1
|
Zharikov Y, Shitova A, Melnikova P, Voloshin I, Orliuk M, Olsufieva A, Pontes-Silva A, Zharikova T. Autoantibody-mediated disorders of the central and peripheral nervous system: Overview Infection. J Neuroimmunol 2025; 403:578616. [PMID: 40245466 DOI: 10.1016/j.jneuroim.2025.578616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
HIV-associated neurocognitive disorders are a common manifestation of HIV infection, affecting more than half of HIV-infected individuals, including those receiving targeted antiviral therapy. A common feature of the course of HIV infection during therapy is large-scale immune responses in the brain. Several pathways are involved in the neuropathogenesis of HIV infection: Cellular entry, inflammatory processes in microglia, activation of astroglia, myeloid cells, and damage to brain vessels leading to neurocirculatory disorders. Data on vascular diseases that influence the development of neurocognitive impairment in HIV-positive patients will also be examined, as well as better intervention strategies for complex neurocognitive disorders and neurodegenerative processes in HIV infection.
Collapse
Affiliation(s)
- Yury Zharikov
- FSAEI HE I.M. Sechenov First MSMU of MOH of Russia (Sechenovskiy University), Moscow, Russia
| | | | - Polina Melnikova
- FSAEI HE I.M. Sechenov First MSMU of MOH of Russia (Sechenovskiy University), Moscow, Russia
| | - Ilya Voloshin
- FSAEI HE I.M. Sechenov First MSMU of MOH of Russia (Sechenovskiy University), Moscow, Russia
| | | | | | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil..
| | - Tatiana Zharikova
- FSAEI HE I.M. Sechenov First MSMU of MOH of Russia (Sechenovskiy University), Moscow, Russia
| |
Collapse
|
2
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Islek Z, Ucisik MH, Sahin F. Astrocytes Can Be Key Players Against Cerebral Leishmaniasis: In Vitro Co-Culture Model for the Assessment of Infection. Parasite Immunol 2024; 46:e13071. [PMID: 39449623 DOI: 10.1111/pim.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Leishmaniasis is a neglected tropical disease, caused by protozoan parasites of Leishmania (L.), and is transmitted by bite of phlebotomine sandflies. There are several studies on central nervous system infection to indicate that Leishmania can cross the blood-brain barrier, resulting in neurological manifestations, known as "cerebral leishmaniasis." This study highlighted the notions: (i) polarisation of bone marrow-derived macrophages (BMDM) incubated following stimulation with lipopolysaccharide (LPS) or soluble Leishmania antigen (SLA), (ii) quantification of parasites within co-culture of Leishmania-infected macrophages, and astrocytes, and (iii) effect of interferon-gamma (IFN-γ) on the infection rate of co-culture populations. Accordingly, 83% of overall macrophage population was identified on day 7 for CD11b and F4/80 macrophage markers. Flow cytometry analysis revealed significant increases in CD11b and F4/80 surface markers in LPS and SLA-stimulated BMDMs at 24 h, compared to untreated cells. TNF-α levels increased significantly in both LPS and SLA-treated BMDMs after 48 h. Additionally, SLA treatment induced a more elongated, spindle-like shape in the cells, indicative of M2 macrophage polarisation over the M1 phenotype. When non-infected astrocytes with/without stimulation with IFN-γ before co-culture, gp63 FITC-labelled parasite populations (%) in co-culture decreased to 25% at 72 h, thus indicating a lower infection rate in a time-dependent manner. IFN-γ and IL-6 levels significantly increased to 71.66 ± 3.51 and 184 ± 14.42 pg/mL, resulting in the inflammatory response in the co-culture system at 48 h (p ≤ 0.0001), when compared to the control (30 ± 2.52 pg/mL for IFN-γ and 8.66 ± 2.37 pg/mL for IL-6) at 0 h of the incubation. It is the first study to emphasize the communication between Leishmania-infected macrophages and astrocytes regarding Leishmania parasite load. The results suggest that astrocytes can lead to the reduction in Leishmania parasites, thereby controlling the incidence of cerebral leishmaniasis.
Collapse
Affiliation(s)
- Zeynep Islek
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| | - Mehmet Hikmet Ucisik
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| | - Fikrettin Sahin
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| |
Collapse
|
4
|
Dos Reis RS, Susa S, Wagner MCE, Ayyavoo V. Human Immunodeficiency Virus (HIV-1) Targets Astrocytes via Cell-Free and Cell-Associated Infection. J Integr Neurosci 2024; 23:172. [PMID: 39344243 DOI: 10.31083/j.jin2309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Infection of astrocytes by Human Immunodeficiency Virus (HIV-1) remains a topic of debate, with conflicting data, yet instances of astrocytes containing viral DNA have been observed in vivo. In this study, we aimed to elucidate potential routes through which astrocytes could be infected and their ability to produce infectious particles using primary human astrocytes. METHODS We infected primary astrocytes derived from either neuroprogenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) that express both C-X-C chemokine receptor type 4 (CXCR4) and the C-C chemokine receptor type 5 (CCR5) coreceptors, using either cell-free HIV-1 virus directly or cell-associated virus indirectly through infected macrophages and microglia. RESULTS Low-level infectivity by cell-free viruses was primarily attributed to a defect in the entry process. Bypassing HIV-specific receptor-mediated entry using pseudotyped viruses resulted in productive infection and the release of infectious particles. CONCLUSIONS These findings suggest that astrocytes may be one of the potential sources of neurotoxicity in HIV-associated neurocognitive disorders (HAND) and could possibly act as reservoirs for HIV in the central nervous system (CNS).
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Susa
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Gutierrez H, Eugenin EA. The challenges to detect, quantify, and characterize viral reservoirs in the current antiretroviral era. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:211-219. [PMID: 39845128 PMCID: PMC11751450 DOI: 10.1515/nipt-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/10/2024] [Indexed: 01/24/2025]
Abstract
A major barrier to cure HIV is the early generation of viral reservoirs in tissues. These viral reservoirs can contain intact or defective proviruses, but both generates low levels of viral proteins contribute to chronic bystander damage even in the ART era. Most viral reservoir detection techniques are limited to blood-based, reactivation, and sequencing assays that lack spatial properties to examine the contribution of the host's microenvironment to latency and cure efforts. Currently, little is known about the contribution of the microenvironment to viral reservoir survival, residual viral expression, and associated inflammation. Only a few spatiotemporal techniques are available, and fewer integrate spatial genomics, transcriptomics, and proteomics into the analysis of the viral reservoir microenvironment-all essential components to cure HIV. During the development of these spatial techniques, many considerations need to be included in the analysis to avoid misinterpretation. This manuscript tries to clarify some critical concepts in viral reservoir detection by spatial techniques and the upcoming opportunities for cure efforts.
Collapse
Affiliation(s)
- Hector Gutierrez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
6
|
Kong W, Frouard J, Xie G, Corley MJ, Helmy E, Zhang G, Schwarzer R, Montano M, Sohn P, Roan NR, Ndhlovu LC, Gan L, Greene WC. Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids. PNAS NEXUS 2024; 3:pgae179. [PMID: 38737767 PMCID: PMC11086946 DOI: 10.1093/pnasnexus/pgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.
Collapse
Affiliation(s)
- Weili Kong
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Julie Frouard
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guorui Xie
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ekram Helmy
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Gang Zhang
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Roland Schwarzer
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Mauricio Montano
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Peter Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Nadia R Roan
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Gan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Warner C Greene
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
DeMarino C, Cowen M, Williams A, Khatkar P, Abulwerdi FA, Henderson L, Denniss J, Pleet ML, Luttrell DR, Vaisman I, Liotta LA, Steiner J, Le Grice SFJ, Nath A, Kashanchi F. Autophagy Deregulation in HIV-1-Infected Cells Increases Extracellular Vesicle Release and Contributes to TLR3 Activation. Viruses 2024; 16:643. [PMID: 38675983 PMCID: PMC11054313 DOI: 10.3390/v16040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can result in HIV-associated neurocognitive disorder (HAND), a spectrum of disorders characterized by neurological impairment and chronic inflammation. Combined antiretroviral therapy (cART) has elicited a marked reduction in the number of individuals diagnosed with HAND. However, there is continual, low-level viral transcription due to the lack of a transcription inhibitor in cART regimens, which results in the accumulation of viral products within infected cells. To alleviate stress, infected cells can release accumulated products, such as TAR RNA, in extracellular vesicles (EVs), which can contribute to pathogenesis in neighboring cells. Here, we demonstrate that cART can contribute to autophagy deregulation in infected cells and increased EV release. The impact of EVs released from HIV-1 infected myeloid cells was found to contribute to CNS pathogenesis, potentially through EV-mediated TLR3 (Toll-like receptor 3) activation, suggesting the need for therapeutics to target this mechanism. Three HIV-1 TAR-binding compounds, 103FA, 111FA, and Ral HCl, were identified that recognize TAR RNA and reduce TLR activation. These data indicate that packaging of viral products into EVs, potentially exacerbated by antiretroviral therapeutics, may induce chronic inflammation of the CNS observed in cART-treated patients, and novel therapeutic strategies may be exploited to mitigate morbidity.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Fardokht A. Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Julia Denniss
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Delores R. Luttrell
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Iosif Vaisman
- Laboratory for Structural Bioinformatics, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA;
| | - Joseph Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stuart F. J. Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| |
Collapse
|
8
|
Pla-Tenorio J, Roig AM, García-Cesaní PA, Santiago LA, Sepulveda-Orengo MT, Noel RJ. Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100108. [PMID: 38020814 PMCID: PMC10663134 DOI: 10.1016/j.crneur.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Angela M. Roig
- Seattle Children's Hospital, MS OC.7.830, 4800 Sand Point Way NE, Seattle, WA, 98105-0371, United States
| | - Paulina A. García-Cesaní
- Bella Vista Hospital, Family Medicine Residency, Carr. 349 Km 2.7, Cerro Las Mesas, Mayaguez, PR, 00681, Puerto Rico
| | - Luis A. Santiago
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Marian T. Sepulveda-Orengo
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Richard J. Noel
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| |
Collapse
|
9
|
Shao H, Li S. A new perspective on HIV: effects of HIV on brain-heart axis. Front Cardiovasc Med 2023; 10:1226782. [PMID: 37600062 PMCID: PMC10436320 DOI: 10.3389/fcvm.2023.1226782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can cause damage to multiple systems within the body, and the interaction among these various organ systems means that pathological changes in one system can have repercussions on the functions of other systems. However, the current focus of treatment and research on HIV predominantly centers around individual systems without considering the comprehensive relationship among them. The central nervous system (CNS) and cardiovascular system play crucial roles in supporting human life, and their functions are closely intertwined. In this review, we examine the effects of HIV on the CNS, the resulting impact on the cardiovascular system, and the direct damage caused by HIV to the cardiovascular system to provide new perspectives on HIV treatment.
Collapse
Affiliation(s)
| | - Sijun Li
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
10
|
Saeb S, Wallet C, Rohr O, Schwartz C, Loustau T. Targeting and eradicating latent CNS reservoirs of HIV-1: original strategies and new models. Biochem Pharmacol 2023:115679. [PMID: 37399950 DOI: 10.1016/j.bcp.2023.115679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Nowadays, combination antiretroviral therapy (cART) is the standard treatment for all people with human immunodeficiency virus (HIV-1). Although cART is effective in treating productive infection, it does not eliminate latent reservoirs of the virus. This leads to lifelong treatment associated with the occurrence of side effects and the development of drug-resistant HIV-1. Suppression of viral latency is therefore the major hurdle to HIV-1 eradication. Multiple mechanisms exist to regulate viral gene expression and drive the transcriptional and post-transcriptional establishment of latency. Epigenetic processes are amongst the most studied mechanisms influencing both productive and latent infection states. The central nervous system (CNS) represents a key anatomical sanctuary for HIV and is the focal point of considerable research efforts. However, limited and difficult access to CNS compartments makes understanding the HIV-1 infection state in latent brain cells such as microglial cells, astrocytes, and perivascular macrophages challenging. This review examines the latest advances on epigenetic transformations involved in CNS viral latency and targeting of brain reservoirs. Evidence from clinical studies as well as in vivo and in vitro models of HIV-1 persistence in the CNS will be discussed, with a special focus on recent 3D in vitro models such as human brain organoids. Finally, the review will address therapeutic considerations for targeting latent CNS reservoirs.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Allied Medicine, Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran; Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
11
|
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Collapse
Affiliation(s)
- Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Padilla-Parra S. Time-resolved single virus tracking and spectral imaging to understand HIV-1 entry and fusion. Biol Cell 2023; 115:e2200082. [PMID: 36440600 DOI: 10.1111/boc.202200082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Single Virus Tracking (SVT) is a key technique to understand how individual viral particles evolve during the infection cycle. In the case of the human immunodeficiency virus (HIV-1), this technology, which can be employed using a simple and affordable wide-field microscope, has proven to be very useful in the first steps of infection, such as the kinetics of the fusion reaction or the point of fusion within live cells. Here, we describe how SVT in combination with other spectral imaging approaches is a powerful technique to illuminate crucial mechanistic aspects of the HIV-1 fusion reaction. We also stress the role of our laboratory in elucidating a few mechanistic aspects of retroviral fusion employing SVT such as: (i) the role of dynamin, (ii) how metabolism modulates membrane composition and cholesterol and its impact in fusion, (iii) the importance of envelope glycoprotein (Env) intra- and inter-molecular dynamics for neutralization, or (iv) the time-resolved fusion stoichiometry in three characteristic steps for the HIV-1 prefusion step. These observations constitute a good testimony of the complexity of retroviral fusion and show the strength of SVT when applied to live cells and combined with quantitative spectral approaches. Finally, we propose several crucial remaining questions around HIV-1 fusion and how the combined use of these technologies, always in live cells, will be able to shed light into the intricacies of arguably the most important step of the HIV-1 infection cycle.
Collapse
Affiliation(s)
- Sergi Padilla-Parra
- Faculty of Life Sciences & Medicine, Department of Infectious Diseases, King's College London, London, UK.,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
13
|
Wahl A, Al-Harthi L. HIV infection of non-classical cells in the brain. Retrovirology 2023; 20:1. [PMID: 36639783 PMCID: PMC9840342 DOI: 10.1186/s12977-023-00616-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Collapse
Affiliation(s)
- Angela Wahl
- grid.10698.360000000122483208International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lena Al-Harthi
- grid.240684.c0000 0001 0705 3621Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
14
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
15
|
Cevallos C, Ojeda DS, Sánchez L, Urquiza J, Delpino MV, Quarleri J. HIV-induced bystander cell death in astrocytes requires cell-to-cell viral transmission. J Neurochem 2022; 163:338-356. [PMID: 36205031 DOI: 10.1111/jnc.15703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 01/18/2023]
Abstract
Human immunodeficiency virus (HIV) neuroinvasion occurs early after infection through the trafficking of virus-infected immune cells into the central nervous system (CNS) and viral dissemination into the brain. There, it can infect resident brain cells including astrocytes, the most abundant cell type that is crucial to brain homeostasis. In this report, we examined the HIV-related mechanism able to induce bystander cell death in astrocytes mediated by cell-to-cell contact with productively infected (PI) ones. We first demonstrate that HIV-induced bystander cell death involves mitochondrial dysfunction that promotes exacerbated reactive oxygen species production. Such a phenomenon is a contagious cell death that requires contact with HIV-PI astrocytes that trigger caspase-dependent (apoptosis and pyroptosis) and caspase-independent cell death pathways. The HIV accessory proteins Nef, Vpu, and Vpr counteract astrocyte death among PI cells but, in contrast, participate to promote contagious bystander cell death by inducing mitochondrial reactive oxygen species production. Our findings indicate that astrocytes PI by HIV became capable to counteract infection-derived death signals, surviving, and spreading the bystander cell death into neighboring uninfected cells by a cell-to-cell contact-dependent mechanism. Considering that astrocytes have been proposed as a long-term HIV reservoir in the CNS, ascertaining the mechanism of survival and contagious bystander death will afford clear targets in the current goal to achieve a functional cure.
Collapse
Affiliation(s)
- Cintia Cevallos
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Diego S Ojeda
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Lautaro Sánchez
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Javier Urquiza
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Victoria Delpino
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jorge Quarleri
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
16
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
17
|
Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation. J Virol 2022; 96:e0095722. [PMID: 35975998 PMCID: PMC9472603 DOI: 10.1128/jvi.00957-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.
Collapse
|
18
|
Killingsworth L, Spudich S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 2022; 44:709-724. [PMID: 35882661 PMCID: PMC10126949 DOI: 10.1007/s00281-022-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent "hidden" state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.
Collapse
Affiliation(s)
- Lauren Killingsworth
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|
20
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Gumbs SBH, Berdenis van Berlekom A, Kübler R, Schipper PJ, Gharu L, Boks MP, Ormel PR, Wensing AMJ, de Witte LD, Nijhuis M. Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids. Viruses 2022; 14:v14040829. [PMID: 35458559 PMCID: PMC9032670 DOI: 10.3390/v14040829] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
The achievement of an HIV cure is dependent on the eradication or permanent silencing of HIV-latent viral reservoirs, including the understudied central nervous system (CNS) reservoir. This requires a deep understanding of the molecular mechanisms of HIV’s entry into the CNS, latency establishment, persistence, and reversal. Therefore, representative CNS culture models that reflect the intercellular dynamics and pathophysiology of the human brain are urgently needed in order to study the CNS viral reservoir and HIV-induced neuropathogenesis. In this study, we characterized a human cerebral organoid model in which microglia grow intrinsically as a CNS culture model to study HIV infection in the CNS. We demonstrated that both cerebral organoids and isolated organoid-derived microglia (oMG), infected with replication-competent HIVbal reporter viruses, support productive HIV infection via the CCR5 co-receptor. Productive HIV infection was only observed in microglial cells. Fluorescence analysis revealed microglia as the only HIV target cell. Susceptibility to HIV infection was dependent on the co-expression of microglia-specific markers and the CD4 and CCR5 HIV receptors. Altogether, this model will be a valuable tool within the HIV research community to study HIV–CNS interactions, the underlying mechanisms of HIV-associated neurological disorders (HAND), and the efficacy of new therapeutic and curative strategies on the CNS viral reservoir.
Collapse
Affiliation(s)
- Stephanie B. H. Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pauline J. Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Marco P. Boks
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
| | - Paul R. Ormel
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
| | - Lot D. de Witte
- Department of Psychiatry, University Medical Center Utrect Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands; (A.B.v.B.); (M.P.B.); (P.R.O.); (L.D.d.W.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.B.H.G.); (R.K.); (P.J.S.); (L.G.); (A.M.J.W.)
- Correspondence:
| |
Collapse
|
22
|
HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediators Inflamm 2021; 2021:1267041. [PMID: 34483726 PMCID: PMC8410439 DOI: 10.1155/2021/1267041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.
Collapse
|
23
|
Malik S, Valdebenito S, D'Amico D, Prideaux B, Eugenin EA. HIV infection of astrocytes compromises inter-organelle interactions and inositol phosphate metabolism: A potential mechanism of bystander damage and viral reservoir survival. Prog Neurobiol 2021; 206:102157. [PMID: 34455020 DOI: 10.1016/j.pneurobio.2021.102157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023]
Abstract
HIV-associated neurological dysfunction is observed in more than half of the HIV-infected population, even in the current antiretroviral era. The mechanisms by which HIV mediates CNS dysfunction are not well understood but have been associated with the presence of long-lasting HIV reservoirs. In the CNS, macrophage/microglia and a small population of astrocytes harbor the virus. However, the low number of HIV-infected cells does not correlate with the high degree of damage, suggesting that mechanisms of damage amplification may be involved. Here, we demonstrate that the survival mechanism of HIV-infected cells and the apoptosis of surrounding uninfected cells is regulated by inter-organelle interactions among the mitochondria/Golgi/endoplasmic reticulum system and the associated signaling mediated by IP3 and calcium. We identified that latently HIV-infected astrocytes had elevated intracellular levels of IP3, a master regulator second messenger, which diffuses via gap junctions into neighboring uninfected astrocytes resulting in their apoptosis. In addition, using laser capture microdissection, we confirmed that bystander apoptosis of uninfected astrocytes and the survival of HIV-infected astrocytes were dependent on mitochondrial function, intracellular calcium, and IP3 signaling. Blocking gap junction channels did not prevent an increase in IP3 or inter-organelle dysfunction in HIV-infected cells but reduced the amplification of apoptosis into uninfected neighboring cells. Our data provide a mechanistic explanation for bystander damage induced by surviving infected cells that serve as viral reservoirs and provide potential targets for interventions to reduce the devastating consequences of HIV within the brain.
Collapse
Affiliation(s)
- Shaily Malik
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA; Public Health Research Institute (PHRI), Newark, NJ, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Daniela D'Amico
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
24
|
Sil S, Periyasamy P, Thangaraj A, Niu F, Chemparathy DT, Buch S. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 2021; 18:459-474. [PMID: 34427869 DOI: 10.1007/s11904-021-00570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
25
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Torices S, Cabrera R, Stangis M, Naranjo O, Fattakhov N, Teglas T, Adesse D, Toborek M. Expression of SARS-CoV-2-related receptors in cells of the neurovascular unit: implications for HIV-1 infection. J Neuroinflammation 2021; 18:167. [PMID: 34325716 PMCID: PMC8319595 DOI: 10.1186/s12974-021-02210-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular unit (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. METHODS The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B, and cathepsin L was assessed by qPCR, immunoblotting, and immunostaining, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. RESULTS The receptors involved in SARS-CoV-2 infection are co-expressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. CONCLUSIONS These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA.
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michael Stangis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Daniel Adesse
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fiocruz, CEP, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
27
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
28
|
Abstract
Long-term effective use of antiretroviral therapy (ART) among people with HIV (PWH) has significantly reduced the burden of disease, yet a cure for HIV has not been universally achieved, likely due to the persistence of an HIV reservoir. The central nervous system (CNS) is an understudied HIV sanctuary. Importantly, due to viral persistence in the brain, cognitive disturbances persist to various degrees at high rates in PWH despite suppressive ART. Given the complexity and accessibility of the CNS compartment and that it is a physiologically and anatomically unique immune site, human studies to reveal molecular mechanisms of viral entry, reservoir establishment, and the cellular and structural interactions leading to viral persistence and brain injury to advance a cure and either prevent or limit cognitive impairments in PWH remain challenging. Recent advances in human brain organoids show that they can mimic the intercellular dynamics of the human brain and may recapitulate many of the events involved in HIV infection of the brain (neuroHIV). Human brain organoids can be produced, spontaneously or with addition of growth factors and at immature or mature states, and have become stronger models to study neurovirulent viral infections of the CNS. While organoids provide opportunities to study neuroHIV, obstacles such as the need to incorporate microglia need to be overcome to fully utilize this model. Here, we review the current achievements in brain organoid biology and their relevance to neuroHIV research efforts.
Collapse
|
29
|
Silvana V, Paul C, Ajasin D, Eugenin EA. Astrocytes are HIV reservoirs in the brain: A cell type with poor HIV infectivity and replication but efficient cell-to-cell viral transfer. J Neurochem 2021; 158:429-443. [PMID: 33655498 PMCID: PMC11102126 DOI: 10.1111/jnc.15336] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The major barrier to eradicating Human immunodeficiency virus-1 (HIV) infection is the generation of tissue-associated quiescent long-lasting viral reservoirs refractory to therapy. Upon interruption of anti-retroviral therapy (ART), HIV replication can be reactivated. Within the brain, microglia/macrophages and a small population of astrocytes are infected with HIV. However, the role of astrocytes as a potential viral reservoir is becoming more recognized because of the improved detection and quantification of HIV viral reservoirs. In this report, we examined the infectivity of human primary astrocytes in vivo and in vitro, and their capacity to maintain HIV infection, become latently infected, be reactivated, and transfer new HIV virions into neighboring cells. Analysis of human brain tissue sections obtained from HIV-infected individuals under effective and prolonged ART indicates that a small population of astrocytes has integrated HIV-DNA. In vitro experiments using HIV-infected human primary astrocyte cultures confirmed a low percentage of astrocytes had integrated HIV-DNA, with poor to undetectable replication. Even in the absence of ART, long-term culture results in latency that could be transiently reactivated with histone deacetylase inhibitor, tumor necrosis factor-alpha (TNF-α), or methamphetamine. Reactivation resulted in poor viral production but efficient cell-to-cell viral transfer into cells that support high viral replication. Together, our data provide a new understanding of astrocytes' role as viral reservoirs within the central nervous system (CNS).
Collapse
Affiliation(s)
- Valdebenito Silvana
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Castellano Paul
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
30
|
Arista-Romero M, Pujals S, Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Front Bioeng Biotechnol 2021; 9:647874. [PMID: 33842446 PMCID: PMC8033170 DOI: 10.3389/fbioe.2021.647874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
31
|
Torices S, Cabrera R, Stangis M, Naranjo O, Adesse D, Toborek M. Expression of SARS-CoV-2-related Receptors in Cells of the Neurovascular Unit: Implications for HIV-1 Infection. RESEARCH SQUARE 2021:rs.3.rs-228960. [PMID: 33655239 PMCID: PMC7924273 DOI: 10.21203/rs.3.rs-228960/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background. Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular units (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. Methods. The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B and cathepsin L was assessed by qPCR and immunoblotting, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. Results. The receptors involved in SARS-CoV-2 infection are coexpressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. Conclusions. These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Rosalba Cabrera
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michael Stangis
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Oandy Naranjo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | | |
Collapse
|
32
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
33
|
Mahé D, Matusali G, Deleage C, Alvarenga RLLS, Satie AP, Pagliuzza A, Mathieu R, Lavoué S, Jégou B, de França LR, Chomont N, Houzet L, Rolland AD, Dejucq-Rainsford N. Potential for Virus Endogenization in Humans through Testicular Germ Cell Infection: the Case of HIV. J Virol 2020; 94:e01145-20. [PMID: 32999017 PMCID: PMC7925188 DOI: 10.1128/jvi.01145-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses.IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.
Collapse
Affiliation(s)
- Dominique Mahé
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Claire Deleage
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Raquel L L S Alvarenga
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Anne-Pascale Satie
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Amélie Pagliuzza
- Department of Microbiology, Infectiology and Immunology, Faculty of Medecine, Université de Montréal, and Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Romain Mathieu
- Centre Hospitalier Universitaire de Pontchaillou, Service Urologie, Rennes, France
| | - Sylvain Lavoué
- Centre Hospitalier Universitaire de Pontchaillou, Centre de Coordination des Prélèvements, Rennes, France
| | - Bernard Jégou
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Luiz R de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Faculty of Medecine, Université de Montréal, and Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Laurent Houzet
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Antoine D Rolland
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| |
Collapse
|
34
|
Tice C, McDevitt J, Langford D. Astrocytes, HIV and the Glymphatic System: A Disease of Disrupted Waste Management? Front Cell Infect Microbiol 2020; 10:523379. [PMID: 33134185 PMCID: PMC7550659 DOI: 10.3389/fcimb.2020.523379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of the glial-lymphatic or glymphatic fluid clearance pathway in the rodent brain led researchers to search for a parallel system in humans and to question the implications of this pathway in neurodegenerative diseases. Magnetic resonance imaging studies revealed that several features of the glymphatic system may be present in humans. In both rodents and humans, this pathway promotes the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF) through the arterial perivascular spaces into the brain parenchyma. This process is facilitated in part by aquaporin-4 (AQP4) water channels located primarily on astrocytic end feet that abut cerebral endothelial cells of the blood brain barrier. Decreased expression or mislocalization of AQP4 from astrocytic end feet results in decreased interstitial flow, thereby, promoting accumulation of extracellular waste products like hyperphosphorylated Tau (pTau). Accumulation of pTau is a neuropathological hallmark in Alzheimer's disease (AD) and is accompanied by mislocalization of APQ4 from astrocyte end feet to the cell body. HIV infection shares many neuropathological characteristics with AD. Similar to AD, HIV infection of the CNS contributes to abnormal aging with altered AQP4 localization, accumulation of pTau and chronic neuroinflammation. Up to 30% of people with HIV (PWH) suffer from HIV-associated neurocognitive disorders (HAND), and changes in AQP4 may be clinically important as a contributor to cognitive disturbances. In this review, we provide an overview and discussion of the potential contributions of NeuroHIV to glymphatic system functions by focusing on astrocytes and AQP4. Although HAND encompasses a wide range of neurocognitive impairments and levels of neuroinflammation vary among and within PWH, the potential contribution of disruption in AQP4 may be clinically important in some cases. In this review we discuss implications for possible AQP4 disruption on NeuroHIV disease trajectory and how HIV may influence AQP4 function.
Collapse
Affiliation(s)
- Caitlin Tice
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jane McDevitt
- Department of Kinesiology, College of Public Health at Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
35
|
Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V. Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep 2020; 10:15209. [PMID: 32938988 PMCID: PMC7494890 DOI: 10.1038/s41598-020-72214-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 associated neurocognitive disorder (HAND) is characterized by neuroinflammation and glial activation that, together with the release of viral proteins, trigger a pathogenic cascade resulting in synaptodendritic damage and neurodegeneration that lead to cognitive impairment. However, the molecular events underlying HIV neuropathogenesis remain elusive, mainly due to lack of brain-representative experimental systems to study HIV-CNS pathology. To fill this gap, we developed a three-dimensional (3D) human brain organoid (hBORG) model containing major cell types important for HIV-1 neuropathogenesis; neurons and astrocytes along with incorporation of HIV-infected microglia. Both infected and uninfected microglia infiltrated into hBORGs resulting in a triculture system (MG-hBORG) that mirrors the multicellular network observed in HIV-infected human brain. Moreover, the MG-hBORG model supported productive viral infection and exhibited increased inflammatory response by HIV-infected MG-hBORGs, releasing tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) and thereby mimicking the chronic neuroinflammatory environment observed in HIV-infected individuals. This model offers great promise for basic understanding of how HIV-1 infection alters the CNS compartment and induces pathological changes, paving the way for discovery of biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, McGowan Institute for Regenerative Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Hannah Keeney
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Perinatal HIV-1 infection is associated with an increased risk for neurologic impairments. With limited access to clinical specimens, animal models could advance our understanding of pediatric central nervous system (CNS) disease and viral persistence. Here, we summarize current findings on HIV-1 CNS infection from nonhuman primate (NHP) models and discuss their implications for improving pediatric clinical outcomes. RECENT FINDINGS SIV/SHIV can be found in the CNS of infant macaques within 48 h of challenge. Recent studies show an impermeable BBB during SIV infection, suggesting neuroinvasion in post-partum infection is likely not wholly attributed to barrier dysfunction. Histopathological findings reveal dramatic reductions in hippocampal neuronal populations and myelination in infected infant macaques, providing a link for cognitive impairments seen in pediatric cases. Evidence from humans and NHPs support the CNS as a functional latent reservoir, harbored in myeloid cells that may require unique eradication strategies. Studies in NHP models are uncovering early events, causes, and therapeutic targets of CNS disease as well as highlighting the importance of age-specific studies that capture the distinct features of pediatric HIV-1 infection.
Collapse
Affiliation(s)
| | - Katherine Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
37
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
38
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
39
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
40
|
Li GH, Maric D, Major EO, Nath A. Productive HIV infection in astrocytes can be established via a nonclassical mechanism. AIDS 2020; 34:963-978. [PMID: 32379159 PMCID: PMC7429268 DOI: 10.1097/qad.0000000000002512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Astrocytes are proposed to be a critical reservoir of HIV in the brain. However, HIV infection of astrocytes is inefficient in vitro except for cell-to-cell transmission from HIV-infected cells. Here, we explore mechanisms by which cell-free HIV bypasses entry and postentry barriers leading to a productive infection. METHODS HIV infection of astrocytes was investigated by a variety of techniques including transfection of CD4-expressing plasmid, treatment with lysosomotropic agents or using a transwell culture system loaded with HIV-infected lymphocytes. Infection was monitored by HIV-1 p24 in culture supernatants and integrated proviral DNA was quantified by Alu-PCR. RESULTS Persistent HIV infection could be established in astrocytes by transfection of proviral DNA, transduction with VSV-G-pseudotyped viruses, transient expression of CD4 followed by HIV infection, or simultaneous treatment with lysosomotropic chloroquine or Tat-HA2 peptide with HIV infection. In absence of these treatments, HIV entered via endocytosis as seen by electronmicroscopy and underwent lysosomal degradation without proviral integration, indicating endocytosis is a dead end for HIV in astrocytes. Nevertheless, productive infection was observed when astrocytes were in close proximity but physically separated from HIV-infected lymphocytes in the transwell cultures. This occurred with X4 or dual tropic R5X4 viruses and was blocked by an antibody or antagonist to CXCR4. CONCLUSION A CD4-independent, CXCR4-dependent mechanism of viral entry is proposed, by which immature HIV particles from infected lymphocytes might directly bind to CXCR4 on astrocytes and trigger virus--cell fusion during or after the process of viral maturation. This mechanism may contribute to the formation of brain HIV reservoirs.
Collapse
Affiliation(s)
- Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Lutgen V, Narasipura SD, Barbian HJ, Richards M, Wallace J, Razmpour R, Buzhdygan T, Ramirez SH, Prevedel L, Eugenin EA, Al-Harthi L. HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathog 2020; 16:e1008381. [PMID: 32525948 PMCID: PMC7289344 DOI: 10.1371/journal.ppat.1008381] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
HIV invades the brain during acute infection. Yet, it is unknown whether long-lived infected brain cells release productive virus that can egress from the brain to re-seed peripheral organs. This understanding has significant implication for the brain as a reservoir for HIV and most importantly HIV interplay between the brain and peripheral organs. Given the sheer number of astrocytes in the human brain and their controversial role in HIV infection, we evaluated their infection in vivo and whether HIV infected astrocytes can support HIV egress to peripheral organs. We developed two novel models of chimeric human astrocyte/human peripheral blood mononuclear cells: NOD/scid-IL-2Rgc null (NSG) mice (huAstro/HuPBMCs) whereby we transplanted HIV (non-pseudotyped or VSVg-pseudotyped) infected or uninfected primary human fetal astrocytes (NHAs) or an astrocytoma cell line (U138MG) into the brain of neonate or adult NSG mice and reconstituted the animals with human peripheral blood mononuclear cells (PBMCs). We also transplanted uninfected astrocytes into the brain of NSG mice and reconstituted with infected PBMCs to mimic a biological infection course. As expected, the xenotransplanted astrocytes did not escape/migrate out of the brain and the blood brain barrier (BBB) was intact in this model. We demonstrate that astrocytes support HIV infection in vivo and egress to peripheral organs, at least in part, through trafficking of infected CD4+ T cells out of the brain. Astrocyte-derived HIV egress persists, albeit at low levels, under combination antiretroviral therapy (cART). Egressed HIV evolved with a pattern and rate typical of acute peripheral infection. Lastly, analysis of human cortical or hippocampal brain regions of donors under cART revealed that astrocytes harbor between 0.4-5.2% integrated HIV gag DNA and 2-7% are HIV gag mRNA positive. These studies establish a paradigm shift in the dynamic interaction between the brain and peripheral organs which can inform eradication of HIV reservoirs.
Collapse
Affiliation(s)
- Victoria Lutgen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Hannah J. Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Maureen Richards
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Roshanak Razmpour
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Tetyana Buzhdygan
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Servio H. Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Lisa Prevedel
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
42
|
Dupont M, Sattentau QJ. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 2020; 12:E492. [PMID: 32354203 PMCID: PMC7290394 DOI: 10.3390/v12050492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.
Collapse
Affiliation(s)
- Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
43
|
Gonzalez H, Podany A, Al-Harthi L, Wallace J. The far-reaching HAND of cART: cART effects on astrocytes. J Neuroimmune Pharmacol 2020; 16:144-158. [PMID: 32147775 DOI: 10.1007/s11481-020-09907-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Following the introduction of combination antiretroviral therapy (cART), the morbidity and mortality from human immunodeficiency virus (HIV) infection has been drastically curtailed and HIV has now become a chronic manageable disease. Persons living with HIV (PLWH) are living longer and experiencing significant co-morbidities and conditions of aging. NeuroHIV, clinically defined as HIV-Associated Neurocognitive Disorders (HAND) and pathologically manifested by persistent inflammation in the CNS despite cART, is a significant co-morbid condition for PLWH. In the pre-cART era, HIV mediated much of the pathogenesis in the Central Nervous System (CNS); in the cART era, with low to undetectable viremia, other mechanisms may be contributing to persistent neuroinflammation. Emerging data point to the adverse effects at the cellular level of cART, independent of HIV. Astrocytes are the most abundant cells in the CNS, playing vital roles in maintaining CNS homeostasis (e.g. metabolic support to neurons, clearance of neurotransmitters, ion balance, modulation of synaptic functions and maintaining the structural integrity of the blood brain barrier (BBB). Therefore, any disruption of their function will have wide repercussions in the CNS. In this review, we will address current knowledge and gaps on the impact of antiretrovirals (ARVs) on astrocytes and physiologic consequences in the CNS. Understanding the status of this field, will provide a practical framework to elucidate the potential role of cART-mediated dysregulation of astrocytes in neuroHIV pathogenesis and inform therapeutic strategies that are "neuro-friendly". Graphical abstract CNS-penetrating cART have the potential to cause resting astrocytes to become activated into an A1 or neurotoxic phenotype. These cells can in turn secrete inflammatory cytokines that affect surrounding microglia macrophages, as well as neurotoxic factors that impact nearby neurons. In addition, impairment in the physiologic functions of astrocytes will result in altered BBB permeability and disrupted metabolic homeostasis. CNS=Central Nervous System; cART=combined antiretroviral therapy; BBB=blood brain barrier.
Collapse
Affiliation(s)
- Hemil Gonzalez
- Department of Internal Medicine, Division of Infectious Disease, Rush University Medical Center, Chicago, IL, USA.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Anthony Podany
- Department of Pharmacy Practice and Science; College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
44
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Carlon-Andres I, Padilla-Parra S. Quantitative FRET-FLIM-BlaM to Assess the Extent of HIV-1 Fusion in Live Cells. Viruses 2020; 12:E206. [PMID: 32059513 PMCID: PMC7077196 DOI: 10.3390/v12020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
The first steps of human immunodeficiency virus (HIV) infection go through the engagement of HIV envelope (Env) with CD4 and coreceptors (CXCR4 or CCR5) to mediate viral membrane fusion between the virus and the host. New approaches are still needed to better define both the molecular mechanistic underpinnings of this process but also the point of fusion and its kinetics. Here, we have developed a new method able to detect and quantify HIV-1 fusion in single live cells. We present a new approach that employs fluorescence lifetime imaging microscopy (FLIM) to detect Förster resonance energy transfer (FRET) when using the β-lactamase (BlaM) assay. This novel approach allows comparing different populations of single cells regardless the concentration of CCF2-AM FRET reporter in each cell, and more importantly, is able to determine the relative amount of viruses internalized per cell. We have applied this approach in both reporter TZM-bl cells and primary T cell lymphocytes.
Collapse
Affiliation(s)
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK;
| |
Collapse
|
46
|
Faia C, Plaisance-Bonstaff K, Peruzzi F. In vitro models of HIV-1 infection of the Central Nervous System. DRUG DISCOVERY TODAY. DISEASE MODELS 2020; 32:5-11. [PMID: 33692833 PMCID: PMC7938360 DOI: 10.1016/j.ddmod.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neurocognitive disorders associated with HIV-1 infection affect more than half of persons living with HIV (PLWH) under retroviral therapy. Understanding the molecular mechanisms and the complex cellular network communication underlying neurological dysfunction is critical for the development of an effective therapy. As with other neurological disorders, challenges to studying HIV infection of the brain include limited access to clinical samples and proper reproducibility of the complexity of brain networks in cellular and animal models. This review focuses on cellular models used to investigate various aspects of neurological dysfunction associated with HIV infection.
Collapse
Affiliation(s)
- Celeste Faia
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
| | | | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
- Department of Medicine
- Corresponding author: Francesca Peruzzi, 1700 Tulane Ave, New Orleans, LA 70112, Tel: (504) 210-2978,
| |
Collapse
|
47
|
Omeragic A, Saikali MF, Currier S, Volsky DJ, Cummins CL, Bendayan R. Selective peroxisome proliferator-activated receptor-gamma modulator, INT131 exhibits anti-inflammatory effects in an EcoHIV mouse model. FASEB J 2019; 34:1996-2010. [PMID: 31907999 DOI: 10.1096/fj.201901874r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Despite the use of antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments, that is, HIV-1-associated neurocognitive disorders remain prevalent potentially due to persistent viral replication, production of viral proteins, associated brain inflammation or in certain instances, antiretroviral neurotoxicity. Cellular targets in the brain include microglia which in response to infection release inflammatory markers and viral proteins. Evidence suggests that PPARγ agonists exert anti-inflammatory properties in neurological disorders. However, these agonists namely, thiazolidinediones have limited use in the clinic due to reported adverse side effects. INT131 is a novel non-thiazolidinedione compound that belongs to a new class of drugs known as selective PPARγ modulators. INT131 is considered to have a safer profile; however, its neuroprotective role in vivo is not known.The goal of this study was to examine the effect of INT131 in the context of EcoHIV-induced inflammation in vitro, in primary cultures of mouse glial cells and in vivo, in a mouse model of EcoHIV-associated brain inflammation, as well as characterize its pharmacokinetic properties and brain penetration. In primary cultures of glial cells and in the in vivo mouse model, EcoHIV exposure resulted in a significant elevation of inflammatory markers such as TNFα, IL-1β, CCL3, and C3 which were attenuated with INT131 treatment. Pharmacokinetic analyses revealed that INT131 penetrates into the brain with a brain to blood partition ratio Kp value of 8.5%. Overall, this is the first report to demonstrate that INT131 could be a potential candidate for the treatment of HIV-1-associated brain inflammation.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Sydney Currier
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David J Volsky
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Abstract
: The persistence of HIV in the central nervous system is somewhat controversial particularly in the context of HIV viral suppression from combined antiretroviral therapy. Further, its significance in relation to HIV pathogenesis in the context of HIV-associated neurocognitive disorders, systemic HIV pathogenesis, and eradication in general, but especially from the brain, are even more contentious. This review will discuss each of these aspects in detail, highlighting new data, particularly from recent conference presentations.
Collapse
|
49
|
Alvarez-Carbonell D, Ye F, Ramanath N, Garcia-Mesa Y, Knapp PE, Hauser KF, Karn J. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 2019; 15:e1008249. [PMID: 31887215 PMCID: PMC6953890 DOI: 10.1371/journal.ppat.1008249] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/10/2020] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort) and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged neurons induce HIV expression in latently infected microglial cells. After 48-72 h co-culture, low levels of HIV expression appear to damage neurons, which further enhances HIV expression. There was a marked reduction in intact dendrites staining for microtubule associated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicating extensive dendritic pruning. To model neurotoxicity induced by methamphetamine (METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected patients. This combination of agents potently induced HIV expression, with the METH effect mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the combination of METH and poly(I:C) induced HIV expression and dendritic damage beyond levels seen using either agent alone, Thus, our results demonstrate that the cross-talk between healthy neurons and microglia modulates HIV expression, while HIV expression impairs this intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pamela E. Knapp
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
50
|
Rivera J, Isidro RA, Loucil-Alicea RY, Cruz ML, Appleyard CB, Isidro AA, Chompre G, Colon-Rivera K, Noel RJ. Infusion of HIV-1 Nef-expressing astrocytes into the rat hippocampus induces enteropathy and interstitial pneumonitis and increases blood-brain-barrier permeability. PLoS One 2019; 14:e0225760. [PMID: 31774879 PMCID: PMC6881014 DOI: 10.1371/journal.pone.0225760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1β levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1β in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1β. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.
Collapse
Affiliation(s)
- Jocelyn Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Raymond A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Raisa Y. Loucil-Alicea
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Angel A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gladys Chompre
- Department of Biology, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, United States of America
| | - Krystal Colon-Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|