1
|
Phan J, Chen B, Zhao Z, Allies G, Iannaccone A, Paul A, Cansiz F, Spina A, Leven AS, Gellhaus A, Schadendorf D, Kimmig R, Mettlen M, Tasdogan A, Morrison SJ. Retrotransposons are co-opted to activate hematopoietic stem cells and erythropoiesis. Science 2024; 386:eado6836. [PMID: 39446896 PMCID: PMC11709122 DOI: 10.1126/science.ado6836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024]
Abstract
Hematopoietic stem cells (HSCs) and erythropoiesis are activated during pregnancy and after bleeding by the derepression of retrotransposons, including endogenous retroviruses and long interspersed nuclear elements. Retrotransposon transcription activates the innate immune sensors cyclic guanosine 3',5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and stimulator of interferon (IFN) genes (STING), which induce IFN and IFN-regulated genes in HSCs, increasing HSC division and erythropoiesis. Inhibition of reverse transcriptase or deficiency for cGAS or STING had little or no effect on hematopoiesis in nonpregnant mice but depleted HSCs and erythroid progenitors in pregnant mice, reducing red blood cell counts. Retrotransposons and IFN-regulated genes were also induced in mouse HSCs after serial bleeding and, in human HSCs, during pregnancy. Reverse transcriptase inhibitor use was associated with anemia in pregnant but not in nonpregnant people, suggesting conservation of these mechanisms from mice to humans.
Collapse
Affiliation(s)
- Julia Phan
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Animesh Paul
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alberto Spina
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Anna-Sophia Leven
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center; Dallas, Texas 75235-9039
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
2
|
Fernandez Sanchez J, Maknojia AA, King KY. Blood and guts: how the intestinal microbiome shapes hematopoiesis and treatment of hematologic disease. Blood 2024; 143:1689-1701. [PMID: 38364184 PMCID: PMC11103099 DOI: 10.1182/blood.2023021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.
Collapse
Affiliation(s)
- Josaura Fernandez Sanchez
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Arushana A. Maknojia
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
| | - Katherine Y. King
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
- Division of Infectious Diseases, Department of Pediatrics, and Center for Cell and Gene Therapy, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| |
Collapse
|
3
|
Chu M, He S, Zhao H, Yin S, Liu Z, Zhang W, Liu X, Bao H. Increasing expression of STING by ERα antagonizes LCN2 downregulation during chronic endometritis. J Reprod Immunol 2023; 160:104167. [PMID: 37952294 DOI: 10.1016/j.jri.2023.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Chronic endometritis has a high incidence in infertile women, which is caused by endometrial microbiome infection. In response to microbial infection, the role of defensins during chronic endometritis need explored. Besides, the expression of estrogen and its receptors vary in different menstrual cycles, but their roles in chronic endometritis are still unclear. In this study, we used the human endometrial tissues to examine the expression of antimicrobial peptides (AMPs) α-defensin hNP-1 and β-defensins hBD-1, hBD-2, hBD-3, hBD-4 and LCN2. We found the expression of hBD-1 and LCN2 were downregulated in endometritis tissues, while the expressions of hBD-2, hBD-3, hBD-4, hNP-1, and estrogen and ERα were upregulated in chronic endometritis tissues compared to normal tissues. The expression and phosphorylation of STING, which is a crucial mediator of mammalian innate immunity in response to pathogens, was regulated with the treatment of ERα inhibitor raloxifene (Rx). Furthermore, using with the estrogen receptor inhibitor Rx and STING inhibitor H-151 significantly decreases the LCN2 expression. Taken together, these results suggested ERα was upregulated to modulate STING expression inducing LCN2 antimicrobial peptide expression to modulate the mucosal immunity during chronic endometritis.
Collapse
Affiliation(s)
- Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Shunzhi He
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Huishan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Shuyuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Zhenteng Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Wei Zhang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Xuemei Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China.
| | - Hongchu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China.
| |
Collapse
|
4
|
Xu T, Dai J, Tang L, Sun L, Si L, Guo J. Systemic administration of STING agonist promotes myeloid cells maturation and antitumor immunity through regulating hematopoietic stem and progenitor cell fate. Cancer Immunol Immunother 2023; 72:3491-3505. [PMID: 37550427 PMCID: PMC10991199 DOI: 10.1007/s00262-023-03502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
STING is a pivotal mediator of effective innate and adaptive anti-tumor immunity; however, intratumoral administration of STING agonists have shown limited therapeutic benefit in clinical trials. The systemic effect of the intravenous delivery of STING agonists in cancer is not well-defined. Here, we demonstrated that systemic administration of STING agonist inhibited melanoma growth, improved inflammatory effector cell infiltration, and induced bone marrow mobilization and extramedullary hematopoiesis, causing widespread changes in immune components in the peripheral blood. The systemically administered STING agonist promoted HSC expansion and influenced lineage fate commitment, which was manifested as the differentiation of HSPCs was skewed toward myeloid cells at the expense of B-cell lymphopoiesis and erythropoiesis. Transcriptome analysis revealed upregulation of myeloid lineage differentiation-related and type I interferon-related genes. This myeloid-biased differentiation promoted the production and maturation of myeloid cells toward an activated phenotype. Furthermore, depletion of Gr-1+ myeloid cells attenuated the anti-tumor immunity of STING agonist. Our findings reveal the anti-tumor mechanism of systemic administration of STING agonist that involves modulating HSPC differentiation and promoting myeloid cells maturation. Our study may help explain the limited clinical activity of STING agonists administered intratumorally.
Collapse
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lirui Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Linzi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
5
|
Zhou J, Zhuang Z, Li J, Feng Z. Significance of the cGAS-STING Pathway in Health and Disease. Int J Mol Sci 2023; 24:13316. [PMID: 37686127 PMCID: PMC10487967 DOI: 10.3390/ijms241713316] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a significant role in health and disease. In this pathway, cGAS, one of the major cytosolic DNA sensors in mammalian cells, regulates innate immunity and the STING-dependent production of pro-inflammatory cytokines, including type-I interferon. Moreover, the cGAS-STING pathway is integral to other cellular processes, such as cell death, cell senescence, and autophagy. Activation of the cGAS-STING pathway by "self" DNA is also attributed to various infectious diseases and autoimmune or inflammatory conditions. In addition, the cGAS-STING pathway activation functions as a link between innate and adaptive immunity, leading to the inhibition or facilitation of tumorigenesis; therefore, research targeting this pathway can provide novel clues for clinical applications to treat infectious, inflammatory, and autoimmune diseases and even cancer. In this review, we focus on the cGAS-STING pathway and its corresponding cellular and molecular mechanisms in health and disease.
Collapse
Affiliation(s)
- Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhan Zhuang
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Jiamian Li
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
6
|
Hysenaj L, de Laval B, Arce-Gorvel V, Bosilkovski M, González-Espinoza G, Debroas G, Sieweke MH, Sarrazin S, Gorvel JP. CD150-dependent hematopoietic stem cell sensing of Brucella instructs myeloid commitment. J Exp Med 2023; 220:e20210567. [PMID: 37067792 PMCID: PMC10114919 DOI: 10.1084/jem.20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
So far, hematopoietic stem cells (HSC) are considered the source of mature immune cells, the latter being the only ones capable of mounting an immune response. Recent evidence shows HSC can also directly sense cytokines released upon infection/inflammation and pathogen-associated molecular pattern interaction while keeping a long-term memory of previously encountered signals. Direct sensing of danger signals by HSC induces early myeloid commitment, increases myeloid effector cell numbers, and contributes to an efficient immune response. Here, by using specific genetic tools on both the host and pathogen sides, we show that HSC can directly sense B. abortus pathogenic bacteria within the bone marrow via the interaction of the cell surface protein CD150 with the bacterial outer membrane protein Omp25, inducing efficient functional commitment of HSC to the myeloid lineage. This is the first demonstration of direct recognition of a live pathogen by HSC via CD150, which attests to a very early contribution of HSC to immune response.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Bérengère de Laval
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Vilma Arce-Gorvel
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Gabriela González-Espinoza
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Guilhaume Debroas
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Michael H. Sieweke
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sandrine Sarrazin
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
7
|
Li Y, Qiao X, Hou L, Liu X, Li Q, Jin Y, Li Y, Wang L, Song L. A stimulator of interferon gene (CgSTING) involved in antimicrobial immune response of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 128:82-90. [PMID: 35917891 DOI: 10.1016/j.fsi.2022.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The stimulator of interferon gene (STING), an intracellular sensor of cyclic dinucleotides, is critical to the innate immune response, especially the induction of type I interferon (IFN) during pathogenic infection. A STING homologue (CgSTING) regulating the expression of IFN-like protein (CgIFNLP) was previously identified in the Pacific oyster Crassostrea gigas, and its involvement in antibacterial immunity was further investigated in the present study. The mRNA transcripts of CgSTING were ubiquitously detected in all the three subpopulations of haemocytes with the highest expression in semi-granulocytes. After the stimulation with Vibrio splendidus, the mRNA expression of CgSTING in haemocytes was significantly up-regulated and peaked at 72 h, which was 12.91-fold of that in control group (p < 0.01). The CgSTING protein was mainly located in the cytoplasm of haemocytes. After the expression of CgSTING was knocked down (0.12-fold of that in control group, p < 0.05) by RNAi, the mRNA expression levels of interleukin17-1 (CgIL17-1), interleukin17-3 (CgIL17-3), interleukin17-4 (CgIL17-4), defensins (Cgdefh1, Cgdefh2), big defensin (CgBigDef1), interferon-like protein (CgIFNLP), tumor necrosis factor (CgTNF) and nuclear factor-κB (CgRel) all decreased significantly at 12 h after V. splendidus stimulation, which was 0.12-fold-0.72-fold (p < 0.05) of that in control group, respectively. The positive signals of CgRel were observed in the haemocyte nucleus after V. splendidus stimulation. The nuclear translocation of CgRel was suppressed in CgSTING-RNAi oysters, and the green signals of CgRel were mainly observed in the haemocyte cytoplasm after V. splendidus stimulation. Furthermore, the number of V. splendidus in the haemolymph of CgSTING-RNAi oysters increased significantly, which was 26.78-fold (p < 0.01) of that in the control group at 12 h after V. splendidus stimulation. These results indicated that CgSTING played important role in the immune defense against bacterial infection by inducing the expressions of cytokines and defensins.
Collapse
Affiliation(s)
- Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - YuHao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
8
|
Bono C, Guerrero P, Erades A, Jordán-Pla A, Yáñez A, Gil ML. Direct TLR2 signaling through mTOR and TBK1 induces C/EBPβ and IRF7-dependent macrophage differentiation in hematopoietic stem and progenitor cells. Stem Cells 2022; 40:949-962. [PMID: 35861517 DOI: 10.1093/stmcls/sxac053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
During an infection, hematopoiesis is altered to increase the output of mature myeloid cells to fight off the pathogen. Despite convincing evidence that hematopoietic stem and progenitor cells (HSPCs) can sense pathogens directly, more mechanistic studies are needed to reveal whether pattern recognition receptor (PRR) signaling initiates myeloid development directly, or indirectly through the production of cytokines by HSPCs that can act in an autocrine/paracrine manner, or by a combination of both direct and indirect mechanisms. In this study, we have used an in vitro model of murine HSPCs to study myeloid differentiation in response to the TLR2 ligand Pam3CSK4 and showed that, besides indirect mechanisms, TLR2 stimulation of HSPCs promotes myelopoiesis directly by initiating a MyD88-dependent signaling. This direct differentiation program involves a combined activation of the transcription factors PU.1, C/EBPβ and IRF7 driven by TBK1 and PI3K/mTOR. Notably, downstream of MyD88, the activated TBK1 kinase can activate mTOR directly and IRF7 induction is mediated by both TBK1 and mTOR. TLR2 signaling also induces NF-κB dependent IL-6 production that may further induce indirect myeloid differentiation. Our results have identified the direct signaling pathways and the transcription factors involved in macrophage development from HSPCs in response to TLR2 engagement, a critical process to trigger a rapid immune response during infection.
Collapse
Affiliation(s)
- Cristina Bono
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Paula Guerrero
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Ana Erades
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Antonio Jordán-Pla
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Alberto Yáñez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - María Luisa Gil
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| |
Collapse
|
9
|
Zhang S, Wang J, Fan Y, Meng W, Qian C, Liu P, Wei Y, Yuan C, Du Y, Yin Z. YciR, a Specific 3′-Phosphodiesterase, Plays a Role in the Pathogenesis of Uropathogenic Escherichia coli CFT073. Front Microbiol 2022; 13:910906. [PMID: 35923408 PMCID: PMC9339999 DOI: 10.3389/fmicb.2022.910906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTIs), with the characteristics of recurrence and resistance to antibiotics due to misuse, remain a common health and economic issue for patients. Uropathogenic Escherichia coli (UPEC), which is capable of evading the immune response by forming intracellular bacterial communities (IBCs) in the cytoplasm of bladder epithelial cells (BECs) after invasion, has been shown to be the prevailing cause of UTIs. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small molecule responsible for eliciting the innate immune response of the host only if it has not been degraded by some phosphodiesterases (PDEs), such as YciR. The relationship between YciR and c-di-GMP levels in UPEC is inconclusive. In this study, we investigated the gene expression profile of UPEC in BECs and identified yciR as an upregulated gene. Western blot revealed that YciR enhanced the virulence of UPEC by inhibiting the phosphorylation of NF-κB. The expression of yciR could be repressed by HupB in a directly binding manner. We identified YciR, a novel PDE, and defined its possible function in innate immune evasion. We also demonstrated that YciR is an HupB-dependent PDE that degrades c-di-GMP and that a low concentration of c-di-GMP might make NF-κB less phosphorylated, thereby reducing the host’s pro-inflammatory response. This is the first time that YciR has been identified as a virulence factor in the pathogenesis of UPEC. These findings further increase our understanding of the pathogenesis of UPEC and provide a theoretical basis for further studies.
Collapse
Affiliation(s)
- Si Zhang
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- College of Life Science, Nankai University, Tianjin, China
| | - Jingting Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Yu Fan
- College of Life Science, Nankai University, Tianjin, China
| | - Wang Meng
- Tianjin First Central Hospital, Tianjin, China
| | - Chengqian Qian
- College of Life Science, Nankai University, Tianjin, China
| | - Peng Liu
- College of Life Science, Nankai University, Tianjin, China
| | - Yi Wei
- College of Life Science, Nankai University, Tianjin, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuhui Du
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Yuhui Du,
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
- Zhiqiu Yin,
| |
Collapse
|
10
|
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes. Recent Findings Innate immune receptors for nucleic acids like the RIG-I-like family receptors and members of DNA sensing pathways are expressed in HSCs and other stem cells. Even though the “classic” role of these receptors is recognition of foreign DNA or RNA from pathogens, it was recently shown that cellular transposable element (TE) RNA or R-loops activate such receptors, serving as endogenous triggers of inflammatory signaling that can shape HSC formation during development and regeneration. Summary Endogenous TEs and R-loops activate RNA and DNA sensors, which trigger distinct inflammatory signals to fine-tune stem cell decisions. This phenomenon could have broad implications for diverse somatic stem cells, for a variety of diseases and during aging.
Collapse
|
11
|
Mun Y, Fazio S, Arrieta CN. Remodeling of the Bone Marrow Stromal Microenvironment During Pathogenic Infections. Curr Top Microbiol Immunol 2021; 434:55-81. [PMID: 34850282 DOI: 10.1007/978-3-030-86016-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bone marrow (BM) is the primary hematopoietic organ and a hub in which organismal demands for blood cellular output are systematically monitored. BM tissues are additionally home to a plethora of mature immune cell types, providing functional environments for the activation of immune responses and acting as preferred anatomical reservoirs for cells involved in immunological memory. Stromal cells of the BM microenvironment crucially govern different aspects of organ function, by structuring tissue microanatomy and by directly providing essential regulatory cues to hematopoietic and immune components in distinct niches. Emerging evidence demonstrates that stromal networks are endowed with remarkable functional and structural plasticity. Stress-induced adaptations of stromal cells translate into demand-driven hematopoiesis. Furthermore, aberrations of stromal integrity arising from pathological conditions critically contribute to the dysregulation of BM function. Here, we summarize our current understanding of the alterations that pathogenic infections and ensuing inflammatory conditions elicit on the global topography of the BM microenvironment, the integrity of anatomical niches and cellular interactions, and ultimately, on the regulatory function of diverse stromal subsets.
Collapse
Affiliation(s)
- YeVin Mun
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Häldeliweg 4, 8032, Zurich, Switzerland
| | - Serena Fazio
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Häldeliweg 4, 8032, Zurich, Switzerland
| | - César Nombela Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Häldeliweg 4, 8032, Zurich, Switzerland.
| |
Collapse
|
12
|
Mende N, Laurenti E. Hematopoietic stem and progenitor cells outside the bone marrow: where, when, and why. Exp Hematol 2021; 104:9-16. [PMID: 34687807 DOI: 10.1016/j.exphem.2021.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Bone marrow (BM) is the primary site of adult blood production, hosting the majority of all hematopoietic stem and progenitor cells (HSPCs). Rare HSPCs are also found outside of the BM at steady state. In times of large hematopoietic demand or BM failure, substantial production of mature blood cells from HSPCs can occur in a number of tissues, in a process termed extramedullary hematopoiesis (EMH). Over the past decades, our understanding of BM hematopoiesis has advanced drastically. In contrast there has been very little focus on the study of extramedullary HSPC pools and their contributions to blood production. Here we summarize what is currently known about extramedullary HSPCs and EMH in mice and humans. We describe the evidence of existing extramedullary HSPC pools at steady state, then discuss their role in the hematopoietic stress response. We highlight that although EMH in humans is much less pronounced and likely physiologically distinct to that in mice, it can be informative about premalignant and malignant changes. Finally, we reflect on the open questions in the field and on whether a better understanding of EMH, particularly in humans, may have relevant clinical implications for hematological and nonhematological disorders.
Collapse
Affiliation(s)
- Nicole Mende
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elisa Laurenti
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Skirecki T, Drechsler S, Jeznach A, Hoser G, Jafarmadar M, Kawiak J, Osuchowski MF. An Early Myelosuppression in the Acute Mouse Sepsis Is Partly Outcome-Dependent. Front Immunol 2021; 12:708670. [PMID: 34367170 PMCID: PMC8339578 DOI: 10.3389/fimmu.2021.708670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
Adult hematopoietic stem and progenitor cells (HSPCs) respond to bacterial infections by expansion to myeloid cells. Sepsis impairs this process by suppressing differentiation of stem cells subsequently contributing to an ineffective immune response. Whether the magnitude of HSPCs impairment in sepsis is severity-dependent remains unknown. This study investigated dynamics of the HSPC immune-inflammatory response in the bone marrow, splenic, and blood compartments in moribund and surviving septic mice. The 12-week-old outbred CD-1 female mice (n=65) were subjected to a cecal ligation and puncture (CLP) sepsis, treated with antibiotics and fluid resuscitation, and stratified into predicted-to-die (P-DIE) and predicted-to-survive (P-SUR) cohorts for analysis. CLP strongly reduced the common myeloid and multipotent progenitors, short- and long-term hematopoietic stem cell (HSC) counts in the bone marrow; lineage−ckit+Sca-1+ and short-term HSC suppression was greater in P-DIE versus P-SUR mice. A profound depletion of the common myeloid progenitors occurred in the blood (by 75%) and spleen (by 77%) of P-DIE. In P-SUR, most common circulating HSPCs subpopulations recovered to baseline by 72 h post-CLP. Analysis of activated caspase-1/-3/-7 revealed an increased apoptotic (by 30%) but not pyroptotic signaling in the bone marrow HSCs of P-DIE mice. The bone marrow from P-DIE mice revealed spikes of IL-6 (by 5-fold), CXCL1/KC (15-fold), CCL3/MIP-1α (1.7-fold), and CCL2/MCP-1 (2.8-fold) versus P-SUR and control (TNF, IFN-γ, IL-1β, -5, -10 remained unaltered). Summarizing, our findings demonstrate that an early sepsis-induced impairment of myelopoiesis is strongly outcome-dependent but varies among compartments. It is suggestive that the HSCPC loss is at least partly due to an increased apoptosis but not pyroptosis.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| | - Aldona Jeznach
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| |
Collapse
|
14
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Clapes T, Polyzou A, Prater P, Sagar, Morales-Hernández A, Ferrarini MG, Kehrer N, Lefkopoulos S, Bergo V, Hummel B, Obier N, Maticzka D, Bridgeman A, Herman JS, Ilik I, Klaeylé L, Rehwinkel J, McKinney-Freeman S, Backofen R, Akhtar A, Cabezas-Wallscheid N, Sawarkar R, Rebollo R, Grün D, Trompouki E. Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration. Nat Cell Biol 2021; 23:704-717. [PMID: 34253898 PMCID: PMC8492473 DOI: 10.1038/s41556-021-00707-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.
Collapse
Affiliation(s)
- Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Aikaterini Polyzou
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pia Prater
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Natalie Kehrer
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stylianos Lefkopoulos
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nadine Obier
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Daniel Maticzka
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Josip S Herman
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ibrahim Ilik
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Lhéanna Klaeylé
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, UK
| | - Rita Rebollo
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, Villeurbanne, France
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Chen L, Ozato K. Innate Immune Memory in Hematopoietic Stem/Progenitor Cells: Myeloid-Biased Differentiation and the Role of Interferon. Front Immunol 2021; 12:621333. [PMID: 33854500 PMCID: PMC8039377 DOI: 10.3389/fimmu.2021.621333] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Innate immune memory was first described for monocytes and other myeloid cells. This memory is designated Immune Training, in which the host animals that had experienced pathogen infection earlier acquire improved resistance to a second infection. Innate immune memory is mediated by an epigenetic mechanism traced to transcriptional memory that is conserved throughout evolution and has been selected for the ability to mount an adaptive response to shifting environments. Accumulating evidence shows that not only peripheral myeloid cells but hematopoietic stem/progenitor cells (HSCs/HSPCs) can acquire epigenetic memory upon pathogen exposure. Systemic pathogen infection causes HSCs to exit from quiescence and facilitate myeloid-biased differentiation that leads to efficient host defense. This sequence of events is common in HSC memory generation, which is triggered by different stimuli. Recent studies show that not only pathogens but other stimuli such as metabolic stress can generate memory in HSCs. This review summarizes recent publications relevant to HSC memory. We discuss the current understanding of initial sensors, soluble mediators/cytokines involved in memory formation, including Type I and Type II interferons along with future implications.
Collapse
Affiliation(s)
- Lili Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Baba T, Yoshida T, Tanabe Y, Nishimura T, Morishita S, Gotoh N, Hirao A, Hanayama R, Mukaida N. Cytoplasmic DNA accumulation preferentially triggers cell death of myeloid leukemia cells by interacting with intracellular DNA sensing pathway. Cell Death Dis 2021; 12:322. [PMID: 33771977 PMCID: PMC7997981 DOI: 10.1038/s41419-021-03587-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates the presence of cytoplasmic DNAs in various types of malignant cells, and its involvement in anti-cancer drug- or radiotherapy-mediated DNA damage response and replication stress. However, the pathophysiological roles of cytoplasmic DNAs in leukemias remain largely unknown. We observed that during hematopoietic stem cell transplantation (HSCT) in mouse myeloid leukemia models, double-stranded (ds)DNAs were constitutively secreted in the form of extracellular vesicles (EVs) from myeloid leukemia cells and were transferred to the donor cells to dampen their hematopoietic capabilities. Subsequent analysis of cytoplasmic DNA dynamics in leukemia cells revealed that autophagy regulated cytoplasmic dsDNA accumulation and subsequent redistribution into EVs. Moreover, accumulated cytoplasmic dsDNAs activated STING pathway, thereby reducing leukemia cell viability through reactive oxygen species (ROS) generation. Pharmaceutical inhibition of autophagosome formation induced cytoplasmic DNA accumulation, eventually triggering cytoplasmic DNA sensing pathways to exert cytotoxicity, preferentially in leukemia cells. Thus, manipulation of cytoplasmic dsDNA dynamics can be a novel and potent therapeutic strategy for myeloid leukemias.
Collapse
Affiliation(s)
- Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - Takeshi Yoshida
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
18
|
Weinreb JT, Ghazale N, Pradhan K, Gupta V, Potts KS, Tricomi B, Daniels NJ, Padgett RA, De Oliveira S, Verma A, Bowman TV. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Dev Cell 2021; 56:627-640.e5. [PMID: 33651979 DOI: 10.1016/j.devcel.2021.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) arise during embryonic development and are essential for sustaining the blood and immune systems throughout life. Tight regulation of HSPC numbers is critical for hematopoietic homeostasis. Here, we identified DEAD-box helicase 41 (Ddx41) as a gatekeeper of HSPC production. Using zebrafish ddx41 mutants, we unveiled a critical role for this helicase in regulating HSPC production at the endothelial-to-hematopoietic transition. We determined that Ddx41 suppresses the accumulation of R-loops, nucleic acid structures consisting of RNA:DNA hybrids and ssDNAs whose equilibrium is essential for cellular fitness. Excess R-loop levels in ddx41 mutants triggered the cGAS-STING inflammatory pathway leading to increased numbers of hemogenic endothelium and HSPCs. Elevated R-loop accumulation and inflammatory signaling were observed in human cells with decreased DDX41, suggesting possible conservation of mechanism. These findings delineate that precise regulation of R-loop levels during development is critical for limiting cGAS-STING activity and HSPC numbers.
Collapse
Affiliation(s)
- Joshua T Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Noura Ghazale
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradhan
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brad Tricomi
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Noah J Daniels
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Padgett
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sofia De Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Hepatology) and Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
19
|
Atkinson SP. A preview of selected articles. Stem Cells 2021. [DOI: 10.1002/stem.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Chen YY, Liu YF, Liu YD, Deng XH, Zhou J. IRF7 suppresses hematopoietic regeneration under stress via CXCR4. STEM CELLS (DAYTON, OHIO) 2020; 39:183-195. [PMID: 33252829 DOI: 10.1002/stem.3308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/08/2020] [Indexed: 11/06/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain quiescence under steady state; however, they are compelled to proliferate and expand to replenish the blood system under stress. The molecular basis underlying stress hematopoiesis remains to be fully understood. In this study, we reported that IRF7 represents an important regulator of stress hematopoiesis. Interferon regulatory factor 7 (IRF7) was dispensable for normal hematopoiesis, whereas its deficiency significantly enhanced hematopoietic stem and progenitor cells (HSPCs) regeneration and improved long-term repopulation of HSCs under stress. Mechanistic studies showed that CXCR4 was identified as a downstream target of IRF7. Overexpression of CXCR4 abrogated the enhanced proliferation and regeneration of IRF7-deficient HSPCs under stress. Similar results were obtained in HSCs from human umbilical cord blood. These observations demonstrated that IRF7 plays an important role in hematopoietic regeneration under stress.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yu-Feng Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yong-Dong Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Hui Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Liao W, Du C, Wang J. The cGAS-STING Pathway in Hematopoiesis and Its Physiopathological Significance. Front Immunol 2020; 11:573915. [PMID: 33329537 PMCID: PMC7734179 DOI: 10.3389/fimmu.2020.573915] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cytosolic DNA sensing is a fundamental mechanism by which organisms handle various stresses, including infection and genotoxicity. The hematopoietic system is sensitive to stresses, and hematopoietic changes are often rapid and the first response to stresses. Based on the transcriptome database, cytosolic DNA sensing pathways are widely expressed in the hematopoietic system, and components of these pathways may be expressed at even higher levels in hematopoietic stem and progenitor cells (HSPCs) than in their certain progeny immune cells. Recent studies have described a previously unrecognized role for cytosolic DNA sensing pathways in the regulation of hematopoiesis under both homeostatic and stress conditions. In particular, the recently discovered cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical modulator of hematopoiesis. Perturbation of the cGAS-STING pathway in HSPCs may be involved in the pathogenesis of hematopoietic disorders, autoimmune diseases, and inflammation-related diseases and may be candidate therapeutic targets. In this review, we focus on the recent findings of the cGAS-STING pathway in the regulation of hematopoiesis, and its physiopathological significance including its implications in diseases and therapeutic potential.
Collapse
Affiliation(s)
- Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
22
|
Johnson CB, Zhang J, Lucas D. The Role of the Bone Marrow Microenvironment in the Response to Infection. Front Immunol 2020; 11:585402. [PMID: 33324404 PMCID: PMC7723962 DOI: 10.3389/fimmu.2020.585402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.
Collapse
Affiliation(s)
- Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
23
|
Valentini M, Filloux A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol 2020; 73:387-406. [PMID: 31500536 DOI: 10.1146/annurev-micro-020518-115555] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.
Collapse
Affiliation(s)
- Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom;
| |
Collapse
|
24
|
Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Front Immunol 2020; 11:615. [PMID: 32411126 PMCID: PMC7198750 DOI: 10.3389/fimmu.2020.00615] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Double-stranded DNA (dsDNA) sensor cyclic-GMP-AMP synthase (cGAS) along with the downstream stimulator of interferon genes (STING) acting as essential immune-surveillance mediators have become hot topics of research. The intrinsic function of the cGAS-STING pathway facilitates type-I interferon (IFN) inflammatory signaling responses and other cellular processes such as autophagy, cell survival, senescence. cGAS-STING pathway interplays with other innate immune pathways, by which it participates in regulating infection, inflammatory disease, and cancer. The therapeutic approaches targeting this pathway show promise for future translation into clinical applications. Here, we present a review of the important previous works and recent advances regarding the cGAS-STING pathway, and provide a comprehensive understanding of the modulatory pattern of the cGAS-STING pathway under multifarious pathologic states.
Collapse
Affiliation(s)
- Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Kwon Y, Park OJ, Kim J, Cho JH, Yun CH, Han SH. Cyclic Dinucleotides Inhibit Osteoclast Differentiation Through STING-Mediated Interferon-β Signaling. J Bone Miner Res 2019; 34:1366-1375. [PMID: 30779854 DOI: 10.1002/jbmr.3701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 11/07/2022]
Abstract
Cyclic dinucleotides (CDNs), such as cyclic diadenylate monophosphate and cyclic diguanylate monophosphate, are commensal bacteria-derived second messengers in the gut that modulate bacterial survival, colonization, and biofilm formation. Recently, CDNs have been discovered to have an immunomodulatory activity by inducing the expression of type I interferon (IFN) through STING signaling pathway in macrophages. Because CDNs are possibly absorbed and delivered into the bone marrow, where bone-resorbing osteoclasts are derived from monocyte/macrophage lineages, CDNs could affect bone metabolism by regulating osteoclast differentiation. In this study, we investigated the effect of CDNs on the differentiation and function of osteoclasts and osteoblasts. When bone marrow-derived macrophages (BMMs) were differentiated into osteoclasts with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) in the presence of CDNs, the differentiation was inhibited by CDNs in a dose-dependent manner. In contrast, CDNs did not influence the differentiation of committed osteoclasts or osteoblast precursors. STING signaling pathway appeared to be critical for CDNs-mediated inhibition of osteoclast differentiation since CDNs induced the phosphorylation of TBK1 and IRF3, a representative feature of STING activation, and osteoclast differentiation was restored in STING knockdown BMMs with siRNA. Moreover, CDNs increased the mRNA expression of STING-meditated IFN-β, which is a negative regulator of osteoclastogenesis. In addition, CDNs also induced the phosphorylation of STAT1, which mediates IFN-α/β receptor (IFNAR) signal transduction. The inhibitory effects of CDNs on osteoclast differentiation were not observed in the presence of antibody blocking IFNAR or in macrophages derived from IFNAR1-/- mice. Experiments using a mouse calvarial implantation model showed that RANKL-induced bone resorption was inhibited by CDNs. Taken together, these results suggest that CDNs inhibit osteoclast differentiation and bone resorption through induction of IFN-β via the STING signaling pathway. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. Proc Natl Acad Sci U S A 2019; 116:7941-7950. [PMID: 30944222 DOI: 10.1073/pnas.1818281116] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Studies over the past decade have revealed a central role for innate immune sensors in autoimmune and autoinflammatory diseases. cGAS, a cytosolic DNA sensor, detects both foreign and host DNA and generates a second-messenger cGAMP, which in turn binds and activates stimulator of IFN genes (STING), leading to induction of type I interferons and inflammatory cytokines. Recently, gain-of-function mutations in STING have been identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients present with early-onset systemic inflammation and interstitial lung disease, resulting in pulmonary fibrosis and respiratory failure. Here, we describe two independent SAVI mouse models, harboring the two most common mutations found in patients. A direct comparison of these strains reveals a hierarchy of immune abnormalities, lung inflammation and fibrosis, which do not depend on either IFN-α/β receptor signaling or mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptotic cell death pathways. Furthermore, radiation chimera experiments reveal how bone marrow from the V154M mutant mice transfer disease to the WT host, whereas the N153S does not, indicating mutation-specific disease outcomes. Moreover, using radiation chimeras we find that T cell lymphopenia depends on T cell-intrinsic expression of the SAVI mutation. Collectively, these mutant mice recapitulate many of the disease features seen in SAVI patients and highlight mutation-specific functions of STING that shed light on the heterogeneity observed in SAVI patients.
Collapse
|
27
|
A Human Gain-of-Function STING Mutation Causes Immunodeficiency and Gammaherpesvirus-Induced Pulmonary Fibrosis in Mice. J Virol 2019; 93:JVI.01806-18. [PMID: 30463976 DOI: 10.1128/jvi.01806-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
We previously generated STING N153S knock-in mice that have a human disease-associated gain-of-function mutation in STING. Patients with this mutation (STING N154S in humans) develop STING-associated vasculopathy with onset in infancy (SAVI), a severe pediatric autoinflammatory disease characterized by pulmonary fibrosis. Since this mutation promotes the upregulation of antiviral type I interferon-stimulated genes (ISGs), we hypothesized that STING N153S knock-in mice may develop more severe autoinflammatory disease in response to a virus challenge. To test this hypothesis, we infected heterozygous STING N153S mice with murine gammaherpesvirus 68 (γHV68). STING N153S mice were highly vulnerable to infection and developed pulmonary fibrosis after infection. In addition to impairing CD8+ T cell responses and humoral immunity, STING N153S also promoted the replication of γHV68 in cultured macrophages. In further support of a combined innate and adaptive immunodeficiency, γHV68 infection was more severe in Rag1-/- STING N153S mice than in Rag1-/- littermate mice, which completely lack adaptive immunity. Thus, a gain-of-function STING mutation creates a combined innate and adaptive immunodeficiency that leads to virus-induced pulmonary fibrosis.IMPORTANCE A variety of human rheumatologic disease-causing mutations have recently been identified. Some of these mutations are found in viral nucleic acid-sensing proteins, but whether viruses can influence the onset or progression of these human diseases is less well understood. One such autoinflammatory disease, called STING-associated vasculopathy with onset in infancy (SAVI), affects children and leads to severe lung disease. We generated mice with a SAVI-associated STING mutation and infected them with γHV68, a common DNA virus that is related to human Epstein-Barr virus. Mice with the human disease-causing STING mutation were more vulnerable to infection than wild-type littermate control animals. Furthermore, the STING mutant mice developed lung fibrosis similar to that of patients with SAVI. These findings reveal that a human STING mutation creates severe immunodeficiency, leading to virus-induced lung disease in mice.
Collapse
|
28
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Jurecic R. Hematopoietic Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:195-211. [PMID: 31487025 DOI: 10.1007/978-3-030-24108-7_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain lifelong production of mature blood cells and regenerate the hematopoietic system after cytotoxic injury. Use of expanding cell surface marker panels and advanced functional analyses have revealed the presence of several immunophenotypically different HSC subsets with distinct self-renewal and repopulating capacity and bias toward selective lineage differentiation. This chapter summarizes current understanding of the phenotypic and functional heterogeneity within the HSC pool, with emphasis on the immunophenotypes and functional features of several known HSC subsets, and their roles in steady-state and emergency hematopoiesis, and in aging. The chapter also highlights some of the future research directions to elucidate further the biology and function of different HSC subsets in health and disease states.
Collapse
Affiliation(s)
- Roland Jurecic
- Department of Microbiology & Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
30
|
Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Åkerlund B, Römling U. Biofilm formation - what we can learn from recent developments. J Intern Med 2018; 284:332-345. [PMID: 29856510 PMCID: PMC6927207 DOI: 10.1111/joim.12782] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although biofilms have been observed early in the history of microbial research, their impact has only recently been fully recognized. Biofilm infections, which contribute to up to 80% of human microbial infections, are associated with common human disorders, such as diabetes mellitus and poor dental hygiene, but also with medical implants. The associated chronic infections such as wound infections, dental caries and periodontitis significantly enhance morbidity, affect quality of life and can aid development of follow-up diseases such as cancer. Biofilm infections remain challenging to treat and antibiotic monotherapy is often insufficient, although some rediscovered traditional compounds have shown surprising efficiency. Innovative anti-biofilm strategies include application of anti-biofilm small molecules, intrinsic or external stimulation of production of reactive molecules, utilization of materials with antimicrobial properties and dispersion of biofilms by digestion of the extracellular matrix, also in combination with physical biofilm breakdown. Although basic principles of biofilm formation have been deciphered, the molecular understanding of the formation and structural organization of various types of biofilms has just begun to emerge. Basic studies of biofilm physiology have also resulted in an unexpected discovery of cyclic dinucleotide second messengers that are involved in interkingdom crosstalk via specific mammalian receptors. These findings even open up new venues for exploring novel anti-biofilm strategies.
Collapse
Affiliation(s)
- T Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - K Buhlin
- Department of Dental Medicine, Division of Oral Facial Diagnostics and Surgery, Karolinska Institutet, Huddinge, Sweden
| | - Y F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - M Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - A Moroni
- Department of Biology and CNR-Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - M Ramstedt
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - K P Rumbaugh
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - T Schulte
- Department of Medicine Solna, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - L Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Åkerlund
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - U Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Warner JD, Irizarry-Caro RA, Bennion BG, Ai TL, Smith AM, Miner CA, Sakai T, Gonugunta VK, Wu J, Platt DJ, Yan N, Miner JJ. STING-associated vasculopathy develops independently of IRF3 in mice. J Exp Med 2017; 214:3279-3292. [PMID: 28951494 PMCID: PMC5679177 DOI: 10.1084/jem.20171351] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 11/04/2022] Open
Abstract
Patients with stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) develop systemic inflammation characterized by vasculopathy, interstitial lung disease, ulcerative skin lesions, and premature death. Autosomal dominant mutations in STING are thought to trigger activation of IRF3 and subsequent up-regulation of interferon (IFN)-stimulated genes (ISGs) in patients with SAVI. We generated heterozygous STING N153S knock-in mice as a model of SAVI. These mice spontaneously developed inflammation within the lung, hypercytokinemia, T cell cytopenia, skin ulcerations, and premature death. Cytometry by time-of-flight (CyTOF) analysis revealed that the STING N153S mutation caused myeloid cell expansion, T cell cytopenia, and dysregulation of immune cell signaling. Unexpectedly, we observed only mild up-regulation of ISGs in STING N153S fibroblasts and splenocytes and STING N154S SAVI patient fibroblasts. STING N153S mice lacking IRF3 also developed lung disease, myeloid cell expansion, and T cell cytopenia. Thus, the SAVI-associated STING N153S mutation triggers IRF3-independent immune cell dysregulation and lung disease in mice.
Collapse
Affiliation(s)
- James D Warner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Brock G Bennion
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Teresa L Ai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Amber M Smith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Cathrine A Miner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Tomomi Sakai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vijay K Gonugunta
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jianjun Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Derek J Platt
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO .,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
Morikawa T, Takubo K. Use of Imaging Techniques to Illuminate Dynamics of Hematopoietic Stem Cells and Their Niches. Front Cell Dev Biol 2017; 5:62. [PMID: 28660186 PMCID: PMC5468376 DOI: 10.3389/fcell.2017.00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023] Open
Abstract
Continuous generation of blood cells over an organism's lifetime is supported by hematopoietic stem/progenitor cells (HSPCs) capable of producing all hematopoietic cell subtypes. Adult mammalian HSPCs are localized to bone marrow and regulated by their neighboring microenvironment, or "niche." Because interactions of HSPCs with their niches are highly dynamic and complex, the recent development of imaging technologies provides a powerful new tool to understand stem cell/niche biology. In this review, we discuss recent advances in our understanding of dynamic HSPC/niche interactions during development, homeostasis, disease states or aging with a focus on studies advanced by imaging analysis. We also summarize methods to visualize HSPCs and niche cells in vivo, including use of HSPC reporter mice and chemical probes. Findings emerging from these investigations could suggest novel therapies for diseases and aging.
Collapse
Affiliation(s)
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyo, Japan
| |
Collapse
|
33
|
Nombela-Arrieta C, Isringhausen S. The Role of the Bone Marrow Stromal Compartment in the Hematopoietic Response to Microbial Infections. Front Immunol 2017; 7:689. [PMID: 28163704 PMCID: PMC5247475 DOI: 10.3389/fimmu.2016.00689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Continuous production of blood cells unfolds within a complex three-dimensional tissue scaffold established by highly organized stromal cell networks of mesenchymal, neural, and vascular origin inside bone marrow (BM) cavities. Collectively, stromal cells have been shown to serve two principal roles; first as primary participants of bone remodeling and metabolism and second as master regulators of different stages of blood cell development and production. Indeed, ample evidence demonstrates that stromal cells can sense and integrate systemic signals to shape hematopoietic responses and that these regulatory mechanisms are subverted in multiple pathologic conditions. Microbial infections are stressors that elicit potent inflammatory reactions and induce substantial alterations of hematopoietic output. Whether the cellular components of the BM stromal microenvironment are targeted by infections and participate in infection-induced hematopoiesis has not been investigated in sufficient detail to date. In this manuscript, we provide a succinct updated overview of the different cell populations that are currently known to form BM stroma. We discuss experimental evidence demonstrating that different stromal components are actively damaged or functionally altered by pathogens and/or ensuing inflammatory signals and review how these effects are known to contribute to the hematologic manifestations observed during infections.
Collapse
|
34
|
Nik S, Weinreb JT, Bowman TV. Developmental HSC Microenvironments: Lessons from Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:33-53. [PMID: 29204828 DOI: 10.1007/978-3-319-69194-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells (HSCs) posses the ability to maintain the blood system of an organism from birth to adulthood. The behavior of HSCs is modulated by its microenvironment. During development, HSCs acquire the instructions to self-renew and differentiate into all blood cell fates by passing through several developmental microenvironments. In this chapter, we discuss the signals and cell types that inform HSC decisions throughout ontogeny with a focus on HSC specification, mobilization, migration, and engraftment.
Collapse
Affiliation(s)
- Sara Nik
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua T Weinreb
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Teresa V Bowman
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Departments of Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Bose D, Su Y, Marcus A, Raulet DH, Hammond MC. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. Cell Chem Biol 2016; 23:1539-1549. [PMID: 27889408 DOI: 10.1016/j.chembiol.2016.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
In mammalian cells, the second messenger (2'-5',3'-5') cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP), is produced by the cytosolic DNA sensor cGAMP synthase (cGAS), and subsequently bound by the stimulator of interferon genes (STING) to trigger interferon response. Thus, the cGAS-cGAMP-STING pathway plays a critical role in pathogen detection, as well as pathophysiological conditions including cancer and autoimmune disorders. However, studying and targeting this immune signaling pathway has been challenging due to the absence of tools for high-throughput analysis. We have engineered an RNA-based fluorescent biosensor that responds to 2',3'-cGAMP. The resulting "mix-and-go" cGAS activity assay shows excellent statistical reliability as a high-throughput screening (HTS) assay and distinguishes between direct and indirect cGAS inhibitors. Furthermore, the biosensor enables quantitation of 2',3'-cGAMP in mammalian cell lysates. We envision this biosensor-based assay as a resource to study the cGAS-cGAMP-STING pathway in the context of infectious diseases, cancer immunotherapy, and autoimmune diseases.
Collapse
Affiliation(s)
- Debojit Bose
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Yichi Su
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Assaf Marcus
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Ramírez-Ramírez D, Vadillo E, Arriaga-Pizano LA, Mayani H, Estrada-Parra S, Velasco-Velázquez MA, Pérez-Tapia SM, Pelayo R. Early Differentiation of Human CD11c +NK Cells with γδ T Cell Activation Properties Is Promoted by Dialyzable Leukocyte Extracts. J Immunol Res 2016; 2016:4097642. [PMID: 27847830 PMCID: PMC5099461 DOI: 10.1155/2016/4097642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.
Collapse
Affiliation(s)
- Dalia Ramírez-Ramírez
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| | - Lourdes Andrea Arriaga-Pizano
- Immunochemistry Research Unit, Medical Specialties Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| | - Héctor Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| | - Sergio Estrada-Parra
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
| | - Marco Antonio Velasco-Velázquez
- Department of Pharmacology, School of Medicine, National Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| |
Collapse
|
37
|
Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Front Physiol 2016; 7:349. [PMID: 27594840 PMCID: PMC4990565 DOI: 10.3389/fphys.2016.00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.
Collapse
Affiliation(s)
- Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social SecurityMexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de MexicoMexico City, Mexico
| | - Hector Mayani
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| |
Collapse
|
38
|
De La Garza A, Sinha A, Bowman TV. Concise Review: Hematopoietic Stem Cell Origins: Lessons from Embryogenesis for Improving Regenerative Medicine. Stem Cells Transl Med 2016; 6:60-67. [PMID: 28170201 PMCID: PMC5442726 DOI: 10.5966/sctm.2016-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/16/2016] [Indexed: 12/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have extensive regenerative capacity to replace all blood cell types, an ability that is harnessed in the clinic for bone marrow transplantation. Finding appropriate donors remains a major limitation to more extensive usage of HSC‐based therapies. Derivation of patient‐specific HSCs from pluripotent stem cells offers great promise to remedy this problem if scientists could crack the code on how to make robust, transplantable HSCs in a dish. Studies delving into the native origins of HSC production during embryonic development should supply the necessary playbook. This review presents recent discoveries from animal models, with a focus on zebrafish, and discusses the implications of these new advances in the context of prior knowledge. The focus is on the latest research exploring the role of epigenetic regulation, signaling pathways, and niche components needed for proper HSC formation. These studies provide new directions that should be explored for de novo generation and expansion of HSCs for regenerative therapies. Stem Cells Translational Medicine2017;6:60–67
Collapse
Affiliation(s)
- Adriana De La Garza
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arpan Sinha
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
39
|
Liu X, Wang C. The emerging roles of the STING adaptor protein in immunity and diseases. Immunology 2015; 147:285-91. [PMID: 26643733 DOI: 10.1111/imm.12561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
DNA that gains access to the cytoplasm generally serves as a danger signal for the hosts. An emerging paradigm for responding to cytosolic DNAs centres on the endoplasmic reticulum-resident protein stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS), the hub adaptor of the recently identified DNA sensors. Dynamic regulations of STING action are critical for shaping innate immune responses against microbial infections, as well as for preventing autoimmune diseases. STING is also indispensable for the detection of immunogenic tumours. A deeper understanding of STING modulations could be instrumental for developing novel immunotherapeutic strategies against infectious, autoimmune and cancerous diseases. In this review, we summarize the latest advances on the role of STING in the DNA-triggered immune reactions, and underscore the critical issues that remain to be resolved in future studies.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Cell Biology, Innovation Centre for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chen Wang
- State Key Laboratory of Cell Biology, Innovation Centre for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Kobayashi H, Suda T, Takubo K. How hematopoietic stem/progenitors and their niche sense and respond to infectious stress. Exp Hematol 2015; 44:92-100. [PMID: 26646990 DOI: 10.1016/j.exphem.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) play important roles in fighting systemic infection as they supply immune cells in a demand-adapted manner. Various mechanisms govern HSPC responses to infection, including cytokine signaling, niche function, and direct sensing of pathogen-derived molecules by HSPCs themselves. Here we review recent advances in our understanding of HSPC responses to infection and also consider newly identified STING-mediated machinery recognizing bacteria-derived cyclic dinucleotides.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|