1
|
Zhang H, Wu J, Cui L, Wang T, Jin H, Guo H, Xie C, Li L, Wang X, Wang Z. Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity. Oncogene 2025; 44:983-995. [PMID: 39814851 DOI: 10.1038/s41388-024-03272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling. Mechanistically, PYZ elevates levels of ROS, leading to the upregulation of HIF-1α and DNA damage, while also inhibiting the expression of DNA mismatch repair proteins MSH2 and MSH6, together promoting DNA damage accumulation. Therefore, the administration of PYZ results in the accumulation of DNA damage, leading to the activation of STING signaling, which enhances tumor immunogenicity. Knockout of Sting diminishes the activation of IFN-I signaling induced by PYZ and reduces tumor immunogenicity. Furthermore, in vivo administration of PYZ promotes the infiltration of CD8+ T cells into the tumor and inhibits tumor growth, an effect that is attenuated in Nude mice or mice with CD8+ T cell depletion or deficiency of Ifnar. Overall, our findings showed that pyrithione zinc could trigger tumor immunogenicity by downregulating MMR machinery and activating STING pathway in tumor cells, and provide a translational approach to improve immunotherapy on pMMR cancer.
Collapse
Affiliation(s)
- Huanling Zhang
- Guangzhou Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
3
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Tay JY, Ho JX, Cheo FF, Iqbal J. The Tumour Microenvironment and Epigenetic Regulation in BRCA1 Pathogenic Variant-Associated Breast Cancers. Cancers (Basel) 2024; 16:3910. [PMID: 39682099 DOI: 10.3390/cancers16233910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: BRCA1 pathogenic variant (PV)-associated breast cancers are most commonly seen in hereditary genetic conditions such as the autosomal-dominant Hereditary Breast and Ovarian Cancer (HBOC) syndrome, and rarely in sporadic breast cancer. Such breast cancers tend to exhibit greater aggressiveness and poorer prognoses due to the influence of BRCA1 pathogenic variants (PVs) on the tumour microenvironment. Additionally, while the genetic basis of BRCA1 PV breast cancer is well-studied, the role of epigenetic mediators in the tumourigenesis of these hereditary breast cancers is also worth exploring. Results: PVs in the BRCA1 gene interact with stromal cells and immune cells, promoting epithelial-mesenchymal transition, angiogenesis, and affecting oestrogen levels. Additionally, BRCA1 PVs contribute to breast cancer development through epigenetic effects on cells, including DNA methylation and histone acetylation, leading to the suppression of proto-oncogenes and dysregulation of cytokines. In terms of epigenetics, lysine-specific demethylase 1 (LSD-1) is considered a master epigenetic regulator, governing both transcriptional repression and activation. It exerts epigenetic control over BRCA1 and, to a lesser extent, BRCA2 genes. The upregulation of LSD-1 is generally associated with a poorer prognosis in cancer patients. In the context of breast cancer in BRCA1/2 PV carriers, LSD-1 contributes to tumour development through various mechanisms. These include the maintenance of a hypoxic environment and direct suppression of BRCA1 gene expression. Conclusions: While LSD-1 itself does not directly cause mutations in BRCA1 or BRCA2 genes, its epigenetic influence sheds light on the potential role of LSD-1 inhibitors as a therapeutic approach in managing breast cancer, particularly in individuals with BRCA1/2 PVs. Targeting LSD-1 may help counteract its detrimental effects and provide a promising avenue for therapy in this specific subgroup of breast cancer.
Collapse
Affiliation(s)
- Jun Yu Tay
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University, Singapore 308232, Singapore
| | - Josh Xingchong Ho
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University, Singapore 308232, Singapore
| | - Fan Foon Cheo
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
5
|
Chen J, Zhao B, Dong H, Li T, Cheng X, Gong W, Wang J, Zhang J, Xin G, Yu Y, Lei YL, Black JD, Li Z, Wen H. Inhibition of O-GlcNAc transferase activates type I interferon-dependent antitumor immunity by bridging cGAS-STING pathway. eLife 2024; 13:RP94849. [PMID: 39365288 PMCID: PMC11452177 DOI: 10.7554/elife.94849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The O-GlcNAc transferase (OGT) is an essential enzyme that mediates protein O-GlcNAcylation, a unique form of posttranslational modification of many nuclear and cytosolic proteins. Recent studies observed increased OGT and O-GlcNAcylation levels in a broad range of human cancer tissues compared to adjacent normal tissues, indicating a universal effect of OGT in promoting tumorigenesis. Here, we show that OGT is essential for tumor growth in immunocompetent mice by repressing the cyclic GMP-AMP synthase (cGAS)-dependent DNA sensing pathway. We found that deletion of OGT (Ogt-/-) caused a marked reduction in tumor growth in both syngeneic mice tumor models and a genetic mice colorectal cancer (CRC) model induced by mutation of the Apc gene (Apcmin). Pharmacological inhibition or genetic deletion of OGT induced a robust genomic instability (GIN), leading to cGAS-dependent production of the type I interferon (IFN-I) and IFN-stimulated genes (ISGs). As a result, deletion of Cgas or Sting from Ogt-/- cancer cells restored tumor growth, and this correlated with impaired CD8+ T-cell-mediated antitumor immunity. Mechanistically, we found that OGT-dependent cleavage of host cell factor C1 (HCF-1) is required for the avoidance of GIN and IFN-I production in tumors. In summary, our results identify OGT-mediated genomic stability and activate cGAS-STING pathway as an important tumor-cell-intrinsic mechanism to repress antitumor immunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Bao Zhao
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
| | - Tianliang Li
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
| | - Xiang Cheng
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Jing Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
- Department of Cancer Biology and Genetics, The Ohio State UniversityColumbusUnited States
| | - Junran Zhang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
- Department of Radiation Oncology, The Ohio State UniversityColumbusUnited States
| | - Gang Xin
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of DelawareNewarkUnited States
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
6
|
Ban E, Kim A. PicoGreen assay for nucleic acid quantification - Applications, challenges, and solutions. Anal Biochem 2024; 692:115577. [PMID: 38789006 DOI: 10.1016/j.ab.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Various analytical methods and reagents have been employed for nucleic acid analysis in cells, biological fluids, and formulations. Standard techniques like gel electrophoresis and qRT-PCR are widely used for qualitative and quantitative nucleic acid analysis. However, these methods can be time-consuming and labor-intensive, with limitations such as inapplicability to small RNA at low concentrations and high costs associated with qRT-PCR reagents and instruments. As an alternative, PicoGreen (PG) has emerged as a valuable method for the quantitative analysis of nucleic acids. PG, a fluorescent dye, enables the quantitation of double-stranded DNA (dsDNA) or double-stranded RNA, including miRNA mimic and siRNA, in solution. It is also applicable to DNA and RNA analysis within cells using techniques like FACS and fluorescence microscopy. Despite its advantages, PG's fluorescence intensity is affected by various experimental conditions, such as pH, salts, and chemical reagents. This review explores the recent applications of PG as a rapid, cost-effective, robust, and accurate assay tool for nucleic acid quantification. We also address the limitations of PG and discuss approaches to overcome these challenges, recognizing the expanding range of its applications.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea.
| |
Collapse
|
7
|
Técher H. T-Rex escaped from the cytosolic park: Re-thinking the impact of TREX1 exonuclease deficiencies on genomic stability. Bioessays 2024; 46:e2400066. [PMID: 38837436 DOI: 10.1002/bies.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging of Nice - IRCAN, Nice, France
| |
Collapse
|
8
|
Chen J, Zhao B, Dong H, Li T, Cheng X, Gong W, Wang J, Zhang J, Xin G, Yu Y, Lei YL, Black JD, Li Z, Wen H. Inhibition of O-GlcNAc transferase activates type I interferon-dependent antitumor immunity by bridging cGAS-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571787. [PMID: 38168435 PMCID: PMC10760207 DOI: 10.1101/2023.12.14.571787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The O-GlcNAc transferase (OGT) is an essential enzyme that mediates protein O-GlcNAcylation, a unique form of posttranslational modification of many nuclear and cytosolic proteins. Recent studies observed increased OGT and O-GlcNAcylation levels in a broad range of human cancer tissues compared to adjacent normal tissues, indicating a universal effect of OGT in promoting tumorigenesis. Here, we show that OGT is essential for tumor growth in immunocompetent hosts by repressing the cyclic GMP-AMP synthase (cGAS)-dependent DNA sensing pathway. We found that deletion of OGT (Ogt -/- ) caused a marked reduction in tumor growth in both syngeneic tumor models and a genetic colorectal cancer (CRC) model induced by mutation of the Apc gene (Apc min ). Pharmacological inhibition or genetic deletion of OGT induced a robust genomic instability (GIN), leading to cGAS-dependent production of the type I interferon (IFN-I) and IFN-stimulated genes (ISGs). As a result, deletion of Cgas or Sting from Ogt -/- cancer cells restored tumor growth, and this correlated with impaired CD8+ T cell-mediated antitumor immunity. Mechanistically, we found that OGT-dependent cleavage of host cell factor C1 (HCF-1) is required for the avoidance of GIN and IFN-I production in tumors. In summary, our results identify OGT-mediated genomic stability and activate cGAS-STING pathway as an important tumor cell-intrinsic mechanism to repress antitumor immunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- These authors contributed equally to this work
| | - Bao Zhao
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- These authors contributed equally to this work
| | - Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- These authors contributed equally to this work
| | - Tianliang Li
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiang Cheng
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jing Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Junran Zhang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Yu L. Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Lead Contact
| |
Collapse
|
9
|
Siametis A, Stratigi K, Giamaki D, Chatzinikolaou G, Akalestou-Clocher A, Goulielmaki E, Luke B, Schumacher B, Garinis GA. Transcription stress at telomeres leads to cytosolic DNA release and paracrine senescence. Nat Commun 2024; 15:4061. [PMID: 38744897 PMCID: PMC11094137 DOI: 10.1038/s41467-024-48443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.
Collapse
Affiliation(s)
- Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Despoina Giamaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology (IMB), Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
10
|
Wu S, Wang B, Li H, Wang H, Du S, Huang X, Fan Y, Gao Y, Gu L, Huang Q, Chen J, Zhang X, Huang Y, Ma X. Targeting STING elicits GSDMD-dependent pyroptosis and boosts anti-tumor immunity in renal cell carcinoma. Oncogene 2024; 43:1534-1548. [PMID: 38548966 DOI: 10.1038/s41388-024-03013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/15/2024]
Abstract
While Stimulator-of-interferon genes (STING) is an innate immune adapter cruicial for sensing cytosolic DNA and modulating immune microenvironment, its tumor-promoting role in tumor survival and immune evasion remains largely unknown. Here we reported that renal cancer cells are exceptionally dependent on STING for survival and evading immunosurveillance via suppressing ER stress-mediated pyroptosis. We found that STING is significantly amplified and upregulated in clear cell renal cell carcinoma (ccRCC), and its elevated expression is associated with worse clinical outcomes. Mechanically, STING depletion in RCC cells specifically triggers activation of the PERK/eIF2α/ATF4/CHOP pathway and activates cleavage of Caspase-8, thereby inducing GSDMD-mediated pyroptosis, which is independent of the innate immune pathway of STING. Moreover, animal study revealed that STING depletion promoted infiltration of CD4+ and CD8+ T cells, consequently boosting robust antitumor immunity via pyroptosis-induced inflammation. From the perspective of targeted therapy, we found that Compound SP23, a PROTAC STING degrader, demonstrated comparable efficacy to STING depletion both in vitro and in vivo for treatment of ccRCC. These findings collectively unveiled an unforeseen function of STING in regulating GSDMD-dependent pyroptosis, thus regulating immune response in RCC. Consequently, pharmacological degradation of STING by SP23 may become an attractive strategy for treatment of advanced RCC.
Collapse
Affiliation(s)
- Shengpan Wu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Hongzhao Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Yang Fan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Yu Gao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Liangyou Gu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
11
|
Sibal PA, Matsumura S, Ichinose T, Bustos‐Villalobos I, Morimoto D, Eissa IR, Abdelmoneim M, Aboalela MAM, Mukoyama N, Tanaka M, Naoe Y, Kasuya H. STING activator 2'3'-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol Oncol 2024; 18:1259-1277. [PMID: 38400597 PMCID: PMC11076993 DOI: 10.1002/1878-0261.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic viruses (OVs) can selectively replicate in tumor cells and remodel the microenvironment of immunologically cold tumors, making them a promising strategy to evoke antitumor immunity. Similarly, agonists of the stimulator of interferon genes (STING)-interferon (IFN) pathway, the main cellular antiviral system, provide antitumor benefits by inducing the activation of dendritic cells (DC). Considering how the activation of the STING-IFN pathway could potentially inhibit OV replication, the use of STING agonists alongside OV therapy remains largely unexplored. Here, we explored the antitumor efficacy of combining an HSV-1-based OV, C-REV, with a membrane-impermeable STING agonist, 2'3'-GAMP. Our results demonstrated that tumor cells harbor a largely defective STING-IFN pathway, thereby preventing significant antiviral IFN induction regardless of the permeability of the STING agonist. In vivo, the combination therapy induced more proliferative KLRG1-high PD1-low CD8+ T-cells and activated CD103+ DC in the tumor site and increased tumor-specific CD44+ CD8+ T-cells in the lymph node. Overall, the combination therapy of C-REV with 2'3'-cGAMP elicited antitumor immune memory responses and significantly enhanced systemic antitumor immunity in both treated and non-treated distal tumors.
Collapse
Affiliation(s)
- Patricia Angela Sibal
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | | | - Daishi Morimoto
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Ibrahim R. Eissa
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Faculty of ScienceTanta UniversityEgypt
| | - Mohamed Abdelmoneim
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Department of Microbiology, Faculty of Veterinary MedicineZagazig UniversityEgypt
| | - Mona Alhussein Mostafa Aboalela
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Medical Microbiology and Immunology Department, Faculty of MedicineZagazig UniversityEgypt
| | - Nobuaki Mukoyama
- Department of Otolaryngology Graduate School of MedicineNagoya UniversityJapan
| | | | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| |
Collapse
|
12
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
13
|
Martins F, Rosspopoff O, Carlevaro-Fita J, Forey R, Offner S, Planet E, Pulver C, Pak H, Huber F, Michaux J, Bassani-Sternberg M, Turelli P, Trono D. A Cluster of Evolutionarily Recent KRAB Zinc Finger Proteins Protects Cancer Cells from Replicative Stress-Induced Inflammation. Cancer Res 2024; 84:808-826. [PMID: 38345497 PMCID: PMC10940857 DOI: 10.1158/0008-5472.can-23-1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 03/16/2024]
Abstract
Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.
Collapse
Affiliation(s)
- Filipe Martins
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Clinics of Medical Oncology, Cantonal Hospital of Fribourg (HFR), Fribourg, Switzerland
| | - Olga Rosspopoff
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joana Carlevaro-Fita
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Forey
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cyril Pulver
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - HuiSong Pak
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Pu C, Li Y, Fu Y, Yan Y, Tao S, Tang S, Gai X, Ding Z, Gan Z, Liu Y, Cao S, Wang T, Ding J, Xu J, Geng M, Huang M. Low-Dose Chemotherapy Preferentially Shapes the Ileal Microbiome and Augments the Response to Immune Checkpoint Blockade by Activating AIM2 Inflammasome in Ileal Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304781. [PMID: 38189627 PMCID: PMC10953579 DOI: 10.1002/advs.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Intervention of the gut microbiome is a promising adjuvant strategy in cancer immunotherapy. Chemotherapeutic agents are recognized for their substantial impacts on the gut microbiome, yet their therapeutic potential as microbiome modulators remains uncertain, due to the complexity of microbiome-host-drug interactions. Here, it is showed that low-dose chemotherapy preferentially shapes the ileal microbiome to augment the extraintestinal immune response to anti-programmed death-1 (anti-PD-1) therapy without causing intestinal toxicity. Mechanistically, low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells, resulting in the accumulation of cytosolic dsDNA and the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, impairing the local antimicrobial host defense and resulting in ileal microbiome change. Intestinal epithelium-specific knockout of AIM2 in mice significantly attenuates CPT-11-caused IL-18 secretion, Paneth cell dysfunction, and ileal microbiome alteration. Moreover, AIM2 deficiency in mice or antibiotic microbial depletion attenuates chemotherapy-augmented antitumor responses to anti-PD1 therapy. Collectively, these findings provide mechanistic insights into how chemotherapy-induced genomic stress is transduced to gut microbiome change and support the rationale of applying low-dose chemotherapy as a promising adjuvant strategy in cancer immunotherapy with minimal toxicity.
Collapse
Affiliation(s)
- Congying Pu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yize Li
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yixian Fu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacy, Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| | - Yiyang Yan
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyao Tao
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shuai Tang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Xiameng Gai
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacy, Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| | - Ziyi Ding
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhenjie Gan
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yingluo Liu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyuwei Cao
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ting Wang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jian Ding
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- School of Pharmacy, Jiangxi Medical CollegeNanchang UniversityNanchang330031China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Jun Xu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meiyu Geng
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Min Huang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| |
Collapse
|
15
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, Wang L, Wu Z, Cui X, Wang H, Yang W. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun 2024; 15:6. [PMID: 38177099 PMCID: PMC10766952 DOI: 10.1038/s41467-023-43743-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Induction of tumor vascular normalization is a crucial measure to enhance immunotherapy efficacy. cGAS-STING pathway is vital for anti-tumor immunity, but its role in tumor vasculature is unclear. Herein, using preclinical liver cancer models in Cgas/Sting-deficient male mice, we report that the interdependence between tumor cGAS and host STING mediates vascular normalization and anti-tumor immune response. Mechanistically, TET2 mediated IL-2/STAT5A signaling epigenetically upregulates tumor cGAS expression and produces cGAMP. Subsequently, cGAMP is transported via LRRC8C channels to activate STING in endothelial cells, enhancing recruitment and transendothelial migration of lymphocytes. In vivo studies in male mice also reveal that administration of vitamin C, a promising anti-cancer agent, stimulates TET2 activity, induces tumor vascular normalization and enhances the efficacy of anti-PD-L1 therapy alone or in combination with IL-2. Our findings elucidate a crosstalk between tumor and vascular endothelial cells in the tumor immune microenvironment, providing strategies to enhance the efficacy of combinational immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Bing Yan
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaoyan Sun
- Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
17
|
Kobayashi Y, Sakai C, Ishida T, Nagata M, Nakano Y, Ishida M. Mitochondrial DNA is a key driver in cigarette smoke extract-induced IL-6 expression. Hypertens Res 2024; 47:88-101. [PMID: 37848561 DOI: 10.1038/s41440-023-01463-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis, the primary pathogenesis of which is inflammation. We recently reported that cigarette smoke extract (CSE) causes cytosolic and extracellular accumulation of both nuclear (n) and mitochondrial (mt) DNA, which leads to inflammation in human umbilical vein endothelial cells (HUVECs). In this study, we examined whether inflammation induction depends more on cytosolic nDNA or mtDNA, and which chemical constituents of CSE are involved. Acrolein (ACR), methyl vinyl ketone (MVK), and 2-cyclopenten-1-one (CPO) were used in the experiments, as these are the major cytotoxic factors in CSE in various cell types. Stimulation with ACR, MVK, or CPO alone resulted in the accumulation of DNA double-strand breaks (DSBs), but not oxidative DNA damage, accumulation of cytosolic DNA, or increased expression of inflammatory cytokines. Simultaneous administration of all three constituents (ALL) resulted in oxidative DNA damage in both the nucleus and mitochondria, accumulation of DSBs, reduced mitochondrial membrane potential, induction of minority mitochondrial outer membrane permeabilization, accumulation of cytosolic free DNA, and increased expression of inflammatory cytokines such as IL-6 and IL-1α. Treatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, suppressed oxidative DNA damage and the increased expression of IL-6 and IL-1α induced by ALL or CSE. The ALL- or CSE-induced increase in IL-6 expression, but not that of IL-1α, was suppressed by mtDNA depletion. In conclusion, ACR, MVK, and CPO may strongly contribute to CSE-induced inflammation. More importantly, cytosolic free mtDNA is thought to play an important role in IL-6 expression, a central mediator of inflammation.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Minako Nagata
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.
| |
Collapse
|
18
|
Nguyen T, Chen PC, Pham J, Kaur K, Raman SS, Jewett A, Chiang J. Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma. Crit Rev Immunol 2024; 44:71-85. [PMID: 38618730 DOI: 10.1615/critrevimmunol.2024052486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.
Collapse
Affiliation(s)
- Tu Nguyen
- UCLA David Geffen School of Medicine
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Janet Pham
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine The Jane and Jerry Weintraub Center of Reconstructive Biotechnology University of California School of Dentistry Los Angeles, CA, USA
| | - Steven S Raman
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
19
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
20
|
Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Essays Biochem 2023; 67:905-918. [PMID: 37534795 PMCID: PMC10539950 DOI: 10.1042/ebc20220241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Collapse
Affiliation(s)
- Otto P G Wheeler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| |
Collapse
|
21
|
Tan K, Song Y, Xu M, You Z. Clinical evidence for a role of E2F1-induced replication stress in modulating tumor mutational burden and immune microenvironment. DNA Repair (Amst) 2023; 129:103531. [PMID: 37453246 PMCID: PMC11847531 DOI: 10.1016/j.dnarep.2023.103531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
DNA replication stress (RS) is frequently induced by oncogene activation and is believed to promote tumorigenesis. However, clinical evidence for the role of oncogene-induced RS in tumorigenesis remains scarce, and the mechanisms by which RS promotes cancer development remain incompletely understood. By performing a series of bioinformatic analyses on the oncogene E2F1, other RS-inducing factors, and replication fork processing factors in TCGA cancer database using previously established tools, we show that hyperactivity of E2F1 likely promotes the expression of several of these factors in virtually all types of cancer to induce RS and cytosolic self-DNA production. In addition, the expression of these factors positively correlates with that of ATR and Chk1 that govern the cellular response to RS, the tumor mutational load, and tumor infiltration of immune-suppressive CD4+Th2 cells and myeloid-derived suppressor cells (MDSCs). Consistently, high expression of these factors is associated with poor patient survival. Our study provides new insights into the role of E2F1-induced RS in tumorigenesis and suggests therapeutic approaches for E2F1-overexpressing cancers by targeting genomic instability, cytosolic self-DNA and the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ke Tan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yizhe Song
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
23
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
24
|
Chew ZH, Cui J, Sachaphibulkij K, Tan I, Kar S, Koh KK, Singh K, Lim HM, Lee SC, Kumar AP, Gasser S, Lim LHK. Macrophage IL-1β contributes to tumorigenesis through paracrine AIM2 inflammasome activation in the tumor microenvironment. Front Immunol 2023; 14:1211730. [PMID: 37449203 PMCID: PMC10338081 DOI: 10.3389/fimmu.2023.1211730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Intracellular recognition of self and non-self -nucleic acids can result in the initiation of effective pro-inflammatory and anti-tumorigenic responses. We hypothesized that macrophages can be activated by tumor-derived nucleic acids to induce inflammasome activation in the tumor microenvironment. We show that tumor conditioned media (CM) can induce IL-1β production, indicative of inflammasome activation in primed macrophages. This could be partially dependent on caspase 1/11, AIM2 and NLRP3. IL-1β enhances tumor cell proliferation, migration and invasion while coculture of tumor cells with macrophages enhances the proliferation of tumor cells, which is AIM2 and caspase 1/11 dependent. Furthermore, we have identified that DNA-RNA hybrids could be the nucleic acid form which activates AIM2 inflammasome at a higher sensitivity as compared to dsDNA. Taken together, the tumor-secretome stimulates an innate immune pathway in macrophages which promotes paracrine cancer growth and may be a key tumorigenic pathway in cancer. Broader understanding on the mechanisms of nucleic acid recognition and interaction with innate immune signaling pathway will help us to better appreciate its potential application in diagnostic and therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Zhi Huan Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Isabelle Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shreya Kar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Kiat Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kritika Singh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hong Meng Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Stephan Gasser
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Roche Pharma Research and Early Development, Roche Innovation Center, Roche Glycart AG, Schlieren, Switzerland
| | - Lina H. K. Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Zhang H, Li J, Yu Y, Ren J, Liu Q, Bao Z, Sun S, Liu X, Ma S, Liu Z, Yan K, Wu Z, Fan Y, Sun X, Zhang Y, Ji Q, Cheng F, Wei PH, Ma X, Zhang S, Xie Z, Niu Y, Wang YJ, Han JDJ, Jiang T, Zhao G, Ji W, Izpisua Belmonte JC, Wang S, Qu J, Zhang W, Liu GH. Nuclear lamina erosion-induced resurrection of endogenous retroviruses underlies neuronal aging. Cell Rep 2023; 42:112593. [PMID: 37261950 DOI: 10.1016/j.celrep.2023.112593] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The primate frontal lobe (FL) is sensitive to aging-related neurocognitive decline. However, the aging-associated molecular mechanisms remain unclear. Here, using physiologically aged non-human primates (NHPs), we depicted a comprehensive landscape of FL aging with multidimensional profiling encompassing bulk and single-nucleus transcriptomes, quantitative proteome, and DNA methylome. Conjoint analysis across these molecular and neuropathological layers underscores nuclear lamina and heterochromatin erosion, resurrection of endogenous retroviruses (ERVs), activated pro-inflammatory cyclic GMP-AMP synthase (cGAS) signaling, and cellular senescence in post-mitotic neurons of aged NHP and human FL. Using human embryonic stem-cell-derived neurons recapitulating cellular aging in vitro, we verified the loss of B-type lamins inducing resurrection of ERVs as an initiating event of the aging-bound cascade in post-mitotic neurons. Of significance, these aging-related cellular and molecular changes can be alleviated by abacavir, a nucleoside reverse transcriptase inhibitor, either through direct treatment of senescent human neurons in vitro or oral administration to aged mice.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Chinese Glioma Genome Atlas Network & Asian Glioma Genome Atlas Network, Beijing 100070, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Hu Wei
- Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xibo Ma
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqiang Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Chinese Glioma Genome Atlas Network & Asian Glioma Genome Atlas Network, Beijing 100070, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy Capital Medical University, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | | | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
26
|
Nakajima S, Kaneta A, Okayama H, Saito K, Kikuchi T, Endo E, Matsumoto T, Fukai S, Sakuma M, Sato T, Mimura K, Saito M, Saze Z, Sakamoto W, Onozawa H, Momma T, Kono K. The Impact of Tumor Cell-Intrinsic Expression of Cyclic GMP-AMP Synthase (cGAS)-Stimulator of Interferon Genes (STING) on the Infiltration of CD8 + T Cells and Clinical Outcomes in Mismatch Repair Proficient/Microsatellite Stable Colorectal Cancer. Cancers (Basel) 2023; 15:2826. [PMID: 37345163 DOI: 10.3390/cancers15102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in activating immune cells in the tumor microenvironment, thereby contributing to a more favorable response to immune checkpoint inhibitors (ICI) in colorectal cancer (CRC). However, the impact of the expression of cGAS-STING in tumor cells on the infiltration of CD8+ T cells and clinical outcomes in mismatch repair proficient/microsatellite stable (pMMR/MSS) CRC remains largely unknown. Our findings reveal that 56.8% of all pMMR CRC cases were cGAS-negative/STING-negative expressions (cGAS-/STING-) in tumor cells, whereas only 9.9% of all pMMR CRC showed cGAS-positive/STING-positive expression (cGAS+/STING+) in tumor cells. The frequency of cGAS+/STING+ cases was reduced in the advanced stages of pMMR/MSS CRC, and histone methylation might be involved in the down-regulation of STING expression in tumor cells. Since the expression level of cGAS-STING in tumor cells has been associated with the infiltration of CD8+ and/or CD4+ T cells and the frequency of recurrence in pMMR/MSS CRC, decreased expression of cGAS-STING in tumor cells might lead to poor immune cell infiltration and worse prognosis in most pMMR/MSS CRC patients. Our current findings provide a novel insight for the treatment of patients with pMMR/MSS CRC.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takahiro Sato
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hisashi Onozawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
27
|
Jahun AS, Sorgeloos F, Chaudhry Y, Arthur SE, Hosmillo M, Georgana I, Izuagbe R, Goodfellow IG. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner. Cell Rep 2023; 42:112179. [PMID: 36943868 DOI: 10.1016/j.celrep.2023.112179] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/11/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
The cGAS-STING pathway is central to the interferon response against DNA viruses. However, recent studies are increasingly demonstrating its role in the restriction of some RNA viruses. Here, we show that the cGAS-STING pathway also contributes to the interferon response against noroviruses, currently the commonest causes of infectious gastroenteritis worldwide. We show a significant reduction in interferon-β induction and a corresponding increase in viral replication in norovirus-infected cells after deletion of STING, cGAS, or IFI16. Further, we find that immunostimulatory host genome-derived DNA and mitochondrial DNA accumulate in the cytosol of norovirus-infected cells. Lastly, overexpression of the viral NS4 protein is sufficient to drive the accumulation of cytosolic DNA. Together, our data find a role for cGAS, IFI16, and STING in the restriction of noroviruses and show the utility of host genomic DNA as a damage-associated molecular pattern in cells infected with an RNA virus.
Collapse
Affiliation(s)
- Aminu S Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK; Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Sabastine E Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Rhys Izuagbe
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
28
|
Li S, Kong L, Meng Y, Cheng C, Lemacon DS, Yang Z, Tan K, Cheruiyot A, Lu Z, You Z. Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca 2+ release to protect stressed replication forks. Mol Cell 2023; 83:556-573.e7. [PMID: 36696898 PMCID: PMC9974760 DOI: 10.1016/j.molcel.2022.12.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/14/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.
Collapse
Affiliation(s)
- Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Delphine Sangotokun Lemacon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zheng Yang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ke Tan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigael Cheruiyot
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Lui WY, Bharti A, Wong NHM, Jangra S, Botelho MG, Yuen KS, Jin DY. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog 2023; 19:e1011186. [PMID: 36802409 PMCID: PMC9983872 DOI: 10.1371/journal.ppat.1011186] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/03/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Aradhana Bharti
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Nok-Hei Mickey Wong
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Sonia Jangra
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Michael G. Botelho
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| |
Collapse
|
30
|
Lazarchuk P, Nguyen VN, Brunon S, Pavlova MN, Sidorova JM. Innate immunity mediator STING modulates nascent DNA metabolism at stalled forks in human cells. Front Mol Biosci 2023; 9:1048726. [PMID: 36710880 PMCID: PMC9877313 DOI: 10.3389/fmolb.2022.1048726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background: The cGAS/STING pathway, part of the innate immune response to foreign DNA, can be activated by cell's own DNA arising from the processing of the genome, including the degradation of nascent DNA at arrested replication forks, which can be upregulated in cancer cells. Recent evidence raises a possibility that the cGAS/STING pathway may also modulate the very processes that trigger it, e.g., DNA damage repair or processing of stalled forks. Methods: We manipulated STING levels in human cells by depleting or re-expressing it, and assessed the effects of STING on replication using microfluidics-assisted replication track analysis, or maRTA, a DNA fiber assay, as well as immuno-precipitation of nascent DNA, or iPOND. We also assessed STING subcellular distribution and its ability to activate. Results: Depletion of STING suppressed and its re-expression in STING-deficient cancer cells upregulated the degradation of nascent DNA at arrested replication forks. Replication fork arrest was accompanied by the STING pathway activation, and a STING mutant that does not activate the pathway failed to upregulate nascent DNA degradation. cGAS was required for STING's effect on degradation, but this requirement could be bypassed by treating cells with a STING agonist. Cells expressing inactive STING had a reduced level of RPA on parental and nascent DNA of arrested forks and a reduced CHK1 activation compared to cells with the wild type STING. STING also affected unperturbed fork progression in a subset of cell lines. STING fractionated to the nuclear fractions enriched for structural components of chromatin and nuclear envelope, and furthermore, it associated with the chromatin of arrested replication forks as well as post-replicative chromatin. Conclusion: Our data highlight STING as a determinant of stalled replication fork integrity, thus revealing a novel connection between the replication stress and innate immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
31
|
Ma H, Kang Z, Foo TK, Shen Z, Xia B. Disrupted BRCA1-PALB2 interaction induces tumor immunosuppression and T-lymphocyte infiltration in HCC through cGAS-STING pathway. Hepatology 2023; 77:33-47. [PMID: 35006619 PMCID: PMC9271123 DOI: 10.1002/hep.32335] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS BRCA1 (BRCA1 DNA repair associated) and PALB2 (partner and localizer of BRCA2) interact with each other to promote homologous recombination and DNA double-strand breaks repair. The disruption of this interaction has been reported to play a role in tumorigenesis. However, its precise function in HCC remains poorly understood. APPROACH AND RESULTS We demonstrated that mice with disrupted BRCA1-PALB2 interaction were more susceptible to HCC than wild-type mice. HCC tumors arising from these mice showed plenty of T-lymphocyte infiltration and a better response to programmed cell death 1 (PD-1) antibody treatment. Mechanistically, disruption of the BRCA1-PALB2 interaction causes persistent high level of DNA damage in HCC cells, leading to activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in both malignant hepatocytes and M1 macrophages in the tumor microenvironment. The activated cGAS-STING pathway induces programmed cell death 1 ligand 1 expression via the STING-interferon regulatory factor 3 (IRF3)-signal transducer and activator of transcription 1 pathway, causing immunosuppression to facilitate tumorigenesis and tumor progression. Meanwhile, M1 macrophages with an activated cGAS-STING pathway could recruit T lymphocytes through the STING-IRF3 pathway, leading to T-lymphocyte infiltration in tumors. After normalizing immune responses by PD-1 antibody treatment, the infiltrating T lymphocytes attack tumor cells rapidly and effectively. CONCLUSIONS This study reveals that persistent DNA damage caused by a defective BRCA pathway induces tumor immunosuppression and T-lymphocyte infiltration in HCC through the cGAS-STING pathway, providing insight into tumor immune microenvironment remodeling that may help improve HCC response to PD-1 antibody treatment.
Collapse
Affiliation(s)
- Hui Ma
- Liver Cancer Institute , Zhongshan Hospital , Fudan University , Shanghai , China
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Zhihua Kang
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| |
Collapse
|
32
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Crossley MP, Song C, Bocek MJ, Choi JH, Kousouros JN, Sathirachinda A, Lin C, Brickner JR, Bai G, Lans H, Vermeulen W, Abu-Remaileh M, Cimprich KA. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature 2023; 613:187-194. [PMID: 36544021 PMCID: PMC9949885 DOI: 10.1038/s41586-022-05545-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Chenlin Song
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Jun-Hyuk Choi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon, South Korea
| | - Joseph N Kousouros
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Ataya Sathirachinda
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Cindy Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gongshi Bai
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Brassington K, Kanellakis P, Cao A, Toh BH, Peter K, Bobik A, Kyaw T. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts. Front Immunol 2022; 13:1040233. [PMID: 36483558 PMCID: PMC9724649 DOI: 10.3389/fimmu.2022.1040233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Cardiac fibrosis is central to heart failure (HF), especially HF with preserved ejection fraction (HFpEF), often caused by hypertension. Despite fibrosis causing diastolic dysfunction and impaired electrical conduction, responsible for arrhythmia-induced sudden cardiac death, the mechanisms are poorly defined and effective therapies are lacking. Here we show that crosstalk between cardiac cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is essential for development of non-ischemic hypertensive cardiac fibrosis. Methods and results CD8 T cell depletion in hypertensive mice, strongly attenuated CF, reduced cardiac apoptosis and improved ventricular relaxation. Interaction between cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is highly dependent on the CD8+ T cells expressing the innate stress-sensing receptor NKG2D and stressed cardiomyocytes expressing the NKG2D activating ligand RAE-1. The interaction between NKG2D and RAE-1 results in CD8+ T cell activation, release of perforin, cardiomyocyte apoptosis, increased numbers of TGF-β1 expressing macrophages and fibrosis. Deleting NKG2D or perforin from CD8+ T cells greatly attenuates these effects. Activation of the cytoplasmic DNA-STING-TBK1-IRF3 signaling pathway in overly stressed cardiomyocytes is responsible for elevating RAE-1 and MCP-1, a macrophage attracting chemokine. Inhibiting STING activation greatly attenuates cardiomyocyte RAE-1 expression, the cardiomyocyte apoptosis, TGF-β1 and fibrosis. Conclusion Our data highlight a novel pathway by which CD8 T cells contribute to an early triggering mechanism in CF development; preventing CD8+ T cell activation by inhibiting the cardiomyocyte RAE-1-CD8+ T cell-NKG2D axis holds promise for novel therapeutic strategies to limit hypertensive cardiac fibrosis.
Collapse
Affiliation(s)
- Kurt Brassington
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Cao
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Tin Kyaw,
| |
Collapse
|
35
|
Zhao W, Pei Q, Zhu Y, Zhan D, Mao G, Wang M, Qiu Y, Zuo K, Pei H, Sun LQ, Wen M, Tan R. The Association of R-Loop Binding Proteins Subtypes with CIN Implicates Therapeutic Strategies in Colorectal Cancer. Cancers (Basel) 2022; 14:5607. [PMID: 36428700 PMCID: PMC9688457 DOI: 10.3390/cancers14225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chromosomal instability (CIN) covers approximately 65 to 70% of colorectal cancer patients and plays an essential role in cancer progression. However, the molecular features and therapeutic strategies related to those patients are still controversial. R-loop binding proteins (RLBPs) exert significant roles in transcription and replication. Here, integrative colorectal cancer proteogenomic analysis identified two RLBPs subtypes correlated with distinct prognoses. Cluster I (CI), represented by high expression of RLBPs, was associated with the CIN phenotype. While Cluster II (CII) with the worst prognosis and low expression of RLBPs was composed of a high percentage of patients with mucinous adenocarcinoma or right-sided colon cancer. The molecular feature analysis revealed that the active RNA processing, ribosome synthesis, and aberrant DNA damage repair were shown in CI, a high inflammatory signaling pathway, and lymphocyte infiltration was enriched in CII. In addition, we revealed 42 tumor-associated RLBPs proteins. The CI with high expression of tumor-associated proteins was sensitive to drugs targeting genome integrity and EGFR in both cell and organoid models. Thus, our study unveils a significant molecular association of the CIN phenotype with RLBPs, and also provides a powerful resource for further functional exploration of RLBPs in cancer progression and therapeutic application.
Collapse
Affiliation(s)
- Wenchao Zhao
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guo Mao
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Yanfang Qiu
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Ke Zuo
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Haiping Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lun-Quan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming Wen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Tan
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
36
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
37
|
Gritti I, Basso V, Rinchai D, Corigliano F, Pivetti S, Gaviraghi M, Rosano D, Mazza D, Barozzi S, Roncador M, Parmigiani G, Legube G, Parazzoli D, Cittaro D, Bedognetti D, Mondino A, Segalla S, Tonon G. Loss of ribonuclease DIS3 hampers genome integrity in myeloma by disrupting DNA:RNA hybrid metabolism. EMBO J 2022; 41:e108040. [PMID: 36215697 PMCID: PMC9670201 DOI: 10.15252/embj.2021108040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.
Collapse
Affiliation(s)
- Ilaria Gritti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | | | - Federica Corigliano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Silvia Pivetti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Dalia Rosano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Mazza
- Experimental Imaging CenterIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular OncologyMilanoItaly
| | - Marco Roncador
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Giovanni Parmigiani
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Gaelle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRSUniversity of ToulouseToulouseFrance
| | | | - Davide Cittaro
- Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Bedognetti
- Cancer Research DepartmentSidra MedicineDohaQatar,Dipartimento di Medicina Interna e Specialità MedicheUniversità degli Studi di GenovaGenoaItaly
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Università Vita‐Salute San RaffaeleMilanItaly
| |
Collapse
|
38
|
Zeng EZ, Chen I, Chen X, Yuan X. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines 2022; 10:2485. [PMID: 36289747 PMCID: PMC9598823 DOI: 10.3390/biomedicines10102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles (50-1000 nm) that can be secreted by all cell types. Microvesicles and exosomes are the major subsets of EVs that exhibit the cell-cell communications and pathological functions of human tissues, and their therapeutic potentials. To further understand and engineer EVs for cell-free therapy, current developments in EV biogenesis and secretion pathways are discussed to illustrate the remaining gaps in EV biology. Specifically, microRNAs (miRs), as a major EV cargo that exert promising therapeutic results, are discussed in the context of biological origins, sorting and packing, and preclinical applications in disease progression and treatments. Moreover, advanced detection and engineering strategies for exosomal miRs are also reviewed. This article provides sufficient information and knowledge for the future design of EVs with specific miRs or protein cargos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Isabelle Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Los Altos High School, Los Altos, CA 94022, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 95616, USA
| |
Collapse
|
39
|
Conrad SJ, Raza T, Peterson EA, Liem J, Connor R, Nounamo B, Cannon M, Liu J. Myxoma virus lacking the host range determinant M062 stimulates cGAS-dependent type 1 interferon response and unique transcriptomic changes in human monocytes/macrophages. PLoS Pathog 2022; 18:e1010316. [PMID: 36103568 PMCID: PMC9473615 DOI: 10.1371/journal.ppat.1010316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
The evolutionarily successful poxviruses possess effective and diverse strategies to circumvent or overcome host defense mechanisms. Poxviruses encode many immunoregulatory proteins to evade host immunity to establish a productive infection and have unique means of inhibiting DNA sensing-dependent type 1 interferon (IFN-I) responses, a necessity given their dsDNA genome and exclusively cytoplasmic life cycle. We found that the key DNA sensing inhibition by poxvirus infection was dominant during the early stage of poxvirus infection before DNA replication. In an effort to identify the poxvirus gene products which subdue the antiviral proinflammatory responses (e.g., IFN-I response), we investigated the function of one early gene that is the known host range determinant from the highly conserved poxvirus host range C7L superfamily, myxoma virus (MYXV) M062. Host range factors are unique features of poxviruses that determine the species and cell type tropism. Almost all sequenced mammalian poxviruses retain at least one homologue of the poxvirus host range C7L superfamily. In MYXV, a rabbit-specific poxvirus, the dominant and broad-spectrum host range determinant of the C7L superfamily is the M062R gene. The M062R gene product is essential for MYXV infection in almost all cells tested from different mammalian species and specifically inhibits the function of host Sterile αMotif Domain-containing 9 (SAMD9), as M062R-null (ΔM062R) MYXV causes abortive infection in a SAMD9-dependent manner. In this study we investigated the immunostimulatory property of the ΔM062R. We found that the replication-defective ΔM062R activated host DNA sensing pathway during infection in a cGAS-dependent fashion and that knocking down SAMD9 expression attenuated proinflammatory responses. Moreover, transcriptomic analyses showed a unique feature of the host gene expression landscape that is different from the dsDNA alone-stimulated inflammatory state. This study establishes a link between the anti-neoplastic function of SAMD9 and the regulation of innate immune responses. Poxviruses encode a group of genes called host range determinants to maintain or expand their host tropism. The mechanism by which many viral host range factors function remains elusive. Some host range factors possess immunoregulatory functions responsible for evading or subduing host immune defense mechanisms. Most known immunoregulatory proteins encoded by poxviruses are dispensable for viral replication in vitro. The uniqueness of MYXV M062R is that it is essential for viral infection in vitro and belongs to one of the most conserved poxvirus host range families, the C7L superfamily. There is one known host target of the MYXV M062 protein, SAMD9. SAMD9 is constitutively expressed in mammalian cells and exclusively present in the cytoplasm with an anti-neoplastic function. Humans with deleterious mutations in SAMD9 present disease that ranges from lethality at a young age to a predisposition to myelodysplastic syndromes (MDS) that often require bone marrow transplantation. More importantly, SAMD9 serves as an important antiviral intrinsic molecule to many viruses. The cellular function of SAMD9 remains unclear mostly due to the difficulty of studying this protein, i.e., its large size, long half-life, and its constitutive expression in most cells. In this study we used M062R-null MYXV as a tool to study SAMD9 function and report a functional link between SAMD9 and the regulation of the proinflammatory responses triggered by cGAS-dependent DNA sensing.
Collapse
Affiliation(s)
- Steven J. Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Tahseen Raza
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Erich A. Peterson
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jason Liem
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Richard Connor
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Martin Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Center of Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration. Cell Death Differ 2022; 29:1816-1833. [PMID: 35347235 PMCID: PMC9433402 DOI: 10.1038/s41418-022-00967-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Atrophic (“dry”) form of age-related macular degeneration (AMD) is a leading cause of vision loss characterized by macular retinal pigment epithelium (RPE) and the ensuing photoreceptor degeneration. cGAS-STING signaling is a key cytosolic DNA sensor system in innate immunity and have recently been shown promotes RPE degeneration. However, expression regulation and therapeutic potential of cGAS and STING are not explored in retina under dry AMD pathogenic conditions. Our analysis shows upregulated STING RNA and increased chromatin accessibility around cGAS and STING promoters in macular retinas from dry AMD patients. cGAS-STING activation was detected in oxidative stress-induced mouse retina degeneration, accompanied with cytosolic leakage of damaged DNA in photoreceptors. Pharmaceutical or genetic approaches indicates STING promotes retina inflammation and degeneration upon oxidative damage. Drug screening reveals that BRD4 inhibitor JQ1 reduces cGAS-STING activation, inflammation and photoreceptor degeneration in the injured retina. BRD4 inhibition epigenetically suppresses STING transcription, and promotes autophagy-dependent cytosolic DNA clearance. Together, our results show that activation of cGAS-STING in retina may present pivotal innate immunity response in GA pathogenesis, whereas inhibition of cGAS-STING signaling by JQ1 could serve as a potential therapeutic strategy. Schematic summary of the mechanism underlying BRD4 inhibition on cGAS-STING signaling during retina degeneration. Cytosolic DNA accumulation and activation of cGAS-STING pathway were detected in retina photoreceptors after oxidative injury. BRD4 inhibition alleviates retinal inflammation and degeneration by epigenetically silencing STING transcription and by promoting autophagy-dependent cytosolic DNA clearance.
Collapse
|
41
|
Bruno T, Corleone G, Catena V, Cortile C, De Nicola F, Fabretti F, Gumenyuk S, Pisani F, Mengarelli A, Passananti C, Fanciulli M. AATF/Che-1 localizes to paraspeckles and suppresses R-loops accumulation and interferon activation in Multiple Myeloma. EMBO J 2022; 41:e109711. [PMID: 35929179 PMCID: PMC9670196 DOI: 10.15252/embj.2021109711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023] Open
Abstract
Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.
Collapse
Affiliation(s)
- Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Clelia Cortile
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany,Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Svitlana Gumenyuk
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesco Pisani
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Andrea Mengarelli
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Claudio Passananti
- Department of Molecular Medicine, CNR‐Institute of Molecular Biology and PathologySapienza University of RomeRomeItaly
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
42
|
Liu LC, Shen YC, Wang YL, Wu WR, Chang LC, Chen YH, Lee CC, Wang SC. Growth-promoting function of the cGAS-STING pathway in triple-negative breast cancer cells. Front Oncol 2022; 12:851795. [PMID: 35992877 PMCID: PMC9385397 DOI: 10.3389/fonc.2022.851795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING axis is one of the key mechanisms guarding cells from pathogen invasion in the cytoplasmic compartment. Sensing of foreign DNA in the cytosol by the cGAS-STING axis triggers a stress cascade, culminating at stimulation of the protein kinase TBK1 and subsequently activation of inflammatory response. In cancer cells, aberrant metabolism of the genomic DNA induced by the hostile milieu of tumor microenvironment or stresses brought about by cancer therapeutics are the major causes of the presence of nuclear DNA in the cytosol, which subsequently triggers a stress response. However, how the advanced tumors perceive and tolerate the potentially detrimental effects of cytosolic DNA remains unclear. Here we show that growth limitation by serum starvation activated the cGAS-STING pathway in breast cancer cells, and inhibition of cGAS-STING resulted in cell death through an autophagy-dependent mechanism. These results suggest that, instead of being subject to growth inhibition, tumors exploit the cGAS-STING axis and turn it to a survival advantage in the stressful microenvironment, providing a new therapeutic opportunity against advanced cancer. Concomitant inhibition of the cGAS-STING axis and growth factor signaling mediated by the epidermal growth factor receptor (EGFR) synergistically suppressed the development of tumor organoids derived from primary tumor tissues of triple-negative breast cancer (TNBC). The current study unveils an unexpected function of the cGAS-STING axis in promoting cancer cell survival and the potential of developing the stress-responding pathway as a therapeutic target, meanwhile highlights the substantial concerns of enhancing the pathway's activity as a means of anti-cancer treatment.
Collapse
Affiliation(s)
- Liang-Chih Liu
- Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ling-Chu Chang
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chuan-Chun Lee
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung, Taiwan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
43
|
Anindya R. Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119278. [PMID: 35489653 DOI: 10.1016/j.bbamcr.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| |
Collapse
|
44
|
Wang H, He X, Zhang L, Dong H, Huang F, Xian J, Li M, Chen W, Lu X, Pathak KV, Huang W, Li Z, Zhang L, Nguyen LXT, Yang L, Feng L, Gordon DJ, Zhang J, Pirrotte P, Chen CW, Salhotra A, Kuo YH, Horne D, Marcucci G, Sykes DB, Tiziani S, Jin H, Wang X, Li L. Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood 2022; 139:3752-3770. [PMID: 35439288 PMCID: PMC9247363 DOI: 10.1182/blood.2021015108] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/07/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.
Collapse
Affiliation(s)
- Hanying Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Medical Oncology and
| | - Xin He
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Lei Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Haojie Dong
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Feiteng Huang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jie Xian
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Min Li
- Department of Information Sciences, Beckman Research Institute and
| | - Wei Chen
- Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX
| | - Khyatiben V Pathak
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ
| | - Wenfeng Huang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Zheng Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lianjun Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Lifeng Feng
- Laboratory of Cancer Biology, Provincial Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research and Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | | | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Hematology and Hematopoietic Cell Transplantation and
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA; and
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX
- Department of Pediatrics and
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| |
Collapse
|
45
|
Schubert N, Schumann T, Daum E, Flade K, Ge Y, Hagedorn L, Edelmann W, Müller L, Schmitz M, Kuut G, Hornung V, Behrendt R, Roers A. Genome Replication Is Associated With Release of Immunogenic DNA Waste. Front Immunol 2022; 13:880413. [PMID: 35634291 PMCID: PMC9130835 DOI: 10.3389/fimmu.2022.880413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3’repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5’ flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.
Collapse
Affiliation(s)
- Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Elena Daum
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Karolin Flade
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Lara Hagedorn
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luise Müller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunnar Kuut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Zhong W, Rao Z, Xu J, Sun Y, Hu H, Wang P, Xia Y, Pan X, Tang W, Chen Z, Zhou H, Wang X. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation. Aging Cell 2022; 21:e13622. [PMID: 35599014 PMCID: PMC9197407 DOI: 10.1111/acel.13622] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Abstract
Macrophage‐stimulator of interferon genes (STING) signaling mediated sterile inflammation has been implicated in various age‐related diseases. However, whether and how macrophage mitochondrial DNA (mtDNA) regulates STING signaling in aged macrophages remains largely unknown. We found that hypoxia‐reoxygenation (HR) induced STING activation in macrophages by triggering the release of macrophage mtDNA into the cytosol. Aging promoted the cytosolic leakage of macrophage mtDNA and enhanced STING activation, which was abrogated upon mtDNA depletion or cyclic GMP‐AMP Synthase (cGAS) inhibition. Aged macrophages exhibited increased mitochondrial injury with impaired mitophagy. Mechanistically, a decline in the PTEN‐induced kinase 1 (PINK1)/Parkin‐mediated polyubiquitination of mitochondria was observed in aged macrophages. Pink1 overexpression reversed the inhibition of mitochondrial ubiquitination but failed to promote mitolysosome formation in the aged macrophages. Meanwhile, aging impaired lysosomal biogenesis and function in macrophages by modulating the mTOR/transcription factor EB (TFEB) signaling pathway, which could be reversed by Torin‐1 treatment. Consequently, Pink1 overexpression in combination with Torin‐1 treatment restored mitophagic flux and inhibited mtDNA/cGAS/STING activation in aged macrophages. Moreover, besides HR‐induced metabolic stress, other types of oxidative and hepatotoxic stresses inhibited mitophagy and promoted the cytosolic release of mtDNA to activate STING signaling in aged macrophages. STING deficiency protected aged mice against diverse types of sterile inflammatory liver injuries. Our findings suggest that aging impairs mitophagic flux to facilitate the leakage of macrophage mtDNA into the cytosol and promotes STING activation, and thereby provides a novel potential therapeutic target for sterile inflammatory liver injury in aged patients.
Collapse
Affiliation(s)
- Weizhe Zhong
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Zhuqing Rao
- Department of Anesthesiology The First Affiliated Hospital with Nanjing Medical University Nanjing China
| | - Jian Xu
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Yu Sun
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Haoran Hu
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Ping Wang
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Yongxiang Xia
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Xiongxiong Pan
- Department of Anesthesiology The First Affiliated Hospital with Nanjing Medical University Nanjing China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Ziyi Chen
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Haoming Zhou
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Key Laboratory of Liver Transplantation Chinese Academy of Medical Sciences Nanjing China
- NHC Key Laboratory of Living Donor Liver Transplantation Nanjing Medical University Nanjing China
| |
Collapse
|
47
|
Cristini A, Tellier M, Constantinescu F, Accalai C, Albulescu LO, Heiringhoff R, Bery N, Sordet O, Murphy S, Gromak N. RNase H2, mutated in Aicardi-Goutières syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Nat Commun 2022; 13:2961. [PMID: 35618715 PMCID: PMC9135716 DOI: 10.1038/s41467-022-30604-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
RNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II. RNase H2 depletion impairs transcription leading to accumulation of R-loops, structures that comprise RNA/DNA hybrids and a displaced DNA strand, mainly associated with short and intronless genes. Importantly, accumulated R-loops are processed by XPG and XPF endonucleases which leads to DNA damage and activation of the immune response, features associated with AGS. Consequently, we uncover a key role for RNase H2 in the transcription of human genes by maintaining R-loop homeostasis. Our results provide insight into the mechanistic contribution of R-loops to AGS pathogenesis.
Collapse
Affiliation(s)
- Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Flavia Constantinescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Clelia Accalai
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Laura Oana Albulescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Robin Heiringhoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037, Toulouse, France
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
48
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Guo Y, Tsai HI, Zhang L, Zhu H. Mitochondrial DNA on Tumor-Associated Macrophages Polarization and Immunity. Cancers (Basel) 2022; 14:1452. [PMID: 35326602 PMCID: PMC8946090 DOI: 10.3390/cancers14061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
As the richest immune cells in most tumor microenvironments (TMEs), tumor-associated macrophages (TAMs) play an important role in tumor development and treatment sensitivity. The phenotypes and functions of TAMs vary according to their sources and tumor progression. Different TAM phenotypes display distinct behaviors in terms of tumor immunity and are regulated by intracellular and exogenous molecules. Additionally, dysfunctional and oxidatively stressed mitochondrial-derived mitochondrial DNA (mtDNA) plays an important role in remodeling the phenotypes and functions of TAMs. This article reviews the interactions between mtDNA and TAMs in the TME and further discusses the influence of their performance on tumor genesis and development.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| |
Collapse
|
50
|
Xiong W, He W, Wang T, He S, Xu F, Wang Z, Wang X, Guo H, Ling J, Zhang H, Liu Y, Xing K, Li M, Zhang H, Li J, Niu N, Xue J, Zhan Q, Liu Z, Bei J, Huang P, Liu J, Xia L, Xia X. Smad4 Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancer-Autonomous DNA-Sensing Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103029. [PMID: 35064757 PMCID: PMC8895117 DOI: 10.1002/advs.202103029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Smad4, a key mediator of the transforming growth factor-β signaling, is mutated or deleted in 20% of pancreatic ductal adenocarcinoma (PDAC) cancers and significantly affects cancer development. However, the effect of Smad4 loss on the immunogenicity and tumor immune microenvironment of PDAC is still unclear. Here, a surprising function of Smad4 in suppressing mouse PDAC tumor immunogenicity is identified. Although Smad4 deletion in tumor cells enhances proliferation in vitro, the in vivo growth of Smad4-deficient PDAC tumor is significantly inhibited on immunocompetent C57BL/6 (B6) mice, but not on immunodeficient mice or CD8+ cell-depleted B6 mice. Mechanistically, Smad4 deficiency significantly increases tumor cell immunogenicity by promoting spontaneous DNA damage and stimulating STING-mediated type I interferon signaling,which contributes to the activation of type 1 conventional dendritic cells (cDC1) and subsequent CD8+ T cells for tumor control. Furthermore, retarded tumor growth of Smad4-deficient PDAC cells on B6 mice is largely reversed when Sting is codeleted, or when the cells are implanted into interferon-alpha receptor-deficientmice or cDC1-deficientmice. Accordingly, Smad4 deficiency promotes PDAC immunogenicity by inducing tumor-intrinsic DNA damage-elicited type I interferon signaling.
Collapse
Affiliation(s)
- Wenjing Xiong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Feifei Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Huanling Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Kaili Xing
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jiahui Li
- College of Food Science and EngineeringDalian Polytechnic UniversityLiaoning116034P. R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Qiuyao Zhan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Liangping Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- VIP RegionSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|