1
|
Al Mismar R, Samavarchi-Tehrani P, Seale B, Kasmaeifar V, Martin CE, Gingras AC. Extracellular proximal interaction profiling by cell surface-targeted TurboID reveals LDLR as a partner of liganded EGFR. Sci Signal 2024; 17:eadl6164. [PMID: 39499777 DOI: 10.1126/scisignal.adl6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/25/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Plasma membrane proteins play pivotal roles in receiving and transducing signals from other cells and from the environment and are vital for cellular functionality. Enzyme-based, proximity-dependent approaches, such as biotin identification (BioID), combined with mass spectrometry have begun to illuminate the landscape of proximal protein interactions within intracellular compartments. To extend the potential of these approaches to study the extracellular environment, we developed extracellular TurboID (ecTurboID), a method designed to profile the interactions between proteins on the surfaces of living cells over short timescales using the fast-acting biotin ligase TurboID. After optimizing our experimental and data analysis strategies to capture extracellular proximity interactions, we used ecTurboID to reveal the proximal interactomes of several plasma membrane proteins, including the epidermal growth factor receptor (EGFR). We found that EGF stimulation induced an association between EGFR and the low-density lipoprotein receptor (LDLR) and changed the interactome of LDLR by increasing its proximity with proteins that regulate EGFR signaling. The identification of this interaction between two well-studied and clinically relevant receptors illustrates the utility of our modified proximity labeling methodology for identifying dynamic extracellular associations between plasma membrane proteins.
Collapse
Affiliation(s)
- Rasha Al Mismar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Brendon Seale
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
| | - Vesal Kasmaeifar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Claire E Martin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Nelson CB, Wells JK, Pickett HA. The Eyes Absent family: At the intersection of DNA repair, mitosis, and replication. DNA Repair (Amst) 2024; 141:103729. [PMID: 39089192 DOI: 10.1016/j.dnarep.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.
Collapse
Affiliation(s)
- Christopher B Nelson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Jadon K Wells
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
3
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
4
|
Kruckow KL, Murray E, Shayhidin E, Rosenberg AF, Bowdish DME, Orihuela CJ. Chronic TNF exposure induces glucocorticoid-like immunosuppression in the alveolar macrophages of aged mice that enhances their susceptibility to pneumonia. Aging Cell 2024; 23:e14133. [PMID: 38459711 PMCID: PMC11296116 DOI: 10.1111/acel.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.
Collapse
Affiliation(s)
- Katherine L. Kruckow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Murray
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elnur Shayhidin
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Alexander F. Rosenberg
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn M. E. Bowdish
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Carlos J. Orihuela
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Hoermann B, Dürr EM, Ludwig C, Ercan M, Köhn M. A strategy to disentangle direct and indirect effects on (de)phosphorylation by chemical modulators of the phosphatase PP1 in complex cellular contexts. Chem Sci 2024; 15:2792-2804. [PMID: 38404380 PMCID: PMC10882499 DOI: 10.1039/d3sc04746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical activators and inhibitors are useful probes to identify substrates and downstream effects of enzymes; however, due to the complex signaling environment within cells, it is challenging to distinguish between direct and indirect effects. This is particularly the case for phosphorylation, where a single (de)phosphorylation event can trigger rapid changes in many other phosphorylation sites. An additional complication arises when a single catalytic entity, which acts in the form of many different holoenzymes with different substrates, is activated or inhibited, as it is unclear which holoenzymes are affected, and in turn which of their substrates are (de)phosphorylated. Direct target engaging MS-based technologies to study targets of drugs do not address these challenges. Here, we tackle this by studying the modulation of protein phosphatase-1 (PP1) activity by PP1-disrupting peptides (PDPs), as well as their selectivity toward PP1, by using a combination of mass spectrometry-based experiments. By combining cellular treatment with the PDP with in vitro dephosphorylation by the enzyme, we identify high confidence substrate candidates and begin to separate direct and indirect effects. Together with experiments analyzing which holoenzymes are particularly susceptible to this treatment, we obtain insights into the effect of the modulator on the complex network of protein (de)phosphorylation. This strategy holds promise for enhancing our understanding of PP1 in particular and, due to the broad applicability of the workflow and the MS-based read-out, of chemical modulators with complex mode of action in general.
Collapse
Affiliation(s)
- Bernhard Hoermann
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Eva-Maria Dürr
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Christina Ludwig
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM) Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM) Freising Germany
| | - Melda Ercan
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
6
|
Iazzi M, St-Germain J, Acharya S, Raught B, Gupta GD. Proximity Mapping of Ciliary Proteins by BioID. Methods Mol Biol 2024; 2725:181-198. [PMID: 37856025 DOI: 10.1007/978-1-0716-3507-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The primary cilium is a highly conserved microtubule-based organelle present in most vertebrate cell types. Mutations in ciliary protein genes can lead to dysfunctional or absent cilia and are the cause of a large group of heterogeneous diseases known as ciliopathies. ARL13B is a member of the ARF family of regulatory GTPases and is highly enriched on the ciliary membrane. The absence of ARL13B disrupts cilia architecture and mutations have been linked to several diseases; yet there remain major gaps in our understanding of the role that ARL13B plays in primary cilia function. Here, we demonstrate how in cellulo proximity-dependent biotinylation (BioID) can be used to generate a comprehensive protein proximity map of ciliary proteins by performing BioID on N- and C-terminally BirA*-tagged ARL13B. This method can theoretically provide insight into any cilia protein, identifying key interactors that play a critical role in ciliary biology.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Saujanya Acharya
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Gagan D Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada.
| |
Collapse
|
7
|
Hinton SD. Understanding Pseudophosphatase Function Through Biochemical Interactions. Methods Mol Biol 2024; 2743:21-41. [PMID: 38147206 DOI: 10.1007/978-1-0716-3569-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Pseudophosphatases have been solidified as important signaling molecules that regulate signal transduction cascades. However, their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this does not preclude their having other functions, including as integral elements of signaling networks. Thus, understanding their roles may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine-threonine/tyrosine-binding], which has been linked to tumorigenesis, hepatocellular carcinoma, glioblastoma, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase, so the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalian cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). We also provide a bioinformatic approach to investigating MK-STYX and MK-STYX(active mutant). These bioinformatic approaches can stand alone experimentally but also complement and enhance "wet" bench approaches such as binding assays and/or activity assays. A combination of cellular, molecular, biochemical, proteomic, and bioinformatic techniques has been a powerful tool in identifying novel functions of MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the functions of other pseudophosphatases.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
8
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
9
|
Russo M, Piccolo V, Polizzese D, Prosperini E, Borriero C, Polletti S, Bedin F, Marenda M, Michieletto D, Mandana GM, Rodighiero S, Cuomo A, Natoli G. Restrictor synergizes with Symplekin and PNUTS to terminate extragenic transcription. Genes Dev 2023; 37:1017-1040. [PMID: 38092518 PMCID: PMC10760643 DOI: 10.1101/gad.351057.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Transcription termination pathways mitigate the detrimental consequences of unscheduled promiscuous initiation occurring at hundreds of thousands of genomic cis-regulatory elements. The Restrictor complex, composed of the Pol II-interacting protein WDR82 and the RNA-binding protein ZC3H4, suppresses processive transcription at thousands of extragenic sites in mammalian genomes. Restrictor-driven termination does not involve nascent RNA cleavage, and its interplay with other termination machineries is unclear. Here we show that efficient termination at Restrictor-controlled extragenic transcription units involves the recruitment of the protein phosphatase 1 (PP1) regulatory subunit PNUTS, a negative regulator of the SPT5 elongation factor, and Symplekin, a protein associated with RNA cleavage complexes but also involved in cleavage-independent and phosphatase-dependent termination of noncoding RNAs in yeast. PNUTS and Symplekin act synergistically with, but independently from, Restrictor to dampen processive extragenic transcription. Moreover, the presence of limiting nuclear levels of Symplekin imposes a competition for its recruitment among multiple transcription termination machineries, resulting in mutual regulatory interactions. Hence, by synergizing with Restrictor, Symplekin and PNUTS enable efficient termination of processive, long-range extragenic transcription.
Collapse
Affiliation(s)
- Marta Russo
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Viviana Piccolo
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Danilo Polizzese
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Carolina Borriero
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Mattia Marenda
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gaurav Madappa Mandana
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy;
| |
Collapse
|
10
|
Camlin NJ, Venkatachalam I, Evans JP. Oscillations in PP1 activity are essential for accurate progression through mammalian oocyte meiosis. Cell Cycle 2023; 22:1614-1636. [PMID: 37340734 PMCID: PMC10361142 DOI: 10.1080/15384101.2023.2225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Tightly controlled fluctuations in kinase and phosphatase activity play important roles in regulating M-phase transitions. Protein Phosphatase 1 (PP1) is one of these phosphatases, with oscillations in PP1 activity driving mitotic M-phase. Evidence from a variety of experimental systems also points to roles in meiosis. Here, we report that PP1 is important for M-phase transitions through mouse oocyte meiosis. We employed a unique small-molecule approach to inhibit or activate PP1 at distinct phases of mouse oocyte meiosis. These studies show that temporal control of PP1 activity is essential for the G2/M transition, metaphase I/anaphase I transition, and the formation of a normal metaphase II oocyte. Our data also reveal that inappropriate activation of PP1 is more deleterious at the G2/M transition than at prometaphase I-to-metaphase I, and that an active pool of PP1 during prometaphase is vital for metaphase I/anaphase I transition and metaphase II chromosome alignment. Taken together, these results establish that loss of oscillations in PP1 activity causes a range of severe meiotic defects, pointing to essential roles for PP1 in female fertility, and more broadly, M-phase regulation.
Collapse
Affiliation(s)
- Nicole J. Camlin
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| | - Ilakkiya Venkatachalam
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
- Department of Human Genetics, University of Michigan, Ann Arbor, MIUnited States
| | - Janice P. Evans
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| |
Collapse
|
11
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
12
|
Kong Q, Ke M, Weng Y, Qin Y, He A, Li P, Cai Z, Tian R. Dynamic Phosphotyrosine-Dependent Signaling Profiling in Living Cells by Two-Dimensional Proximity Proteomics. J Proteome Res 2022; 21:2727-2735. [DOI: 10.1021/acs.jproteome.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Yicheng Weng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Yunqiu Qin
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
13
|
Chen Y, Zhang B, Liu T, Chen X, Wang Y, Zhang H. T Cells With Activated STAT4 Drive the High-Risk Rejection State to Renal Allograft Failure After Kidney Transplantation. Front Immunol 2022; 13:895762. [PMID: 35844542 PMCID: PMC9283858 DOI: 10.3389/fimmu.2022.895762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
In kidney transplantation, deteriorated progression of rejection is considered to be a leading course of postoperative mortality. However, the conventional histologic diagnosis is limited in reading the rejection status at the molecular level, thereby triggering mismatched pathogenesis with clinical phenotypes. Here, by applying uniform manifold approximation and projection and Leiden algorithms to 2,611 publicly available microarray datasets of renal transplantation, we uncovered six rejection states with corresponding signature genes and revealed a high-risk (HR) state that was essential in promoting allograft loss. By identifying cell populations from single-cell RNA sequencing data that were associated with the six rejection states, we identified a T-cell population to be the pathogenesis-triggering cells associated with the HR rejection state. Additionally, by constructing gene regulatory networks, we identified that activated STAT4, as a core transcription factor that was regulated by PTPN6 in T cells, was closely linked to poor allograft function and prognosis. Taken together, our study provides a novel strategy to help with the precise diagnosis of kidney allograft rejection progression, which is powerful in investigating the underlying molecular pathogenesis, and therefore, for further clinical intervention.
Collapse
Affiliation(s)
- Yihan Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bao Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianliang Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yaning Wang, ; Hongbo Zhang,
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yaning Wang, ; Hongbo Zhang,
| |
Collapse
|
14
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Iazzi M, Astori A, St-Germain J, Raught B, Gupta GD. Proximity Profiling of the CFTR Interaction Landscape in Response to Orkambi. Int J Mol Sci 2022; 23:2442. [PMID: 35269585 PMCID: PMC8910062 DOI: 10.3390/ijms23052442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Audrey Astori
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Jonathan St-Germain
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Gagan D. Gupta
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
16
|
Abstract
Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein–protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription. Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here the authors identify 6703 and 1536 protein–protein interactions for 109 different human TFs through BioID and AP-MS analyses, respectively.
Collapse
|
17
|
Kazan JM, Desrochers G, Martin CE, Jeong H, Kharitidi D, Apaja PM, Roldan A, St. Denis N, Gingras AC, Lukacs GL, Pause A. Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. iScience 2021; 24:103274. [PMID: 34761192 PMCID: PMC8567383 DOI: 10.1016/j.isci.2021.103274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
Collapse
Affiliation(s)
- Jalal M. Kazan
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Desrochers
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pirjo M. Apaja
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel Roldan
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nicole St. Denis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gergely L. Lukacs
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
18
|
Ulengin-Talkish I, Parson MAH, Jenkins ML, Roy J, Shih AZL, St-Denis N, Gulyas G, Balla T, Gingras AC, Várnai P, Conibear E, Burke JE, Cyert MS. Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nat Commun 2021; 12:6064. [PMID: 34663815 PMCID: PMC8523714 DOI: 10.1038/s41467-021-26326-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAβ1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAβ1.
Collapse
Affiliation(s)
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexis Z L Shih
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- High-Fidelity Science Communications, Summerside, PE, Canada
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Brauer BL, Wiredu K, Mitchell S, Moorhead GB, Gerber SA, Kettenbach AN. Affinity-based profiling of endogenous phosphoprotein phosphatases by mass spectrometry. Nat Protoc 2021; 16:4919-4943. [PMID: 34518704 PMCID: PMC8822503 DOI: 10.1038/s41596-021-00604-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Phosphoprotein phosphatases (PPPs) execute >90% of serine/threonine dephosphorylation in cells and tissues. While the role of PPPs in cell biology and diseases such as cancer, cardiac hypertrophy and Alzheimer's disease is well established, the molecular mechanisms governing and governed by PPPs still await discovery. Here we describe a chemical proteomic strategy, phosphatase inhibitor beads and mass spectrometry (PIB-MS), that enables the identification and quantification of PPPs and their posttranslational modifications in as little as 12 h. Using a specific but nonselective PPP inhibitor immobilized on beads, PIB-MS enables the efficient affinity-capture, identification and quantification of endogenous PPPs and associated proteins ('PPPome') from cells and tissues. PIB-MS captures functional, endogenous PPP subunit interactions and enables discovery of new binding partners. It performs PPP enrichment without exogenous expression of tagged proteins or specific antibodies. Because PPPs are among the most conserved proteins across evolution, PIB-MS can be employed in any cell line, tissue or organism.
Collapse
Affiliation(s)
- Brooke L Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kwame Wiredu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sierra Mitchell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Scott A Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
20
|
Tahir R, Madugundu AK, Udainiya S, Cutler JA, Renuse S, Wang L, Pearson NA, Mitchell CJ, Mahajan N, Pandey A, Wu X. Proximity-Dependent Biotinylation to Elucidate the Interactome of TNK2 Nonreceptor Tyrosine Kinase. J Proteome Res 2021; 20:4566-4577. [PMID: 34428048 DOI: 10.1021/acs.jproteome.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Savita Udainiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Nupam Mahajan
- Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
21
|
A proximity-dependent biotinylation map of a human cell. Nature 2021; 595:120-124. [PMID: 34079125 DOI: 10.1038/s41586-021-03592-2] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells5-7. Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better.
Collapse
|
22
|
Piette BL, Alerasool N, Lin ZY, Lacoste J, Lam MHY, Qian WW, Tran S, Larsen B, Campos E, Peng J, Gingras AC, Taipale M. Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains. Mol Cell 2021; 81:2549-2565.e8. [PMID: 33957083 DOI: 10.1016/j.molcel.2021.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the interactome of all human JDPs and Hsp70s. The resulting network suggests specific functions for many uncharacterized JDPs, and we establish a role of conserved JDPs DNAJC9 and DNAJC27 in histone chaperoning and ciliogenesis, respectively. Unexpectedly, we find that the J domain of DNAJC27 but not of other JDPs can fully replace the function of endogenous DNAJC27, suggesting a previously unappreciated role for J domains themselves in JDP specificity. More broadly, our work expands the role of the Hsp70-regulated proteostasis network and provides a platform for further discovery of JDP-dependent functions.
Collapse
Affiliation(s)
- Benjamin L Piette
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mandy Hiu Yi Lam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Eric Campos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
23
|
Yao B, Wang L, Wang H, Bao J, Li Q, Yu F, Zhu W, Zhang L, Li W, Gu Z, Fei K, Zhang P, Zhang F, Huang X. Seven interferon gamma response genes serve as a prognostic risk signature that correlates with immune infiltration in lung adenocarcinoma. Aging (Albany NY) 2021; 13:11381-11410. [PMID: 33839701 PMCID: PMC8109098 DOI: 10.18632/aging.202831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Interferon-gamma (IFN-γ) plays a complex role in modulating tumor microenvironment during lung adenocarcinoma (LUAD) development. In order to define the role of IFN-γ response genes in LUAD progression, we characterized the gene expression, mutation profile, protein-protein interaction of 24 IFN-γ response genes, which exhibited significant hazard ratio in overall survival. Two subgroups of LUAD from the TCGA cohort, which showed significant difference in the survival rate, were identified based on the expression of these genes. Furthermore, LASSO penalized cox regression model was used to derive a risk signature comprising seven IFN-γ response genes, including CD74, CSF2RB, PTPN6, MT2A, NMI, LATS2, and PFKP, which can serve as an independent prognostic predictor of LUAD. The risk signature was validated in an independent LUAD cohort. The high risk group is enriched with genes regulating cell cycle and DNA replication, as well as a high level of pro-tumor immune cells. In addition, the risk score is negatively correlated with the expression of immune metagenes, but positively correlated with DNA damage repair genes. Our findings reveal that seven-gene risk signature can be a valuable prognostic predictor for LUAD, and they are crucial participants in tumor microenvironment of LUAD.
Collapse
Affiliation(s)
- Boyang Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Lixin Wang
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Heyong Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jinxia Bao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qiwen Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fengzhi Yu
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wenjing Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Li Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wang Li
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, Shandong, China
| | - Zhan Gu
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Fan Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
24
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
25
|
Chen L, Zhang Y, Shu X, Chen Q, Wei T, Wang H, Wang X, Wu Q, Zhang X, Liu X, Zheng S, Huang L, Xiao J, Jiang C, Yang B, Wang Z, Guo X. Proteasome regulation by reversible tyrosine phosphorylation at the membrane. Oncogene 2021; 40:1942-1956. [PMID: 33603165 PMCID: PMC7990385 DOI: 10.1038/s41388-021-01674-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating 26S proteasome function in health and disease. Over 100 phospho-tyrosine sites of the human proteasome have been detected, and yet their function and regulation remain poorly understood. Here we show that the 19S subunit Rpt2 is phosphorylated at Tyr439, a strictly conserved residue within the C-terminal HbYX motif of Rpt2 that is essential for 26S proteasome assembly. Unexpectedly, we found that Y439 phosphorylation depends on Rpt2 membrane localization mediated by its N-myristoylation. Multiple receptors tyrosine kinases can trigger Rpt2-Y439 phosphorylation by activating Src, a N-myristoylated tyrosine kinase. Src directly phosphorylates Rpt2-Y439 in vitro and negatively regulates 26S proteasome activity at cellular membranes, which can be reversed by the membrane-associated isoform of protein tyrosine phosphatase nonreceptor type 2 (PTPN2). In H1975 lung cancer cells with activated Src, blocking Rpt2-Y439 phosphorylation by the Y439F mutation conferred partial resistance to the Src inhibitor saracatinib both in vitro and in a mouse xenograft tumor model, and caused significant changes of cellular responses to saracatinib at the proteome level. Our study has defined a novel mechanism involved in the spatial regulation of proteasome function and provided new insights into tyrosine kinase inhibitor-based anticancer therapies.
Collapse
Affiliation(s)
- Lu Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yanan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiong Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tiantian Wei
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Heman Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaorong Wang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Qirou Wu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lan Huang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Junyu Xiao
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiping Wang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Mahdessian D, Cesnik AJ, Gnann C, Danielsson F, Stenström L, Arif M, Zhang C, Le T, Johansson F, Schutten R, Bäckström A, Axelsson U, Thul P, Cho NH, Carja O, Uhlén M, Mardinoglu A, Stadler C, Lindskog C, Ayoglu B, Leonetti MD, Pontén F, Sullivan DP, Lundberg E. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 2021; 590:649-654. [PMID: 33627808 DOI: 10.1038/s41586-021-03232-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.
Collapse
Affiliation(s)
- Diana Mahdessian
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anthony J Cesnik
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Genetics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Christian Gnann
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Frida Danielsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Stenström
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Trang Le
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fredric Johansson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Rutger Schutten
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Bäckström
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ulrika Axelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Peter Thul
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nathan H Cho
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Oana Carja
- Department of Genetics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Charlotte Stadler
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Devin P Sullivan
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Genetics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
29
|
Nasa I, Kettenbach AN. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochem Soc Trans 2020; 48:2015-2027. [PMID: 33125487 PMCID: PMC8380034 DOI: 10.1042/bst20200177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Phosphoprotein Phosphatases (PPPs) are enzymes highly conserved from yeast and human and catalyze the majority of the serine and threonine dephosphorylation in cells. To achieve substrate specificity and selectivity, PPPs form multimeric holoenzymes consisting of catalytic, structural/scaffolding, and regulatory subunits. For the Protein Phosphatase 2A (PP2A)-subfamily of PPPs, holoenzyme assembly is at least in part regulated by an unusual carboxyl-terminal methyl-esterification, commonly referred to as 'methylation'. Carboxyl-terminal methylation is catalyzed by Leucine carboxyl methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by protein phosphatase methylesterase 1 (PME1). For PP2A, methylation dictates regulatory subunit selection and thereby downstream phosphorylation signaling. Intriguingly, there are four families of PP2A regulatory subunits, each exhibiting different levels of methylation sensitivity. Thus, changes in PP2A methylation stoichiometry alters the complement of PP2A holoenzymes in cells and creates distinct modes of kinase opposition. Importantly, selective inactivation of PP2A signaling through the deregulation of methylation is observed in several diseases, most prominently Alzheimer's disease (AD). In this review, we focus on how carboxyl-terminal methylation of the PP2A subfamily (PP2A, PP4, and PP6) regulates holoenzyme function and thereby phosphorylation signaling, with an emphasis on AD.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| |
Collapse
|
30
|
Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat Protoc 2020; 15:3182-3211. [PMID: 32778839 DOI: 10.1038/s41596-020-0365-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Affinity purification coupled with mass spectrometry (AP-MS) and proximity-dependent biotinylation identification (BioID) methods have made substantial contributions to interaction proteomics studies. Whereas AP-MS results in the identification of proteins that are in a stable complex, BioID labels and identifies proteins that are in close proximity to the bait, resulting in overlapping yet distinct protein identifications. Integration of AP-MS and BioID data has been shown to comprehensively characterize a protein's molecular context, but interactome analysis using both methods in parallel is still labor and resource intense with respect to cell line generation and protein purification. Therefore, we developed the Multiple Approaches Combined (MAC)-tag workflow, which allows for both AP-MS and BioID analysis with a single construct and with almost identical protein purification and mass spectrometry (MS) identification procedures. We have applied the MAC-tag workflow to a selection of subcellular markers to provide a global view of the cellular protein interactome landscape. This localization database is accessible via our online platform ( http://proteomics.fi ) to predict the cellular localization of a protein of interest (POI) depending on its identified interactors. In this protocol, we present the detailed three-stage procedure for the MAC-tag workflow: (1) cell line generation for the MAC-tagged POI; (2) parallel AP-MS and BioID protein purification followed by MS analysis; and (3) protein interaction data analysis, data filtration and visualization with our localization visualization platform. The entire procedure can be completed within 25 d.
Collapse
|
31
|
Pereira CD, Martins F, Santos M, Müeller T, da Cruz e Silva OAB, Rebelo S. Nuclear Accumulation of LAP1:TRF2 Complex during DNA Damage Response Uncovers a Novel Role for LAP1. Cells 2020; 9:E1804. [PMID: 32751253 PMCID: PMC7465990 DOI: 10.3390/cells9081804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) is a nuclear envelope (NE) protein whose function remains poorly characterized. In a recent LAP1 protein interactome study, a putative regulatory role in the DNA damage response (DDR) has emerged and telomeric repeat-binding factor 2 (TRF2), a protein intimately associated with this signaling pathway, was among the list of LAP1 interactors. To gain insights into LAP1's physiological properties, the interaction with TRF2 in human cells exposed to DNA-damaging agents was investigated. The direct LAP1:TRF2 binding was validated in vitro by blot overlay and in vivo by co-immunoprecipitation after hydrogen peroxide and bleomycin treatments. The regulation of this protein interaction by LAP1 phosphorylation was demonstrated by co-immunoprecipitation and mass spectrometry following okadaic acid exposure. The involvement of LAP1 and TRF2 in the DDR was confirmed by their increased nuclear protein levels after bleomycin treatment, evaluated by immunoblotting, as well as by their co-localization with DDR factors at the NE and within the nucleoplasm, assessed by immunocytochemistry. Effectively, we showed that the LAP1:TRF2 complex is established during a cellular response against DNA damage. This work proposes a novel functional role for LAP1 in the DDR, revealing a potential biological mechanism that may be disrupted in LAP1-associated pathologies.
Collapse
Affiliation(s)
- Cátia D. Pereira
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Mariana Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Thorsten Müeller
- Cell Signaling in Neurodegeneration (CSIN), Medical Proteome-Center, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| |
Collapse
|
32
|
Wen Z, Zhu H, Zhang A, Lin J, Zhang G, Liu D, Xiao Y, Ye C, Sun D, Wu B, Zhang J, Gao J. Cdc14a has a role in spermatogenesis, sperm maturation and male fertility. Exp Cell Res 2020; 395:112178. [PMID: 32679235 DOI: 10.1016/j.yexcr.2020.112178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
Cdc14a is an evolutionarily conserved dual-specific protein phosphatase, and it plays different roles in different organisms. Cdc14a mutations in human have been reported to cause male infertility, while the specific role of Cdc14a in regulation of the male reproductive system remains elusive. In the present study, we established a knockout mouse model to study the function of Cdc14a in male reproductive system. Cdc14a-/- male mice were subfertile and they could only produce very few offspring. The number of sperm was decreased, the sperm motility was impaired, and the proportion of sperm with abnormal morphology was elevated in Cdc14a-/- mice. When we mated Cdc14a-/- male mice with wild-type (WT) female mice, fertilized eggs could be found in female fallopian tubes, however, the majority of these embryos died during development. Some empty spaces were observed in seminiferous tubule of Cdc14a-/- testes. Compared with WT male mice, the proportions of pachytene spermatocytes were increased and germ cells stained with γH2ax were decreased in Cdc14a-/- male mice, indicating that knockout of Cdc14a inhibited meiotic initiation. Subsequently, we analyzed the expression levels of some substrate proteins of Cdc14a, including Cdc25a, Wee1, and PR-Set7, and compared those with WT testes, in which the expression levels of these proteins were significantly increased in Cdc14a-/- testes. Our results revealed that Cdc14a-/- male mice are highly subfertile, and Cdc14a is essential for normal spermatogenesis and sperm function.
Collapse
Affiliation(s)
- Zongzhuang Wen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Jing Lin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Guangkai Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300041, PR China.
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, PR China.
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
33
|
Hinton SD. Pseudophosphatase MK-STYX: the atypical member of the MAP kinase phosphatases. FEBS J 2020; 287:4221-4231. [PMID: 32472731 DOI: 10.1111/febs.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
The regulation of the phosphorylation of mitogen-activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival, and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
34
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
35
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
36
|
Müller PM, Rademacher J, Bagshaw RD, Wortmann C, Barth C, van Unen J, Alp KM, Giudice G, Eccles RL, Heinrich LE, Pascual-Vargas P, Sanchez-Castro M, Brandenburg L, Mbamalu G, Tucholska M, Spatt L, Czajkowski MT, Welke RW, Zhang S, Nguyen V, Rrustemi T, Trnka P, Freitag K, Larsen B, Popp O, Mertins P, Gingras AC, Roth FP, Colwill K, Bakal C, Pertz O, Pawson T, Petsalaki E, Rocks O. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol 2020; 22:498-511. [PMID: 32203420 DOI: 10.1038/s41556-020-0488-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.
Collapse
Affiliation(s)
- Paul M Müller
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Richard D Bagshaw
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Carolin Barth
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jakobus van Unen
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Keziban M Alp
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Louise E Heinrich
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | | | - Marta Sanchez-Castro
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Geraldine Mbamalu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Monika Tucholska
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Lisa Spatt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Maciej T Czajkowski
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Sunqu Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Vivian Nguyen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Philipp Trnka
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Kiara Freitag
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Oliver Popp
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Mertins
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Chris Bakal
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Evangelia Petsalaki
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Oliver Rocks
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Roy J, Cyert MS. Identifying New Substrates and Functions for an Old Enzyme: Calcineurin. Cold Spring Harb Perspect Biol 2020; 12:a035436. [PMID: 31308145 PMCID: PMC7050593 DOI: 10.1101/cshperspect.a035436] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biological processes are dynamically regulated by signaling networks composed of protein kinases and phosphatases. Calcineurin, or PP3, is a conserved phosphoserine/phosphothreonine-specific protein phosphatase and member of the PPP family of phosphatases. Calcineurin is unique, however, in its activation by Ca2+ and calmodulin. This ubiquitously expressed phosphatase controls Ca2+-dependent processes in all human tissues, but is best known for driving the adaptive immune response by dephosphorylating the nuclear factor of the activated T-cells (NFAT) family of transcription factors. Therefore, calcineurin inhibitors, FK506 (tacrolimus), and cyclosporin A serve as immunosuppressants. We describe some of the adverse effects associated with calcineurin inhibitors that result from inhibition of calcineurin in nonimmune tissues, illustrating the many functions of this enzyme that have yet to be elucidated. In fact, calcineurin has essential roles beyond the immune system, from yeast to humans, but since its discovery more than 30 years ago, only a small number of direct calcineurin substrates have been shown (∼75 proteins). This is because of limitations in current methods for identification of phosphatase substrates. Here we discuss recent insights into mechanisms of calcineurin activation and substrate recognition that have been critical in the development of novel approaches for identifying its targets systematically. Rather than comprehensively reviewing known functions of calcineurin, we highlight new approaches to substrate identification for this critical regulator that may reveal molecular mechanisms underlying toxicities caused by calcineurin inhibitor-based immunosuppression.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
38
|
Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, Lin ZY, Thibault MP, Dubé N, Faubert D, Hipfner DR, Gingras AC, Côté JF. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol 2019; 22:120-134. [DOI: 10.1038/s41556-019-0438-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
39
|
Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M, Gauthier MS, Coulombe B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J Proteome Res 2019; 19:18-27. [PMID: 31738558 DOI: 10.1021/acs.jproteome.9b00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PAQosome is an 11-subunit chaperone involved in the biogenesis of several human protein complexes. We show that ASDURF, a recently discovered upstream open reading frame (uORF) in the 5' UTR of ASNSD1 mRNA, encodes the 12th subunit of the PAQosome. ASDURF displays significant structural homology to β-prefoldins and assembles with the five known subunits of the prefoldin-like module of the PAQosome to form a heterohexameric prefoldin-like complex. A model of the PAQosome prefoldin-like module is presented. The data presented here provide an example of a eukaryotic uORF-encoded polypeptide whose function is not limited to cis-acting translational regulation of downstream coding sequence and highlights the importance of including alternative ORF products in proteomic studies.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Annie Bouchard
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Mathieu Blanchette
- School of Computer Science , McGill University , 3480 University Street , Montréal , Quebec H3A 0E9 , Canada
| | - Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de Médecine , Université de Montréal , 2900 Boulevard Édouart-Montpetit , Montréal , Quebec H3T 1J4 , Canada
| |
Collapse
|
40
|
Chavez JD, Keller A, Zhou B, Tian R, Bruce JE. Cellular Interactome Dynamics during Paclitaxel Treatment. Cell Rep 2019; 29:2371-2383.e5. [PMID: 31747606 PMCID: PMC6910234 DOI: 10.1016/j.celrep.2019.10.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-cycle inhibitors, including paclitaxel, are among the most widely used and effective cancer therapies. However, several challenges limit the success of paclitaxel, including drug resistance and toxic side effects. Paclitaxel is thought to act primarily by stabilizing microtubules, locking cells in a mitotic state. However, the resulting cytotoxicity and tumor shrinkage rates observed cannot be fully explained by this mechanism alone. Here we apply quantitative chemical cross-linking with mass spectrometry analysis to paclitaxel-treated cells. Our results provide large-scale measurements of relative protein levels and, perhaps more importantly, changes to protein conformations and interactions that occur upon paclitaxel treatment. Drug concentration-dependent changes are revealed in known drug targets including tubulins, as well as many other proteins and protein complexes involved in apoptotic signaling and cellular homeostasis. As such, this study provides insight into systems-level changes to protein structures and interactions that occur with paclitaxel treatment.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Bo Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98105, USA
| | - Rong Tian
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98105, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
41
|
Singla A, Fedoseienko A, Giridharan SSP, Overlee BL, Lopez A, Jia D, Song J, Huff-Hardy K, Weisman L, Burstein E, Billadeau DD. Endosomal PI(3)P regulation by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein recycling. Nat Commun 2019; 10:4271. [PMID: 31537807 PMCID: PMC6753146 DOI: 10.1038/s41467-019-12221-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Protein recycling through the endolysosomal system relies on molecular assemblies that interact with cargo proteins, membranes, and effector molecules. Among them, the COMMD/CCDC22/CCDC93 (CCC) complex plays a critical role in recycling events. While CCC is closely associated with retriever, a cargo recognition complex, its mechanism of action remains unexplained. Herein we show that CCC and retriever are closely linked through sharing a common subunit (VPS35L), yet the integrity of CCC, but not retriever, is required to maintain normal endosomal levels of phosphatidylinositol-3-phosphate (PI(3)P). CCC complex depletion leads to elevated PI(3)P levels, enhanced recruitment and activation of WASH (an actin nucleation promoting factor), excess endosomal F-actin and trapping of internalized receptors. Mechanistically, we find that CCC regulates the phosphorylation and endosomal recruitment of the PI(3)P phosphatase MTMR2. Taken together, we show that the regulation of PI(3)P levels by the CCC complex is critical to protein recycling in the endosomal compartment. Recycling of proteins that have entered the endosome is essential to homeostasis. The COMMD/CCDC22/CCDC93 (CCC) complex is regulator of recycling but the molecular mechanisms are unclear. Here, the authors report that the CCC complex regulates endosomal recycling by maintaining PI3P levels on endosomal membranes.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina Fedoseienko
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sai S P Giridharan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brittany L Overlee
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adam Lopez
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jie Song
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kayci Huff-Hardy
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lois Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Daniel D Billadeau
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Chatterjee N, Pazarentzos E, Mayekar MK, Gui P, Allegakoen DV, Hrustanovic G, Olivas V, Lin L, Verschueren E, Johnson JR, Hofree M, Yan JJ, Newton BW, Dollen JV, Earnshaw CH, Flanagan J, Chan E, Asthana S, Ideker T, Wu W, Suzuki J, Barad BA, Kirichok Y, Fraser JS, Weiss WA, Krogan NJ, Tulpule A, Sabnis AJ, Bivona TG. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Rep 2019; 28:2317-2330.e8. [PMID: 31461649 PMCID: PMC6728083 DOI: 10.1016/j.celrep.2019.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor and bi-functional lipid and protein phosphatase. We report that the metabolic regulator pyruvate dehydrogenase kinase1 (PDHK1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The PTEN protein phosphatase dephosphorylates nuclear factor κB (NF-κB)-activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NF-κB target gene. Loss of the PTEN protein phosphatase upregulates PDHK1 to induce aerobic glycolysis and PDHK1 cellular dependence. PTEN-deficient human tumors harbor increased PDHK1, a biomarker of decreased patient survival. This study uncovers a PTEN-regulated signaling pathway and reveals PDHK1 as a potential target in PTEN-deficient cancers.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Evangelos Pazarentzos
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David V Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gorjan Hrustanovic
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luping Lin
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erik Verschueren
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Matan Hofree
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Jenny J Yan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Billy W Newton
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - John V Dollen
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Charles H Earnshaw
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Flanagan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elton Chan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Saurabh Asthana
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trey Ideker
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junji Suzuki
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Asmin Tulpule
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amit J Sabnis
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Hart M, Zulkipli I, Shrestha RL, Dang D, Conti D, Gul P, Kujawiak I, Draviam VM. MARK2/Par1b kinase present at centrosomes and retraction fibres corrects spindle off-centring induced by actin disassembly. Open Biol 2019; 9:180263. [PMID: 31238822 PMCID: PMC6597755 DOI: 10.1098/rsob.180263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue maintenance and development requires a directed plane of cell division. While it is clear that the division plane can be determined by retraction fibres that guide spindle movements, the precise molecular components of retraction fibres that control spindle movements remain unclear. We report MARK2/Par1b kinase as a novel component of actin-rich retraction fibres. A kinase-dead mutant of MARK2 reveals MARK2's ability to monitor subcellular actin status during interphase. During mitosis, MARK2's localization at actin-rich retraction fibres, but not the rest of the cortical membrane or centrosome, is dependent on its activity, highlighting a specialized spatial regulation of MARK2. By subtly perturbing the actin cytoskeleton, we reveal MARK2's role in correcting mitotic spindle off-centring induced by actin disassembly. We propose that MARK2 provides a molecular framework to integrate cortical signals and cytoskeletal changes in mitosis and interphase.
Collapse
Affiliation(s)
- Madeleine Hart
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Ihsan Zulkipli
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | | | - David Dang
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK.,3 Department of Informatics, King's College, London , London , UK
| | - Duccio Conti
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Parveen Gul
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Izabela Kujawiak
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | - Viji M Draviam
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| |
Collapse
|
44
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
45
|
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 2019; 8:44597. [PMID: 30924770 PMCID: PMC6440744 DOI: 10.7554/elife.44597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine A Young
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Iain M Hay
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Ching Liang
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, United States
| | - WeiYu Lin
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Kubiniok P, Finicle BT, Piffaretti F, McCracken AN, Perryman M, Hanessian S, Edinger AL, Thibault P. Dynamic Phosphoproteomics Uncovers Signaling Pathways Modulated by Anti-oncogenic Sphingolipid Analogs. Mol Cell Proteomics 2019; 18:408-422. [PMID: 30482847 PMCID: PMC6398214 DOI: 10.1074/mcp.ra118.001053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
The anti-neoplastic sphingolipid analog SH-BC-893 starves cancer cells to death by down-regulating cell surface nutrient transporters and blocking lysosomal trafficking events. These effects are mediated by the activation of protein phosphatase 2A (PP2A). To identify putative PP2A substrates, we used quantitative phosphoproteomics to profile the temporal changes in protein phosphorylation in FL5.12 cells following incubation with SH-BC-893 or the specific PP2A inhibitor LB-100. These analyses enabled the profiling of more than 15,000 phosphorylation sites, of which 958 sites on 644 proteins were dynamically regulated. We identified 114 putative PP2A substrates including several nutrient transporter proteins, GTPase regulators (e.g. Agap2, Git1), and proteins associated with actin cytoskeletal remodeling (e.g. Vim, Pxn). To identify SH-BC-893-induced cell signaling events that disrupt lysosomal trafficking, we compared phosphorylation profiles in cells treated with SH-BC-893 or C2-ceramide, a non-vacuolating sphingolipid that does not impair lysosomal fusion. These analyses combined with functional assays uncovered the differential regulation of Akt and Gsk3b by SH-BC-893 (vacuolating) and C2-ceramide (non-vacuolating). Dynamic phosphoproteomics of cells treated with compounds affecting PP2A activity thus enabled the correlation of cell signaling with phenotypes to rationalize their mode of action.
Collapse
Affiliation(s)
- Peter Kubiniok
- From the ‡Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | - Brendan T Finicle
- ¶Department of Developmental and Cell Biology, University of California Irvine, Irvine CA 92697
| | - Fanny Piffaretti
- From the ‡Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Alison N McCracken
- ¶Department of Developmental and Cell Biology, University of California Irvine, Irvine CA 92697
| | - Michael Perryman
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | - Stephen Hanessian
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | - Aimee L Edinger
- ¶Department of Developmental and Cell Biology, University of California Irvine, Irvine CA 92697;
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada;
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
- ‖Department of Biochemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
47
|
Del Olmo T, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L, Steinberg F, Boisvert FM, Jean S. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting. EMBO Rep 2019; 20:e47192. [PMID: 30610016 PMCID: PMC6362359 DOI: 10.15252/embr.201847192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
RAB GTPases are central modulators of membrane trafficking. They are under the dynamic regulation of activating guanine exchange factors (GEFs) and inactivating GTPase-activating proteins (GAPs). Once activated, RABs recruit a large spectrum of effectors to control trafficking functions of eukaryotic cells. Multiple proteomic studies, using pull-down or yeast two-hybrid approaches, have identified a number of RAB interactors. However, due to the in vitro nature of these approaches and inherent limitations of each technique, a comprehensive definition of RAB interactors is still lacking. By comparing quantitative affinity purifications of GFP:RAB21 with APEX2-mediated proximity labeling of RAB4a, RAB5a, RAB7a, and RAB21, we find that APEX2 proximity labeling allows for the comprehensive identification of RAB regulators and interactors. Importantly, through biochemical and genetic approaches, we establish a novel link between RAB21 and the WASH and retromer complexes, with functional consequences on cargo sorting. Hence, APEX2-mediated proximity labeling of RAB neighboring proteins represents a new and efficient tool to define RAB functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mia Lecours
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Lessard
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Estrogen receptor-α regulation of microRNA-590 targets FAM171A1-a modifier of breast cancer invasiveness. Oncogenesis 2019; 8:5. [PMID: 30631046 PMCID: PMC6328622 DOI: 10.1038/s41389-018-0113-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
The pathobiology and aggressiveness of the triple negative breast cancer (TNBC) are influenced by genes that are preferentially expressed in TNBC cells. However, the nature of such genes with the role in invasiveness of TNBC cells is not fully understood. Here, we identified FAM171A1, member (A1) of the family with sequence similarity 171, as an overexpressed candidate gene in TNBC cells and tumors as compared to estrogen receptor-alpha (ERα) positive breast cancer. We found that the expression of FAM171A1 correlates well with the loss of ERα as well as its newly identified target miR590-5p in TNBC but not in ERα-positive cells. In addition, we report that ERα regulates FAM171A1 expression through a mechanism which involves ERα stimulation of miR590-5p expression via binding to its promoter, and in-turn, miR590-5p suppression of FAM171A1 expression. Further, we found that the levels of FAM171A1 correlate well with cancer cell aggressiveness as depletion or overexpression of FAM171A1 confers reduced or increased ability of TNBC cells to form mammospheres, respectively in accordance with the previous report of increased mammosphere formation potential of metastatic cells. In brief, results presented here have demonstrated that ERα regulation of FAM171A1 expression via miR590-5p explains the molecular basis of the noticed reduced levels of FAM171A1 in ER-positive breast cancer cells and that FAM171A1 is a preferably TNBC- overexpressed gene. Further, the noted loss of ERα-miR590-5p axis may upregulate the expression of FAM171A1 and consequently, resulting aggressiveness of TNBC cells. These findings suggest that FAM171A1 might represent a potentially novel therapeutic target for TNBC tumors.
Collapse
|
49
|
Imtiaz A, Belyantseva IA, Beirl AJ, Fenollar-Ferrer C, Bashir R, Bukhari I, Bouzid A, Shaukat U, Azaiez H, Booth KT, Kahrizi K, Najmabadi H, Maqsood A, Wilson EA, Fitzgerald TS, Tlili A, Olszewski R, Lund M, Chaudhry T, Rehman AU, Starost MF, Waryah AM, Hoa M, Dong L, Morell RJ, Smith RJH, Riazuddin S, Masmoudi S, Kindt KS, Naz S, Friedman TB. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum Mol Genet 2019; 27:780-798. [PMID: 29293958 DOI: 10.1093/hmg/ddx440] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.
Collapse
Affiliation(s)
- Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular and Cellular Neurobiology, Section on Molecular and Cellular Signaling, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Amal Bouzid
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Uzma Shaukat
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Azra Maqsood
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Elizabeth A Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Abdelaziz Tlili
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Merete Lund
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali M Waryah
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Sheikh Riazuddin
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan.,Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan.,Laboratory for Research in Genetic Diseases, Burn Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore 54590, Pakistan
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol 2018; 48:44-54. [PMID: 30458335 DOI: 10.1016/j.cbpa.2018.10.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
The use of proximity-dependent biotinylation approaches combined with mass spectrometry (e.g. BioID and APEX) has revolutionized the study of protein-protein interactions and organellar proteomics. These powerful techniques are based on the fusion of an enzyme (e.g. a biotin ligase or peroxidase) to a 'bait' protein of interest, which is then expressed in a relevant biological setting. Addition of enzyme substrate enables covalent biotin labeling of proteins in the vicinity of the bait in vivo. These approaches thus allow for the capture and identification of 'neighborhood' proteins in the context of a living cell, and provide data that are complementary to more established techniques such as fractionation or affinity purification. As compared to standard affinity-based purification approaches, proximity-dependent biotinylation (PDB) can help to: first, identify interactions with and amongst membrane proteins, and other polypeptide classes that are less amenable to study by standard pulldown techniques; second, enrich for transient and/or low affinity interactions that are not readily captured using affinity purification approaches; third, avoid post-lysis artefacts associated with standard biochemical purification experiments and; fourth, provide deep insight into the organization of membrane-less organelles and other subcellular structures that cannot be easily isolated or purified. Given the increasing use of these techniques to answer a variety of different types of biological questions, it is important to understand how best to design PDB-MS experiments, what type of data they generate, and how to analyze and interpret the results.
Collapse
|