1
|
Chen C, Xu X, Lu J, Xiang Y, Shi L, Liu D. Hyperglycemia-induced blood-brain barrier dysfunction: Mechanisms and therapeutic interventions. Microvasc Res 2025; 160:104820. [PMID: 40393562 DOI: 10.1016/j.mvr.2025.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The blood-brain barrier (BBB) serves as a highly selective interface that regulates the transport of molecules between the blood and the brain. Its integrity is essential for maintaining neuronal homeostasis and preventing neuroinflammation. Hyperglycemia, a hallmark of diabetes, is linked to cognitive deficits and central nervous system (CNS) pathologies, including vascular dementia, stroke, and Alzheimer's disease, with BBB damage as a potential contributing factor. As the global prevalence of diabetes rises, understanding the connection between hyperglycemia and BBB dysfunction may facilitate the development of novel treatments that protect or restore BBB integrity, thereby alleviating the neurological complications of diabetes. Furthermore, it may aid in the development of targeted therapies for diabetes-related neurological complications. This literature review examines the emerging insights into the relationship between hyperglycemia and BBB dysfunction. It focuses on the mechanisms underlying BBB dysfunction, the clinical manifestations of this dysfunction in diabetes and cerebrovascular diseases, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China.
| | - Xi Xu
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Jiahao Lu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China
| | - Yuqing Xiang
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China
| | - Linsheng Shi
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China; Medical College of Nantong University, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Alexander NG, Buchanan KA, Meyer AE, Mitterway LM, Vanderburgh CO, Rao SS, Kim BJ. Using a brain-like endothelial cell differentiation to characterize the CS79iBRCA-n2 BRCA1 mutated patient derived stem cell line. Front Cell Dev Biol 2025; 13:1516669. [PMID: 40371388 PMCID: PMC12075224 DOI: 10.3389/fcell.2025.1516669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
BRCA1/2 genes are considered tumor suppressor genes and help repair damaged DNA. Pathogenic germline mutations of BRCA1/2 genes are the most common hereditary cause of breast cancer and ovarian cancer. It has been established that BRCA1 mutations increase the risk of brain metastasis compared to the BRCA1 wildtype, and once metastasis occurs to the brain the disease is considered uncurable. The blood-brain barrier (BBB) is essential for maintaining and regulating homeostasis of the central nervous system and is composed of highly specialized brain endothelial cells. Using a human induced pluripotent stem cell (hiPSC) based model, we characterized an hiPSC line from an invasive cancer patient harboring a BRCA1 mutation. This patient-derived hiPSC line can be utilized to study BBB properties as after differentiation into brain-like endothelial cells (BECs), BECs derived from this line express BBB markers such as tight junction proteins, and functional efflux transporters. Future application of patient-derived stem cell models could provide a platform to discover genetic predispositions to BBB disruption in individuals with BRCA1 mutations, as well as the potential molecular mechanisms contributing to brain metastasis.
Collapse
Affiliation(s)
- Natalie G. Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Kylie A. Buchanan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Alexandra E. Meyer
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Lauren M. Mitterway
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | | | - Shreyas S. Rao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, United States
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
3
|
Yin JH, Cao LX, Liu YO, Huang Y. Diffusion along Perivascular Spaces as a Marker for Glymphatic System Impairment in Huntington's Disease. Mov Disord 2025. [PMID: 40202345 DOI: 10.1002/mds.30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The aim was to investigate if glymphatic function is impaired in patients with Huntington's disease (HD) and its clinical relevance. METHODS Forty-nine subjects carrying mutant Huntingtin (mHTT), comprising 35 manifest (mHD) and 14 pre-manifest (PreHD), and 35 healthy controls (HC) were recruited in this study. The diffusion along perivascular spaces (ALPS) index and the percentage of perivascular space in the basal ganglia (pPVS_BG) were obtained in different groups. The discrimination effects of ALPS index were detected using receiver operating characteristic (ROC) analysis, and the correlations of ALPS index with clinical features of HD were further analyzed. RESULTS ALPS index was decreased in mHTT carriers compared to HCs, and it was lower in mHD compared to PreHD patients. ROC analysis showed that the ALPS index could discriminate mHTT from HC (AUC [area under the curve] = 0.903), mHD from PreHD (AUC = 0.886), and PreHD from controls (AUC = 0.755). Lower ALPS index correlated with greater disease burden, severity of the disease, lager pPVS_BG, and lower brain volume and thickness of cortices. Regression analysis showed that ALPS index could predict the performance of motor and cognitive functions. Mediation analysis revealed that ALPS partially mediated the effects of CAG repeat and age on the cognitive decline in HD. CONCLUSIONS This study demonstrated that the impairment of the glymphatic system, especially in the paraventricular white matter and BG, was correlated with the clinical manifestations, disease burden, and brain structural changes in mHTT carriers. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jin-Hui Yin
- Human Brain and Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling-Xiao Cao
- Human Brain and Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-Ou Liu
- Human Brain and Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Human Brain and Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Healthy Brain Aging (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
4
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2025; 599:599-644. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
6
|
Abdel-Latif RT, El-Abhar HS, Abdallah DM, Fawzy IM, Mansour SM. Dual inhibition of canonical and noncanonical PAR-1 by SCH79797 mitigates neurodegeneration in 3-NP-induced Huntington's disease: An in vivo and in silico approach. Arch Pharm (Weinheim) 2025; 358:e2400846. [PMID: 40123421 DOI: 10.1002/ardp.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Though abnormal platelet function is detected in Huntington's disease (HD), thrombin's role is indistinct. Through protease-activated receptor 1 (PAR-1) activation, thrombin triggers intricate pathways relevant to HD. Therefore, we propose that posttreatment with the PAR-1 inhibitor SCH79797 may alleviate symptoms in a 3-nitropropionic acid (3-NP) HD model. Wistar rats were administered 3-NP alone or treated with SCH79797. In silico study showed better blood-brain barrier (BBB) diffusion by SCH79797 than by vorapaxar. Docking showed that SCH79797 blocks thrombin/PAR-1 binding and directly inhibits metalloproteinase (MMP)-1. Molecular dynamics confirmed minimal energy deviation and stable interactions with both PAR-1 and MMP-1 and root mean square deviation (RMSD) verified conformational stability. In the in vivo part, behavioral and striatal improvements were observed, with SCH79797 reducing striatal levels of thrombin and MMP-1, and the expression of PAR-1, N-methyl-d-aspartate (NMDA) receptor subunits (1 and 2B), and MMP-9, while increasing that of claudin-5, contributing to BBB integrity. SCH79797 also lowered tumor necrosis factor (TNF)-α and mitofusin (Mfn)-2, rebalanced the redox system by reducing malondialdehyde (MDA) and enhancing superoxide dismutase (SOD), and prevented 3-NP-induced mitophagy via the PTEN-induced kinase (PINK)-1/ubiquitin pathway. SCH79797 inhibited apoptosis, by reducing caspase-3 and cytochrome C, and increased voltage-dependent anion channel-1 (VDAC1) to maintain mitochondrial function. Overall, SCH79797 inhibited PAR-1 canonically and noncanonically to counter excitotoxicity, oxidative stress, inflammation, apoptosis, and mitophagy, thereby preserving BBB and mitochondrial integrity, improving histological outcomes, and enhancing behavioral performance.
Collapse
Affiliation(s)
- Raghda T Abdel-Latif
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Tan AYS, Martinez LCMG, Murray HC, Mehrabi NF, Tippett LJ, Turner CP, Curtis MA, Faull RLM, Dragunow M, Singh-Bains MK. Elucidating cortical neurovascular involvement in Huntington's disease using human brain tissue microarrays. Neurobiol Dis 2025; 206:106829. [PMID: 39909082 DOI: 10.1016/j.nbd.2025.106829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025] Open
Abstract
Although the genetic basis of Huntington's disease (HD) has been determined, the underlying pathophysiological mechanisms contributing to neurodegeneration remain largely unknown. In recent years, increasing evidence has posited vascular dysfunction as a significant early event in disease pathogenesis; however, these processes remain to be fully elucidated. High-content immunohistochemical screening studies were conducted on HD middle temporal gyrus (MTG) human brain tissue microarrays (TMAs) to investigate various components of the vascular system, including endothelial cells (UEA-1), pericytes (PDGFRβ), vascular smooth muscle cells (αSMA), extracellular matrix components (ECM; collagen IV and fibronectin), and leakage markers (haemoglobin and fibrinogen). Analyses of vascular markers revealed an increase in the number of vessels in the HD TMA cohort which was associated with advancing striatal pathology and earlier symptom onset. Furthermore, our findings highlight the preservation of pericytes, vascular smooth muscle cells, ECM components, and blood-brain barrier integrity in the HD MTG. Collectively, the TMA findings allude to mild vascular remodelling in the temporal cortex which is known to present with a lesser degree of neuronal degeneration in HD.
Collapse
Affiliation(s)
- Adelie Y S Tan
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Lance C M G Martinez
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Helen C Murray
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Psychology, University of Auckland, Auckland 1023, New Zealand
| | - Clinton P Turner
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1023, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand.
| | - Malvindar K Singh-Bains
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
8
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
9
|
Hu N, Chen Z, Zhao X, Peng X, Wu Y, Yang K, Sun T. Endothelial Dysfunction in Huntington's Disease: Pathophysiology and Therapeutic Implications. Int J Mol Sci 2025; 26:1432. [PMID: 40003898 PMCID: PMC11855594 DOI: 10.3390/ijms26041432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. While traditionally viewed through the lens of neuronal dysfunction, emerging evidence highlights the critical role of endothelial dysfunction in HD pathogenesis. This review provides a comprehensive overview of endothelial dysfunction in HD, drawing on findings from both animal models and human studies. Key features of endothelial dysfunction in HD include impaired angiogenesis, altered cerebral blood flow, compromised neurovascular coupling and cerebrovascular reactivity, and increased blood-brain barrier permeability. Genetic factors such as the mutant huntingtin protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), Brain-derived neurotrophic factor (BDNF), and the adenosine A2A receptor (ADORA2A) interact to influence endothelial function in complex ways. Various therapeutic approaches targeting endothelial dysfunction, including antioxidants, nitric oxide enhancers, calcium channel blockers, statins, and metformin, have shown promise in preclinical HD models but face translational challenges, particularly regarding optimal timing of intervention and patient stratification. The implications of these findings suggest that reconceptualizing HD as a neurovascular disorder, rather than purely neuronal, could lead to more effective treatment strategies. Future research priorities should include: (1) developing validated vascular biomarkers for disease progression, (2) advancing neuroimaging techniques to monitor endothelial dysfunction in real-time. These directions will be crucial for bridging the current gap between preclinical promise and clinical success in vascular-targeted HD therapeutics.
Collapse
Affiliation(s)
- Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Zihao Chen
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China;
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Xin Peng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Yimeng Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
10
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025; 8:266-286. [PMID: 39808166 PMCID: PMC11871115 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityCairoEgypt
| | - A. Dinesh Raja
- Department of PharmaceuticsKMCH College of PharmacyCoimbatoreIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, HyderabadIndia
| | - Chandan Nayak
- Department of Pharmaceutics, School of PharmacyArka Jain UniversityJharkhandIndia
| | - Senthilkumar Balakrishnan
- Department of PharmaceuticsJKKMMRF‐Annai JKK Sampoorani Ammal College of PharmacyKomarapalayamNamakkalIndia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaramIndia
| | - Saswati Panigrahi
- Department of Pharmaceutical ChemistrySt. John Institute of Pharmacy and ResearchVevoorPalgharIndia
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
11
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Weber CM, Moiz B, Kheradmand M, Scott A, Kettula C, Wunderler B, Alpízar Vargas V, Clyne AM. Glutamine metabolism is systemically different between primary and induced pluripotent stem cell-derived brain microvascular endothelial cells. J Cereb Blood Flow Metab 2025:271678X241310729. [PMID: 39763385 PMCID: PMC11705297 DOI: 10.1177/0271678x241310729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier. We found that glutamine metabolism was systemically different between the two cell types. hpBMEC had a higher metabolic rate and produced more glutamate and GABA, while hiBMEC rerouted glutamine to produce more glutathione, fatty acids, and asparagine. Higher glutathione production in hiBMEC correlated with higher oxidative stress compared to hpBMEC. α-ketoglutarate (α-KG) supplementation increased glutamate secretion from hiBMEC to match that of hpBMEC; however, α-KG also decreased hiBMEC glycolytic rate. These fundamental metabolic differences between BMEC types may impact in vitro blood-brain barrier model function, particularly communication between BMEC and surrounding cells, and emphasize the importance of evaluating the metabolic impacts of iPSC-derived cells in disease models.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Marzyeh Kheradmand
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Arielle Scott
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Claire Kettula
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Brooke Wunderler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
13
|
Li X, Tong H, Xu S, Zhou G, Yang T, Yin S, Yang S, Li X, Li S. Neuroinflammatory Proteins in Huntington's Disease: Insights into Mechanisms, Diagnosis, and Therapeutic Implications. Int J Mol Sci 2024; 25:11787. [PMID: 39519337 PMCID: PMC11546928 DOI: 10.3390/ijms252111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG tract expansion in the huntingtin gene (HTT). HD is characterized by involuntary movements, cognitive decline, and behavioral changes. Pathologically, patients with HD show selective striatal neuronal vulnerability at the early disease stage, although the mutant protein is ubiquitously expressed. Activation of the immune system and glial cell-mediated neuroinflammatory responses are early pathological features and have been found in all neurodegenerative diseases (NDDs), including HD. However, the role of inflammation in HD, as well as its therapeutic significance, has been less extensively studied compared to other NDDs. This review highlights the significantly elevated levels of inflammatory proteins and cellular markers observed in various HD animal models and HD patient tissues, emphasizing the critical roles of microglia, astrocytes, and oligodendrocytes in mediating neuroinflammation in HD. Moreover, it expands on recent discoveries related to the peripheral immune system's involvement in HD. Although current immunomodulatory treatments and inflammatory biomarkers for adjunctive diagnosis in HD are limited, targeting inflammation in combination with other therapies, along with comprehensive personalized treatment approaches, shows promising therapeutic potential.
Collapse
Affiliation(s)
- Xinhui Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Huichun Tong
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Gongke Zhou
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Tianqi Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Shurui Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Sitong Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Xiaojiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| |
Collapse
|
14
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
15
|
Cui A, Patel R, Bosco P, Akcan U, Richters E, Delgado PB, Agalliu D, Sproul AA. Generation of hiPSC-derived brain microvascular endothelial cells using a combination of directed differentiation and transcriptional reprogramming strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588012. [PMID: 38903080 PMCID: PMC11188081 DOI: 10.1101/2024.04.03.588012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. In vitro modeling of the human BBB is limited by the lack of robust hiPSC protocols to generate BMECs. Here, we report generation, transcriptomic and functional characterization of reprogrammed BMECs (rBMECs) by combining hiPSC differentiation into BBB-primed endothelial cells and reprogramming with two BBB transcription factors FOXF2 and ZIC3. rBMECs express a subset of the BBB gene repertoire including tight junctions and transporters, exhibit stronger paracellular barrier properties, lower caveolar-mediated transcytosis, and similar p-Glycoprotein activity compared to primary HBMECs. They can acquire an inflammatory phenotype when treated with oligomeric Aβ42. rBMECs integrate with hiPSC-derived pericytes and astrocytes to form a 3D neurovascular system using the MIMETAS microfluidics platform. This novel 3D system resembles the in vivo BBB at structural and functional levels to enable investigation of pathogenic mechanisms of neurological diseases.
Collapse
|
16
|
Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications. Adv Healthc Mater 2024; 13:e2303419. [PMID: 38686434 PMCID: PMC11338730 DOI: 10.1002/adhm.202303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ninghao Zhu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
17
|
Biswas PK, Park J. Applications, challenges, and prospects of induced pluripotent stem cells for vascular disease. Mol Cells 2024; 47:100077. [PMID: 38825189 PMCID: PMC11260847 DOI: 10.1016/j.mocell.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
Vascular disease, including heart disease, stroke, and peripheral arterial disease, is one of the leading causes of death and disability and represents a significant global health issue. Since the development of human induced pluripotent stem cells (hiPSCs) in 2007, hiPSCs have provided unique and tremendous opportunities for studying human pathophysiology, disease modeling, and drug discovery in the field of regenerative medicine. In this review, we discuss vascular physiology and related diseases, the current methods for generating vascular cells (eg, endothelial cells, smooth muscle cells, and pericytes) from hiPSCs, and describe the opportunities and challenges to the clinical applications of vascular organoids, tissue-engineered blood vessels, and vessels-on-a-chip. We then explore how hiPSCs can be used to study and treat inherited vascular diseases and discuss the current challenges and future prospects. In the future, it will be essential to develop vascularized organoids or tissues that can simultaneously undergo shear stress and cyclic stretching. This development will not only increase their maturity and function but also enable effective and innovative disease modeling and drug discovery.
Collapse
Affiliation(s)
- Polash Kumar Biswas
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-do 24252, South Korea
| | - Jinkyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-do 24252, South Korea; Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Field SE, Curle AJ, Barker RA. Inflammation and Huntington's disease - a neglected therapeutic target? Expert Opin Investig Drugs 2024; 33:451-467. [PMID: 38758356 DOI: 10.1080/13543784.2024.2348738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Huntington's Disease (HD) is a genetic neurodegenerative disease for which there is currently no disease-modifying treatment. One of several underlying mechanisms proposed to be involved in HD pathogenesis is inflammation; there is now accumulating evidence that the immune system may play an integral role in disease pathology and progression. As such, modulation of the immune system could be a potential therapeutic target for HD. AREAS COVERED To date, the number of trials targeting immune aspects of HD has been limited. However, targeting it, may have great advantages over other therapeutic areas, given that many drugs already exist that have actions in this system coupled to the fact that inflammation can be measured both peripherally and, to some extent, centrally using CSF and PET imaging. In this review, we look at evidence that the immune system and the newly emerging area of the microbiome are altered in HD patients, and then present and discuss clinical trials that have targeted different parts of the immune system. EXPERT OPINION We then conclude by discussing how this field might develop going forward, focusing on the role of imaging and other biomarkers to monitor central immune activation and response to novel treatments in HD.
Collapse
Affiliation(s)
- Sophie E Field
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Annabel J Curle
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Wasielewska JM, Szostak K, McInnes LE, Quek H, Chaves JCS, Liddell JR, Koistinaho J, Oikari LE, Donnelly PS, White AR. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1432-1455. [PMID: 38477556 DOI: 10.1021/acschemneuro.3c00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Kathryn Szostak
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jari Koistinaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki 00014,Finland
- Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
20
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Mozneb M, Jenkins A, Sances S, Pohlman S, Workman MJ, West D, Ondatje B, El-Ghazawi K, Woodbury A, Garcia VJ, Patel S, Arzt M, Dezem F, Laperle AH, Moser VA, Ho R, Yucer N, Plummer J, Barrett RJ, Svendsen CN, Sharma A. Multi-lineage heart-chip models drug cardiotoxicity and enhances maturation of human stem cell-derived cardiovascular cells. LAB ON A CHIP 2024; 24:869-881. [PMID: 38252454 PMCID: PMC12015978 DOI: 10.1039/d3lc00745f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability. This microfluidic organ-chip harbors hiPSC-CMs and hiPSC-ECs on separate channels that can be subjected to active fluid flow and rhythmic biomechanical stretch. We demonstrate the utility of this cardiovascular organ-chip as a predictive platform for evaluating multi-lineage VPTKI toxicity. This study may lead to the development of new modalities for the evaluation and prevention of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amelia Jenkins
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Dylan West
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Briana Ondatje
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Kareem El-Ghazawi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Amanda Woodbury
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Veronica J Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alex H Laperle
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - V Alexandra Moser
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Nur Yucer
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Jasmine Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Holley SM, Reidling JC, Cepeda C, Wu J, Lim RG, Lau A, Moore C, Miramontes R, Fury B, Orellana I, Neel M, Coleal-Bergum D, Monuki ES, Bauer G, Meshul CK, Levine MS, Thompson LM. Transplanted human neural stem cells rescue phenotypes in zQ175 Huntington's disease mice and innervate the striatum. Mol Ther 2023; 31:3545-3563. [PMID: 37807512 PMCID: PMC10727970 DOI: 10.1016/j.ymthe.2023.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Huntington's disease (HD), a genetic neurodegenerative disorder, primarily affects the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that, with short-term hNSC transplantation into the striatum of HD R6/2 mice, human cells differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here, we show that long-term (8 months) implantation of hNSCs into the striatum of HD zQ175 mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) levels, and reduces mutant huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry, single-nucleus RNA sequencing (RNA-seq), and electron microscopy demonstrate that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells, and form connections. Single-nucleus RNA-seq analysis also shows restoration of several mHTT-mediated transcriptional changes of endogenous striatal HD mouse cells. Remarkably, engrafted cells receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Alice Lau
- Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Cindy Moore
- Portland VA Medical Center, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Iliana Orellana
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Michael Neel
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Charles K Meshul
- Portland VA Medical Center, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience and Pathology, Portland, OR 97239, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Haferkamp U, Hartmann C, Abid CL, Brachner A, Höchner A, Gerhartl A, Harwardt B, Leckzik S, Leu J, Metzger M, Nastainczyk-Wulf M, Neuhaus W, Oerter S, Pless O, Rujescu D, Jung M, Appelt-Menzel A. Human isogenic cells of the neurovascular unit exert transcriptomic cell type-specific effects on a blood-brain barrier in vitro model of late-onset Alzheimer disease. Fluids Barriers CNS 2023; 20:78. [PMID: 37907966 PMCID: PMC10617216 DOI: 10.1186/s12987-023-00471-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The function of the blood-brain barrier (BBB) is impaired in late-onset Alzheimer disease (LOAD), but the associated molecular mechanisms, particularly with respect to the high-risk APOE4/4 genotype, are not well understood. For this purpose, we developed a multicellular isogenic model of the neurovascular unit (NVU) based on human induced pluripotent stem cells. METHODS The human NVU was modeled in vitro using isogenic co-cultures of astrocytes, brain capillary endothelial-like cells (BCECs), microglia-like cells, neural stem cells (NSCs), and pericytes. Physiological and pathophysiological properties were investigated as well as the influence of each single cell type on the characteristics and function of BCECs. The barriers established by BCECs were analyzed for specific gene transcription using high-throughput quantitative PCR. RESULTS Co-cultures were found to tighten the barrier of BCECs and alter its transcriptomic profile under both healthy and disease conditions. In vitro differentiation of brain cell types that constitute the NVU was not affected by the LOAD background. The supportive effect of NSCs on the barrier established by BCECs was diminished under LOAD conditions. Transcriptomes of LOAD BCECs were modulated by different brain cell types. NSCs were found to have the strongest effect on BCEC gene regulation and maintenance of the BBB. Co-cultures showed cell type-specific functional contributions to BBB integrity under healthy and LOAD conditions. CONCLUSIONS Cell type-dependent transcriptional effects on LOAD BCECs were identified. Our study suggests that different brain cell types of the NVU have unique roles in maintaining barrier integrity that vary under healthy and LOAD conditions. .
Collapse
Affiliation(s)
- Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Carla Hartmann
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Andreas Brachner
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Alevtina Höchner
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
| | - Anna Gerhartl
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Bernadette Harwardt
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Selin Leckzik
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jennifer Leu
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
| | | | - Winfried Neuhaus
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Sabrina Oerter
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, 1090, Austria
| | - Matthias Jung
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany.
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany.
| |
Collapse
|
24
|
Cohen R, Baruch ES, Cabilly I, Shapira A, Dvir T. Modified ECM-Based Bioink for 3D Printing of Multi-Scale Vascular Networks. Gels 2023; 9:792. [PMID: 37888365 PMCID: PMC10606913 DOI: 10.3390/gels9100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The survival and function of tissues depend on appropriate vascularization. Blood vessels of the tissues supply oxygen, and nutrients and remove waste and byproducts. Incorporating blood vessels into engineered tissues is essential for overcoming diffusion limitations, improving tissue function, and thus facilitating the fabrication of thick tissues. Here, we present a modified ECM bioink, with enhanced mechanical properties and endothelial cell-specific adhesion motifs, to serve as a building material for 3D printing of a multiscale blood vessel network. The bioink is composed of natural ECM and alginate conjugated with a laminin adhesion molecule motif (YIGSR). The hybrid hydrogel was characterized for its mechanical properties, biochemical content, and ability to interact with endothelial cells. The pristine and modified hydrogels were mixed with induced pluripotent stem cells derived endothelial cells (iPSCs-ECs) and used to print large blood vessels with capillary beds in between.
Collapse
Affiliation(s)
- Roni Cohen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.-S.B.); (I.C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ester-Sapir Baruch
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.-S.B.); (I.C.)
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itai Cabilly
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.-S.B.); (I.C.)
| | - Assaf Shapira
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.-S.B.); (I.C.)
| | - Tal Dvir
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.-S.B.); (I.C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
25
|
Otero MG, Bell S, Laperle AH, Lawless G, Myers Z, Castro MA, Villalba JM, Svendsen CN. Organ-Chips Enhance the Maturation of Human iPSC-Derived Dopamine Neurons. Int J Mol Sci 2023; 24:14227. [PMID: 37762529 PMCID: PMC10531789 DOI: 10.3390/ijms241814227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
While cells in the human body function in an environment where the blood supply constantly delivers nutrients and removes waste, cells in conventional tissue culture well platforms are grown with a static pool of media above them and often lack maturity, limiting their utility to study cell biology in health and disease. In contrast, organ-chip microfluidic systems allow the growth of cells under constant flow, more akin to the in vivo situation. Here, we differentiated human induced pluripotent stem cells into dopamine neurons and assessed cellular properties in conventional multi-well cultures and organ-chips. We show that organ-chip cultures, compared to multi-well cultures, provide an overall greater proportion and homogeneity of dopaminergic neurons as well as increased levels of maturation markers. These organ-chips are an ideal platform to study mature dopamine neurons to better understand their biology in health and ultimately in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.G.O.)
| |
Collapse
|
26
|
Zhao C, Wang Z, Tang X, Qin J, Jiang Z. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Colloids Surf B Biointerfaces 2023; 229:113431. [PMID: 37473652 DOI: 10.1016/j.colsurfb.2023.113431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Brain science has remained in the global spotlight as an important field of scientific and technological discovery. Numerous in vitro and in vivo animal studies have been performed to understand the pathological processes involved in brain diseases and develop strategies for their diagnosis and treatment. However, owing to species differences between animals and humans, several drugs have shown high rates of treatment failure in clinical settings, hindering the development of diagnostic and treatment modalities for brain diseases. In this scenario, microfluidic brain-on-a-chip (BOC) devices, which allow the direct use of human tissues for experiments, have emerged as novel tools for effectively avoiding species differences and performing screening for new drugs. Although microfluidic BOC technology has achieved significant progress in recent years, monitoring slight changes in neurochemicals, neurotransmitters, and environmental states in the brain has remained challenging owing to the brain's complex environment. Hence, the integration of BOC with new sensors that have high sensitivity and high selectivity is urgently required for the real-time dynamic monitoring of BOC parameters. As sensor-based technologies for BOC have not been summarized, here, we review the principle, fabrication process, and application-based classification of sensor-integrated BOC, and then summarize the opportunities and challenges for their development. Generally, sensor-integrated BOC enables real-time monitoring and dynamic analysis, accurately measuring minute changes in the brain and thus enabling the realization of in vivo brain analysis and drug development.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihao Wang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhenqi Jiang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
27
|
Lyck R, Nishihara H, Aydin S, Soldati S, Engelhardt B. Modeling Brain Vasculature Immune Interactions In Vitro. Cold Spring Harb Perspect Med 2023; 13:a041185. [PMID: 36617644 PMCID: PMC10513158 DOI: 10.1101/cshperspect.a041185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endothelial blood-brain barrier (BBB) protects central nervous system (CNS) neurons from the changeable milieu of the bloodstream by strictly controlling the movement of molecules and immune cells between the blood and the CNS. Immune cell migration across the vascular wall is a multistep process regulated by the sequential interaction of different signaling and adhesion molecules on the endothelium and the immune cells. Accounting for its unique barrier properties and trafficking molecule expression profile, particular adaptions in immune cell migration across the BBB have been observed. Thus, in vitro models of the BBB are desirable to explore the precise cellular and molecular mechanisms involved in immune cell trafficking across the BBB. The challenge to overcome is that barrier properties of brain microvascular endothelial cells are not intrinsic and readily lost in culture. With a focus on human in vitro BBB models, we here discuss the suitability of available in vitro models for the BBB for exploring the specific mechanisms involved in immune cell trafficking across the BBB.
Collapse
Affiliation(s)
- Ruth Lyck
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Sidar Aydin
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| |
Collapse
|
28
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
29
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
30
|
Zhu L, Wang M, Liu Y, Fu P, Zhang W, Zhang H, Roe AW, Xi W. Single-microvessel occlusion produces lamina-specific microvascular flow vasodynamics and signs of neurodegenerative change. Cell Rep 2023; 42:112469. [PMID: 37141094 DOI: 10.1016/j.celrep.2023.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Recent studies have highlighted the importance of understanding the architecture and function of microvasculature, and dysfunction of these microvessels may underlie neurodegenerative disease. Here, we utilize a high-precision ultrafast laser-induced photothrombosis (PLP) method to occlude single capillaries and then quantitatively study the effects on vasodynamics and surrounding neurons. Analysis of the microvascular architecture and hemodynamics after single-capillary occlusion reveals distinct changes upstream vs. downstream branches, which shows rapid regional flow redistribution and local downstream blood-brain barrier (BBB) leakage. Focal ischemia via capillary occlusions surrounding labeled target neurons induces dramatic and rapid lamina-specific changes in neuronal dendritic architecture. Further, we find that micro-occlusion at two different depths within the same vascular arbor results in distinct effects on flow profiles in layers 2/3 vs layer 4. The current results reveal laminar-scale regulation distinctions in microinfarct response and raise the possibility that relatively greater impacts on microvascular function contribute to cognitive decline in neurodegenerative disease.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Weijie Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
31
|
Bae S, Jung C, Yoon YS. Rescue of EndMT-associated endothelial dysfunction by modulating the YAP pathway. NATURE CARDIOVASCULAR RESEARCH 2023; 2:420-422. [PMID: 39196047 DOI: 10.1038/s44161-023-00268-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Cholomi Jung
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
32
|
Hernandez SJ, Lim RG, Onur T, Dane MA, Smith R, Wang K, Jean GEH, Reyes-Ortiz A, Devlin K, Miramontes R, Wu J, Casale M, Kilburn D, Heiser LM, Korkola JE, Van Vactor D, Botas J, Thompson-Peer KL, Thompson LM. An altered extracellular matrix-integrin interface contributes to Huntington's disease-associated CNS dysfunction in glial and vascular cells. Hum Mol Genet 2023; 32:1483-1496. [PMID: 36547263 PMCID: PMC10117161 DOI: 10.1093/hmg/ddac303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.
Collapse
Affiliation(s)
- Sarah J Hernandez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Tarik Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Keona Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Grace En-Hway Jean
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Andrea Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kaylyn Devlin
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - David Kilburn
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Reeve-Irvine Research Center, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
33
|
Andjelkovic AV, Situ M, Citalan-Madrid AF, Stamatovic SM, Xiang J, Keep RF. Blood-Brain Barrier Dysfunction in Normal Aging and Neurodegeneration: Mechanisms, Impact, and Treatments. Stroke 2023; 54:661-672. [PMID: 36848419 PMCID: PMC9993074 DOI: 10.1161/strokeaha.122.040578] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cerebral endothelial cells and their linking tight junctions form a unique, dynamic and multi-functional interface, the blood-brain barrier (BBB). The endothelium is regulated by perivascular cells and components forming the neurovascular unit. This review examines BBB and neurovascular unit changes in normal aging and in neurodegenerative disorders, particularly focusing on Alzheimer disease, cerebral amyloid angiopathy and vascular dementia. Increasing evidence indicates BBB dysfunction contributes to neurodegeneration. Mechanisms underlying BBB dysfunction are outlined (endothelium and neurovascular unit mediated) as is the BBB as a therapeutic target including increasing the uptake of systemically delivered therapeutics across the BBB, enhancing clearance of potential neurotoxic compounds via the BBB, and preventing BBB dysfunction. Finally, a need for novel biomarkers of BBB dysfunction is addressed.
Collapse
Affiliation(s)
- Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Muyu Situ
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor MI, USA
| | | | | | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
34
|
Girard SD, Julien-Gau I, Molino Y, Combes BF, Greetham L, Khrestchatisky M, Nivet E. High and low permeability of human pluripotent stem cell-derived blood-brain barrier models depend on epithelial or endothelial features. FASEB J 2023; 37:e22770. [PMID: 36688807 DOI: 10.1096/fj.202201422r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023]
Abstract
The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.
Collapse
Affiliation(s)
- Stéphane D Girard
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Yves Molino
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Louise Greetham
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Michel Khrestchatisky
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Emmanuel Nivet
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
35
|
Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023; 26:105732. [PMID: 36590162 PMCID: PMC9800269 DOI: 10.1016/j.isci.2022.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.
Collapse
Affiliation(s)
- Andrea M. Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Edsel M. Abud
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Mara S. Burns
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Sarah J. Hernandez
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Nicolette McClure
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Keona Q. Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Corey J. Schulz
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Neethu Michael
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, MA 02115, USA
| | - John C. Reidling
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Wayne W. Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Ryan G. Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
36
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
37
|
Xue Y, Zhang Q, Wang LJ, Tu WJ, Zhao J. Application of Induced Pluripotent Stem Cells in Moyamoya Disease: Progress and Promises. Curr Stem Cell Res Ther 2023; 18:733-739. [PMID: 35674309 DOI: 10.2174/1574888x17666220607121027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
Moyamoya disease (MMD) is a chronic steno-occlusion cerebrovascular disease accompanied by the formation of the abnormal vascular network at the base of the brain. The etiology of MMD is not fully clarified. Lack of pathological specimens hinders the research progress. Induced pluripotent stem cells (iPSC) derived from patients with outstanding differentiation potential and infinite proliferation ability could conquer the problem of insufficient samples. The technology of iPSC holds the promise of clarifying the underlying molecular mechanism in the development of MMD. In this review, we summarized the latest progress and difficulties in the research of mechanism and detailed the application of iPSC in MMD, aiming to provide an outlook of iPSC in molecular mechanism and novel therapies of MMD.
Collapse
Affiliation(s)
- Yimeng Xue
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lin-Jian Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
38
|
Al-Ahmad AJ. Human-Induced Pluripotent Stem Cell-Based Model of the Blood-Brain at 10 Years: A Retrospective on Past and Current Disease Models. Handb Exp Pharmacol 2023; 281:141-156. [PMID: 36943490 DOI: 10.1007/164_2023_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The initial discovery and derivation of induced pluripotent stem cells (iPSCs) by Yamanaka and colleagues in 2006 revolutionized the field of personalized medicine, as it opened the possibility to model diseases using patient-derived stem cells. A decade of adoption of iPSCs within the community of the blood-brain barrier (BBB) significantly opened the door for modeling diseases at the BBB, a task until then considered challenging, if not impossible.In this book chapter, we provided an extensive review of the literature on the use of iPSC-based models of the human BBB to model neurological diseases including infectious diseases (COVID-19, Streptococcus, Neisseria) neurodevelopmental diseases (adrenoleukodystrophy, Allan-Herndon-Dudley Syndrome, Batten's disease, GLUT1 deficiency syndrome), and neurodegenerative diseases (Alzheimer's disease, the current findings and observations, but also the challenges and limitations inherent to the use of iPSC-based models in reproducing the human BBB during health and diseases in a Petri dish.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
39
|
Yuan Y, Sun J, Dong Q, Cui M. Blood-brain barrier endothelial cells in neurodegenerative diseases: Signals from the "barrier". Front Neurosci 2023; 17:1047778. [PMID: 36908787 PMCID: PMC9998532 DOI: 10.3389/fnins.2023.1047778] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
As blood-brain barrier (BBB) disruption emerges as a common problem in the early stages of neurodegenerative diseases, the crucial roles of barrier-type brain endothelial cells (BECs), the primary part of the BBB, have been reported in the pathophysiology of neurodegenerative diseases. The mechanisms of how early vascular dysfunction contributes to the progress of neurodegeneration are still unclear, and understanding BEC functions is a promising start. Our understanding of the BBB has gone through different stages, from a passive diffusion barrier to a mediator of central-peripheral interactions. BECs serve two seemingly paradoxical roles: as a barrier to protect the delicate brain from toxins and as an interface to constantly receive and release signals, thus maintaining and regulating the homeostasis of the brain. Most previous studies about neurodegenerative diseases focus on the loss of barrier functions, and far too little attention has been paid to the active regulations of BECs. In this review, we present the current evidence of BEC dysfunction in neurodegenerative diseases and explore how BEC signals participate in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Lim RG, Al-Dalahmah O, Wu J, Gold MP, Reidling JC, Tang G, Adam M, Dansu DK, Park HJ, Casaccia P, Miramontes R, Reyes-Ortiz AM, Lau A, Hickman RA, Khan F, Paryani F, Tang A, Ofori K, Miyoshi E, Michael N, McClure N, Flowers XE, Vonsattel JP, Davidson S, Menon V, Swarup V, Fraenkel E, Goldman JE, Thompson LM. Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation. Nat Commun 2022; 13:7791. [PMID: 36543778 PMCID: PMC9772349 DOI: 10.1038/s41467-022-35388-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of affected brain regions and cell types is a challenge for Huntington's disease (HD) treatment. Here we use single nucleus RNA sequencing to investigate molecular pathology in the cortex and striatum from R6/2 mice and human HD post-mortem tissue. We identify cell type-specific and -agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte precursors (OPCs) are arrested in intermediate maturation states. OL-lineage regulators OLIG1 and OLIG2 are negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD mouse NeuN-negative cells shows decreased accessibility regulated by OL maturation genes. The data implicates glucose and lipid metabolism in abnormal cell maturation and identify PRKCE and Thiamine Pyrophosphokinase 1 (TPK1) as central genes. Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology. Our insights into HD OL pathology spans multiple brain regions and link OL maturation deficits to abnormal thiamine metabolism.
Collapse
Affiliation(s)
- Ryan G Lim
- UCI MIND, University of California Irvine, Irvine, CA, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Guomei Tang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David K Dansu
- Advanced Science Research Center at the City University of New York, New York, NY, USA
| | - Hye-Jin Park
- Advanced Science Research Center at the City University of New York, New York, NY, USA
| | - Patrizia Casaccia
- Advanced Science Research Center at the City University of New York, New York, NY, USA
| | | | - Andrea M Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Richard A Hickman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Fahad Paryani
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Nicolette McClure
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Xena E Flowers
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, New York, NY, USA
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Vilas Menon
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Vivek Swarup
- UCI MIND, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, New York, NY, USA.
| | - Leslie M Thompson
- UCI MIND, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Center University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
41
|
Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek SP, Shusta EV, Pasquier RD, Engelhardt B. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 2022; 145:4334-4348. [PMID: 35085379 PMCID: PMC10200307 DOI: 10.1093/brain/awac019] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 07/20/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the CNS are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis. To this end, we made use of human induced pluripotent stem cells derived from healthy controls and MS patients and differentiated them into brain microvascular endothelial cell (BMEC)-like cells as in vitro model of the BBB. MS-derived BMEC-like cells showed impaired junctional integrity, barrier properties and efflux pump activity when compared to healthy controls. Also, MS-derived BMEC-like cells displayed an inflammatory phenotype with increased adhesion molecule expression and immune cell interactions. Activation of Wnt/β-catenin signalling in MS-derived endothelial progenitor cells enhanced barrier characteristics and reduced the inflammatory phenotype. Our study provides evidence for an intrinsic impairment of BBB function in MS patients that can be modelled in vitro. Human iPSC-derived BMEC-like cells are thus suitable to explore the molecular underpinnings of BBB dysfunction in MS and will assist in the identification of potential novel therapeutic targets for BBB stabilization.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sylvain Perriot
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Marel Steinfort
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Celine Cibien
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Kinya Matsuo
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sarah Guimbal
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
42
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Integrative Meta-Analysis of Huntington's Disease Transcriptome Landscape. Genes (Basel) 2022; 13:2385. [PMID: 36553652 PMCID: PMC9777612 DOI: 10.3390/genes13122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder with autosomal dominant inheritance caused by glutamine expansion in the Huntingtin gene (HTT). Striatal projection neurons (SPNs) in HD are more vulnerable to cell death. The executive striatal population is directly connected with the Brodmann Area (BA9), which is mainly involved in motor functions. Analyzing the disease samples from BA9 from the SRA database provides insights related to neuron degeneration, which helps to identify a promising therapeutic strategy. Most gene expression studies examine the changes in expression and associated biological functions. In this study, we elucidate the relationship between variants and their effect on gene/downstream transcript expression. We computed gene and transcript abundance and identified variants from RNA-seq data using various pipelines. We predicted the effect of genome-wide association studies (GWAS)/novel variants on regulatory functions. We found that many variants affect the histone acetylation pattern in HD, thereby perturbing the transcription factor networks. Interestingly, some variants affect miRNA binding as well as their downstream gene expression. Tissue-specific network analysis showed that mitochondrial, neuroinflammation, vasculature, and angiogenesis-related genes are disrupted in HD. From this integrative omics analysis, we propose that abnormal neuroinflammation acts as a two-edged sword that indirectly affects the vasculature and associated energy metabolism. Rehabilitation of blood-brain barrier functionality and energy metabolism may secure the neuron from cell death.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Y.-H. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
43
|
Sileo P, Simonin C, Melnyk P, Chartier-Harlin MC, Cotelle P. Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells 2022; 11:cells11223631. [PMID: 36429058 PMCID: PMC9688160 DOI: 10.3390/cells11223631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/β-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether β-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the β-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.
Collapse
Affiliation(s)
- Pasquale Sileo
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Centre de Référence Maladie de Huntington, CHU Lille, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| | - Philippe Cotelle
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- ENSCL-Centrale Lille, CS 90108, F-59652 Villeneuve d’Ascq, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| |
Collapse
|
44
|
Endres LM, Jungblut M, Divyapicigil M, Sauer M, Stigloher C, Christodoulides M, Kim BJ, Schubert-Unkmeir A. Development of a multicellular in vitro model of the meningeal blood-CSF barrier to study Neisseria meningitidis infection. Fluids Barriers CNS 2022; 19:81. [PMID: 36289516 PMCID: PMC9597984 DOI: 10.1186/s12987-022-00379-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background Bacterial meningitis is a life-threatening disease that occurs when pathogens such as Neisseria meningitidis cross the meningeal blood cerebrospinal fluid barrier (mBCSFB) and infect the meninges. Due to the human-specific nature of N. meningitidis, previous research investigating this complex host–pathogen interaction has mostly been done in vitro using immortalized brain endothelial cells (BECs) alone, which often do not retain relevant barrier properties in culture. Here, we developed physiologically relevant mBCSFB models using BECs in co-culture with leptomeningeal cells (LMCs) to examine N. meningitidis interaction. Methods We used BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in co-culture with LMCs derived from tumor biopsies. We employed TEM and structured illumination microscopy to characterize the models as well as bacterial interaction. We measured TEER and sodium fluorescein (NaF) permeability to determine barrier tightness and integrity. We then analyzed bacterial adherence and penetration of the cell barrier and examined changes in host gene expression of tight junctions as well as chemokines and cytokines in response to infection. Results Both cell types remained distinct in co-culture and iBECs showed characteristic expression of BEC markers including tight junction proteins and endothelial markers. iBEC barrier function as determined by TEER and NaF permeability was improved by LMC co-culture and remained stable for seven days. BEC response to N. meningitidis infection was not affected by LMC co-culture. We detected considerable amounts of BEC-adherent meningococci and a relatively small number of intracellular bacteria. Interestingly, we discovered bacteria traversing the BEC-LMC barrier within the first 24 h post-infection, when barrier integrity was still high, suggesting a transcellular route for N. meningitidis into the CNS. Finally, we observed deterioration of barrier properties including loss of TEER and reduced expression of cell-junction components at late time points of infection. Conclusions Here, we report, for the first time, on co-culture of human iPSC derived BECs or hCMEC/D3 with meningioma derived LMCs and find that LMC co-culture improves barrier properties of iBECs. These novel models allow for a better understanding of N. meningitidis interaction at the mBCSFB in a physiologically relevant setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00379-z.
Collapse
Affiliation(s)
- Leo M. Endres
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Marvin Jungblut
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mustafa Divyapicigil
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Markus Sauer
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Stigloher
- grid.8379.50000 0001 1958 8658Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Myron Christodoulides
- grid.5491.90000 0004 1936 9297Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Brandon J. Kim
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Alexandra Schubert-Unkmeir
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
45
|
Peng B, Hao S, Tong Z, Bai H, Pan S, Lim KL, Li L, Voelcker NH, Huang W. Blood-brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. LAB ON A CHIP 2022; 22:3579-3602. [PMID: 36004771 DOI: 10.1039/d2lc00305h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) represents a key challenge in developing brain-penetrating therapeutic molecules. BBB dysfunction is also associated with the onset and progression of various brain diseases. The BBB-on-a-chip (μBBB), an organ-on-chip technology, has emerged as a powerful in vitro platform that closely mimics the human BBB microenvironments. While the μBBB technology has seen wide application in the study of brain cancer, its utility in other brain disease models ("μBBB+") is less appreciated. Based on the advances of the μBBB technology and the evolution of in vitro models for brain diseases over the last decade, we propose the concept of a "μBBB+" system and summarize its major promising applications in pathological studies, personalized medical research, drug development, and multi-organ-on-chip approaches. We believe that such a sophisticated "μBBB+" system is a highly tunable and promising in vitro platform for further advancement of the understanding of brain diseases.
Collapse
Affiliation(s)
- Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Shiping Hao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Nicolas H Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
46
|
Shi Y, Kim H, Hamann CA, Rhea EM, Brunger JM, Lippmann ES. Nuclear receptor ligand screening in an iPSC-derived in vitro blood-brain barrier model identifies new contributors to leptin transport. Fluids Barriers CNS 2022; 19:77. [PMID: 36131285 PMCID: PMC9494897 DOI: 10.1186/s12987-022-00375-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hormone leptin exerts its function in the brain to reduce food intake and increase energy expenditure to prevent obesity. However, most obese subjects reflect the resistance to leptin even with elevated serum leptin. Considering that leptin must cross the blood-brain barrier (BBB) in several regions to enter the brain parenchyma, altered leptin transport through the BBB might play an important role in leptin resistance and other biological conditions. Here, we report the use of a human induced pluripotent stem cell (iPSC)-derived BBB model to explore mechanisms that influence leptin transport. METHODS iPSCs were differentiated into brain microvascular endothelial cell (BMEC)-like cells using standard methods. BMEC-like cells were cultured in Transwell filters, treated with ligands from a nuclear receptor agonist library, and assayed for leptin transport using an enzyme-linked immune sorbent assay. RNA sequencing was further used to identify differentially regulated genes and pathways. The role of a select hit in leptin transport was tested with the competitive substrate assay and after gene knockdown using CRISPR techniques. RESULTS Following a screen of 73 compounds, 17β-estradiol was identified as a compound that could significantly increase leptin transport. RNA sequencing revealed many differentially expressed transmembrane transporters after 17β-estradiol treatment. Of these, cationic amino acid transporter-1 (CAT-1, encoded by SLC7A1) was selected for follow-up analyses due to its high and selective expression in BMECs in vivo. Treatment of BMEC-like cells with CAT-1 substrates, as well as knockdown of CAT-1 expression via CRISPR-mediated epigenome editing, yielded significant increases in leptin transport. CONCLUSIONS A major female sex hormone, as well as an amino acid transporter, were revealed as regulators of leptin BBB transport in the iPSC-derived BBB model. Outcomes from this work provide insights into regulation of hormone transport across the BBB.
Collapse
Affiliation(s)
- Yajuan Shi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catherine A Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth M Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
47
|
Pervaiz I, Zahra FT, Mikelis C, Al-Ahmad AJ. An in vitro model of glucose transporter 1 deficiency syndrome at the blood-brain barrier using induced pluripotent stem cells. J Neurochem 2022; 162:483-500. [PMID: 35943296 DOI: 10.1111/jnc.15684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Glucose is an important source of energy for the central nervous system. Its uptake at the blood-brain barrier (BBB) is mostly mediated via glucose transporter 1 (GLUT1), a facilitated transporter encoded by the SLC2A1 gene. GLUT1 Deficiency Syndrome (GLUT1DS) is a haploinsufficiency characterized by mutations in the SLC2A1 gene, resulting in impaired glucose uptake at the BBB and clinically characterized by epileptic seizures and movement disorder. A major limitation is an absence of in vitro models of the BBB reproducing the disease. This study aimed to characterize an in vitro model of GLUT1DS using human pluripotent stem cells (iPSCs). Two GLUT1DS clones were generated (GLUT1-iPSC) from their original parental clone iPS(IMR90)-c4 by CRISPR/Cas9 and differentiated into brain microvascular endothelial cells (iBMECs). Cells were characterized in terms of SLC2A1 expression, changes in the barrier function, glucose uptake and metabolism, and angiogenesis. GLUT1DS iPSCs and iBMECs showed comparable phenotype to their parental control, with exception of reduced GLUT1 expression at the protein level. Although no major disruption in the barrier function was reported in the two clones, a significant reduction in glucose uptake accompanied by an increase in glycolysis and mitochondrial respiration was reported in both GLUT1DS-iBMECs. Finally, impaired angiogenic features were reported in such clones compared to the parental clone. Our study provides the first documented characterization of GLUT1DS-iBMECs generated by CRISPR-Cas9, suggesting that GLUT1 truncation appears detrimental to brain angiogenesis and brain endothelial bioenergetics, but maybe not be detrimental to iBMECs differentiation and barriergenesis. Our future direction is to further characterize the functional outcome of such truncated product, as well as its impact on other cells of the neurovascular unit.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Fatema Tuz Zahra
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Constantinos Mikelis
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Abraham Jacob Al-Ahmad
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| |
Collapse
|
48
|
Zlotnik D, Rabinski T, Halfon A, Anzi S, Plaschkes I, Benyamini H, Nevo Y, Gershoni OY, Rosental B, Hershkovitz E, Ben-Zvi A, Vatine GD. P450 oxidoreductase regulates barrier maturation by mediating retinoic acid metabolism in a model of the human BBB. Stem Cell Reports 2022; 17:2050-2063. [PMID: 35961311 PMCID: PMC9481905 DOI: 10.1016/j.stemcr.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models’ functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties. Retinoic acid (RA) promotes functional barrier properties POR-deficient iPS-brain endothelial-like cells display impaired barrier development POR mediates CYP26-dependent cellular RA catabolism RA accumulation induces a pro-inflammatory response
Collapse
Affiliation(s)
- Dor Zlotnik
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tatiana Rabinski
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Aviv Halfon
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shira Anzi
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Inbar Plaschkes
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Hadar Benyamini
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, the Hebrew University, Jerusalem 91120, Israel
| | - Orly Yahalom Gershoni
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Benyamin Rosental
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eli Hershkovitz
- Israel Pediatric Endocrinology and Diabetes Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
49
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
50
|
Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022; 11:2105. [PMID: 35805189 PMCID: PMC9265456 DOI: 10.3390/cells11132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15100, USA;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38100 Trento, Italy;
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|