1
|
Mousavinejad SN, Hosseini SA, Mohammadpour M, Ferdosi F, Dadgostar E, Abdolghaderi S, Khatami SH. Long non-coding RNAs in schizophrenia. Clin Chim Acta 2025; 574:120340. [PMID: 40311728 DOI: 10.1016/j.cca.2025.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of the pathogenesis of schizophrenia, a complex neuropsychiatric disorder influenced by genetic and environmental factors. These transcripts modulate gene expression through diverse mechanisms, including chromatin remodeling, transcriptional regulation, and posttranscriptional modifications. Recent studies have demonstrated significant alterations in lncRNA expression profiles in both the peripheral blood and brain tissues of schizophrenia patients, highlighting their potential as biomarkers and therapeutic targets. Dysregulated lncRNAs such as Gomafu, DISC-2, BDNF-AS, MEG3, and TUG1 have been linked to neurodevelopmental processes, inflammatory responses, and key synaptic plasticity pathways implicated in schizophrenia. Furthermore, antipsychotic treatments have been shown to influence lncRNA expression, which is correlated with symptom improvement. Sex-specific and age-related differences in lncRNA regulation further underscore their complexity and relevance to schizophrenia pathophysiology. This review consolidates current knowledge on the role of lncRNAs in schizophrenia, emphasizing their diagnostic potential.
Collapse
Affiliation(s)
- Seyyed Navid Mousavinejad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Mohammadpour
- Department of Physical Medicine and Rehabilitation, Iran University of Medical sciences, Tehran, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siavash Abdolghaderi
- Department of Physical Medicine and Rehabilitation, Iran University of Medical sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Räsänen N, Tiihonen J, Koskuvi M, Trontti K, Cheng L, Hill AF, Lehtonen Š, Vaurio O, Ojansuu I, Lähteenvuo M, Pietiläinen O, Koistinaho J. miRNA profiling of hiPSC-derived neurons from monozygotic twins discordant for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:21. [PMID: 39966401 PMCID: PMC11836399 DOI: 10.1038/s41537-025-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Schizophrenia is a complex developmental disorder whose molecular mechanisms are not fully understood. The developmental course of schizophrenia can be modeled with human induced pluripotent stem cell (hiPSC) -derived brain cells that carry patient-specific genetic risk factors for the disorder. Although transcriptomic characterization of the patient-derived cells is a standard procedure, microRNA (miRNA) profiling is less frequently performed. To investigate the role of miRNAs in transcriptomic regulation in schizophrenia, we performed miRNA sequencing for hiPSC-derived neurons from five monozygotic twin pairs discordant for schizophrenia and six controls (CTR). We compared the miRNA expression to differentially expressed genes (DEGs) reported for the same cells in our earlier work. We found 21 DEmiRNAs between the affected twins (AT) and CTR with implications for the regulation of neuronal function. In addition, a separate analysis of three AT with treatment-resistant schizophrenia (TRS), their unaffected twins (UT), and CTR revealed an upregulation of four miRNAs in the UT compared to both AT and CTR. The DEmiRNAs found between the UT and CTR were associated with increased cAMP/PKA signaling and synaptogenesis signaling in the UT. We hypothesize that the upregulation of these processes in the UT could be linked to compensatory features against schizophrenia.
Collapse
Affiliation(s)
- Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | | | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI, Helsinki, Finland.
| |
Collapse
|
3
|
Xue L, Zhao J, Liu X, Zhao T, Zhang Y, Ye H. MK-801-exposure induces increased translation efficiency and mRNA hyperacetylation of Grin2a in the mouse prefrontal cortex. Epigenetics 2024; 19:2417158. [PMID: 39460980 PMCID: PMC11520555 DOI: 10.1080/15592294.2024.2417158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Acute exposure to MK-801, the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, induces schizophrenia-like behavioural changes in juvenile male mice. However, the effects of acute MK-801 exposure on brain gene expression at the translation level remain unclear. Here, we conducted ribosome profiling analysis on the prefrontal cortex (PFC) of acute MK-801-exposed juvenile male mice. We found 357 differentially translated genes, with the N4-acetylcytidine (ac4C) consensus motif enriched in the transcripts with increased translation efficiency. Acetylated RNA immunoprecipitation sequencing revealed 148 differentially acetylated peaks, of which 121 were hyperacetylated, and 27 were hypoacetylated. Genes harbouring these peaks were enriched in pathways related to axon guidance, Hedgehog signalling pathway, neuron differentiation, and memory. Grin2a encodes an NMDA receptor subunit NMDAR2A, and its human orthologue is a strong susceptibility gene for schizophrenia. Grin2a mRNA was hyperacetylated and exhibited significantly increased translation efficiency. NMDAR2A protein level was increased in MK-801-exposed PFC. Pretreatment of Remodelin, an inhibitor of N-acetyltransferase 10, returned the NMDAR2A protein levels to normal and partially reversed schizophrenia-like behaviours of MK-801-exposed mice, shedding light on the possible role of mRNA acetylation in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Liting Xue
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Sebastian R, Song Y, Pak C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr Res 2024; 273:4-23. [PMID: 35835709 PMCID: PMC9832179 DOI: 10.1016/j.schres.2022.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
With recent advancements in psychiatric genomics, as a field, "stem cell-based disease modelers" were given the exciting yet daunting task of translating the extensive list of disease-associated risks into biologically and clinically relevant information in order to deliver therapeutically meaningful leads and insights. Despite their limitations, human induced pluripotent stem cell (iPSCs) based models have greatly aided our understanding of the molecular and cellular mechanisms underlying the complex etiology of brain disorders including schizophrenia (SCZ). In this review, we summarize the major findings from studies in the past decade which utilized iPSC models to investigate cell type-specific phenotypes relevant to idiopathic SCZ and disease penetrant alleles. Across cell type differences, several biological themes emerged, serving as potential neurodevelopmental mechanisms of SCZ, including oxidative stress and mitochondrial dysfunction, depletion of progenitor pools and insufficient differentiation potential of these progenitors, and structural and functional deficits of neurons and other supporting cells. Here, we discuss both the recent progress as well as challenges and improvements needed for future studies utilizing iPSCs as a model for SCZ and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
5
|
Li K, Zhu L, Lv H, Bai Y, Guo C, He K. The Role of microRNA in Schizophrenia: A Scoping Review. Int J Mol Sci 2024; 25:7673. [PMID: 39062916 PMCID: PMC11277492 DOI: 10.3390/ijms25147673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is a serious mental disease that is regulated by multiple genes and influenced by multiple factors. Due to the complexity of its etiology, the pathogenesis is still unclear. MicroRNAs belong to a class of small non-coding RNAs that are highly conserved in endogenous evolution and play critical roles in multiple biological pathways. In recent years, aberrant miRNA expression has been implicated in schizophrenia, with certain miRNAs emerging as potential diagnostic and prognostic biomarkers for this disorder. In this review, our objective is to investigate the differential expression of miRNAs in schizophrenia, elucidate their potential mechanisms of action, and assess their feasibility as biomarkers. The PubMed electronic database and Google Scholar were searched for the years 2003 to 2024. The study focused on schizophrenia and miRNA as the research topic, encompassing articles related to biomarkers, etiology, action mechanisms, and differentially expressed genes associated with schizophrenia and miRNA. A total of 1488 articles were retrieved, out of which 49 were included in this scope review. This study reviewed 49 articles and identified abnormal expression of miRNA in different tissues of both schizophrenia patients and healthy controls, suggesting its potential role in the pathogenesis and progression of schizophrenia. Notably, several specific miRNAs, including miR-34a, miR-130b, miR-193-3p, miR-675-3p, miR-1262, and miR-218-5p, may serve as promising biological markers for diagnosing schizophrenia. Furthermore, this study summarized potential mechanisms through which miRNAs may contribute to the development of schizophrenia. The studies within the field of miRNA's role in schizophrenia encompass a broad spectrum of focus. Several selected studies have identified dysregulated miRNAs associated with schizophrenia across various tissues, thereby highlighting the potential utility of specific miRNAs as diagnostic biomarkers for this disorder. Various mechanisms underlying dysregulated miRNAs in schizophrenia have been explored; however, further investigations are needed to determine the exact mechanisms by which these dysregulated miRNAs contribute to the pathogenesis of this condition. The exploration of miRNA's involvement in the etiology and identification of biomarkers for schizophrenia holds significant promise in informing future clinical trials and advancing our understanding in this area.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (K.L.); (L.Z.); (H.L.); (Y.B.); (C.G.)
| |
Collapse
|
6
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Prytkova I, Liu Y, Fernando M, Gameiro-Ros I, Popova D, Kamarajan C, Xuei X, Chorlian DB, Edenberg HJ, Tischfield JA, Porjesz B, Pang ZP, Hart RP, Goate A, Slesinger PA. Upregulated GIRK2 Counteracts Ethanol-Induced Changes in Excitability and Respiration in Human Neurons. J Neurosci 2024; 44:e0918232024. [PMID: 38350999 PMCID: PMC11026340 DOI: 10.1523/jneurosci.0918-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Genome-wide association studies (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified noncoding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G-protein-coupled inwardly rectifying potassium channel that regulates neuronal excitability. We studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multielectrode arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 d of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-induced changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons.
Collapse
Affiliation(s)
- Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yiyuan Liu
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael Fernando
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Chella Kamarajan
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Xiaoling Xuei
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David B Chorlian
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Howard J Edenberg
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jay A Tischfield
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Bernice Porjesz
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Zhiping P Pang
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Alison Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
8
|
Prytkova I, Liu Y, Fernando M, Gameiro-Ros I, Popova D, Kamarajan C, Xuei X, Chorlian DB, Edenberg HJ, Tischfield JA, Porjesz B, Pang ZP, Hart RP, Goate A, Slesinger PA. Upregulated GIRK2 counteracts ethanol-induced changes in excitability & respiration in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.22.533236. [PMID: 36993693 PMCID: PMC10055374 DOI: 10.1101/2023.03.22.533236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide association analysis (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified non-coding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G protein-coupled inwardly-rectifying potassium channel that regulates neuronal excitability. How changes in GIRK2 affect human neuronal excitability and the response to repeated ethanol exposure is poorly understood. Here, we studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multi-electrode-arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 days of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-dependent changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons. SIGNIFICANCE STATEMENT Alcohol use disorder (AUD) is a major health problem that has worsened since COVID, affecting over 100 million people worldwide. While it is known that heritability contributes to AUD, specific genes and their role in neuronal function remain poorly understood, especially in humans. In the current manuscript, we focused on the inwardly-rectifying potassium channel GIRK2, which has been identified in an AUD-endophenotype genome-wide association study. We used human excitatory neurons derived from healthy donors to study the impact of GIRK2 expression. Our results reveal that elevated GIRK2 counteracts ethanol-induced increases in glutamate response and intracellular calcium, as well as deficits in activity-dependent mitochondrial respiration. The role of GIRK2 in mitigating ethanol-induced hyper-glutamatergic and mitochondrial offers therapeutic promise for treating AUD.
Collapse
|
9
|
Fu X, Baranova A, Cao H, Liu Y, Sun J, Zhang F. miR-9-5p deficiency contributes to schizophrenia. Schizophr Res 2023; 262:168-174. [PMID: 37992560 DOI: 10.1016/j.schres.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
MicroRNA-9-5p (miR-9-5p) is highly expressed in the brain and has been implicated in the risk of schizophrenia. We compared the expression levels of miR-9-5p in schizophrenia cases and healthy controls and evaluated whether regulatory targets of miR-9-5p are enriched in schizophrenia genome-wide risk genes. Literature-based analysis was conducted to construct molecular pathways connecting miR-9-5p and schizophrenia. We found that the expression levels of miR-9-5p were down-regulated in the peripheral blood of schizophrenia patients compared with those in healthy controls. miR-9-5p can regulate 24 out of the 1136 genome-wide risk genes of schizophrenia, which was higher than by chance (hypergeometric test P = 4.09E-06). The literature-based analysis showed that quantitative genetic changes driven by miR-9 exert more inhibitory (the IL1B, ABCB1, FGFR1 genes) than promoting (the INS gene) effects on schizophrenia, suggesting that miR-9 may protect against schizophrenia. Our results suggest that miR-9-5p deficiency may contribute to the development of schizophrenia.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Medical College of Soochow University, Suzhou 215137, China; Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas 20110, USA; Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas 20110, USA
| | - Yansong Liu
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Morselli Gysi D, Barabási AL. Noncoding RNAs improve the predictive power of network medicine. Proc Natl Acad Sci U S A 2023; 120:e2301342120. [PMID: 37906646 PMCID: PMC10636370 DOI: 10.1073/pnas.2301342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
Network medicine has improved the mechanistic understanding of disease, offering quantitative insights into disease mechanisms, comorbidities, and novel diagnostic tools and therapeutic treatments. Yet, most network-based approaches rely on a comprehensive map of protein-protein interactions (PPI), ignoring interactions mediated by noncoding RNAs (ncRNAs). Here, we systematically combine experimentally confirmed binding interactions mediated by ncRNA with PPI, constructing a comprehensive network of all physical interactions in the human cell. We find that the inclusion of ncRNA expands the number of genes in the interactome by 46% and the number of interactions by 107%, significantly enhancing our ability to identify disease modules. Indeed, we find that 132 diseases lacked a statistically significant disease module in the protein-based interactome but have a statistically significant disease module after inclusion of ncRNA-mediated interactions, making these diseases accessible to the tools of network medicine. We show that the inclusion of ncRNAs helps unveil disease-disease relationships that were not detectable before and expands our ability to predict comorbidity patterns between diseases. Taken together, we find that including noncoding interactions improves both the breath and the predictive accuracy of network medicine.
Collapse
Affiliation(s)
- Deisy Morselli Gysi
- Network Science Institute, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- US Department of Veteran Affairs, Boston, MA02130
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- US Department of Veteran Affairs, Boston, MA02130
- Department of Network and Data Science, Central European University, Budapest1051, Hungary
| |
Collapse
|
11
|
El-Agnaf O, Bensmail I, Al-Nesf MAY, Flynn J, Taylor M, Majbour NK, Abdi IY, Vaikath NN, Farooq A, Vemulapalli PB, Schmidt F, Ouararhni K, Al-Siddiqi HH, Arredouani A, Wijten P, Al-Maadheed M, Mohamed-Ali V, Decock J, Abdesselem HB. Uncovering a neurological protein signature for severe COVID-19. Neurobiol Dis 2023; 182:106147. [PMID: 37178811 PMCID: PMC10174474 DOI: 10.1016/j.nbd.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.
Collapse
Affiliation(s)
- Omar El-Agnaf
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maryam A Y Al-Nesf
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | | | | | - Nour K Majbour
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdulaziz Farooq
- Aspetar Hospital, Orthopaedic and Sports Medicine, Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Heba H Al-Siddiqi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
12
|
Wang Z, Zhu S, Jia Y, Wang Y, Kubota N, Fujiwara N, Gordillo R, Lewis C, Zhu M, Sharma T, Li L, Zeng Q, Lin YH, Hsieh MH, Gopal P, Wang T, Hoare M, Campbell P, Hoshida Y, Zhu H. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 2023; 186:1968-1984.e20. [PMID: 37040760 PMCID: PMC10321862 DOI: 10.1016/j.cell.2023.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.
Collapse
Affiliation(s)
- Zixi Wang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Tissue Management Shared Resource, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matt Hoare
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; University of Cambridge Early Cancer Institute, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Peter Campbell
- Cancer Genome Project, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Wang Z, Zhu S, Jia Y, Wang Y, Kubota N, Fujiwara N, Gordillo R, Lewis C, Zhu M, Sharma T, Li L, Zeng Q, Lin YH, Hsieh MH, Gopal P, Wang T, Hoare M, Campbell P, Hoshida Y, Zhu H. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533505. [PMID: 36993727 PMCID: PMC10055219 DOI: 10.1101/2023.03.20.533505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Somatic mutations in non-malignant tissues accumulate with age and insult, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate mutations found in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to non-alcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7 , a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side-by-side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Bcl6, Tbx3, or Smyd2 resulted in protection against NASH. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease. Highlights Mosaic Mboat7 mutations that increase lipotoxicity lead to clonal disappearance in NASH. In vivo screening can identify genes that alter hepatocyte fitness in NASH. Mosaic Gpam mutations are positively selected due to reduced lipogenesis. In vivo screening of transcription factors and epifactors identified new therapeutic targets in NASH.
Collapse
|
14
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Naseer S, Abelleira-Hervas L, Savani D, de Burgh R, Aleksynas R, Donat CK, Syed N, Sastre M. Traumatic Brain Injury Leads to Alterations in Contusional Cortical miRNAs Involved in Dementia. Biomolecules 2022; 12:1457. [PMID: 36291666 PMCID: PMC9599474 DOI: 10.3390/biom12101457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 09/29/2023] Open
Abstract
There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as β-APP cleaving enzyme (BACE1) and Glycogen synthase-3-β (GSK3β). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
16
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:1366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Playfoot CJ, Sheppard S, Planet E, Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development. RNA (NEW YORK, N.Y.) 2022; 28:1157-1171. [PMID: 35732404 PMCID: PMC9380744 DOI: 10.1261/rna.079100.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) contribute to the evolution of gene regulatory networks and are dynamically expressed throughout human brain development and disease. One gene regulatory mechanism influenced by TEs is the miRNA system of post-transcriptional control. miRNA sequences frequently overlap TE loci and this miRNA expression landscape is crucial for control of gene expression in adult brain and different cellular contexts. Despite this, a thorough investigation of the spatiotemporal expression of TE-embedded miRNAs in human brain development is lacking. Here, we identify a spatiotemporally dynamic TE-embedded miRNA expression landscape between childhood and adolescent stages of human brain development. These miRNAs sometimes arise from two apposed TEs of the same subfamily, such as for L2 or MIR elements, but in the majority of cases stem from solo TEs. They give rise to in silico predicted high-confidence pre-miRNA hairpin structures, likely represent functional miRNAs, and have predicted genic targets associated with neurogenesis. TE-embedded miRNA expression is distinct in the cerebellum when compared to other brain regions, as has previously been described for gene and TE expression. Furthermore, we detect expression of previously nonannotated TE-embedded miRNAs throughout human brain development, suggestive of a previously undetected miRNA control network. Together, as with non-TE-embedded miRNAs, TE-embedded sequences give rise to spatiotemporally dynamic miRNA expression networks, the implications of which for human brain development constitute extensive avenues of future experimental research. To facilitate interactive exploration of these spatiotemporal miRNA expression dynamics, we provide the "Brain miRTExplorer" web application freely accessible for the community.
Collapse
Affiliation(s)
- Christopher J Playfoot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Pirdoğan Aydın E, Alsaadoni H, Gökovalı Beğenen A, Akil Özer Ö, Oğuz Karamustafalıoğlu K, Pençe S. Can miRNA Expression Levels Predict Treatment Resistance to Serotonin Reuptake Inhibitors in Patients with Obsessive-Compulsive Disorder? PSYCHIAT CLIN PSYCH 2022; 32:98-106. [PMID: 38764867 PMCID: PMC11099648 DOI: 10.5152/pcp.2022.22391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 05/21/2024] Open
Abstract
Background Obsessive-compulsive disorder is a psychiatric disorder with different clinical manifestations caused by the interaction of genetic and environmental factors. Recently, it has been shown that microRNAs play a role in the pathogenesis of some psychiatric diseases. We aimed to compare the expression levels of microRNAs between obsessive-compulsive disorder patients and healthy controls and investigate the association between miRNA expression levels and treatment resistance. Methods Twelve miRNA expression levels in venous blood of 100 obsessive-compulsive disorder patients and 50 healthy controls were detected by real-time polymerase chain reaction. Patients were assessed using the Hamilton Depression Rating Scale, Yale-Brown Obsessive-Compulsive Scale, and Yale-Brown Obsessive-Compulsive Symptom Checklist. Each patient was scheduled for a monthly follow-up for a minimum 6-month-period after serotonin receptor inhibitor treatments were initiated. Results We found that miR-26a-5p (P < .001), miR-21-3p (P < .001), miR-219a-1-3p (P = .016), miR-106b-5p (P = .039), miR-6740-5p (P = .020), miR-320a (P = .001), miR-22-3p, and miR-16b-5p (P = .010) expression levels were statistically higher in obsessive-compulsive disorder patients than healthy controls; miR-135a-5p (P < .001) and miR-129-6b-5p (P < .001) expression levels were statistically lower. Also, it was determined that increased miR-106b-5p levels were associated with treatment-resistance (P = .020) and there was a negative correlation between miR-374b-3p and disease severity (P = .042). Conclusion In obsessive-compulsive disorder, there may be a potential value in the relationship between various miRNA expression levels and treatment resistance and disease severity, and future studies may be beneficial.
Collapse
Affiliation(s)
- Efruz Pirdoğan Aydın
- Department of Psychiatry, University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Hani Alsaadoni
- Department of Medical Biology, University of Health Sciences of Medicine, İstanbul, Turkey
| | - Azra Gökovalı Beğenen
- Department of Psychiatry, University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Ömer Akil Özer
- Department of Psychiatry, University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Kayıhan Oğuz Karamustafalıoğlu
- Department of Psychiatry, University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Sadrettin Pençe
- Department of Physiology, İstanbul Medeniyet University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
19
|
Brennand KJ. Using Stem Cell Models to Explore the Genetics Underlying Psychiatric Disorders: Linking Risk Variants, Genes, and Biology in Brain Disease. Am J Psychiatry 2022; 179:322-328. [PMID: 35491564 DOI: 10.1176/appi.ajp.20220235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent and unmet need to advance our ability to translate genetic studies of psychiatric disorders into clinically actionable information, which could transform diagnostics and even one day lead to novel (and potentially presymptomatic) therapeutic interventions. Today, although there are hundreds of significant loci associated with psychiatric disorders, resolving the target gene(s) and pathway(s) impacted by each is a major challenge. Integrating human induced pluripotent stem cell-based approaches with CRISPR-mediated genomic engineering strategies makes it possible to study the impact of patient-specific variants within the cell types of the brain. As the scale and scope of functional genomic studies expands, so does our ability to resolve the complex interplay of the many risk variants linked to psychiatric disorders. In this review, the author discusses some of the technological advances that make it possible to ask exciting questions that are fundamental to our understanding of psychiatric disorders. How do distinct risk variants converge and interact with each other (and the environment) across the diverse cell types that comprise the human brain? Can clinical trajectories and/or therapeutic response be predicted from genetic profiles? Just as critically, by spreading the message that genetic risk for psychiatric disorders is biological and fundamentally no different than for other human conditions, we can dispel the stigma associated with mental illness.
Collapse
Affiliation(s)
- Kristen J Brennand
- Department of Psychiatry, Department of Genetics, Wu Tsai Institute at Yale, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
20
|
Page SC, Sripathy SR, Farinelli F, Ye Z, Wang Y, Hiler DJ, Pattie EA, Nguyen CV, Tippani M, Moses RL, Chen HY, Tran MN, Eagles NJ, Stolz JM, Catallini JL, Soudry OR, Dickinson D, Berman KF, Apud JA, Weinberger DR, Martinowich K, Jaffe AE, Straub RE, Maher BJ. Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc Natl Acad Sci U S A 2022; 119:e2109395119. [PMID: 35017298 PMCID: PMC8784142 DOI: 10.1073/pnas.2109395119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neurons derived from human induced pluripotent stem cells (hiPSCs) have been used to model basic cellular aspects of neuropsychiatric disorders, but the relationship between the emergent phenotypes and the clinical characteristics of donor individuals has been unclear. We analyzed RNA expression and indices of cellular function in hiPSC-derived neural progenitors and cortical neurons generated from 13 individuals with high polygenic risk scores (PRSs) for schizophrenia (SCZ) and a clinical diagnosis of SCZ, along with 15 neurotypical individuals with low PRS. We identified electrophysiological measures in the patient-derived neurons that implicated altered Na+ channel function, action potential interspike interval, and gamma-aminobutyric acid-ergic neurotransmission. Importantly, electrophysiological measures predicted cardinal clinical and cognitive features found in these SCZ patients. The identification of basic neuronal physiological properties related to core clinical characteristics of illness is a potentially critical step in generating leads for novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Zengyou Ye
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Daniel J Hiler
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | | | | | | | | | - Huei-Ying Chen
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Baltimore, MD 21205
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | | | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Joseph L Catallini
- Lieber Institute for Brain Development, Baltimore, MD 21205
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892
| | - Jose A Apud
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Keri Martinowich
- Lieber Institute for Brain Development, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD 21205
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, MD 21205;
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
21
|
Kyzar EJ, Bohnsack JP, Pandey SC. Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biol Psychiatry 2022; 91:183-193. [PMID: 34742545 PMCID: PMC8959010 DOI: 10.1016/j.biopsych.2021.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, New York
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
22
|
Brandão-Teles C, Zuccoli GS, Smith BJ, Vieira GM, Crunfli F. Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:35-51. [DOI: 10.1007/978-3-030-97182-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Okamoto L, Watanabe S, Deno S, Nie X, Maruyama J, Tomita M, Hatano A, Yugi K. Meta-analysis of transcriptional regulatory networks for lipid metabolism in neural cells from schizophrenia patients based on an open-source intelligence approach. Neurosci Res 2021; 175:82-97. [PMID: 34979163 DOI: 10.1016/j.neures.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023]
Abstract
There have been a number of reports about the transcriptional regulatory networks in schizophrenia. However, most of these studies were based on a specific transcription factor or a single dataset, an approach that is inadequate to understand the diverse etiology and underlying common characteristics of schizophrenia. Here we reconstructed and compared the transcriptional regulatory network for lipid metabolism enzymes using 15 public transcriptome datasets of neural cells from schizophrenia patients. Since many of the well-known schizophrenia-related SNPs are in enhancers, we reconstructed a network including enhancer-dependent regulation and found that 53.3 % of the total number of edges (7,577 pairs) involved regulation via enhancers. By examining multiple datasets, we found common and unique transcriptional modes of regulation. Furthermore, enrichment analysis of SNPs that were connected with genes in the transcriptional regulatory networks by eQTL suggested an association with hematological cell counts and some other traits/diseases, whose relationship to schizophrenia was either not or insufficiently reported in previous studies. Based on these results, we suggest that in future studies on schizophrenia, information on genotype, comorbidities and hematological cell counts should be included, along with the transcriptome, for a more detailed genetic stratification and mechanistic exploration of schizophrenia.
Collapse
Affiliation(s)
- Lisa Okamoto
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Soyoka Watanabe
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan
| | - Senka Deno
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Xiang Nie
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junichi Maruyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Atsushi Hatano
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Department of Omics and Systems Biology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City, 951-8510, Japan
| | - Katsuyuki Yugi
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; PRESTO, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
25
|
Lee D, Seo J, Jeong HC, Lee H, Lee SB. The Perspectives of Early Diagnosis of Schizophrenia Through the Detection of Epigenomics-Based Biomarkers in iPSC-Derived Neurons. Front Mol Neurosci 2021; 14:756613. [PMID: 34867186 PMCID: PMC8633873 DOI: 10.3389/fnmol.2021.756613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The lack of early diagnostic biomarkers for schizophrenia greatly limits treatment options that deliver therapeutic agents to affected cells at a timely manner. While previous schizophrenia biomarker research has identified various biological signals that are correlated with certain diseases, their reliability and practicality as an early diagnostic tool remains unclear. In this article, we discuss the use of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage schizophrenia. Furthermore, we review the viability of discovering and applying these biomarkers through the use of cutting-edge technologies such as human induced pluripotent stem cell (iPSC)-derived neurons, brain models, and single-cell level analyses.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hae Chan Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
26
|
Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother 2021; 145:112394. [PMID: 34781141 DOI: 10.1016/j.biopha.2021.112394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
microRNA are noncoding endogenous RNAs of ∼ 25-nucleotide, involved in RNA silencing and controlling of cell function. Recent evidence has highlighted the important role of various in the biology of human cancers. miR-9 is a highly conserved microRNA and abnormal regulation of miR-9 expression has various impacts on disease pathology. miR-9 may play a dual tumor-suppressive or oncomiR activity in several cancers. There have been conflicting reports concerning the role of miR-9 in gastrointestinal cancers. Several signaling pathways including PDK/AKT, Hippo, Wnt/β-catenin and PDGFRB axes are affected by miR-9 in suppressing proliferation, invasion and metastasis of tumor cells. Oncogenic miR-9 triggers migration, metastasis and clinic-pathological characteristics of patients with gastrointestinal malignancy by targeting various enzymes and transcription factors such as E-cadherin, HK2, LMX1A, and CDX2. On the other hand, long non-coding RNAs and circular RNAs can modulate miR-9 expression in human cancers. In this review, we aimed to summarize recent findings about the potential value of miR-9 in gastrointestinal tumors, that include: screening, prognostic and treatment.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
27
|
Maes M, Plaimas K, Suratanee A, Noto C, Kanchanatawan B. First Episode Psychosis and Schizophrenia Are Systemic Neuro-Immune Disorders Triggered by a Biotic Stimulus in Individuals with Reduced Immune Regulation and Neuroprotection. Cells 2021; 10:cells10112929. [PMID: 34831151 PMCID: PMC8616258 DOI: 10.3390/cells10112929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
There is evidence that schizophrenia is characterized by activation of the immune-inflammatory response (IRS) and compensatory immune-regulatory systems (CIRS) and lowered neuroprotection. Studies performed on antipsychotic-naïve first episode psychosis (AN-FEP) and schizophrenia (FES) patients are important as they may disclose the pathogenesis of FES. However, the protein–protein interaction (PPI) network of FEP/FES is not established. The aim of the current study was to delineate a) the characteristics of the PPI network of AN-FEP and its transition to FES; and b) the biological functions, pathways, and molecular patterns, which are over-represented in FEP/FES. Toward this end, we used PPI network, enrichment, and annotation analyses. FEP and FEP/FES are strongly associated with a response to a bacterium, alterations in Toll-Like Receptor-4 and nuclear factor-κB signaling, and the Janus kinases/signal transducer and activator of the transcription proteins pathway. Specific molecular complexes of the peripheral immune response are associated with microglial activation, neuroinflammation, and gliogenesis. FEP/FES is accompanied by lowered protection against inflammation, in part attributable to dysfunctional miRNA maturation, deficits in neurotrophin and Wnt/catenin signaling, and adherens junction organization. Multiple interactions between reduced brain derived neurotrophic factor, E-cadherin, and β-catenin and disrupted schizophrenia-1 (DISC1) expression increase the vulnerability to the neurotoxic effects of immune molecules, including cytokines and complement factors. In summary: FEP and FES are systemic neuro-immune disorders that are probably triggered by a bacterial stimulus which induces neuro-immune toxicity cascades that are overexpressed in people with reduced anti-inflammatory and miRNA protections, cell–cell junction organization, and neurotrophin and Wnt/catenin signaling.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong 3220, Australia
- Correspondence:
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Cristiano Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil;
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
28
|
Tomaskovic-Crook E, Guerrieri-Cortesi K, Crook JM. Induced pluripotent stem cells for 2D and 3D modelling the biological basis of schizophrenia and screening possible therapeutics. Brain Res Bull 2021; 175:48-62. [PMID: 34273422 DOI: 10.1016/j.brainresbull.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are providing unprecedented insight into complex neuropsychiatric disorders such as schizophrenia (SZ). Here we review the use of iPSCs for investigating the etiopathology and treatment of SZ, beginning with conventional in vitro two-dimensional (2D; monolayer) cell modelling, through to more advanced 3D tissue studies. With the advent of 3D modelling, utilising advanced differentiation paradigms and additive manufacturing technologies, inclusive of patient-specific cerebral/neural organoids and bioprinted neural tissues, such live disease-relevant tissue systems better recapitulate "within-body" tissue function and pathobiology. We posit that by enabling better understanding of biological causality, these evolving strategies will yield novel therapeutic targets and accordingly, drug candidates.
Collapse
Affiliation(s)
- Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia.
| | - Kyle Guerrieri-Cortesi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia; Chris O'Brien Lifehouse Hospital, Camperdown, NSW, 2050, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, 3065, Fitzroy, Australia.
| |
Collapse
|
29
|
Yao Y, Guo W, Zhang S, Yu H, Yan H, Zhang H, Sanders AR, Yue W, Duan J. Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. iScience 2021; 24:102785. [PMID: 34308291 PMCID: PMC8283158 DOI: 10.1016/j.isci.2021.102785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Cell type-specific pathway-based polygenic risk scores (PRSs) may better inform disease biology and improve the precision of PRS-based clinical prediction. For microRNA-137 (MIR137), a leading neuropsychiatric risk gene and a post-transcriptional master regulator, we conducted a cell type-specific gene set PRS analysis in both European and Han Chinese schizophrenia (SZ) samples. We found that the PRS of neuronal MIR137-target genes better explains SZ risk than PRS derived from MIR137-target genes in iPSC or from the reported gene sets showing MIR137-altered expression. Compared with the PRS derived from the whole genome or the target genes of TCF4, the PRS of neuronal MIR137-target genes explained a disproportionally larger (relative to SNP number) SZ risk in the European sample, but with a more modest advantage in the Han Chinese sample. Our study demonstrated a cell type-specific polygenic contribution of MIR137-target genes to SZ risk, highlighting the value of cell type-specific pathway-based PRS analysis for uncovering disease-relevant biological features. PRS of neural MIR137 target genes better explains schizophrenia (SZ) risk variance SZ risk and SNP heritability explained by MIR137 target genes is cell type-specific MIR137 target genes explain a disproportionally larger SZ risk than genomic control PRS of MIR137 target genes better explains SZ risk in Europeans than in Han Chinese
Collapse
Affiliation(s)
- Yin Yao
- Department of Computational Biology, Life Science Institutes and School of Life Science and Human Phenomics Institute, Fudan University, Shanghai 200438, China
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hao Yu
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Hao Yan
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100191, China
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Li RA, Talikka M, Gubian S, Vom Berg C, Martin F, Peitsch MC, Hoeng J, Zupanic A. Systems Toxicology Approach for Assessing Developmental Neurotoxicity in Larval Zebrafish. Front Genet 2021; 12:652632. [PMID: 34211495 PMCID: PMC8239408 DOI: 10.3389/fgene.2021.652632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse outcomes that result from chemical toxicity are rarely caused by dysregulation of individual proteins; rather, they are often caused by system-level perturbations in networks of molecular events. To fully understand the mechanisms of toxicity, it is necessary to recognize the interactions of molecules, pathways, and biological processes within these networks. The developing brain is a prime example of an extremely complex network, which makes developmental neurotoxicity one of the most challenging areas in toxicology. We have developed a systems toxicology method that uses a computable biological network to represent molecular interactions in the developing brain of zebrafish larvae. The network is curated from scientific literature and describes interactions between biological processes, signaling pathways, and adverse outcomes associated with neurotoxicity. This allows us to identify important signaling hubs, pathway interactions, and emergent adverse outcomes, providing a more complete understanding of neurotoxicity. Here, we describe the construction of a zebrafish developmental neurotoxicity network and its validation by integration with publicly available neurotoxicity-related transcriptomic datasets. Our network analysis identified consistent regulation of tumor suppressors p53 and retinoblastoma 1 (Rb1) as well as the oncogene Krüppel-like factor (Klf8) in response to chemically induced developmental neurotoxicity. The developed network can be used to interpret transcriptomic data in a neurotoxicological context.
Collapse
Affiliation(s)
- Roman A Li
- Eawag, Dübendorf, Switzerland.,PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sylvain Gubian
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anze Zupanic
- Eawag, Dübendorf, Switzerland.,National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
31
|
Mishra P, Kumar S. Association of lncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metab Brain Dis 2021; 36:849-858. [PMID: 33608830 DOI: 10.1007/s11011-021-00692-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
Schizophrenia is one of the most agonizing neurodegenerative diseases of the brain. Research undertaken to understand the molecular mechanism of this disease has undergone a transition and currently more emphasis is put on long noncoding RNA (lncRNA). High expression level of lncRNA in the brain contributes to several molecular pathways essential for the proper functioning of neurons, neurotransmitters, and synapses, that are often found dysfunctional in Schizophrenia. Recently, the association of lncRNA with various molecular factors in the brain has been explored to a considerably large extent. This review comprehends the significance of lncRNA in causing profound regulatory effect in the brain and how any alterations to the association of lncRNA with regulatory proteins, enzymes and other noncoding RNA could contribute to the aetiology of Schizophrenia.
Collapse
Affiliation(s)
- Parinita Mishra
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
32
|
Raviglione F, Douzgou S, Scala M, Mingarelli A, D'Arrigo S, Freri E, Darra F, Giglio S, Bonaglia MC, Pantaleoni C, Mastrangelo M, Epifanio R, Elia M, Saletti V, Morlino S, Vari MS, De Liso P, Pavaine J, Spaccini L, Cattaneo E, Gardella E, Møller RS, Marchese F, Colonna C, Gandioli C, Gobbi G, Ram D, Palumbo O, Carella M, Germano M, Tonduti D, De Angelis D, Caputo D, Bergonzini P, Novara F, Zuffardi O, Verrotti A, Orsini A, Bonuccelli A, De Muto MC, Trivisano M, Vigevano F, Granata T, Bernardina BD, Tranchina A, Striano P. Electroclinical features of MEF2C haploinsufficiency-related epilepsy: A multicenter European study. Seizure 2021; 88:60-72. [PMID: 33831796 DOI: 10.1016/j.seizure.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency. METHODS We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". RESULTS Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. CONCLUSION The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.
Collapse
Affiliation(s)
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Member of ERN-ITHACA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Sabrina Giglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria C Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Mastrangelo
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS, E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Maria Stella Vari
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola De Liso
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Julija Pavaine
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Luigina Spaccini
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elena Gardella
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Francesca Marchese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Clara Colonna
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Claudia Gandioli
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Giuseppe Gobbi
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Michele Germano
- Maternal and Pediatric Department, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo (FG) 71013, Italy
| | - Davide Tonduti
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Diego De Angelis
- Pediatric Department, "Sapienza" University of Rome, Rome 00185, Italy
| | - Davide Caputo
- Department of Health Sciences, Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, University of Medicine, Milan, Italy; Member of ERN EpiCARE
| | | | - Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Orsini
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | | | - Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Antonia Tranchina
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
33
|
Ermakov EA, Kabirova EM, Buneva VN, Nevinsky GA. IgGs-Abzymes from the Sera of Patients with Multiple Sclerosis Recognize and Hydrolyze miRNAs. Int J Mol Sci 2021; 22:2812. [PMID: 33802122 PMCID: PMC8000798 DOI: 10.3390/ijms22062812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autoantibodies-abzymes hydrolyzing DNA, myelin basic protein, and oligosaccharides have been revealed in the sera of patients with multiple sclerosis (MS). In MS, specific microRNAs are found in blood and cerebrospinal fluid, which are characterized by increased expression. Autoantibodies, specifically hydrolyzing four different miRNAs, were first detected in the blood of schizophrenia patients. Here, we present the first evidence that 23 IgG antibodies of MS patients effectively recognize and hydrolyze four neuroregulatory miRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219-5p) and four immunoregulatory miRNAs (miR-21-3p, miR-146a-3p, miR-155-5p, and miR-326). Several known criteria were checked to show that the recognition and hydrolysis of miRNAs is an intrinsic property of MS IgGs. The hydrolysis of all miRNAs is mostly site-specific. The major and moderate sites of the hydrolysis of each miRNA for most of the IgG preparations coincided; however, some of them showed other specific sites of splitting. Several individual IgGs hydrolyzed some miRNAs almost nonspecifically at nearly all internucleoside bonds or demonstrated a combination of site-specific and nonspecific splitting. Maximum average relative activity (RA) was observed in the hydrolysis of miR-155-5p for IgGs of patients of two types of MS-clinically isolated syndrome and relapsing-remitting MS-but was also high for patients with primary progressive and secondary progressive MS. Differences between RAs of IgGs of four groups of MS patients and healthy donors were statistically significant (p < 0.015). There was a tendency of decreasing efficiency of hydrolysis of all eight miRNAs during remission compared with the exacerbation of the disease.
Collapse
Affiliation(s)
| | | | | | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave, 630090 Novosibirsk, Russia; (E.A.E.); (E.M.K.); (V.N.B.)
| |
Collapse
|
34
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
35
|
Naujock M, Speidel A, Fischer S, Kizner V, Dorner-Ciossek C, Gillardon F. Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells Dev 2020; 29:1577-1587. [PMID: 33143549 DOI: 10.1089/scd.2020.0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.
Collapse
Affiliation(s)
- Maximilian Naujock
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Anna Speidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Sandra Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Valeria Kizner
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| |
Collapse
|
36
|
McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S. Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 2020; 127:1547-1568. [PMID: 32377792 PMCID: PMC7578166 DOI: 10.1007/s00702-020-02197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
37
|
Bame M, McInnis MG, O'Shea KS. MicroRNA Alterations in Induced Pluripotent Stem Cell-Derived Neurons from Bipolar Disorder Patients: Pathways Involved in Neuronal Differentiation, Axon Guidance, and Plasticity. Stem Cells Dev 2020; 29:1145-1159. [PMID: 32438891 PMCID: PMC7469698 DOI: 10.1089/scd.2020.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BP) is a complex psychiatric condition characterized by severe fluctuations in mood for which underlying pathological mechanisms remain unclear. Family and twin studies have identified a hereditary component to the disorder, but a single causative gene (or set of genes) has not been identified. MicroRNAs (miRNAs) are small, noncoding RNAs ∼20 nucleotides in length, that are responsible for the posttranslational regulation of multiple genes. They have been shown to play important roles in neural development as well as in the adult brain, and several miRNAs have been reported to be dysregulated in postmortem brain tissue isolated from bipolar patients. Because there are no viable cellular models to study BP, we have taken advantage of the recent discovery that somatic cells can be reprogrammed to pluripotency then directed to form the full complement of neural cells. Analysis of RNAs extracted from Control and BP patient-derived neurons identified 58 miRNAs that were differentially expressed between the two groups. Using quantitative polymerase chain reaction we validated six miRNAs that were elevated and two miRNAs that were expressed at lower levels in BP-derived neurons. Analysis of the targets of the miRNAs indicate that they may regulate a number of cellular pathways, including axon guidance, Mapk, Ras, Hippo, Neurotrophin, and Wnt signaling. Many are involved in processes previously implicated in BP, such as cell migration, axon guidance, dendrite and synapse development, and function. We have validated targets of several different miRNAs, including AXIN2, BDNF, RELN, and ANK3 as direct targets of differentially expressed miRNAs using luciferase assays. Identification of pathways altered in patient-derived neurons suggests that disruption of these regulatory networks that may contribute to the complex phenotypes in BP.
Collapse
Affiliation(s)
- Monica Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Sue O'Shea
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems. J Neurosci 2020; 40:1176-1185. [PMID: 32024766 DOI: 10.1523/jneurosci.0518-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized research on human diseases, particularly neurodegenerative and psychiatric disorders, making it possible to study mechanisms of disease risk and initiation in otherwise inaccessible patient-specific cells. Today, the integration of CRISPR engineering approaches with hiPSC-based models permits precise isogenic comparisons of human neurons and glia. This review is intended as a guideline for neuroscientists and clinicians interested in translating their research to hiPSC-based studies. It offers state-of-the-art approaches to tackling the challenges that are unique to human in vitro disease models, particularly interdonor and intradonor variability, and limitations in neuronal maturity and circuit complexity. Finally, we provide a detailed overview of the immense possibilities the field has to offer, highlighting efficient neural differentiation and induction strategies for the major brain cell types and providing perspective into integrating CRISPR-based methods into study design. The combination of hiPSC-based disease modeling, CRISPR technology, and high-throughput approaches promises to advance our scientific knowledge and accelerate progress in drug discovery.Dual Perspectives Companion Paper: Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids, by Ai Tian, Julien Muffat, and Yun Li.
Collapse
|
39
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Jiang L, Sun X, Kong H. microRNA-9 might be a novel protective factor for osteoarthritis patients. Hereditas 2020; 157:15. [PMID: 32321579 PMCID: PMC7178977 DOI: 10.1186/s41065-020-00128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The study aimed to identify the targeting genes and miRNAs using the microarray expression profile dataset for Osteoarthritis (OA) patients. Differentially expressed genes (DEGs) between OA and control samples were identified using Bayes method of limma package. Subsequently, a protein-protein interaction (PPI) network was constructed. miRNAs and transcription factor (TFs) based on DEGs in PPI network were identified using Webgestalt and ENCODE, respectively. Finally, MCODE, Gene Ontology (GO) function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. The expressions of several DEGs and predicted miRNAs in OA rats were detected by RT-PCR. RESULTS A total of 594 DEGs were identified. In PPI network, there were 313 upregulated DEGs and 22 downregulated DEGs. Besides, the regulatory relationships included 467 upregulated interactions and 85 downregulated interactions (miR-124A → QKI and MAP 1B) between miRNA and DEGs in PPI network. The module from downregulated DEGs-TFs-miRNA networks was mainly enriched to low-density lipoprotein particle clearance, response to linoleic acid, and small molecule metabolic process BP terms. Moreover, QKI, MAP 1B mRNA and miR-9 expressions were significantly reduced in OA rats. CONCLUSION miR-9 might be a protective factor for OA patients via inhibiting proliferation and differentiation of cartilage progenitor cells. miR-124A might play an important role in progression of OA through targeting QKI and MAP 1B.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Orthopedics, Taizhou People's Hospital, No. 366 Taihu Road, Taizhou City, 225300, Jiangsu Province, China
| | - Xu Sun
- Department of Orthopedics, Taizhou People's Hospital, No. 366 Taihu Road, Taizhou City, 225300, Jiangsu Province, China
| | - Hongyang Kong
- Department of Orthopedics, Taizhou People's Hospital, No. 366 Taihu Road, Taizhou City, 225300, Jiangsu Province, China.
| |
Collapse
|
41
|
Fernando MB, Ahfeldt T, Brennand KJ. Modeling the complex genetic architectures of brain disease. Nat Genet 2020; 52:363-369. [PMID: 32203467 PMCID: PMC7909729 DOI: 10.1038/s41588-020-0596-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The genetic architecture of each individual comprises common and rare variants that, acting alone and in combination, confer risk of disease. The cell-type-specific and/or context-dependent functional consequences of the risk variants linked to brain disease must be resolved. Coupling human induced pluripotent stem cell (hiPSC)-based technology with CRISPR-based genome engineering facilitates precise isogenic comparisons of variants across genetic backgrounds. Although functional-validation studies are typically performed on one variant in isolation and in one cell type at a time, complex genetic diseases require multiplexed gene perturbations to interrogate combinations of genes and resolve physiologically relevant disease biology. Our aim is to discuss advances at the intersection of genomics, hiPSCs and CRISPR. A better understanding of the molecular mechanisms underlying disease risk will improve genetic diagnosis, drive phenotypic drug discovery and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Rajarajan P, Flaherty E, Akbarian S, Brennand KJ. CRISPR-based functional evaluation of schizophrenia risk variants. Schizophr Res 2020; 217:26-36. [PMID: 31277978 PMCID: PMC6939156 DOI: 10.1016/j.schres.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
As expanding genetic and genomic studies continue to implicate a growing list of variants contributing risk to neuropsychiatric disease, an important next step is to understand the functional impact and points of convergence of these risk factors. Here, with a focus on schizophrenia, we survey the most recent findings of the rare and common variants underlying genetic risk for schizophrenia. We discuss the ongoing efforts to validate these variants in post-mortem brain tissue, as well as new approaches to combine CRISPR-based genome engineering with patient-specific human induced pluripotent stem cell (hiPSC)-based models, in order to identify putative causal schizophrenia loci that regulate gene expression and cellular function. We consider the current limitations of hiPSC-based approaches as well as the future advances necessary to improve the fidelity of this human model. With the objective of utilizing patient genotype data to improve diagnosis and predict treatment response, the integration of CRISPR-genome engineering and hiPSC-based models represent an important strategy with which to systematically demonstrate the cell-type-specific effects of schizophrenia-associated variants.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Erin Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
43
|
Ishikawa M, Aoyama T, Shibata S, Sone T, Miyoshi H, Watanabe H, Nakamura M, Morota S, Uchino H, Yoo AS, Okano H. miRNA-Based Rapid Differentiation of Purified Neurons from hPSCs Advancestowards Quick Screening for Neuronal Disease Phenotypes In Vitro. Cells 2020; 9:E532. [PMID: 32106535 PMCID: PMC7140514 DOI: 10.3390/cells9030532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene (Ngn2), a proneural factor. While it has been established that Ngn2 can facilitate differentiation from pluripotent stem cells into neurons with high purity due to its neurogenic effect, a long or indefinite time is required for neuronal maturation with Ngn2 misexpression alone. With the present method, the cells maintained a high neuronal differentiation rate while exhibiting increased gene expression of neuronal maturation markers, spontaneous calcium oscillation, and high electrical activity with network bursts as assessed by a multipoint electrode system. Moreover, when applying this method to iPSCs from Alzheimer's disease (AD) patients with presenilin-1 (PS1) or presenilin-2 (PS2) mutations, cellular phenotypes such as increased amount of extracellular secretion of amyloid β42, abnormal oxygen consumption, and increased reactive oxygen species in the cells were observed in a shorter culture period than those previously reported. Therefore, it is strongly anticipated that the induction method combining Ngn2 and miR-9/9*-124 will enable more rapid and simple screening for various types of neuronal disease phenotypes and promote drug discovery.
Collapse
Affiliation(s)
- Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Aoyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shoichiro Shibata
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mari Nakamura
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Saori Morota
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
44
|
Wu J, He J, Tian X, Luo Y, Zhong J, Zhang H, Li H, Cen B, Jiang T, Sun X. microRNA-9-5p alleviates blood-brain barrier damage and neuroinflammation after traumatic brain injury. J Neurochem 2020; 153:710-726. [PMID: 31951014 PMCID: PMC7317896 DOI: 10.1111/jnc.14963] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 01/27/2023]
Abstract
The level of microRNA‐9‐5p (miRNA‐9‐5p) in brain tissues is significantly changed after traumatic brain injury (TBI). However, the effect of miRNA‐9‐5p for brain function in TBI has not been elucidated. In this study, a controlled cortical impact model was used to induce TBI in Sprague–Dawley rats, and an oxygen glucose deprivation model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) and astrocytes were extracted from immature Sprague–Dawley rats and cocultured to reconstruct blood–brain barrier (BBB) in vitro. The results show that the level of miRNA‐9‐5p was significantly increased in brain tissues after TBI, and up‐regulation of miRNA9‐5p contributed to the recovery of neurological function. Up‐regulation of miRNA‐9‐5p with miRNA agomir may significantly alleviate apoptosis, neuroinflammation, and BBB damage in rats after TBI. Moreover, a dual luciferase reporter assay confirmed that miRNA‐9‐5p is a post‐transcriptional modulator of Ptch‐1. In in vitro experiments, the results confirmed that up‐regulation of miRNA‐9‐5p with miRNA mimic alleviates cellular apoptosis, inflammatory response, and BBB damage mainly by inhibiting Ptch‐1. In addition, we found that the activation of Hedgehog pathway was accompanied by inhibition of NF‐κB/MMP‐9 pathway in the BMECs treated with miRNA‐9‐5p mimic. Taken together, these results indicate that up‐regulation of miRNA‐9‐5p alleviates BBB damage and neuroinflammatory responses by activating the Hedgehog pathway and inhibiting NF‐κB/MMP‐9 pathway, which promotes the recovery of neurological function after TBI. ![]()
Collapse
Affiliation(s)
- Jingchuan Wu
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, China.,Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaocui Tian
- College of Pharmacy, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, District of Yuzhong, Chongqing, China
| | - Yuetao Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Cen
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020; 25:1175-1190. [PMID: 30413800 PMCID: PMC7244405 DOI: 10.1038/s41380-018-0285-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022]
Abstract
Circular RNAs (circRNAs), highly expressed in the central nervous system, are involved in various regulatory processes and implicated in some pathophysiology. However, the potential role of circRNAs in psychiatric diseases, particularly major depressive disorder (MDD), remains largely unknown. Here, we demonstrated that circular RNA DYM (circDYM) levels were significantly decreased both in the peripheral blood of patients with MDD and in the two depressive-like mouse models: the chronic unpredictable stress (CUS) and lipopolysaccharide (LPS) models. Restoration of circDYM expression significantly attenuated depressive-like behavior and inhibited microglial activation induced by CUS or LPS treatment. Further examination indicated that circDYM functions as an endogenous microRNA-9 (miR-9) sponge to inhibit miR-9 activity, which results in a downstream increase of target-HECT domain E3 ubiquitin protein ligase 1 (HECTD1) expression, an increase of HSP90 ubiquitination, and a consequent decrease of microglial activation. Taken together, the results of our study demonstrate the involvement of circDYM and its coupling mechanism in depression, providing translational evidence that circDYM may be a novel therapeutic target for depression.
Collapse
|
46
|
Liu S, Rao S, Xu Y, Li J, Huang H, Zhang X, Fu H, Wang Q, Cao H, Baranova A, Jin C, Zhang F. Identifying common genome-wide risk genes for major psychiatric traits. Hum Genet 2019; 139:185-198. [DOI: 10.1007/s00439-019-02096-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022]
|
47
|
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis 2019; 131:104162. [DOI: 10.1016/j.nbd.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
|
48
|
Zajdel M, Rymkiewicz G, Sromek M, Cieslikowska M, Swoboda P, Kulinczak M, Goryca K, Bystydzienski Z, Blachnio K, Ostrowska B, Borysiuk A, Druzd-Sitek A, Walewski J, Chechlinska M, Siwicki JK. Tumor and Cerebrospinal Fluid microRNAs in Primary Central Nervous System Lymphomas. Cancers (Basel) 2019; 11:E1647. [PMID: 31731456 PMCID: PMC6895823 DOI: 10.3390/cancers11111647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare, highly aggressive, extranodal form of non-Hodgkin lymphoma, predominantly diagnosed as primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL). Fast and precise diagnosis of PCNSL is critical yet challenging. microRNAs, important regulators in physiology and pathology are potential biomarkers. In 131 patients with CNS DLBCL and with non-malignant brain lesions (n-ML), miR-21, miR-19b and miR-92a, miR-155, miR-196b, miR-let-7b, miR-125b, and miR-9 were examined by RT-qPCR in brain biopsy samples (formalin-fixed paraffin-embedded tissues, FFPET; CNS DLBCL, n = 52; n-ML, n = 42) and cerebrospinal fluid samples (CSF; CNS DLBCL, n = 30; n-ML, n = 23) taken for routine diagnosis. FFPET samples were split into study and validation sets. Significantly higher CSF levels of miR-21, miR-19b, and miR-92a were identified in PCNSL but not in n-ML, and differentiated PCNSL from n-ML with 63.33% sensitivity and 80.77% specificity. In FFPETs, miR-155 and miR-196b were significantly overexpressed and miR-let-7b, miR-125b, and miR-9 were downregulated in PCNSL as compared to n-ML. Combined miR-155 and miR-let-7b expression levels in FFPETs discriminated PCNSL and n-ML with a 97% accuracy. In conclusion, tissue miR-155, miR-196b, miR-9, miR-125b, and miR-let-7b expression profiles differentiate PCNSL from n-ML. PCNSL CSFs and the relevant biopsy samples are characterized by specific, different microRNA profiles. A logistic regression model is proposed to discriminate between PCNSL and non-malignant brain lesions. None of the examined microRNAs influenced overall survival of PCNSL patients. Further ongoing developments involve next generation sequencing-based profiling of biopsy and CSF samples.
Collapse
Affiliation(s)
- Michalina Zajdel
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| | - Grzegorz Rymkiewicz
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (G.R.)
| | - Maria Sromek
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| | - Maria Cieslikowska
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| | - Pawel Swoboda
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| | - Mariusz Kulinczak
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| | - Krzysztof Goryca
- Department of Medical Genetics, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland
- Core Facilities CeNT, University of Warsaw, 02-097 Warsaw, Poland
| | - Zbigniew Bystydzienski
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (G.R.)
| | - Katarzyna Blachnio
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (G.R.)
| | - Beata Ostrowska
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland
| | - Anita Borysiuk
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (G.R.)
| | - Agnieszka Druzd-Sitek
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| | - Jan Konrad Siwicki
- Department of Immunology, Maria Sklodowska-Curie Institute—Oncology Center, 02-781 Warsaw, Poland; (M.Z.)
| |
Collapse
|
49
|
Tovo-Rodrigues L, Quinte GC, Brum CB, Ghisleni G, Bastos CR, Oliveira IOD, Barros FC, Barros AJD, Santos IS, Rohde LA, Hutz MH, Matijasevich A. The Role of MIR9-2 in Shared Susceptibility of Psychiatric Disorders during Childhood: A Population-Based Birth Cohort Study. Genes (Basel) 2019; 10:E626. [PMID: 31434288 PMCID: PMC6723948 DOI: 10.3390/genes10080626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It has been suggested that microRNAs (miRNAs; short non-protein-coding RNA molecules that mediate post-transcriptional regulation), including mir-9 and mir-34 families, are important for brain development. Current data suggest that mir-9 and mir-34 may have shared effects across psychiatric disorders. This study aims to explore the role of genetic polymorphisms in the MIR9-2 (rs4916723) and MIR34B/C (rs4938723) genes on the susceptibility of psychiatric disorders in children from the 2004 Pelotas Birth Cohort. METHODS Psychiatric disorders were assessed in 3585 individuals using Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV), criteria through the application of standard semi-structured interviews (using the Development and Well-Being Assessment, DAWBA) at the six-years-of-age follow-up. The outcome was defined as the presence of any mental disorder. We also considered two broad groups of internalizing and externalizing disorders to further investigate the role of these variants in mental health. RESULTS We observed an association between rs4916723 (MIR9-2) and the presence of any psychiatric disorder (odds ratios (OR) = 0.820; 95% CI = 0.7130-0.944; p = 0.006) and a suggestive effect on internalizing disorders (OR = 0.830; 95% CI = 0.698-0.987; p = 0.035). rs4938723 (MIR34B/C) was not associated with any evaluated outcome. CONCLUSION The study suggests that MIR9-2 may have an important role on a broad susceptibility for psychiatric disorders and may be important mainly for internalization problems.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil.
| | - Gabriela Callo Quinte
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Clarice Brinck Brum
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Clarissa Ribeiro Bastos
- Laboratory of Clinical Neuroscience, Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Isabel Oliveira de Oliveira
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Fernando C Barros
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Aluisio J D Barros
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil
| | - Iná S Santos
- Postgraduate Program In Health and Behavior, Catholic University of Pelotas., Pelotas, Rio Grande do Sul 96015-560, Brazil
- Post-graduate Program Pediatrics Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Luis A Rohde
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-007, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, São Paulo 05403-900, Brazil
| | - Mara H Hutz
- Program in Genetics and Molecular Biology Universidade Federal do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brasil
| |
Collapse
|
50
|
Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl Psychiatry 2019; 9:196. [PMID: 31431609 PMCID: PMC6702224 DOI: 10.1038/s41398-019-0538-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brain development is dependent on programmed gene expression, which is both genetically and epigenetically regulated. Post-transcriptional regulation of gene expression by microRNAs (miRNAs) is essential for brain development. As abnormal brain development is hypothesized to be associated with schizophrenia, miRNAs are an intriguing target for this disorder. The aims of this study were to determine the temporal dynamics of miRNA expression in the human dorsolateral prefrontal cortex (DLPFC), and the relationship between miRNA's temporal expression pattern and dysregulation in schizophrenia. This study used next-generation sequencing to characterize the temporal dynamics of miRNA expression in the DLPFC of 109 normal subjects (second trimester-74 years of age) and miRNA expression changes in 34 schizophrenia patients. Unlike mRNAs, the majority of which exhibits a wave of change in fetuses, most miRNAs are preferentially expressed during a certain period before puberty. It is noted that in schizophrenia patients, miRNAs normally enriched in infants tend to be upregulated, while those normally enriched in prepuberty tend to be downregulated, and the targets of these miRNAs are enriched for genes encoding synaptic proteins and those associated with schizophrenia. In addition, miR-936 and miR-3162 were found to be increased in the DLPFC of patients with schizophrenia. These findings reveal the temporal dynamics of miRNAs in the human DLPFC, implicate the importance of miRNAs in DLPFC development, and suggest a possible link between schizophrenia and dysregulation of miRNAs enriched in infancy and prepuberty.
Collapse
|