutations and 100% APA and ANA for CNAs, translocations, and MSI-H. Orthogonal assays were utilized to assess accuracy, demonstrating concordance of 97.4% positive percent agreement and >99.99997% negative percent agreement across all variants. Overall, the test demonstrates high sensitivity, specificity, accuracy, and robustness to enable informed clinical decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mark Sausen
- Labcorp Oncology (PGDx), Baltimore, Maryland
| | | | | | | | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, North Carolina; Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
11
|
Lebecque B, Croizier C, Tassin T, Louis E, Tribalat N, Bombardier W, Grandjean AP, Pante V, Monjanel H, Bouillon-Minois JB, Martel R, Ledoux-Pilon A, Boiret-Dupré N, Renzis BD, Berger MG, Bourgne C. Contribution of molecular characterization to the diagnosis of MPN in patients with low JAK2 V617F variant allelic fraction in a real-world cohort. Ann Hematol 2025; 104:1587-1596. [PMID: 40167604 PMCID: PMC12031943 DOI: 10.1007/s00277-025-06326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Since 2008, the JAK2V617F mutation has been key for diagnosing myeloproliferative neoplasms (MPN) according to the World Health Organization criteria. However, the clinical and biological significance of low JAK2V617F variant allelic fraction (VAF) remains poorly understood. To address this, we performed a comprehensive molecular characterization of a monocentric real-world retrospective cohort of MPN patients with low JAK2V617F VAF, diagnosed between 2007 and 2019. Our analysis revealed that 46.3% of these cases had additional driver mutations into JAK2, CALR, and MPL genes associated with very low JAK2V617F VAF (median: 0.09%). Furthermore, next-generation sequencing of cases without these driver mutations showed that 67.7% harbored other mutations, including low VAF CALR mutations, as well as TP53 alterations or predisposition genes. These findings highlight the importance of comprehensive molecular analysis in conjunction with bone marrow biopsy (BMB). Notably, we found a negative BMB did not exclude an MPN diagnosis, and molecular results confirmed MPN in some patients even without BMB evidence. Integrating BMB findings, molecular data, and low JAK2V617F VAF with clinical assessments highlights the potential for misdiagnoses, especially in cases that might overlap with age-related clonal hematopoiesis. Our study emphasizes the need for extensive molecular investigation in cases of low JAK2V617F MPN to ensure accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
- Benjamin Lebecque
- Service d'Hématologie Biologique, CHU Estaing, Clermont-Ferrand, France
- Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carolyne Croizier
- Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de thérapie cellulaire et hématologie clinique adulte, CHU Estaing, Clermont-Ferrand, France
| | - Thomas Tassin
- Service d'Hématologie Biologique, CHU Estaing, Clermont-Ferrand, France
- Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Esteban Louis
- Service d'Hématologie Biologique, CHU Estaing, Clermont-Ferrand, France
| | - Nathalie Tribalat
- Service d'Hématologie Biologique, CHU Estaing, Clermont-Ferrand, France
| | | | - Anne-Pascale Grandjean
- Service de thérapie cellulaire et hématologie clinique adulte, CHU Estaing, Clermont-Ferrand, France
- Médecine interne, Jacques Lacarin, Vichy, France
| | - Vanessa Pante
- Oncologie médicale, C.H. Emile Roux, Le Puy-en-Velay, France
| | | | | | - Rémi Martel
- Urgences, C.H. Emile Roux, Le Puy-en- Velay, France
| | | | | | - Benoit De Renzis
- Service de thérapie cellulaire et hématologie clinique adulte, CHU Estaing, Clermont-Ferrand, France
| | - Marc Gabriel Berger
- Service d'Hématologie Biologique, CHU Estaing, Clermont-Ferrand, France
- Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Bourgne
- Service d'Hématologie Biologique, CHU Estaing, Clermont-Ferrand, France.
- Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Nagi SC, Lucas ER, Ashraf F, Mugoya T, Lukyamuzi E, Summers S, Yee C, Jacob CG, Njoroge H, Pemberton T, Essandoh J, Lukindu M, Kaboré H, Sawadogo G, Williams J, Van’t Hof AE, Hernandez-Koutoucheva A, Hubbart C, Rowlands K, Jeffreys A, Goodwin S, Park N, Ariani C, Egyir-Yawson A, Goncalves S, Rajatileka S, Rockett K, Simpson VJ, Miles A, Weetman D, Kayondo J, Nolan T, Donnelly MJ. Targeted genomic surveillance of insecticide resistance in African malaria vectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.637727. [PMID: 39990394 PMCID: PMC11844500 DOI: 10.1101/2025.02.14.637727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The emergence of insecticide resistance is threatening the efforts of malaria control programmes, which rely heavily on a limited arsenal of insecticidal tools, such as insecticide-treated bed nets. Importantly, genomic surveillance of malaria vectors can provide critical, policy-relevant insights into the presence and evolution of insecticide resistance, allowing us to maintain and extend the shelf life of these interventions. Yet the complex genetic architecture of resistance, combined with resource constraints in malaria-endemic settings, have thus far precluded the widespread use of genomics in routine surveillance. Meanwhile, stakeholders in sub-Saharan Africa are moving towards locally driven, decentralised generation of genomic data, underscoring the need for standardised and robust genomics workflows. To address this need, we demonstrate an approach to targeted genomic surveillance in Anopheles gambiae s.l with Illumina sequencing. We target 90 genomic loci in the Anopheles gambiae s.l genome, including 55 resistance-associated mutations and 35 ancestry informative markers. This protocol is coupled with advanced, automated software for accurate and reproducible variant analysis. We are able to elucidate population structure and ancestry in our cohorts and accurately identify most species in the An. gambiae species complex. We report frequencies of variants at insecticide-resistance loci and explore the continued evolution of the pyrethroid target site, the Voltage-gated sodium channel. Applying the platform to a recently established colony of field-caught resistant mosquitoes (Siaya, Kenya), we identified seven independent resistance-associated variants contributing to reduced efficacy of insecticide-treated nets in East Africa. Additionally, we leverage a machine learning algorithm (XGBoost) to demonstrate the possibility of predicting bioassay mortality using genotypes alone. This achieved very high accuracy (73%), demonstrating the potential of targeted genomics to predictively monitor insecticide resistance. Together these tools provide a practical, scalable solution for resistance monitoring while advancing the goal of building local genomic surveillance capacity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Faisal Ashraf
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Trevor Mugoya
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Edward Lukyamuzi
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Shannan Summers
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Calvin Yee
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher G Jacob
- Centre for Human Genetics, Nuffield Department of Medicine, Oxford, OX3 7BN, UK
| | - Harun Njoroge
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Thomas Pemberton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Martin Lukindu
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Honorine Kaboré
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Grégoire Sawadogo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Jessica Williams
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Arjen E. Van’t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Christina Hubbart
- Centre for Human Genetics, Nuffield Department of Medicine, Oxford, OX3 7BN, UK
| | - Kate Rowlands
- Centre for Human Genetics, Nuffield Department of Medicine, Oxford, OX3 7BN, UK
| | - Anna Jeffreys
- Centre for Human Genetics, Nuffield Department of Medicine, Oxford, OX3 7BN, UK
| | - Scott Goodwin
- Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Naomi Park
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Cristina Ariani
- Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | - Sonia Goncalves
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Shavanthi Rajatileka
- Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Kirk Rockett
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Victoria J. Simpson
- Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jonathan Kayondo
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
13
|
Kallai A, Ungvari Z, Fekete M, Maier AB, Mikala G, Andrikovics H, Lehoczki A. Genomic instability and genetic heterogeneity in aging: insights from clonal hematopoiesis (CHIP), monoclonal gammopathy (MGUS), and monoclonal B-cell lymphocytosis (MBL). GeroScience 2025; 47:703-720. [PMID: 39405013 PMCID: PMC11872960 DOI: 10.1007/s11357-024-01374-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 03/04/2025] Open
Abstract
Aging is a multifaceted process characterized by a gradual decline in physiological function and increased susceptibility to a range of chronic diseases. Among the molecular and cellular mechanisms driving aging, genomic instability is a fundamental hallmark, contributing to increased mutation load and genetic heterogeneity within cellular populations. This review explores the role of genomic instability and genetic heterogeneity in aging in the hematopoietic system, with a particular focus on clonal hematopoiesis of indeterminate potential (CHIP), monoclonal gammopathy of undetermined significance (MGUS), and monoclonal B-cell lymphocytosis (MBL) as biomarkers. CHIP involves the clonal expansion of hematopoietic stem cells with somatic mutations. In contrast, MGUS is characterized by the presence of clonal plasma cells producing monoclonal immunoglobulins, while MBL is characterized by clonal proliferation of B cells. These conditions are prevalent in the aging population and serve as measurable indicators of underlying genomic instability. Studying these entities offers valuable insights into the mechanisms by which somatic mutations accumulate and drive clonal evolution in the hematopoietic system, providing a deeper understanding of how aging impacts cellular and tissue homeostasis. In summary, the hematopoietic system serves as a powerful model for investigating the interplay between genomic instability and aging. Incorporating age-related hematological conditions into aging research, alongside other biomarkers such as epigenetic clocks, can enhance the precision and predictive power of biological age assessments. These biomarkers provide a comprehensive view of the aging process, facilitating the early detection of age-related diseases and hopefully enabling personalized healthcare strategies.
Collapse
Affiliation(s)
- Attila Kallai
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Republic of Singapore
- Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, @AgeSingapore, National University Health System, Singapore, Republic of Singapore
| | - Gabor Mikala
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Hajnalka Andrikovics
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Andrea Lehoczki
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Franco S, Godley LA. Genetic and environmental risks for clonal hematopoiesis and cancer. J Exp Med 2025; 222:e20230931. [PMID: 39626264 PMCID: PMC11614460 DOI: 10.1084/jem.20230931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Somatic variants accumulate in all organs with age, with a positive selection of clonal populations that provide a fitness advantage during times of heightened cellular stress leading to clonal expansion. Easily measured within the hematopoietic compartment, clonal hematopoiesis (CH) is now recognized as a common process in which hematopoietic clones with somatic variants associated with hematopoietic neoplasms exist within the blood or bone marrow of individuals without evidence of malignancy. Most cases of CH involve a limited number of genes, most commonly DNMT3A, TET2, and ASXL1. CH confers risk for solid and hematopoietic malignancies as well as cardiovascular and numerous inflammatory diseases and offers opportunities for cancer prevention. Here, we explore the genetic and environmental factors that predispose individuals to CH with unique variant signatures and discuss how CH drives cancer progression with the goals of improving individual cancer risk stratification, identifying key intervention opportunities, and understanding how CH impacts therapeutic strategies and outcomes.
Collapse
Affiliation(s)
| | - Lucy A. Godley
- Department of Medicine, Northwestern Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Hong YS, Pasca S, Shi W, Puiu D, Lake NJ, Lek M, Ru M, Grove ML, Prizment A, Joshu CE, Platz EA, Guallar E, Arking DE, Gondek LP. Mitochondrial heteroplasmy improves risk prediction for myeloid neoplasms. Nat Commun 2024; 15:10133. [PMID: 39578475 PMCID: PMC11584845 DOI: 10.1038/s41467-024-54443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential is the primary pathogenic risk factor for myeloid neoplasms, while heteroplasmy (mutations in a subset of cellular mitochondrial DNA) is another marker of clonal expansion associated with hematological malignancies. We explore how these two markers relate and influence myeloid neoplasms incidence, and their role in risk stratification. We find that heteroplasmy is more common in individuals with clonal hematopoiesis of indeterminate potential, particularly those with higher variant allele fractions, multiple mutations, or spliceosome machinery mutations. Individuals with both markers have a higher risk of myeloid neoplasms than those with either alone. Furthermore, heteroplasmic variants with higher predicted deleteriousness increase the risk of myeloid neoplasms. Incorporating heteroplasmy in an existing risk score model for individuals with clonal hematopoiesis of indeterminate potential significantly improves sensitivity and better identifies high-risk groups. This suggests heteroplasmy as a clonal expansion marker and potentially as a biomarker for myeloid neoplasms development.
Collapse
Affiliation(s)
- Yun Soo Hong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sergiu Pasca
- Division of Hematological Malignancies, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wen Shi
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Meng Ru
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Megan L Grove
- Human Genetics Center; Department of Epidemiology, Human Genetics, and Environmental Sciences; School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anna Prizment
- Department of Laboratory Medicine & Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Corinne E Joshu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth A Platz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eliseo Guallar
- Department of Epidemiology, School of Global Public Health, New York University, New York, NY, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lukasz P Gondek
- Division of Hematological Malignancies, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Desai P, Zhou Y, Grenet J, Handelman SK, Crispino CM, Tarbay LN, Whitsel EA, Roboz G, Barac A, Honigberg M, Bick A, Anderson G, Wactawski-Wende J, Jakubek Swartzlander YA, Bacon J, Wong J, Ma X, Scheet P, Li Z, Kasi P, Prentice R, Auer P, Manson JE, Reiner A, Simon M. Association of clonal hematopoiesis and mosaic chromosomal alterations with solid malignancy incidence and mortality. Cancer 2024; 130:3879-3887. [PMID: 39012906 DOI: 10.1002/cncr.35455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Understanding the impact of clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) on solid tumor risk and mortality can shed light on novel cancer pathways. METHODS The authors analyzed whole genome sequencing data from the Trans-Omics for Precision Medicine Women's Health Initiative study (n = 10,866). They investigated the presence of CHIP and mCA and their association with the development and mortality of breast, lung, and colorectal cancers. RESULTS CHIP was associated with higher risk of breast (hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.03-1.64; p = .02) but not colorectal (p = .77) or lung cancer (p = .32). CHIP carriers who developed colorectal cancer also had a greater risk for advanced-stage (p = .01), but this was not seen in breast or lung cancer. CHIP was associated with increased colorectal cancer mortality both with (HR, 3.99; 95% CI, 2.41-6.62; p < .001) and without adjustment (HR, 2.50; 95% CI, 1.32-4.72; p = .004) for advanced-stage and a borderline higher breast cancer mortality (HR, 1.53; 95% CI, 0.98-2.41; p = .06). Conversely, mCA (cell fraction [CF] >3%) did not correlate with cancer risk. With higher CFs (mCA >5%), autosomal mCA was associated with increased breast cancer risk (HR, 1.39; 95% CI, 1.06-1.83; p = .01). There was no association of mCA (>3%) with breast, colorectal, or lung mortality except higher colon cancer mortality (HR, 2.19; 95% CI, 1.11-4.3; p = .02) with mCA >5%. CONCLUSIONS CHIP and mCA (CF >5%) were associated with higher breast cancer risk and colorectal cancer mortality individually. These data could inform on novel pathways that impact cancer risk and lead to better risk stratification.
Collapse
Affiliation(s)
- Pinkal Desai
- Department of Hematology/Oncology, Weill Cornell Medical School, New York, New York, USA
| | - Ying Zhou
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Samuel K Handelman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine at the University of Michigan, Ann Arbor, Michigan, USA
| | - Cynthia M Crispino
- Department of Hematology/Oncology, Weill Cornell Medical School, New York, New York, USA
| | - Laura N Tarbay
- Department of Hematology/Oncology, Weill Cornell Medical School, New York, New York, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gail Roboz
- Department of Hematology/Oncology, Weill Cornell Medical School, New York, New York, USA
| | - Ana Barac
- CardioOncology Program, Inova Health System, Fairfax, Virginia, USA
| | - Michael Honigberg
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Garnet Anderson
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | | | - Jason Bacon
- Acadix Consulting, Milwaukee, Wisconsin, USA
| | - Justin Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolong Ma
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zichan Li
- Computational Biology and Bioinformatics, Englander Institute for Precision Medicine, Weill Cornell Medical School, New York, New York, USA
| | - Pashtoon Kasi
- Weill Cornell Medicine, Englander Institute of Precision Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Ross Prentice
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Paul Auer
- Department of Biostatistics, Institute for Health and Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Reiner
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
17
|
Kjær L, Skov V, Larsen MK, Kristiansen MH, Wienecke T, Cordua S, Ellervik C, Langabeer SE, Hasselbalch HC. Clonal Hematopoiesis from a Diagnostic Perspective: 10 Years of CHIP. Mol Diagn Ther 2024; 28:665-668. [PMID: 39164495 DOI: 10.1007/s40291-024-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | | | - Troels Wienecke
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Sabrina Cordua
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen E Langabeer
- Cancer Molecular Diagnostics, St. James's Hospital, Dublin, D08 W9RT, Ireland
| | | |
Collapse
|
18
|
Kartal-Kaess M, Karow A, Bacher U, Pabst T, Joncourt R, Zweier C, Kuehni CE, Porret NA, Roessler J. Clonal hematopoiesis of indeterminate potential is rare in pediatric patients undergoing autologous stem cell transplantation. Pediatr Hematol Oncol 2024; 41:530-539. [PMID: 38840569 DOI: 10.1080/08880018.2024.2362885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes recurrent somatic gene mutations in the blood of healthy individuals, associated with higher risk for hematological malignancies and higher all-cause mortality by cardiovascular disease. CHIP increases with age and is more common in adult patients after chemotherapy or radiation for cancer. Furthermore, in some adult patients undergoing autologous stem cell transplantation (ASCT) or thereafter, CHIP has been identified. In children and adolescents, it remains unclear how cellular stressors such as cytotoxic therapy influence the incidence and expansion of CHIP. We conducted a retrospective study on 33 pediatric patients mostly with solid tumors undergoing ASCT for presence of CHIP. We analyzed CD34+ selected peripheral blood stem cell grafts after several cycles of chemotherapy, prior to cell infusion, by next-generation sequencing including 18 "CHIP-genes". Apart from a somatic variant in TP53 in one patient no other variants indicative of CHIP were identified. As a CHIP-unrelated finding, germline variants in CHEK2 and in ATM were identified in two and four patients, respectively. In conclusion, we could not detect "typical" CHIP variants in our cohort of pediatric cancer patients undergoing ASCT. However, more studies with larger patient numbers are necessary to assess if chemotherapy in the pediatric setting contributes to an increased CHIP incidence and at what time point.
Collapse
Affiliation(s)
- Mutlu Kartal-Kaess
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Axel Karow
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrike Bacher
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, University of Bern, Bern, Switzerland
| | - Raphael Joncourt
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia E Kuehni
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Naomi Azur Porret
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jochen Roessler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
20
|
Zhang H, Kafeiti N, Masarik K, Lee S, Yang X, Zheng H, Zhan H. Decoding Endothelial MPL and JAK2V617F Mutation: Insight Into Cardiovascular Dysfunction in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2024; 44:1960-1974. [PMID: 38989576 PMCID: PMC11335084 DOI: 10.1161/atvbaha.124.321008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential face a significantly elevated risk of cardiovascular diseases. Endothelial cells carrying the JAK2V617F mutation have been detected in many patients with MPN. In this study, we investigated the molecular basis for the high incidence of cardiovascular complications in patients with MPN. METHODS We investigated the impact of endothelial JAK2V617F mutation on cardiovascular disease development using both transgenic murine models and MPN patient-derived induced pluripotent stem cell lines. RESULTS Our investigations revealed that JAK2V617F mutant endothelial cells promote cardiovascular diseases under stress, which is associated with endothelial-to-mesenchymal transition and endothelial dysfunction. Importantly, we discovered that inhibiting the endothelial TPO (thrombopoietin) receptor MPL (myeloproliferative leukemia virus oncogene) suppressed JAK2V617F-induced endothelial-to-mesenchymal transition and prevented cardiovascular dysfunction caused by mutant endothelial cells. Notably, the endothelial MPL receptor is not essential for the normal physiological regulation of blood cell counts and cardiac function. CONCLUSIONS JAK2V617F mutant endothelial cells play a critical role in the development of cardiovascular diseases in JAK2V617F-positive MPNs, and endothelial MPL could be a promising therapeutic target for preventing or ameliorating cardiovascular complications in these patients.
Collapse
Affiliation(s)
- Haotian Zhang
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- The Graduate Program in Molecular and Cellular Biology (H. Zhang), Stony Brook University, NY
| | - Nicholas Kafeiti
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
| | - Kyla Masarik
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
| | - Sandy Lee
- Department of Molecular and Cellular Pharmacology (S.L.), Stony Brook University, NY
| | - Xiaoxi Yang
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- Division of Rheumatology, Peking Union Medical College Hospital, Beijing, China (X.Y.)
| | - Haoyi Zheng
- Cardiac Imaging, The Heart Center, Saint Francis Hospital, Roslyn, NY (H. Zheng)
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- Medical Service, Northport VA Medical Center, NY (H. Zhan)
| |
Collapse
|
21
|
Yao Y, Zhou Y, Zhuo N, Xie W, Meng H, Lou Y, Mao L, Tong H, Qian J, Yang M, Yu W, Zhou D, Jin J, Wang H. Co-mutation landscape and its prognostic impact on newly diagnosed adult patients with NPM1-mutated de novo acute myeloid leukemia. Blood Cancer J 2024; 14:118. [PMID: 39039048 PMCID: PMC11263537 DOI: 10.1038/s41408-024-01103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yile Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Nanfang Zhuo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological disorders, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang University Cancer Center, Hangzhou, 310000, Zhejiang, PR China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - De Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological disorders, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang University Cancer Center, Hangzhou, 310000, Zhejiang, PR China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China.
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China.
- Zhejiang Provincial Clinical Research Center for Hematological disorders, Hangzhou, 310000, Zhejiang, PR China.
- Zhejiang University Cancer Center, Hangzhou, 310000, Zhejiang, PR China.
| |
Collapse
|
22
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
23
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Clin Lab Med 2024; 44:339-353. [PMID: 38821648 DOI: 10.1016/j.cll.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Division of Diagnostic Genetics and Genomics, Department of Pathology, University of Michigan/Michigan Medicine, 2800 Plymouth Road, NCRC 36-1221-79, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Zhang D, Zhang A, He X, Deng S. Variation in cancer risk between organs can not be explained by the degree of somatic clonal expansion. ADVANCED BIOTECHNOLOGY 2024; 2:18. [PMID: 39883325 PMCID: PMC11740857 DOI: 10.1007/s44307-024-00025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 01/31/2025]
Abstract
Somatic clonal expansion refers to the proliferation and expansion of a cell clone within a multicellular organism. Since cancer also results from the uncontrolled proliferation of few cell clones, it is generally believed that aging-associated somatic clonal expansion observed in normal tissues represents a precancerous condition. For instance, hematological malignancy is often preceded by clonal hematopoiesis. However, the precise connection between cancer and somatic clonal expansion remains elusive in solid organs. In this study, we utilized a straightforward method to assess the relative quantitative degrees of clonal expansion in nine human organs. Our findings reveal that the degree of clonal expansion varies across different organs while remaining consistent among different individuals. Contrary to the general belief, we did not identify any significant correlation between lifetime cancer risk and the degree of lifetime somatic clonal expansion. For example, the lifetime risk of colorectal cancer is approximately 20 times higher than that of esophageal cancer, yet the former exhibited the lower degree of clonal expansion than the latter. Our results suggest that somatic clonal expansion represents an evolutionary process distinct from carcinogenesis in normal tissues, providing novel perspectives on precancerous conditions.
Collapse
Affiliation(s)
- Di Zhang
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China
| | - Ao Zhang
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China
| | - Xionglei He
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.
| | - Shanjun Deng
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.
| |
Collapse
|
25
|
Rodriguez J, Baldini C, Bayle A, Pages A, Danlos FX, Vasseur D, Rouleau E, Lacroix L, Alonso de Castro B, Goldschmidt V, Seknazi L, Hollebecque A, Michot JM, Champiat S, Marabelle A, Ouali K, Marzac C, Ponce S, Micol JB, Chaput N, Massard C, Italiano A. Impact of Clonal Hematopoiesis-Associated Mutations in Phase I Patients Treated for Solid Tumors: An Analysis of the STING Trial. JCO Precis Oncol 2024; 8:e2300631. [PMID: 38815178 DOI: 10.1200/po.23.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE With liquid biopsy's widespread adoption in oncology, an increased number of clonal hematopoiesis-associated mutations (CHm) have been identified in patients with solid tumors. However, its impact on patient outcomes remains unclear. This study aimed to analyze and describe CHm in a cohort of phase I patients. METHODS Retrospective data collection from medical records and molecular profiles (Foundation One Liquid CDx Assay) was performed before first study drug administration at the Drug Development Department of Gustave Roussy (France) within the STING trial (ClinicalTrials.gov identifier: NCT04932525). CHm prevalence was assessed using any and ≥1% variant allele frequency (VAF) in epigenetic modifier genes (DNMT3A, TET2, and ASXL1). RESULTS From January 2021 to December 2022, 255 patients were enrolled in a phase I clinical trial. A total of 55% were male, with a median age of 62 years (24-86). Principal tumor locations were GI (27%) and genitourinary (21%). Overall, 104 patients (41%) had at least one CHm in liquid biopsy, with 55 patients (22%) having a VAF of ≥ 1%. The most frequent mutation was DNMT3A 73% at any VAF (n = 76) and 22% at 1% VAF (n = 23). Median progression-free survival (PFS) and overall survival were 3.8 months (m) for the CHm group versus 3.2 m for nonclonal hematopoiesis (CH; P = .08) and 18.26 m CHm versus 15.8 m non-CH (P = .9), respectively. PFS increased in the CHm population treated with targeted therapy (hazard ratio, 0.6 [95% CI, 0.42 to 0.84]; P = .004). CONCLUSION CHm was commonly found in patients with solid tumors treated in phase I trials, with a prevalence of 41% in our cohort. The most frequently mutated gene was DNMT3A. The presence of CHm had no impact on the population of patients treated in the phase I trials.
Collapse
Affiliation(s)
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy, Villejuif, France
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
| | - Arnaud Bayle
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Arnaud Pages
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Lauren Seknazi
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | | | | | | | - Kaissa Ouali
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
- A Coruña University Complex, Coruña, Spain
- Department of Hematology, Gustave Roussy, Villejuif, France
- Paris-Saclay University, School of Pharmacy, Orsay, France
| | | | | |
Collapse
|
26
|
Patel SA, Gerber WK, Zheng R, Khanna S, Hutchinson L, Abel GA, Cerny J, DaSilva BA, Zhang TY, Ramanathan M, Khedr S, Selove W, Woda B, Miron PM, Higgins AW, Gerber JM. Natural history of clonal haematopoiesis seen in real-world haematology settings. Br J Haematol 2024; 204:1844-1855. [PMID: 38522849 PMCID: PMC11232927 DOI: 10.1111/bjh.19423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Recursive partitioning of healthy consortia led to the development of the Clonal Hematopoiesis Risk Score (CHRS) for clonal haematopoiesis (CH); however, in the practical setting, most cases of CH are diagnosed after patients present with cytopenias or related symptoms. To address this real-world population, we characterize the clinical trajectories of 94 patients with CH and distinguish CH harbouring canonical DNMT3A/TET2/ASXL1 mutations alone ('sole DTA') versus all other groups ('non-sole DTA'). TET2, rather than DNMT3A, was the most prevalent mutation in the real-world setting. Sole DTA patients did not progress to myeloid neoplasm (MN) in the absence of acquisition of other mutations. Contrastingly, 14 (20.1%) of 67 non-sole DTA patients progressed to MN. CHRS assessment showed a higher frequency of high-risk CH in non-sole DTA (vs. sole DTA) patients and in progressors (vs. non-progressors). RUNX1 mutation conferred the strongest risk for progression to MN (odds ratio [OR] 10.27, 95% CI 2.00-52.69, p = 0.0053). The mean variant allele frequency across all genes was higher in progressors than in non-progressors (36.9% ± 4.62% vs. 24.1% ± 1.67%, p = 0.0064). This analysis in the post-CHRS era underscores the natural history of CH, providing insight into patterns of progression to MN.
Collapse
Affiliation(s)
- Shyam A. Patel
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
- Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA
| | - William K. Gerber
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Rena Zheng
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Shrinkhala Khanna
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Lloyd Hutchinson
- Dept. of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Gregory A. Abel
- Divisions of Population Sciences and Hematologic Malignancies; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jan Cerny
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
- Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA
| | - Brandon A. DaSilva
- Dept. of Medicine – Division of Hematology, Stanford University School of Medicine, Stanford, CA
| | - Tian Y. Zhang
- Dept. of Medicine – Division of Hematology, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA
| | - Muthalagu Ramanathan
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
- Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA
| | - Salwa Khedr
- Dept. of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - William Selove
- Dept. of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Bruce Woda
- Dept. of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Patricia M. Miron
- Dept. of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Anne W. Higgins
- Dept. of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Jonathan M. Gerber
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
- Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA
| |
Collapse
|
27
|
Rocco JM, Zhou Y, Liu NS, Laidlaw E, Galindo F, Anderson MV, Rupert A, Lage SL, Ortega-Villa AM, Yu S, Lisco A, Manion M, Vassiliou GS, Dunbar CE, Sereti I. Clonal hematopoiesis in people with advanced HIV and associated inflammatory syndromes. JCI Insight 2024; 9:e174783. [PMID: 38564303 PMCID: PMC11141903 DOI: 10.1172/jci.insight.174783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
People with HIV (PWH) have a higher age-adjusted mortality due to chronic immune activation and age-related comorbidities. PWH also have higher rates of clonal hematopoiesis (CH) than age-matched non-HIV cohorts; however, risk factors influencing the development and expansion of CH in PWH remain incompletely explored. We investigated the relationship between CH, immune biomarkers, and HIV-associated risk factors (CD4+ and CD8+ T cells, nadir CD4+ count, opportunistic infections [OIs], and immune reconstitution inflammatory syndrome [IRIS]) in a diverse cohort of 197 PWH with median age of 42 years, using a 56-gene panel. Seventy-nine percent had a CD4+ nadir below 200 cells/μL, 58.9% had prior OIs, and 34.5% had a history of IRIS. The prevalence of CH was high (27.4%), even in younger individuals, and CD8+ T cells and nadir CD4+ counts strongly associated with CH after controlling for age. A history of IRIS was associated with CH in a subgroup analysis of patients 35 years of age and older. Inflammatory biomarkers were higher in CH carriers compared with noncarriers, supporting a dysregulated immune state. These findings suggest PWH with low nadir CD4+ and/or inflammatory complications may be at high risk of CH regardless of age and represent a high-risk group that could benefit from risk reduction and potentially targeted immunomodulation.
Collapse
Affiliation(s)
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nicholas S. Liu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
- Department of Biology, Brown University, Providence, Rhode Island, USA
| | | | | | | | - Adam Rupert
- Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Silvia L. Lage
- National Institute of Allergy and Infectious Diseases, and
| | | | - Shiqin Yu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, and
| | - Maura Manion
- National Institute of Allergy and Infectious Diseases, and
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (CUH), Cambridge, United Kingdom
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, and
| |
Collapse
|
28
|
Bacharach T, Kaushansky N, Shlush LI. Age-related micro-environmental changes as drivers of clonal hematopoiesis. Curr Opin Hematol 2024; 31:53-57. [PMID: 38133628 DOI: 10.1097/moh.0000000000000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW Both aging and reduced diversity at the hematopoietic stem cells (HSCs) level are ubiquitous. What remains unclear is why some individuals develop clonal hematopoiesis (CH), and why does CH due to specific mutations occur in specific individuals. Much like aging, reduced diversity of HSCs is a complex phenotype shaped by numerous factors (germline & environment). The purpose of the current review is to discuss the role of two other age-related ubiquitous processes that might contribute to the dynamics and characteristics of losing HSC diversity and the evolution of CH. These processes have not been reviewed in depth so far and include the accumulation of fatty bone marrow (FBM), and the decline in sex hormones. RECENT FINDINGS Interestingly, sex hormone decline can directly shape HSC function, but also reshape the delicate balance of BM supporting cells, with a shift towards FBM. FBM accumulation can shape the clonal expansion of preleukemic mutations, particularly DNMT3A mutations, through IL-6 mediation. DNMT3A mutations are one of the only preleukemic mutations which is more prevalent in women, and especially in women with early menopause, demonstrating an association between age-related hormone decline and CH evolution, the mechanisms of which are yet to be discovered. SUMMARY Aging is a multifactorial phenotype and the same is true for the aging of the blood system. While many factors which can shape CH have been discussed, we shed more light on FBM and sex hormone decline. Much more is missing: how and should we even try to prevent these phenomena? Why do they occur? and how they are connected to other age-related blood factors?
Collapse
Affiliation(s)
- Tal Bacharach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
| | - Nathali Kaushansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
| | - Liran I Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot
- Maccabi Healthcare Services, Tel Aviv, Israel
| |
Collapse
|
29
|
Fabre MA, Vassiliou GS. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024; 143:573-581. [PMID: 37992214 DOI: 10.1182/blood.2023019964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.
Collapse
Affiliation(s)
- Margarete A Fabre
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research & Development, AstraZeneca, Cambridge, United Kingdom
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Guo J, Walter K, Quiros PM, Gu M, Baxter EJ, Danesh J, Di Angelantonio E, Roberts D, Guglielmelli P, Harrison CN, Godfrey AL, Green AR, Vassiliou GS, Vuckovic D, Nangalia J, Soranzo N. Inherited polygenic effects on common hematological traits influence clonal selection on JAK2 V617F and the development of myeloproliferative neoplasms. Nat Genet 2024; 56:273-280. [PMID: 38233595 PMCID: PMC10864174 DOI: 10.1038/s41588-023-01638-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Myeloproliferative neoplasms (MPNs) are chronic cancers characterized by overproduction of mature blood cells. Their causative somatic mutations, for example, JAK2V617F, are common in the population, yet only a minority of carriers develop MPN. Here we show that the inherited polygenic loci that underlie common hematological traits influence JAK2V617F clonal expansion. We identify polygenic risk scores (PGSs) for monocyte count and plateletcrit as new risk factors for JAK2V617F positivity. PGSs for several hematological traits influenced the risk of different MPN subtypes, with low PGSs for two platelet traits also showing protective effects in JAK2V617F carriers, making them two to three times less likely to have essential thrombocythemia than carriers with high PGSs. We observed that extreme hematological PGSs may contribute to an MPN diagnosis in the absence of somatic driver mutations. Our study showcases how polygenic backgrounds underlying common hematological traits influence both clonal selection on somatic mutations and the subsequent phenotype of cancer.
Collapse
Affiliation(s)
- Jing Guo
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | | | - Pedro M Quiros
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Muxin Gu
- Wellcome Sanger Institute, Hinxton, UK
| | - E Joanna Baxter
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - John Danesh
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Fondazione Human Technopole, Milan, Italy
| | - David Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital and Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center for Research and Innovation of Myeloproliferative Neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Dragana Vuckovic
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Trust, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Nicole Soranzo
- Wellcome Sanger Institute, Hinxton, UK.
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Fondazione Human Technopole, Milan, Italy.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Ronchini C, Caprioli C, Tunzi G, D’Amico FF, Colombo E, Giani M, Foti G, Conconi D, Lavitrano M, Passerini R, Pase L, Capizzi S, Mastrilli F, Alcalay M, Orecchia R, Natoli G, Pelicci PG. High-sensitivity analysis of clonal hematopoiesis reveals increased clonal complexity of potential-driver mutations in severe COVID-19 patients. PLoS One 2024; 19:e0282546. [PMID: 38198467 PMCID: PMC10781164 DOI: 10.1371/journal.pone.0282546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Whether Clonal Hematopoiesis (CH) represents a risk factor for severity of the COVID-19 disease remains a controversial issue. We report the first high- sensitivity analysis of CH in COVID-19 patients (threshold of detection at 0.5% vs 1 or 2% in previous studies). We analyzed 24 patients admitted to ICU for COVID-19 (COV-ICU) and 19 controls, including healthy subjects and asymptomatic SARS-CoV2-positive individuals. Despite the significantly higher numbers of CH mutations identified (80% mutations with <2% variant allele frequency, VAF), we did not find significant differences between COV-ICU patients and controls in the prevalence of CH or in the numbers, VAF or functional categories of the mutated genes, suggesting that CH is not overrepresented in patients with COVID-19. However, when considering potential drivers CH mutations (CH-PD), COV-ICU patients showed higher clonal complexity, in terms of both mutation numbers and VAF, and enrichment of variants reported in myeloid neoplasms. However, we did not score an impact of increased CH-PD on patient survival or clinical parameters associated with inflammation. These data suggest that COVID-19 influence the clonal composition of the peripheral blood and call for further investigations addressing the potential long-term clinical impact of CH on people experiencing severe COVID-19. We acknowledge that it will indispensable to perform further studies on larger patient cohorts in order to validate and generalize our conclusions. Moreover, we performed CH analysis at a single time point. It will be necessary to consider longitudinal approaches with long periods of follow-up in order to assess if the COVID-19 disease could have an impact on the evolution of CH and long-term consequences in patients that experienced severe COVID-19.
Collapse
Affiliation(s)
- Chiara Ronchini
- Clinical Genomics, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianleo Tunzi
- Clinical Genomics, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Giani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Ospedale San Gerardo, Monza, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Ospedale San Gerardo, Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Rita Passerini
- Division of Laboratory Medicine, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Pase
- Occupational Medicine, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvio Capizzi
- Medical Administration, CMO, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fabrizio Mastrilli
- Medical Administration, CMO, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Cargo C, Bernard E, Beinortas T, Bolton KL, Glover P, Warren H, Payne D, Ali R, Khan A, Short M, Van Hoppe S, Smith A, Taylor J, Evans P, Papaemmanuil E, Crouch S. Predicting cytopenias, progression, and survival in patients with clonal cytopenia of undetermined significance: a prospective cohort study. Lancet Haematol 2024; 11:e51-e61. [PMID: 38135373 DOI: 10.1016/s2352-3026(23)00340-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Somatic mutations are frequently reported in individuals with cytopenia but without a confirmed haematological diagnosis (clonal cytopenia of undetermined significance; CCUS). These patients have an increased risk of progression to a myeloid malignancy and worse overall survival than those with no such mutations. To date, studies have been limited by retrospective analysis or small patient numbers. We aimed to establish the natural history of CCUS by prospectively investigating outcome in a large, well defined patient cohort. METHODS This prospective cohort study was conducted at the Haematological Malignancy Diagnostic Service, a diagnostic laboratory in Leeds, UK. Patients aged at least 18 years who were referred for investigation of cytopenia were eligible for inclusion; those with a history of myeloid malignancy were not eligible. Targeted sequencing was conducted alongside routine clinical testing. Baseline mutation analysis was then correlated with the main study outcomes: longitudinal blood counts, disease progression to a myeloid malignancy, and overall survival with a median follow-up of 4·54 years (IQR 4·03-5·04). Data were collected manually from hospital records or extracted from laboratory or clinical outcome databases. FINDINGS Bone marrow samples from 2348 patients were received at the Haematological Malignancy Diagnostic Service between July 1, 2014, and July 31, 2016. Of these, 2083 patients (median age 72 years [IQR 63-80, range 18-99]; 854 [41·0%] female and 1229 [59·0%] male) met the inclusion criteria and had samples of sufficient quality for further analysis. 598 (28·7%) patients received a diagnosis on the basis of their biopsy sample, whereas 1485 (71·3%) samples were classified as non-diagnostic; of these, CCUS was confirmed in 400 (26·9%) patients (256 [64·0%] male and 144 [36·0%] female). TET2, SRSF2, and DNMT3A were the most frequently mutated genes in patients with CCUS, with 320 (80%) of 400 patients harbouring a mutation in at least one of these genes. Age (p<0·0001), sex (p=0·0027), and mutations in ASXL1 (p=0·0009), BCOR (p=0·0056), and TP53 (p=0·0055) correlated with a worse overall survival; however, the number of mutations was the strongest predictor for progression to a myeloid malignancy (two mutations, p=0·0024; three or more mutations, p=0·0004). Extended sequencing of samples from a subgroup of patients with sequential samples and no mutations in the initial myeloid gene panel showed recurrent mutations in both DDX41 and UBA1, suggesting that these genes should be included in clinical test panels. INTERPRETATION Mutation analysis is advised in patients who have undergone bone marrow examination and have an otherwise-unexplained cytopenia. High-risk genetic mutations and increased numbers of mutations are predictive of both survival and progression within 5 years of presentation, warranting clinical surveillance and, when necessary, intervention. FUNDING MDS Foundation.
Collapse
Affiliation(s)
- Catherine Cargo
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK.
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tumas Beinortas
- St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kelly L Bolton
- Washington University School of Medicine, St Louis, MO, USA
| | - Paul Glover
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Helen Warren
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Daniel Payne
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Rukhsaar Ali
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alesia Khan
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Mike Short
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Suzan Van Hoppe
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Jan Taylor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| |
Collapse
|
34
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
35
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
36
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
37
|
Feng Y, Yuan Q, Newsome RC, Robinson T, Bowman RL, Zuniga AN, Hall KN, Bernsten CM, Shabashvili DE, Krajcik KI, Gunaratne C, Zaroogian ZJ, Venugopal K, Casellas Roman HL, Levine RL, Chatila WK, Yaeger R, Riva A, Jobin C, Kopinke D, Avram D, Guryanova OA. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. J Exp Med 2023; 220:e20230011. [PMID: 37615936 PMCID: PMC10450614 DOI: 10.1084/jem.20230011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined as clonal expansion of mutant hematopoietic stem cells absent diagnosis of a hematologic malignancy. Presence of CH in solid tumor patients, including colon cancer, correlates with shorter survival. We hypothesized that bone marrow-derived cells with heterozygous loss-of-function mutations of DNMT3A, the most common genetic alteration in CH, contribute to the pathogenesis of colon cancer. In a mouse model that combines colitis-associated colon cancer (CAC) with experimental CH driven by Dnmt3a+/Δ, we found higher tumor penetrance and increased tumor burden compared with controls. Histopathological analysis revealed accentuated colonic epithelium injury, dysplasia, and adenocarcinoma formation. Transcriptome profiling of colon tumors identified enrichment of gene signatures associated with carcinogenesis, including angiogenesis. Treatment with the angiogenesis inhibitor axitinib eliminated the colon tumor-promoting effect of experimental CH driven by Dnmt3a haploinsufficiency and rebalanced hematopoiesis. This study provides conceptually novel insights into non-tumor-cell-autonomous effects of hematopoietic alterations on colon carcinogenesis and identifies potential therapeutic strategies.
Collapse
Affiliation(s)
- Yang Feng
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Qingchen Yuan
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Rachel C. Newsome
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley N. Zuniga
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kendra N. Hall
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Cassandra M. Bernsten
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Daniil E. Shabashvili
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kathryn I. Krajcik
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Chamara Gunaratne
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Zachary J. Zaroogian
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Heidi L. Casellas Roman
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K. Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Christian Jobin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
- Immunology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| |
Collapse
|
38
|
Kristiansen MH, Kjær L, Skov V, Larsen MK, Ellervik C, Hasselbalch HC, Wienecke T. JAK2V617F mutation is highly prevalent in patients with ischemic stroke: a case-control study. Blood Adv 2023; 7:5825-5834. [PMID: 37522722 PMCID: PMC10561044 DOI: 10.1182/bloodadvances.2023010588] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Ischemic stroke has a high recurrence rate despite treatment. This underlines the significance of investigating new possible cerebrovascular risk factors, such as the acquired gene mutation JAK2V617F found in 3.1% of the general population. We aimed to investigate the prevalence of the JAK2V617F mutation in a population with ischemic stroke compared with that in matched controls. We enrolled 538 consecutive Danish patients with ischemic stroke (mean age, 69.5 ± 10.9 years; 39.2% female) within 7 days of symptom onset. Using multiple-adjusted conditional logistic regression analysis, we compared the prevalence of JAK2V617F with that in age- and sex-matched controls free of ischemic cerebrovascular disease (ICVD) from the Danish General Suburban Population Study. DNA was analyzed for JAK2V617F mutation using sensitive droplet digital polymerase chain reaction in patients and controls. Of the 538 patients with ischemic stroke, 61 (11.3%) had JAK2V617F mutation. There were no differences in patient demographics or cerebrovascular comorbidities between the patients with and without mutations. Patients with ischemic stroke were more likely to have the JAK2V617F mutation than matched controls, in whom the JAK2V617F prevalence was 4.4% (odds ratio, 2.37; 95% confidence interval, 1.57-3.58; P < .001). A subanalysis stratified by smoking history revealed that the association was strongest in current smokers (odds ratio, 4.78; 95% confidence interval, 2.22-10.28; P < .001). Patients with ischemic stroke were 2.4 times more likely to have the JAK2V617F mutation than matched controls without ICVD when adjusting for other cerebrovascular risk factors. This finding supports JAK2V617F mutation as a novel cerebrovascular risk factor.
Collapse
Affiliation(s)
- Marie Hvelplund Kristiansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Morten Kranker Larsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Hans Carl Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Troels Wienecke
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
39
|
Bryukhovetskiy AS, Grivtsova LY, Bogachev SS, Ustyugov AA, Nebogatikov VO, Shurdov MA. Technology of genomic balancing of chromatin of autologous hematopoietic stem cells for gene therapy of fatal immune-mediated diseases of civilization, extended life expectancy and sudden human death prevention. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:237-284. [PMID: 37833013 DOI: 10.1016/bs.irn.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
A biotechnology for personalized ex vivo gene therapy based on molecular genomic balancing of hematopoietic stem cell (HSC) chromatin with nucleosome monomers of human genomic DNA (hDNAnmr) has been developed and implemented in the clinic to change (to "correct") mutant chromosome loci genomes of dominant HSC clones that form mono- and oligoclonal hematopoiesis during aging and major (oncological, cardiovascular, neurodegenerative and autoimmune) fatal immune-mediated diseases of civilization. A fundamentally new biotechnological approach has been applied to the delivery of genetic material into eukaryotic stem and progenitor cells by establishing an artificial "recombinogenic situation" in them to induce homologous recombination (equivalent replacement) of mutant DNA regions with healthy hDNAnmr. In experimental preclinical trials, the effectiveness of genomic balancing technology has been proven to reduce the risk of sudden death in old animals and to increase the lifespan of outbred mice by 30% and Wistar rats by 57%. The improvement in their quality of life, compared with the control, is explained by an increase in the telomeric regions of the HSCs and HPCs chromosomes by 1.5-2 times. The potential of the technology to slow down the hereditary neurodegenerative diseases on the model of amyotrophic lateral sclerosis is shown. The effectiveness of this technology in clinical practice is presented on the example of a terminal patient with stage 4 neuroendocrine cancer. This technology used in the treatment of a number of oncological, neurodegenerative, autoimmune and hereditary diseases with clonal hematopoiesis is able to arrest the progression of the disease, prevent its recurrence, prolong the active life of a person, increase the average life expectancy and prevent sudden death.
Collapse
Affiliation(s)
| | - L Yu Grivtsova
- FGBU MRRC named after A.F. Tsyb - Branch of the FGBU National Medical Research Center for Radiology of the Ministry of Health of Russia, Obninsk, Russia
| | - S S Bogachev
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Ustyugov
- Research Institute of Biologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - V O Nebogatikov
- Research Institute of Biologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - M A Shurdov
- JSC NeuroVita Clinical Hospital, Moscow, Russia
| |
Collapse
|
40
|
Falini B. NPM1-mutated acute myeloid leukemia: New pathogenetic and therapeutic insights and open questions. Am J Hematol 2023; 98:1452-1464. [PMID: 37317978 DOI: 10.1002/ajh.26989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional chaperone protein that is localized in the nucleolus but continuously shuttles between the nucleus and cytoplasm. NPM1 mutations occur in about one-third of AML, are AML-specific, usually involve exon 12 and are frequently associated with FLT3-ITD, DNMT3A, TET2, and IDH1/2 mutations. Because of its unique molecular and clinico-pathological features, NPM1-mutated AML is regarded as a distinct leukemia entity in both the International Consensus Classification (ICC) and the 5th edition of the World Health Organization (WHO) classification of myeloid neoplasms. All NPM1 mutations generate leukemic mutants that are aberrantly exported in the cytoplasm of the leukemic cells and are relevant to the pathogenesis of the disease. Here, we focus on recently identified functions of the NPM1 mutant at chromatin level and its relevance in driving HOX/MEIS gene expression. We also discuss yet controversial issues of the ICC/WHO classifications, including the biological and clinical significance of therapy-related NPM1-mutated AML and the relevance of blasts percentage in defining NPM1-mutated AML. Finally, we address the impact of new targeted therapies in NPM1-mutated AML with focus on CAR T cells directed against NPM1/HLA neoepitopes, as well as XPO1 and menin inhibitors.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
41
|
Gu M, Kovilakam SC, Dunn WG, Marando L, Barcena C, Mohorianu I, Smith A, Kar SP, Fabre MA, Gerstung M, Cargo CA, Malcovati L, Quiros PM, Vassiliou GS. Multiparameter prediction of myeloid neoplasia risk. Nat Genet 2023; 55:1523-1530. [PMID: 37620601 PMCID: PMC10484784 DOI: 10.1038/s41588-023-01472-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0-15 years after recruitment. We describe the differences in CH mutational landscapes and hematology/biochemistry test parameters among individuals that later develop myeloid neoplasms (pre-MN) versus controls, finding that disease-specific changes are detectable years before diagnosis. By analyzing differences between 'pre-MN' and controls, we develop and validate Cox regression models quantifying the risk of progression to each myeloid neoplasm subtype. We construct 'MN-predict', a web application that generates time-dependent predictions with the input of basic blood tests and genetic data. Our study demonstrates that many individuals that develop myeloid neoplasms can be identified years in advance and provides a framework for disease-specific prognostication that will be of substantial use to researchers and physicians.
Collapse
Affiliation(s)
- Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sruthi Cheloor Kovilakam
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - William G Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Clea Barcena
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Biochemistry and Molecular Biology, Universidad de Oviedo, Oviedo, Spain
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Siddhartha P Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Section of Translational Epidemiology, Division of Population Health Sciences, Bristol, Medical School, University of Bristol, Bristol, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Margarete A Fabre
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Moritz Gerstung
- Division of Artificial Intelligence in Oncology, DKFZ, Heidelberg, Germany
| | - Catherine A Cargo
- Haematological Malignancy Diagnostic Service, St James's Hospital, Leeds, UK
- Department of Haematology, Leeds Teaching Hospitals, Leeds, UK
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pedro M Quiros
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain.
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK.
| |
Collapse
|
42
|
Quiros PM, Vassiliou GS. Genetic Predisposition to Clonal Hematopoiesis. Hemasphere 2023; 7:e947. [PMID: 37600859 PMCID: PMC10438798 DOI: 10.1097/hs9.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Pedro M. Quiros
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Trust, United Kingdom
| |
Collapse
|
43
|
Leshchyk A, Xiang Q, Andersen SL, Gurinovich A, Song Z, Lee JH, Christensen K, Yashin A, Wojczynski M, Schwander K, Perls TT, Monti S, Sebastiani P. Mosaic Chromosomal Alterations and Human Longevity. J Gerontol A Biol Sci Med Sci 2023; 78:1561-1568. [PMID: 36988570 PMCID: PMC10460554 DOI: 10.1093/gerona/glad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 03/30/2023] Open
Abstract
Mosaic chromosomal alterations (mCAs) are structural alterations associated with aging, cancer, cardiovascular disease, infectious diseases, and mortality. The distribution of mCAs in centenarians and individuals with familial longevity is poorly understood. We used MOsaic CHromosomal Alteration (MoChA) to discover mCAs in 2050 centenarians, offspring, and 248 controls from the New England Centenarian Study (NECS) and in 3 642 subjects with familial longevity and 920 spousal controls from the Long-Life Family Study (LLFS). We analyzed study-specific associations of somatic mCAs with age, familial longevity, the incidence of age-related diseases, and mortality and aggregated the results by meta-analysis. We show that the accumulation of mCAs > 100 KB increased to 102 years and plateaued at older ages. Centenarians and offspring accumulated fewer autosomal mCAs compared with controls (relative risk 0.637, p = .0147). Subjects with the APOE E4 allele had a 35.3% higher risk of accumulating autosomal mCAs (p = .002). Males were at higher risk for mCAs compared to females (male relative risk 1.36, p = 5.15e-05). mCAs were associated with increased hazard for cancer (hazard ratio 1.2) and dementia (hazard ratio 1.259) at a 10% false discovery rate. We observed a borderline significant association between mCAs and risk for mortality (hazard ratio 1.07, p = .0605). Our results show that the prevalence of individuals with mCAs does not continue to increase at ages >102 years and factors promoting familial longevity appear to confer protections from mCAs. These results suggest that limited mCA accumulation could be an important mechanism for extreme human longevity that needs to be investigated.
Collapse
Affiliation(s)
- Anastasia Leshchyk
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine, Computational Biomedicine Section, Boston University, Boston, Massachusetts, USA
| | - Qingyan Xiang
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | - Stacy L Andersen
- Department of Medicine, Section of Geriatrics, Boston University, Boston, Massachusetts, USA
| | - Anastasia Gurinovich
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
| | - Zeyuan Song
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Kaare Christensen
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Anatoliy Yashin
- Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | - Mary Wojczynski
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas T Perls
- Department of Medicine, Section of Geriatrics, Boston University, Boston, Massachusetts, USA
| | - Stefano Monti
- Department of Medicine, Computational Biomedicine Section, Boston University, Boston, Massachusetts, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Machado HE, Øbro NF, Williams N, Tan S, Boukerrou AZ, Davies M, Belmonte M, Mitchell E, Baxter EJ, Mende N, Clay A, Ancliff P, Köglmeier J, Killick SB, Kulasekararaj A, Meyer S, Laurenti E, Campbell PJ, Kent DG, Nangalia J, Warren AJ. Convergent somatic evolution commences in utero in a germline ribosomopathy. Nat Commun 2023; 14:5092. [PMID: 37608017 PMCID: PMC10444798 DOI: 10.1038/s41467-023-40896-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.
Collapse
Affiliation(s)
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Shengjiang Tan
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Ahmed Z Boukerrou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jutta Köglmeier
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sally B Killick
- University Hospitals Dorset NHS Foundation Trust, The Royal Bournemouth Hospital, Bournemouth, UK
| | - Austin Kulasekararaj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, UK
| | - Stefan Meyer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, Oxford Road, Manchester, UK
- Teenage and Adolescent Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Alan J Warren
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.
| |
Collapse
|
45
|
Wang M, Brandt LTL, Wang X, Russell H, Mitchell E, Kamimae-Lanning AN, Brown JM, Dingler FA, Garaycoechea JI, Isobe T, Kinston SJ, Gu M, Vassiliou GS, Wilson NK, Göttgens B, Patel KJ. Genotoxic aldehyde stress prematurely ages hematopoietic stem cells in a p53-driven manner. Mol Cell 2023; 83:2417-2433.e7. [PMID: 37348497 PMCID: PMC7614878 DOI: 10.1016/j.molcel.2023.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.
Collapse
Affiliation(s)
- Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| | - Laura T L Brandt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Holly Russell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Emily Mitchell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Ashley N Kamimae-Lanning
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jill M Brown
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Juan I Garaycoechea
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands
| | - Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
46
|
Zhang H, Kafeiti N, Lee S, Masarik K, Zheng H, Zhan H. Unlocking the Role of Endothelial MPL Receptor and JAK2V617F Mutation: Insights into Cardiovascular Dysfunction in MPNs and CHIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548716. [PMID: 37503259 PMCID: PMC10370015 DOI: 10.1101/2023.07.12.548716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential (CHIP) are at a significantly higher risk of cardiovascular diseases (CVDs). Endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in many MPN patients. Here, we investigated the impact of endothelial JAK2V617F mutation on CVD development using both transgenic murine models and human induced pluripotent stem cell lines. Our findings revealed that JAK2V617F mutant ECs promote CVDs by impairing endothelial function and undergoing endothelial-to-mesenchymal transition (EndMT). Importantly, we found that inhibiting the endothelial thrombopoietin receptor MPL suppressed JAK2V617F-induced EndMT and prevented cardiovascular dysfunction caused by mutant ECs. These findings propose that targeting the endothelial MPL receptor could be a promising therapeutic approach to manage CVD complications in patients with JAK2V617F-positive MPNs and CHIP. Further investigations into the impact of other CHIP-associated mutations on endothelial dysfunction are needed to improve risk stratification for individuals with CHIP.
Collapse
Affiliation(s)
- Haotian Zhang
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
- The Graduate Program in Molecular & Cellular Biology, Stony Brook University, Stony Brook, NY
| | - Nicholas Kafeiti
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
| | - Sandy Lee
- Department of Molecular and Cellular Pharmacology, Stony Brook University
| | - Kyla Masarik
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
| | - Haoyi Zheng
- Cardiac Imaging, The Heart Center, Saint Francis Hospital, Roslyn, NY
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
- Medical Service, Northport VA Medical Center, Northport, NY
| |
Collapse
|
47
|
Bouzid H, Belk JA, Jan M, Qi Y, Sarnowski C, Wirth S, Ma L, Chrostek MR, Ahmad H, Nachun D, Yao W, Beiser A, Bick AG, Bis JC, Fornage M, Longstreth WT, Lopez OL, Natarajan P, Psaty BM, Satizabal CL, Weinstock J, Larson EB, Crane PK, Keene CD, Seshadri S, Satpathy AT, Montine TJ, Jaiswal S. Clonal hematopoiesis is associated with protection from Alzheimer's disease. Nat Med 2023; 29:1662-1670. [PMID: 37322115 PMCID: PMC10353941 DOI: 10.1038/s41591-023-02397-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer's disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 10-5), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.
Collapse
Affiliation(s)
- Hind Bouzid
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Max Jan
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Sara Wirth
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Ma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew R Chrostek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Herra Ahmad
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiology, Charité Universitätsmedizin, Berlin, Germany
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Winnie Yao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Natarajan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Joshua Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
48
|
van Zeventer IA, de Graaf AO, Salzbrunn JB, Nolte IM, Kamphuis P, Dinmohamed A, van der Reijden BA, Schuringa JJ, Jansen JH, Huls G. Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population. Cancer Cell 2023:S1535-6108(23)00132-0. [PMID: 37146604 DOI: 10.1016/j.ccell.2023.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/05/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023]
Abstract
Knowledge about evolution of clonal hematopoiesis, which may drive malignant progression, is crucial for clinical decision-making. We investigated the landscape of clonal evolution by error-corrected sequencing on 7,045 sequential samples from 3,359 individuals in the prospective population-based Lifelines cohort, with a special focus on cytosis and cytopenia. Spliceosome (SRSF2/U2AF1/SF3B1) and JAK2 mutated clones show highest growth rates over a median 3.6-year period, while clone sizes for DNMT3A and TP53 increase only marginally, independent of cytosis or cytopenia. Nevertheless, large differences are observed between individuals carrying the same mutation, indicative of modulation by non-mutation-related factors. Clonal expansion is not dependent on classical cancer risk factors (e.g., smoking). Risk for incident myeloid malignancy diagnosis is highest for JAK2, spliceosome, or TP53 mutations and absent for DNMT3A, and it is mostly preceded by cytosis or cytopenia. The results provide important insight into high-risk evolutionary patterns to guide monitoring of "CHIP" and "CCUS."
Collapse
Affiliation(s)
- Isabelle A van Zeventer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aniek O de Graaf
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jonas B Salzbrunn
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Priscilla Kamphuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Avinash Dinmohamed
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, the Netherlands; Department of Public Health, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
49
|
Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 2023:10.1038/s41375-023-01878-0. [PMID: 37100881 DOI: 10.1038/s41375-023-01878-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.
Collapse
Affiliation(s)
- Christophe Willekens
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Tracy Dagher
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Camelia Benlabiod
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | | | | | | | | | - Valérie Edmond
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Valentine Marchand
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nathalie Droin
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Florence Pasquier
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Marty
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Isabelle Plo
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Villeval
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
50
|
Kim ES, Scharpf RB, Garcia-Closas M, Visvanathan K, Velculescu VE, Chatterjee N. Potential utility of risk stratification for multicancer screening with liquid biopsy tests. NPJ Precis Oncol 2023; 7:39. [PMID: 37087533 PMCID: PMC10122653 DOI: 10.1038/s41698-023-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
Our proof-of-concept study reveals the potential of risk stratification by the combined effects of age, polygenic risk scores (PRS), and non-genetic risk factors in increasing the risk-benefit balance of rapidly emerging non-invasive multicancer early detection (MCED) liquid biopsy tests. We develop and validate sex-specific pan-cancer risk scores (PCRSs), defined by the combination of body mass index, smoking, family history of cancers, and cancer-specific polygenic risk scores (PRSs), to predict the absolute risk of developing at least one of the many common cancer types. We demonstrate the added value of PRSs in improving the predictive performance of the risk factors only model and project the positive and negative predictive values for two promising multicancer screening tests across risk strata defined by age and PCRS.
Collapse
Affiliation(s)
- Elle S Kim
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Robert B Scharpf
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute of Health, 9609 Medical Center Drive 7E-342, Rockville, MD, 20850, USA
| | - Kala Visvanathan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Victor E Velculescu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|