1
|
de la Pompa JL. Tunneling through cardiac jelly. Science 2025; 387:1151-1152. [PMID: 40080579 DOI: 10.1126/science.adw1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Membrane projections from muscle cells enable signaling in the developing mouse heart.
Collapse
Affiliation(s)
- José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Miao L, Lu Y, Nusrat A, Zhao L, Castillo M, Xiao Y, Guo H, Liu Y, Gunaratne P, Schwartz RJ, Burns AR, Kumar A, DiPersio CM, Wu M. β1 integrins regulate cellular behaviour and cardiomyocyte organization during ventricular wall formation. Cardiovasc Res 2024; 120:1279-1294. [PMID: 38794925 PMCID: PMC11416060 DOI: 10.1093/cvr/cvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 03/17/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS The mechanisms regulating the cellular behaviour and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behaviour and organization during ventricular wall morphogenesis in the mouse. METHODS AND RESULTS We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the β1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of β1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. CONCLUSION β1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of β1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.
Collapse
Affiliation(s)
- Lianjie Miao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Yangyang Lu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Anika Nusrat
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Luqi Zhao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Yongqi Xiao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Hongyang Guo
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Yu Liu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
| | - Ashok Kumar
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | | | - Mingfu Wu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| |
Collapse
|
3
|
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, Priya R, Gunawan F, Stainier DYR. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun 2024; 15:8159. [PMID: 39289341 PMCID: PMC11408654 DOI: 10.1038/s41467-024-52340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.
Collapse
Affiliation(s)
- Marga Albu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Eileen Affolter
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Yanli Xu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Khrievono Kikhi
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Flow Cytometry Service Group, Max Planck for Heart and Lung Research, Bad Nauheim, Germany
| | - Sarah Howard
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Francis Crick Institute, London, UK
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute of Cell Biology, University of Münster, Münster, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
5
|
Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J, Su H. Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development. Cells 2024; 13:235. [PMID: 38334627 PMCID: PMC10854628 DOI: 10.3390/cells13030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes.
Collapse
Affiliation(s)
- Josue Zambrano-Carrasco
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Grego-Bessa J, Gómez-Apiñaniz P, Prados B, Gómez MJ, MacGrogan D, de la Pompa JL. Nrg1 Regulates Cardiomyocyte Migration and Cell Cycle in Ventricular Development. Circ Res 2023; 133:927-943. [PMID: 37846569 PMCID: PMC10631509 DOI: 10.1161/circresaha.123.323321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Cardiac ventricles provide the contractile force of the beating heart throughout life. How the primitive endocardium-layered myocardial projections called trabeculae form and mature into the adult ventricles is of great interest for biology and regenerative medicine. Trabeculation is dependent on the signaling protein Nrg1 (neuregulin-1). However, the mechanism of action of Nrg1 and its role in ventricular wall maturation are poorly understood. METHODS We investigated the functions and downstream mechanisms of Nrg1 signaling during ventricular chamber development using confocal imaging, transcriptomics, and biochemical approaches in mice with cardiac-specific inactivation or overexpression of Nrg1. RESULTS Analysis of cardiac-specific Nrg1 mutant mice showed that the transcriptional program underlying cardiomyocyte-oriented cell division and trabeculae formation depends on endocardial Nrg1 to myocardial ErbB2 (erb-b2 receptor tyrosine kinase 2) signaling and phospho-Erk (phosphorylated extracellular signal-regulated kinase; pErk) activation. Early endothelial loss of Nrg1 and reduced pErk activation diminished cardiomyocyte Pard3 and Crumbs2 (Crumbs Cell Polarity Complex Component 2) protein and altered cytoskeletal gene expression and organization. These alterations are associated with abnormal gene expression related to mitotic spindle organization and a shift in cardiomyocyte division orientation. Nrg1 is crucial for trabecular growth and ventricular wall thickening by regulating an epithelial-to-mesenchymal transition-like process in cardiomyocytes involving migration, adhesion, cytoskeletal actin turnover, and timely progression through the cell cycle G2/M phase. Ectopic cardiac Nrg1 overexpression and high pErk signaling caused S-phase arrest, sustained high epithelial-to-mesenchymal transition-like gene expression, and prolonged trabeculation, blocking compact myocardium maturation. Myocardial trabecular patterning alterations resulting from above- or below-normal Nrg1-dependent pErk activation were concomitant with sarcomere actin cytoskeleton disorganization. The Nrg1 loss- and gain-of-function transcriptomes were enriched for Yap1 (yes-associated protein-1) gene signatures, identifying Yap1 as a potential downstream effector. Furthermore, biochemical and imaging data reveal that Nrg1 influences pErk activation and Yap1 nuclear-cytoplasmic distribution during trabeculation. CONCLUSIONS These data establish the Nrg1-ErbB2/ErbB4-Erk axis as a crucial regulator of cardiomyocyte cell cycle progression and migration during ventricular development.
Collapse
Affiliation(s)
- Joaquim Grego-Bessa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - Paula Gómez-Apiñaniz
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | | | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| |
Collapse
|
7
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
8
|
Chiang IKN, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez‐Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red‐Horse K, del Monte‐Nieto G, Francois M. Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction. EMBO Rep 2023; 24:e55043. [PMID: 37551717 PMCID: PMC10561369 DOI: 10.15252/embr.202255043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.
Collapse
Affiliation(s)
- Ivy KN Chiang
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - David Humphrey
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Richard J Mills
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Peter Kaltzis
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Shikha Pachauri
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Matthew Graus
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Diptarka Saha
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Zhijian Wu
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Paul Young
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Choon Boon Sim
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Tara Davidson
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | | | - Chad A Shaw
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Alexander Renwick
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Daryl A Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Enzo R Porrello
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
- Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineThe Royal Children's HospitalMelbourneVICAustralia
- Department of Anatomy and Physiology, School of Biomedical SciencesThe University of MelbourneMelbourneVICAustralia
| | - Emily S Wong
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | | | - Mathias Francois
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| |
Collapse
|
9
|
Miao L, Castillo M, Lu Y, Xiao Y, Liu Y, Burns AR, Kumar A, Gunaratne P, Michael DiPersio C, Wu M. β1 integrins regulate cellular behaviors and cardiomyocyte organization during ventricular wall formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555112. [PMID: 37693495 PMCID: PMC10491119 DOI: 10.1101/2023.08.28.555112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aims The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. Methods and Results We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, while fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1 , which encodes the β1 integrin subunit, was deleted via Nkx2.5 Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of trabecular zone but a thicker compact zone. The abundances of hyaluronic acid and versican are not significantly different. Instead, fibronectin, a ligand of β1, was absent in B1KO. We examined cellular behaviors and organization via various tools. B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. The reduction of Notch1 activation was not the cause of the abnormal cellular organization in B1KO hearts. Mosaic clonal lineage tracing shows that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. Conclusions β1 is asymmetrically localized in the cardiomyocytes, and its ECM ligands are enriched in the luminal side of the myocardium and surrounding cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 , leading to ablation of β1 integrins, causes the dissociation of cardiomyocytes from the ECM network and failure to establish tissue architecture to form trabeculae.
Collapse
|
10
|
Siguero-Álvarez M, Salguero-Jiménez A, Grego-Bessa J, de la Barrera J, MacGrogan D, Prados B, Sánchez-Sáez F, Piñeiro-Sabarís R, Felipe-Medina N, Torroja C, Gómez MJ, Sabater-Molina M, Escribá R, Richaud-Patin I, Iglesias-García O, Sbroggio M, Callejas S, O'Regan DP, McGurk KA, Dopazo A, Giovinazzo G, Ibañez B, Monserrat L, Pérez-Pomares JM, Sánchez-Cabo F, Pendas AM, Raya A, Gimeno-Blanes JR, de la Pompa JL. A Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve. Circulation 2023; 147:47-65. [PMID: 36325906 DOI: 10.1161/circulationaha.121.058767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.
Collapse
Affiliation(s)
- Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Center for Chromosome Stability and Institut for Cellulær og Molekylær Medicin, University of Copenhagen, Denmark (M.S.)
| | - Alejandro Salguero-Jiménez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Joaquim Grego-Bessa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Jorge de la Barrera
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Carlos Torroja
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Manuel José Gómez
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - María Sabater-Molina
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Ivonne Richaud-Patin
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
- Regenerative Medicine Program, Cima Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain (O.I.-G.)
| | - Mauro Sbroggio
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Sergio Callejas
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Declan P O'Regan
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
| | - Kathryn A McGurk
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
- National Heart and Lung Institute (K.A.M.), Imperial College London, United Kingdom
| | - Ana Dopazo
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Borja Ibañez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Translational Laboratory (B.I.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Cardiology Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Lorenzo Monserrat
- Instituto de Investigación Biomédica de A Coruña and Departamento Científico, Health in Code S.L., A Coruña, Spain (L.M.)
| | - José María Pérez-Pomares
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Department of Animal Biology, Faculty of Sciences, Instituto de Investigación Biomédica de Málaga and Centro Andaluz de Nanomedicina y Biotecnología, Universidad de Málaga, Spain (J.M.P.-P.)
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Juan R Gimeno-Blanes
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| |
Collapse
|
11
|
Sarkar R, Darby D, Meilhac S, Olivo-Marin JC. 3D cell morphology detection by association for embryo heart morphogenesis. BIOLOGICAL IMAGING 2022; 2:e2. [PMID: 38510433 PMCID: PMC10951799 DOI: 10.1017/s2633903x22000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 03/22/2024]
Abstract
Advances in tissue engineering for cardiac regenerative medicine require cellular-level understanding of the mechanism of cardiac muscle growth during embryonic developmental stage. Computational methods to automatize cell segmentation in 3D and deliver accurate, quantitative morphology of cardiomyocytes, are imperative to provide insight into cell behavior underlying cardiac tissue growth. Detecting individual cells from volumetric images of dense tissue, poised with low signal-to-noise ratio and severe intensity in homogeneity, is a challenging task. In this article, we develop a robust segmentation tool capable of extracting cellular morphological parameters from 3D multifluorescence images of murine heart, captured via light-sheet microscopy. The proposed pipeline incorporates a neural network for 2D detection of nuclei and cell membranes. A graph-based global association employs the 2D nuclei detections to reconstruct 3D nuclei. A novel optimization embedding the network flow algorithm in an alternating direction method of multipliers is proposed to solve the global object association problem. The associated 3D nuclei serve as the initialization of an active mesh model to obtain the 3D segmentation of individual myocardial cells. The efficiency of our method over the state-of-the-art methods is observed via various qualitative and quantitative evaluation.
Collapse
Affiliation(s)
- Rituparna Sarkar
- BioImage Analysis Unit, Institut Pasteur, Paris, France
- CNRS UMR 3691, Paris, France
| | - Daniel Darby
- Unit of Heart Morphogenesis, Imagine-Institut Pasteur, Paris, France
- Université de Paris, INSERM UMR 1163, Paris, France
| | - Sigolène Meilhac
- Unit of Heart Morphogenesis, Imagine-Institut Pasteur, Paris, France
- Université de Paris, INSERM UMR 1163, Paris, France
| | | |
Collapse
|
12
|
Zhao Q, Yan S, Lu J, Parker DJ, Wu H, Sun Q, Crossman DK, Liu S, Wang Q, Sesaki H, Mitra K, Liu K, Jiao K. Drp1 regulates transcription of ribosomal protein genes in embryonic hearts. J Cell Sci 2022; 135:274456. [PMID: 35099001 PMCID: PMC8919333 DOI: 10.1242/jcs.258956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction causes severe congenital cardiac abnormalities and prenatal/neonatal lethality. The lack of sufficient knowledge regarding how mitochondrial abnormalities affect cardiogenesis poses a major barrier for the development of clinical applications that target mitochondrial deficiency-induced inborn cardiomyopathies. Mitochondrial morphology, which is regulated by fission and fusion, plays a key role in determining mitochondrial activity. Dnm1l encodes a dynamin-related GTPase, Drp1, which is required for mitochondrial fission. To investigate the role of Drp1 in cardiogenesis during the embryonic metabolic shift period, we specifically inactivated Dnm1l in second heart field-derived structures. Mutant cardiomyocytes in the right ventricle (RV) displayed severe defects in mitochondrial morphology, ultrastructure and activity. These defects caused increased cell death, decreased cell survival, disorganized cardiomyocytes and embryonic lethality. By characterizing this model, we reveal an AMPK-SIRT7-GABPB axis that relays the reduced cellular energy level to decrease transcription of ribosomal protein genes in cardiomyocytes. We therefore provide the first genetic evidence in mouse that Drp1 is essential for RV development. Our research provides further mechanistic insight into how mitochondrial dysfunction causes pathological molecular and cellular alterations during cardiogenesis.
Collapse
Affiliation(s)
- Qiancong Zhao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shun Yan
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jin Lu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Danitra J. Parker
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huiying Wu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qianchuang Sun
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K. Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kasturi Mitra
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Authors for correspondence (; )
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA,Present address: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd. CA4092, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Left Ventricular Noncompaction Is Associated with Valvular Regurgitation and a Variety of Arrhythmias. J Cardiovasc Dev Dis 2022; 9:jcdd9020049. [PMID: 35200702 PMCID: PMC8876824 DOI: 10.3390/jcdd9020049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Left ventricular noncompaction (LVNC) is a type of cardiomyopathy characterized anatomically by prominent ventricular trabeculation and deep intertrabecular recesses. The mortality associated with LVNC ranges from 5% to 47%. The etiology of LVNC is yet to be fully understood, although decades have passed since its recognition as a clinical entity globally. Furthermore, critical questions, i.e., whether LVNC represents an acquired pathology or has a congenital origin and whether the reduced contractile function in LVNC patients is a cause or consequence of noncompaction, remain to be addressed. In this study, to answer some of these questions, we analyzed the clinical features of LVNC patients. Out of 9582 subjects screened for abnormal cardiac functions, 45 exhibit the characteristics of LVNC, and 1 presents right ventricular noncompaction (RVNC). We found that 40 patients show valvular regurgitation, 39 manifest reduced systolic contractions, and 46 out of the 46 present different forms of arrhythmias that are not restricted to be caused by the noncompact myocardium. This retrospective examination of LVNC patients reveals some novel findings: LVNC is associated with regurgitation in most patients and arrhythmias in all patients. The thickness ratio of the trabecular layer to compact layer negatively correlates with fractional shortening, and reduced contractility might result from LVNC. This study adds evidence to support a congenital origin of LVNC that might benefit the diagnosis and subsequent characterization of LVNC patients.
Collapse
|
14
|
Li X, Yue Y, Zhang Y, Liao Y, Wang Q, Bian Y, Na J, He A. Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation. FUNDAMENTAL RESEARCH 2022; 2:14-22. [PMID: 38933910 PMCID: PMC11197809 DOI: 10.1016/j.fmre.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
To form fully functional four-chambered structure, mammalian heart development undergoes a transient finger-shaped trabeculae, crucial for efficient contraction and exchange for gas and nutrient. Although its developmental origin and direct relevance to congenital heart disease has been studied extensively, the time-resolved cellular mechanism underlying hypotrabeculation remains elusive. Here, we employed in toto live imaging and reconstructed the holistic cell lineages and cellular behavior landscape of control and hypotrabeculed hearts of mouse embryos from E9.5 for up to 24 h. Compared to control, hypotrabeculation in ErbB2 mutants arose mainly through dual mechanisms: both reduced proliferation of trabecular cardiomyocytes from early cell fate segregation and markedly impaired oriented cell division and migration. Further examination of mosaic mutant hearts confirmed alterations in cellular behaviors in a cell autonomous manner. Thus, our work offers a framework for continuous live imaging and digital cell lineage analysis to better understand subtle pathological alterations in congenital heart disease.
Collapse
Affiliation(s)
- Xin Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Youdong Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Qianhao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Jaconi ME, Puceat M. Cardiac Organoids and Gastruloids to Study Physio-Pathological Heart Development. J Cardiovasc Dev Dis 2021; 8:178. [PMID: 34940533 PMCID: PMC8709242 DOI: 10.3390/jcdd8120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Ethical issues restrict research on human embryos, therefore calling for in vitro models to study human embryonic development including the formation of the first functional organ, the heart. For the last five years, two major models have been under development, namely the human gastruloids and the cardiac organoids. While the first one mainly recapitulates the gastrulation and is still limited to investigate cardiac development, the second one is becoming more and more helpful to mimic a functional beating heart. The review reports and discusses seminal works in the fields of human gastruloids and cardiac organoids. It further describes technologies which improve the formation of cardiac organoids. Finally, we propose some lines of research towards the building of beating mini-hearts in vitro for more relevant functional studies.
Collapse
Affiliation(s)
- Marisa E. Jaconi
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Michel Puceat
- Inserm U1251, MMG (Marseille Medical Genetics), Aix Marseille Université, 13885 Marseille, France
| |
Collapse
|
16
|
Gunawan F, Priya R, Stainier DYR. Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Curr Opin Cell Biol 2021; 73:26-34. [PMID: 34147705 DOI: 10.1016/j.ceb.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.
Collapse
Affiliation(s)
- Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
17
|
The Spatiotemporal Expression of Notch1 and Numb and Their Functional Interaction during Cardiac Morphogenesis. Cells 2021; 10:cells10092192. [PMID: 34571841 PMCID: PMC8471136 DOI: 10.3390/cells10092192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Numb family proteins (NFPs), including Numb and Numblike (Numbl), are commonly known for their role as cell fate determinants for multiple types of progenitor cells, mainly due to their function as Notch inhibitors. Previous studies have shown that myocardial NFP double knockout (MDKO) hearts display an up-regulated Notch activation and various defects in cardiac progenitor cell differentiation and cardiac morphogenesis. Whether enhanced Notch activation causes these defects in MDKO is not fully clear. To answer the question, we examined the spatiotemporal patterns of Notch1 expression, Notch activation, and Numb expression in the murine embryonic hearts using multiple approaches including RNAScope, and Numb and Notch reporter mouse lines. To further interrogate the interaction between NFPs and Notch signaling activation, we deleted both Notch1 or RBPJk alleles in the MDKO. We examined and compared the phenotypes of Notch1 knockout, NFPs double knockout, Notch1; Numb; Numbl and RBPJk; Numb; Numbl triple knockouts. Our study showed that Notch1 is expressed and activated in the myocardium at several stages, and Numb is enriched in the epicardium and did not show the asymmetric distribution in the myocardium. Cardiac-specific Notch1 deletion causes multiple structural defects and embryonic lethality. Notch1 or RBPJk deletion in MDKO did not rescue the structural defects in the MDKO but partially rescued the defects of cardiac progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis. Our study concludes that NFPs regulate progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis partially through Notch1 and play more roles than inhibiting Notch1 signaling during cardiac morphogenesis.
Collapse
|
18
|
Sarvari P, Rasouli SJ, Allanki S, Stone OA, Sokol AM, Graumann J, Stainier DYR. The E3 ubiquitin-protein ligase Rbx1 regulates cardiac wall morphogenesis in zebrafish. Dev Biol 2021; 480:1-12. [PMID: 34363825 DOI: 10.1016/j.ydbio.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/11/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022]
Abstract
Cardiac trabeculae are muscular ridge-like structures within the ventricular wall that are crucial for cardiac function. In zebrafish, these structures first form primarily through the delamination of compact wall cardiomyocytes (CMs). Although defects in proteasomal degradation have been associated with decreased cardiac function, whether they also affect cardiac development has not been extensively analyzed. Here we report a role during cardiac wall morphogenesis in zebrafish for the E3 ubiquitin-protein ligase Rbx1, which has been shown to regulate the degradation of key signaling molecules. Although development is largely unperturbed in zebrafish rbx1 mutant larvae, they exhibit CM multi-layering. This phenotype is not affected by blocking ErbB signaling, but fails to manifest itself in the absence of blood flow/cardiac contractility. Surprisingly, rbx1 mutants display ErbB independent Notch reporter expression in the myocardium. We generated tissue-specific rbx1 overexpression lines and found that endothelial, but not myocardial, specific rbx1 expression normalizes the cardiac wall morphogenesis phenotype. In addition, we found that pharmacological activation of Hedgehog signaling ameliorates the multi-layered myocardial wall phenotype in rbx1 mutants. Collectively, our data indicate that endocardial activity of Rbx1 is essential for cardiac wall morphogenesis.
Collapse
Affiliation(s)
- Pourya Sarvari
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - S Javad Rasouli
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Srinivas Allanki
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Oliver A Stone
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Anna M Sokol
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany; Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, 61231, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany; Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, 61231, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany.
| |
Collapse
|
19
|
Dong Y, Qian L, Liu J. Molecular and cellular basis of embryonic cardiac chamber maturation. Semin Cell Dev Biol 2021; 118:144-149. [PMID: 33994094 DOI: 10.1016/j.semcdb.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Heart malformation is the leading cause of human birth defects, and many of the congenital heart diseases (CHDs) originate from genetic defects that impact cardiac development and maturation. During development, the vertebrate heart undergoes a series of complex morphogenetic processes that increase its ability to pump blood. One of these processes leads to the formation of the sheet-like muscular projections called trabeculae. Trabeculae increase cardiac output and permit nutrition and oxygen uptake in the embryonic myocardium prior to coronary vascularization without increasing heart size. Cardiac trabeculation is also crucial for the development of the intraventricular fast conduction system. Alterations in cardiac trabecular development can manifest as a variety of congenital defects such as left ventricular noncompaction. In this review, we discuss the latest advances in understanding the molecular and cellular mechanisms underlying cardiac trabecular development.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience 2021; 24:102387. [PMID: 33981974 PMCID: PMC8086021 DOI: 10.1016/j.isci.2021.102387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Collapse
Affiliation(s)
- Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovičová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
21
|
Molbay M, Kolabas ZI, Todorov MI, Ohn T, Ertürk A. A guidebook for DISCO tissue clearing. Mol Syst Biol 2021; 17:e9807. [PMID: 33769689 PMCID: PMC7995442 DOI: 10.15252/msb.20209807] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Histological analysis of biological tissues by mechanical sectioning is significantly time-consuming and error-prone due to loss of important information during sample slicing. In the recent years, the development of tissue clearing methods overcame several of these limitations and allowed exploring intact biological specimens by rendering tissues transparent and subsequently imaging them by laser scanning fluorescence microscopy. In this review, we provide a guide for scientists who would like to perform a clearing protocol from scratch without any prior knowledge, with an emphasis on DISCO clearing protocols, which have been widely used not only due to their robustness, but also owing to their relatively straightforward application. We discuss diverse tissue-clearing options and propose solutions for several possible pitfalls. Moreover, after surveying more than 30 researchers that employ tissue clearing techniques in their laboratories, we compiled the most frequently encountered issues and propose solutions. Overall, this review offers an informative and detailed guide through the growing literature of tissue clearing and can help with finding the easiest way for hands-on implementation.
Collapse
Affiliation(s)
- Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Munich Medical Research School (MMRS)MunichGermany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Graduate School for Systemic Neurosciences (GSN)MunichGermany
| | - Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Graduate School for Systemic Neurosciences (GSN)MunichGermany
| | - Tzu‐Lun Ohn
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
22
|
Zhao J, Lai HM, Qi Y, He D, Sun H. Current Status of Tissue Clearing and the Path Forward in Neuroscience. ACS Chem Neurosci 2021; 12:5-29. [PMID: 33326739 DOI: 10.1021/acschemneuro.0c00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to the complexity and limited availability of human brain tissues, for decades, pathologists have sought to maximize information gained from individual samples, based on which (patho)physiological processes could be inferred. Recently, new understandings of chemical and physical properties of biological tissues and multiple chemical profiling have given rise to the development of scalable tissue clearing methods allowing superior optical clearing of across-the-scale samples. In the past decade, tissue clearing techniques, molecular labeling methods, advanced laser scanning microscopes, and data visualization and analysis have become commonplace. Combined, they have made 3D visualization of brain tissues with unprecedented resolution and depth widely accessible. To facilitate further advancements and applications, here we provide a critical appraisal of these techniques. We propose a classification system of current tissue clearing and expansion methods that allows users to judge the applicability of individual ones to their questions, followed by a review of the current progress in molecular labeling, optical imaging, and data processing to demonstrate the whole 3D imaging pipeline based on tissue clearing and downstream techniques for visualizing the brain. We also raise the path forward of tissue-clearing-based imaging technology, that is, integrating with state-of-the-art techniques, such as multiplexing protein imaging, in situ signal amplification, RNA detection and sequencing, super-resolution imaging techniques, multiomics studies, and deep learning, for drawing the complete atlas of the human brain and building a 3D pathology platform for central nervous system disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuwei Qi
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Dian He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Haitao Sun
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Di Bona A, Vita V, Costantini I, Zaglia T. Towards a clearer view of sympathetic innervation of cardiac and skeletal muscles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:80-93. [DOI: 10.1016/j.pbiomolbio.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
24
|
Precise visual distinction of brain glioma from normal tissues via targeted photoacoustic and fluorescence navigation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102204. [PMID: 32294568 DOI: 10.1016/j.nano.2020.102204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/20/2022]
Abstract
The vexing difficulty in distinguishing glioma from normal tissues is a major obstacle to prognosis. In an attempt to solve this problem, we used a joint strategy that combined targeted-cancer stem cells nanoparticles with precise photoacoustic and fluorescence navigation. We showed that traditional magnetic resonance imaging (MRI) did not represent the true morphology of tumors. Targeted nanoparticles specifically accumulated in the tumor area. Glioma was precisely revealed at the cellular level. Tumors could be non-invasively detected through the intact skull by fluorescence molecular imaging (FMI) and photoacoustic tomography (PAT). Moreover, PAT can be used to excise deep gliomas. Histological correlation confirmed that FMI imaging accurately delineated scattered tumor cells. The combination of optical PAT and FMI navigation fulfilled the promise of precise visual imaging in glioma detection and resection. This detection method was deeper and more intuitive than the current intraoperative pathology.
Collapse
|
25
|
Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution. Nat Cell Biol 2020; 22:332-340. [PMID: 32123336 DOI: 10.1038/s41556-020-0475-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/31/2020] [Indexed: 11/08/2022]
Abstract
Mapping of the holistic cell behaviours sculpting the four-chambered mammalian heart has been a goal or previous studies, but so far only success in transparent invertebrates and lower vertebrates with two-chambered hearts has been achieved. Using a live-imaging system comprising a customized vertical light-sheet microscope equipped with a mouse embryo culture module, a heartbeat-gated imaging strategy and a digital image processing framework, we realized volumetric imaging of developing mouse hearts at single-cell resolution and with uninterrupted cell lineages for up to 1.5 d. Four-dimensional landscapes of Nppa+ cardiomyocyte cell behaviours revealed a blueprint for ventricle chamber formation by which biased outward migration of the outermost cardiomyocytes is coupled with cell intercalation and horizontal division. The inner-muscle architecture of trabeculae was developed through dual mechanisms: early fate segregation and transmural cell arrangement involving both oriented cell division and directional migration. Thus, live-imaging reconstruction of uninterrupted cell lineages affords a transformative means for deciphering mammalian organogenesis.
Collapse
|
26
|
Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, Keller PJ. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 2020; 21:61-79. [PMID: 31896771 PMCID: PMC8121164 DOI: 10.1038/s41583-019-0250-1] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, University of Tokyo, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Japan.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian University of Munich, Munich, Germany
- Institute of Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli & Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for NanoMedicine, Institute for Basic Science, Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
27
|
Hua R, Zhou L, Zhang H, Yang H, Peng W, Wu K. Studying the variations in differently expressed serum proteins of Hainan black goat during the breeding cycle using isobaric tags for relative and absolute quantitation (iTRAQ) technology. J Reprod Dev 2019; 65:413-421. [PMID: 31308307 PMCID: PMC6815738 DOI: 10.1262/jrd.2018-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Hainan black goat is a high-quality local goat breed in Hainan Province of China. It is resistant to high temperatures, humidity, and disease. Although the meat of this breed is tender
and delicious, its reproductive performance and milk yield are low. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was used to analyze the
differentially expressed proteins in the serum of female Hainan black goats during the reproductive cycle (empty pregnant, estrus, gestation, and lactation). The pathway enrichment analysis
results showed that most of the differentially expressed proteins between each period belonged to the complement and coagulation cascades. Analysis of the differential protein expression and
function revealed seven proteins that were directly associated with reproduction, namely pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2 and Ran. This study revealed the changing patterns
of differentially expressed proteins in the reproductive cycle of the Hainan black goat. pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2, and Ran were identified as candidate proteins for
mediating the physiological state of Hainan black goats and regulating their fertility. This study elucidated the changes in expression levels of differentially expressed proteins during the
reproductive cycle of Hainan black goats and also provides details about its breeding pattern.
Collapse
Affiliation(s)
- Rui Hua
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Lu Zhou
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China.,Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Hainan 570228, People's Republic of China
| | - Hui Yang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Wenchuan Peng
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Kebang Wu
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China.,Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Hainan 570228, People's Republic of China
| |
Collapse
|
28
|
Defects in Trabecular Development Contribute to Left Ventricular Noncompaction. Pediatr Cardiol 2019; 40:1331-1338. [PMID: 31342111 DOI: 10.1007/s00246-019-02161-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Left ventricular noncompaction (LVNC) is a genetically heterogeneous disorder the etiology of which is still debated. During fetal development, trabecular cardiomyocytes contribute extensively to the working myocardium and the ventricular conduction system. The impact of developmental defects in trabecular myocardium in the etiology of LVNC has been debated. Recently we generated new mouse models of LVNC by the conditional deletion of the key cardiac transcription factor encoding gene Nkx2-5 in trabecular myocardium at critical steps of trabecular development. These conditional mutant mice recapitulate pathological features similar to those observed in LVNC patients, including a hypertrabeculated left ventricle with deep endocardial recesses, subendocardial fibrosis, conduction defects, strain defects, and progressive heart failure. After discussing recent findings describing the respective contribution of trabecular and compact myocardium during ventricular morphogenesis, this review will focus on new data reflecting the link between trabecular development and LVNC.
Collapse
|
29
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
30
|
Abstract
Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue-tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis. In this Review, we describe the role of Notch signalling and the crosstalk with other signalling pathways during the differentiation and patterning of the different cardiac tissues and in cardiac valve and ventricular chamber development. We examine how perturbation of Notch signalling activity is linked to congenital heart diseases affecting the neonate and adult, and discuss studies that shed light on the role of Notch signalling in heart regeneration and repair after injury.
Collapse
|
31
|
Cardiomyocyte orientation modulated by the Numb family proteins-N-cadherin axis is essential for ventricular wall morphogenesis. Proc Natl Acad Sci U S A 2019; 116:15560-15569. [PMID: 31300538 PMCID: PMC6681736 DOI: 10.1073/pnas.1904684116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.
Collapse
|
32
|
Jiménez-Amilburu V, Stainier DYR. The transmembrane protein Crb2a regulates cardiomyocyte apicobasal polarity and adhesion in zebrafish. Development 2019; 146:dev.171207. [DOI: 10.1242/dev.171207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Tissue morphogenesis requires changes in cell-cell adhesion as well as in cell shape and polarity. Cardiac trabeculation is a morphogenetic process essential to form a functional ventricular wall. Here we show that zebrafish hearts lacking Crb2a, a component of the Crumbs polarity complex, display compact wall integrity defects and fail to form trabeculae. Crb2a localization is very dynamic at a time when other cardiomyocyte junctional proteins also relocalize. Before the initiation of cardiomyocyte delamination to form the trabecular layer, Crb2a is expressed in all ventricular cardiomyocytes and colocalizes with the junctional protein ZO-1. Subsequently, Crb2a becomes localized all along the apical membrane of compact layer cardiomyocytes and is downregulated in the delaminating cardiomyocytes. We show that blood flow and Nrg/ErbB2 signaling regulate Crb2a localization dynamics. crb2a−/− display a multilayered wall with polarized cardiomyocytes, a unique phenotype. Our data further indicate that Crb2a regulates cardiac trabeculation by controlling the localization of tight and adherens junction proteins in cardiomyocytes. Importantly, transplantation data show that Crb2a controls CM behavior in a cell-autonomous manner in the sense that crb2a−/− cardiomyocytes transplanted into wild-type animals were always found in the trabecular layer. Altogether, our study reveals a critical role for Crb2a during cardiac development.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
33
|
Wu M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 2018; 39:1082-1089. [PMID: 29594501 PMCID: PMC6164162 DOI: 10.1007/s00246-018-1868-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 43 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
34
|
Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, Chiba A, Reischauer S, Mochizuki N, Stainier DYR. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 2018; 145:145/14/dev164194. [PMID: 30061167 DOI: 10.1242/dev.164194] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
Abstract
Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGFβ signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo.
Collapse
Affiliation(s)
- Veronica Uribe
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Deepika Dogra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - S Javad Rasouli
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
35
|
Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Watson CJ. Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells. Development 2018; 145:145/14/dev164079. [PMID: 30045917 PMCID: PMC6078330 DOI: 10.1242/dev.164079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Mammary gland development occurs over multiple phases, beginning in the mammalian embryo and continuing throughout reproductive life. The remarkable morphogenetic capacity of the mammary gland at each stage of development is attributed to the activities of distinct populations of mammary stem cells (MaSCs) and progenitor cells. However, the relationship between embryonic and adult MaSCs, and their fate during different waves of mammary gland morphogenesis, remains unclear. By employing a neutral, low-density genetic labelling strategy, we characterised the contribution of proliferative stem/progenitor cells to embryonic, pubertal and reproductive mammary gland development. Our findings further support a model of lineage restriction of MaSCs in the postnatal mammary gland, and highlight extensive redundancy and heterogeneity within the adult stem/progenitor cell pool. Furthermore, our data suggest extensive multiplicity in their foetal precursors that give rise to the primordial mammary epithelium before birth. In addition, using a single-cell labelling approach, we revealed the extraordinary capacity of a single embryonic MaSC to contribute to postnatal ductal development. Together, these findings provide tantalising new insights into the disparate and stage-specific contribution of distinct stem/progenitor cells to mammary gland development. Summary: Neutral, low-density lineage tracing of proliferative mammary stem and progenitor cells during embryonic, pubertal and reproductive mammary gland development reveal the disparate and stage-specific contribution of distinct stem/progenitor cells.
Collapse
Affiliation(s)
| | - Felicity M Davis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Olivia B Harris
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | | | - Christine J Watson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK .,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
36
|
Planar Cell Polarity Signaling in Mammalian Cardiac Morphogenesis. Pediatr Cardiol 2018; 39:1052-1062. [PMID: 29564519 PMCID: PMC5959767 DOI: 10.1007/s00246-018-1860-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/16/2023]
Abstract
The mammalian heart is the first organ to form and is critical for embryonic survival and development. With an occurrence of 1%, congenital heart defects (CHDs) are also the most common birth defects in humans, and major cause of childhood morbidity and mortality (Hoffman and Kaplan in J Am Coll Cardiol 39(12):1890-1900, 2002; Samanek in Cardiol Young 10(3):179-185, 2000). Understanding how the heart forms will not only help to determine the etiology and to design diagnostic and therapeutic approaches for CHDs, but may also provide insight into regenerative medicine to repair injured adult hearts. Mammalian heart development requires precise orchestration of growth, differentiation, and morphogenesis to remodel a simple linear heart tube into an intricate, four-chambered heart with properly connected pulmonary artery and aorta, a structural basis for establishing the pulmonary and systemic circulation. Here we will review the recent advance in our understanding of how the planar cell polarity pathway, a highly conserved morphogenetic engine in vertebrates, regulates polarized morphogenetic processes to contribute to both the arterial and venous poles development of the heart.
Collapse
|
37
|
Chen Z, Xu N, Chong D, Guan S, Jiang C, Yang Z, Li C. Geranylgeranyl pyrophosphate synthase facilitates the organization of cardiomyocytes during mid-gestation through modulating protein geranylgeranylation in mouse heart. Cardiovasc Res 2018; 114:965-978. [DOI: 10.1093/cvr/cvy042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhong Chen
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Na Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Danyang Chong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Shan Guan
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Chen Jiang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Zhongzhou Yang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, #22 Hankou Road, Nanjing, Jiangsu 210093, People’s Republic of China
| |
Collapse
|
38
|
Notch signaling regulates Hey2 expression in a spatiotemporal dependent manner during cardiac morphogenesis and trabecular specification. Sci Rep 2018; 8:2678. [PMID: 29422515 PMCID: PMC5805758 DOI: 10.1038/s41598-018-20917-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Hey2 gene mutations in both humans and mice have been associated with multiple cardiac defects. However, the currently reported localization of Hey2 in the ventricular compact zone cannot explain the wide variety of cardiac defects. Furthermore, it was reported that, in contrast to other organs, Notch doesn’t regulate Hey2 in the heart. To determine the expression pattern and the regulation of Hey2, we used novel methods including RNAscope and a Hey2CreERT2 knockin line to precisely determine the spatiotemporal expression pattern and level of Hey2 during cardiac development. We found that Hey2 is expressed in the endocardial cells of the atrioventricular canal and the outflow tract, as well as at the base of trabeculae, in addition to the reported expression in the ventricular compact myocardium. By disrupting several signaling pathways that regulate trabeculation and/or compaction, we found that, in contrast to previous reports, Notch signaling and Nrg1/ErbB2 regulate Hey2 expression level in myocardium and/or endocardium, but not its expression pattern: weak expression in trabecular myocardium and strong expression in compact myocardium. Instead, we found that FGF signaling regulates the expression pattern of Hey2 in the early myocardium, and regulates the expression level of Hey2 in a Notch1 dependent manner.
Collapse
|
39
|
Jiménez-Amilburu V, Rasouli SJ, Staudt DW, Nakajima H, Chiba A, Mochizuki N, Stainier DYR. In Vivo Visualization of Cardiomyocyte Apicobasal Polarity Reveals Epithelial to Mesenchymal-like Transition during Cardiac Trabeculation. Cell Rep 2017; 17:2687-2699. [PMID: 27926871 DOI: 10.1016/j.celrep.2016.11.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/05/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022] Open
Abstract
Despite great strides in understanding cardiac trabeculation, many mechanistic aspects remain unclear. To elucidate how cardiomyocyte shape changes are regulated during this process, we engineered transgenes to label their apical and basolateral membranes. Using these tools, we observed that compact-layer cardiomyocytes are clearly polarized while delaminating cardiomyocytes have lost their polarity. The apical transgene also enabled the imaging of cardiomyocyte apical constriction in real time. Furthermore, we found that Neuregulin signaling and blood flow/cardiac contractility are required for cardiomyocyte apical constriction and depolarization. Notably, we observed the activation of Notch signaling in cardiomyocytes adjacent to those undergoing apical constriction, and we showed that this activation is positively regulated by Neuregulin signaling. Inhibition of Notch signaling did not increase the percentage of cardiomyocytes undergoing apical constriction or of trabecular cardiomyocytes. These studies provide information about cardiomyocyte polarization and enhance our understanding of the complex mechanisms underlying ventricular morphogenesis and maturation.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - S Javad Rasouli
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - David W Staudt
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
Li J, Miao L, Zhao C, Shaikh Qureshi WM, Shieh D, Guo H, Lu Y, Hu S, Huang A, Zhang L, Cai CL, Wan LQ, Xin H, Vincent P, Singer HA, Zheng Y, Cleaver O, Fan ZC, Wu M. CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane. Development 2017; 144:1635-1647. [PMID: 28465335 PMCID: PMC5450847 DOI: 10.1242/dev.147173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/16/2017] [Indexed: 01/26/2023]
Abstract
The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation. Highlighted article: During epicardial formation in mice, four different mechanisms of pro-epicardial cell translocation to the myocardium can be identified, with CDC42 playing a key role.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lianjie Miao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chen Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | | | - David Shieh
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Hua Guo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yangyang Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Saiyang Hu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alice Huang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lu Zhang
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Chen-Leng Cai
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th street, Biotech 2147, Troy, NY 12180, USA
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Peter Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ondine Cleaver
- Molecular Biology, UT Southwestern, Dallas, TX 75390, USA
| | - Zhen-Chuan Fan
- International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
41
|
Tian X, Li Y, He L, Zhang H, Huang X, Liu Q, Pu W, Zhang L, Li Y, Zhao H, Wang Z, Zhu J, Nie Y, Hu S, Sedmera D, Zhong TP, Yu Y, Zhang L, Yan Y, Qiao Z, Wang QD, Wu SM, Pu WT, Anderson RH, Zhou B. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat Commun 2017; 8:87. [PMID: 28729659 PMCID: PMC5519540 DOI: 10.1038/s41467-017-00118-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 06/02/2017] [Indexed: 01/19/2023] Open
Abstract
Noncompaction cardiomyopathy is characterized by the presence of extensive trabeculations, which could lead to heart failure and malignant arrhythmias. How trabeculations resolve to form compact myocardium is poorly understood. Elucidation of this process is critical to understanding the pathophysiology of noncompaction disease. Here we use genetic lineage tracing to mark the Nppa+ or Hey2+ cardiomyocytes as trabecular and compact components of the ventricular wall. We find that Nppa+ and Hey2+ cardiomyocytes, respectively, from the endocardial and epicardial zones of the ventricular wall postnatally. Interposed between these two postnatal layers is a hybrid zone, which is composed of cells derived from both the Nppa+ and Hey2+ populations. Inhibition of the fetal Hey2+ cell contribution to the hybrid zone results in persistence of excessive trabeculations in postnatal heart. Our findings indicate that the expansion of Hey2+ fetal compact component, and its contribution to the hybrid myocardial zone, are essential for normal formation of the ventricular walls. Fetal trabecular muscles in the heart undergo a poorly described morphogenetic process that results into a solidified compact myocardium after birth. Tian et al. show that cardiomyocytes in the fetal compact layer also contribute to this process, forming a hybrid myocardial zone that is composed of cells derived from both trabecular and compact layers.
Collapse
Affiliation(s)
- Xueying Tian
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiuzhen Huang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiaozhen Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenjuan Pu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Libo Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huan Zhao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhifu Wang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University; Institute of Physiology The Czech Academy of Sciences, Prague, 12800, Czech Republic
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ying Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Yan Yan
- Cardiology Department, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zengyong Qiao
- Department of Cardiovascular Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Qing-Dong Wang
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Clinical Development Biotech Unit, AstraZeneca, Mölndal, 43183, Sweden
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, Caliornia, 94305, USA
| | - William T Pu
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, 02138, USA.,Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China. .,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
42
|
Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Lourenco FC, Pasche M, Watson CJ. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res 2016; 18:127. [PMID: 27964754 PMCID: PMC5155399 DOI: 10.1186/s13058-016-0754-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Background High-resolution 3D imaging of intact tissue facilitates cellular and subcellular analyses of complex structures within their native environment. However, difficulties associated with immunolabelling and imaging fluorescent proteins deep within whole organs have restricted their applications to thin sections or processed tissue preparations, precluding comprehensive and rapid 3D visualisation. Several tissue clearing methods have been established to circumvent issues associated with depth of imaging in opaque specimens. The application of these techniques to study the elaborate architecture of the mouse mammary gland has yet to be investigated. Methods Multiple tissue clearing methods were applied to intact virgin and lactating mammary glands, namely 3D imaging of solvent-cleared organs, see deep brain (seeDB), clear unobstructed brain imaging cocktails (CUBIC) and passive clarity technique. Using confocal, two-photon and light sheet microscopy, their compatibility with whole-mount immunofluorescent labelling and 3D imaging of mammary tissue was examined. In addition, their suitability for the analysis of mouse mammary tumours was also assessed. Results Varying degrees of optical transparency, tissue preservation and fluorescent signal conservation were observed between the different clearing methods. SeeDB and CUBIC protocols were considered superior for volumetric fluorescence imaging and whole-mount histochemical staining, respectively. Techniques were compatible with 3D imaging on a variety of platforms, enabling visualisation of mammary ductal and lobulo-alveolar structures at vastly improved depths in cleared tissue. Conclusions The utility of whole-organ tissue clearing protocols was assessed in the mouse mammary gland. Most methods utilised affordable and widely available reagents, and were compatible with standard confocal microscopy. These techniques enable high-resolution, 3D imaging and phenotyping of mammary cells and tumours in situ, and will significantly enhance our understanding of both normal and pathological mammary gland development. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0754-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| | - Felicity M Davis
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,School of Pharmacy, The University of Queensland, Brisbane, 4072, Australia.
| | - Olivia B Harris
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | | | - Filipe C Lourenco
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Mathias Pasche
- Medical Research Council Laboratory for Molecular Biology, Cambridge, CB2 0QH, UK
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
43
|
Shaikh Qureshi WM, Miao L, Shieh D, Li J, Lu Y, Hu S, Barroso M, Mazurkiewicz J, Wu M. Imaging Cleared Embryonic and Postnatal Hearts at Single-cell Resolution. J Vis Exp 2016. [PMID: 27768060 DOI: 10.3791/54303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single clonal tracing and analysis at the whole-heart level can determine cardiac progenitor cell behavior and differentiation during cardiac development, and allow for the study of the cellular and molecular basis of normal and abnormal cardiac morphogenesis. Recent emerging technologies of retrospective single clonal analyses make the study of cardiac morphogenesis at single cell resolution feasible. However, tissue opacity and light scattering of the heart as imaging depth is increased hinder whole-heart imaging at single cell resolution. To overcome these obstacles, a whole-embryo clearing system that can render the heart highly transparent for both illumination and detection must be developed. Fortunately, in the last several years, many methodologies for whole-organism clearing systems such as CLARITY, Scale, SeeDB, ClearT, 3DISCO, CUBIC, DBE, BABB and PACT have been reported. This lab is interested in the cellular and molecular mechanisms of cardiac morphogenesis. Recently, we established single cell lineage tracing via the ROSA26-CreERT2; ROSA26-Confetti system to sparsely label cells during cardiac development. We adapted several whole embryo-clearing methodologies including Scale and CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) to clear the embryo in combination with whole mount staining to image single clones inside the heart. The heart was successfully imaged at single cell resolution. We found that Scale can clear the embryonic heart, but cannot effectively clear the postnatal heart, while CUBIC can clear the postnatal heart, but damages the embryonic heart by dissolving the tissue. The methods described here will permit the study of gene function at a single clone resolution during cardiac morphogenesis, which, in turn, can reveal the cellular and molecular basis of congenital heart defects.
Collapse
Affiliation(s)
| | - Lianjie Miao
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - David Shieh
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - Jingjing Li
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - Yangyang Lu
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - Saiyang Hu
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - Joseph Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College;
| |
Collapse
|
44
|
Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 2016; 418:157-165. [PMID: 27333774 DOI: 10.1016/j.ydbio.2016.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/27/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that acts via G protein-coupled receptors. The S1P receptor S1P1, encoded by S1pr1, is expressed in developing heart but its roles there remain largely unexplored. Analysis of S1pr1 LacZ knockin embryos revealed β-galactosidase staining in cardiomyocytes in the septum and in the trabecular layer of hearts collected at 12.5 days post coitus (dpc) and weak staining in the inner aspect of the compact layer at 15.5 dpc and later. Nkx2-5-Cre- and Mlc2a-Cre-mediated conditional knockout of S1pr1 led to ventricular noncompaction and ventricular septal defects at 18.5 dpc and to perinatal lethality in the majority of mutants. Further analysis of Mlc2a-Cre conditional mutants revealed no gross phenotype at 12.5 dpc but absence of the normal increase in the number of cardiomyocytes and the thickness of the compact layer at 13.5 dpc and after. Consistent with relative lack of a compact layer, in situ hybridization at 13.5 dpc revealed expression of trabecular markers extending almost to the epicardium in mutants. Mutant hearts also showed decreased myofibril organization in the compact but not trabecular myocardium at 12.5 dpc. These results suggest that S1P signaling via S1P1 in cardiomyocytes plays a previously unknown and necessary role in heart development in mice.
Collapse
|