1
|
Lee E, Hong JJ, Samcam Vargas G, Sauerwald N, Wei Y, Hang X, Theesfeld CL, Volmar JAA, Miller JM, Wang W, Wang S, Laevsky G, DeCoste CJ, Kang Y. CXCR4 + mammary gland macrophageal niche promotes tumor initiating cell activity and immune suppression during tumorigenesis. Nat Commun 2025; 16:4854. [PMID: 40413176 PMCID: PMC12103607 DOI: 10.1038/s41467-025-59972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Tumor-initiating cells (TICs) share features and regulatory pathways with normal stem cells, yet how the stem cell niche contributes to tumorigenesis remains unclear. Here, we identify CXCR4+ macrophages as a niche population enriched in normal mammary ducts, where they promote the regenerative activity of basal cells in response to luminal cell-derived CXCL12. CXCL12 triggers AKT-mediated stabilization of β-catenin, which induces Wnt ligands and pro-migratory genes, enabling intraductal macrophage infiltration and supporting regenerative activity of basal cells. Notably, these same CXCR4+ niche macrophages regulate the tumor-initiating activity of various breast cancer subtypes by enhancing TIC survival and tumor-forming capacity, while promoting early immune evasion through regulatory T cell induction. Furthermore, a CXCR4+ niche macrophage gene signature correlates with poor prognosis in human breast cancer. These findings highlight the pivotal role of the CXCL12-CXCR4 axis in orchestrating interactions between niche macrophages, mammary epithelial cells, and immune cells, thereby establishing a supportive niche for both normal tissue regeneration and mammary tumor initiation.
Collapse
Affiliation(s)
- Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jason J Hong
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | - Natalie Sauerwald
- Center for Computational Biology, Flatiron Institute, New York, NY, 10010, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Jean Arly A Volmar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer M Miller
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Sha Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Gary Laevsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Christina J DeCoste
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
2
|
Lin Z, Guo Y, Bai H, Liu X, Lin M, Zhang Y, Tang R, Hu T, Yu L, Wang C, Cai S. Distinct mammary stem cells orchestrate long-term homeostasis of adult mammary gland. Cell Discov 2025; 11:39. [PMID: 40234382 PMCID: PMC12000503 DOI: 10.1038/s41421-025-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 04/17/2025] Open
Abstract
The murine mammary gland is sustained by distinct pools of stem cells that are limited in space and time, exhibiting both unipotency and bipotency. However, the specific identities of the bipotent and unipotent mammary stem cells remain unclear. In this study, we investigated spatial heterogeneity of the mammary gland at the single-cell transcriptional level. We found that mammary basal cells exhibited spatially distinct populations and characteristics, which can be further divided based on the expression of CD34 and CD200 markers. Notably, CD34-CD200+ basal cells enriched at the nipple region demonstrated strong long-term self-renewal ability and possessed the highest stem cell frequency, while CD34+CD200- basal cells enriched in the terminal end buds (TEBs) showed reduced stem cell potency. Through lineage tracing experiments based on their signature genes, we discovered that Bcl11b+ cells were enriched in the CD34-CD200+ population and exhibited bipotency even in the postnatal mammary gland, with an increasing contribution to mammary epithelia observed during long-term tracing and after multiple rounds of pregnancies. Conversely, lineage tracing of Sema3a+ cells, enriched in the CD34+CD200- population, predominantly revealed their unipotent nature and significant contribution during alveologenesis. Notably, the Bcl11b+ cells displayed a slow response to pregnancy but contributed to long-term mammary homeostasis, in contrast to the rapid response observed in Sema3a+ cells. In addition, Bcl11b progenies survived much better than Sema3a progenies during involution stage, thereby exhibiting increased coverage in the mammary gland after multiple rounds of pregnancies. Importantly, depletion of Bcl11b in Krt14+ mammary basal cells resulted in reduced bipotency of mammary stem cells and impaired their long-term contribution to the mammary gland. Overall, our study identifies distinct bipotent and unipotent populations of mammary basal cells with different dynamic properties that play critical roles in maintaining postnatal mammary homeostasis. These findings are crucial for advancing our understanding of breast health and breast cancer research.
Collapse
Affiliation(s)
- Zuobao Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huiru Bai
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tian'en Hu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lili Yu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Joyce R, Visvader JE. Cells-of-Origin of Breast Cancer and Intertumoral Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:151-165. [PMID: 39821025 DOI: 10.1007/978-3-031-70875-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Both intrinsic and extrinsic mechanisms underpin the profound intertumoral heterogeneity in breast cancer. Increasing evidence suggests that the intrinsic characteristics of breast epithelial precursor cells may influence tumour phenotype. These "cells-of-origin" of cancer preside in normal breast tissue and are uniquely susceptible to mutagenesis upon exposure to distinct oncogenic stimuli. Notably, molecular profiling studies have revealed strong concordance between the gene expression profiles of breast cancer subtypes and discrete cell types within the normal breast epithelium. Further characterisation of cells-of-origin of breast cancer requires comprehensive delineation of the normal mammary stem cell hierarchy. To this end, mouse models have provided valuable tools for exploring stem and progenitor cell function and identifying potential targets of neoplastic transformation via in vivo lineage-tracing studies. Nonetheless, the murine mammary differentiation hierarchy does not fully recapitulate human biology, and complementary studies using patient-direct breast tissue are critical. There is also accumulating evidence that extrinsic factors such as the microenvironment of premalignant cells can influence tumour initiation, highlighting opportunities for targeting cancer cells-of-origin via deconvolution of the premalignant epithelial niche. Pertinently, the identification of premalignant clones and targetable molecular perturbations responsible for driving their oncogenic transformation has critical implications for disease management and prevention.
Collapse
Affiliation(s)
- Rachel Joyce
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Wurundjeri Country, Melbourne, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.
| |
Collapse
|
4
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
5
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
6
|
Iggo R, MacGrogan G. Classification of Breast Cancer Through the Perspective of Cell Identity Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:185-207. [PMID: 39821027 DOI: 10.1007/978-3-031-70875-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The mammary epithelium has an inner luminal layer that contains estrogen receptor (ER)-positive hormone-sensing cells and ER-negative alveolar/secretory cells, and an outer basal layer that contains myoepithelial/stem cells. Most human tumours resemble either hormone-sensing cells or alveolar/secretory cells. The most widely used molecular classification, the Intrinsic classification, assigns hormone-sensing tumours to Luminal A/B and human epidermal growth factor 2-enriched (HER2E)/molecular apocrine (MA)/luminal androgen receptor (LAR)-positive classes, and alveolar/secretory tumours to the Basal-like class. Molecular classification is most useful when tumours have classic invasive carcinoma of no special type (NST) histology. It is less useful for special histological types of breast cancer, such as metaplastic breast cancer and adenoid cystic cancer, which are better described with standard pathology terms. Compared to mice, humans show a strong bias towards making tumours that resemble mammary hormone-sensing cells. This could be caused by the formation in adolescence of der(1;16), a translocation through the centromeres of chromosomes 1 and 16, which only occurs in humans and could trap the cells in the hormone-sensing state.
Collapse
Affiliation(s)
- Richard Iggo
- INSERM, Bergonie Cancer Institute, University of Bordeaux, Bordeaux, France.
| | - Gaetan MacGrogan
- INSERM, Bergonie Cancer Institute, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Dawson CA, Milevskiy MJG, Capaldo BD, Yip RKH, Song X, Vaillant F, Prokopuk L, Jackling FC, Smyth GK, Chen Y, Lindeman GJ, Visvader JE. Hormone-responsive progenitors have a unique identity and exhibit high motility during mammary morphogenesis. Cell Rep 2024; 43:115073. [PMID: 39700014 DOI: 10.1016/j.celrep.2024.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Hormone-receptor-positive (HR+) luminal cells largely mediate the response to estrogen and progesterone during mammary gland morphogenesis. However, there remains a lack of consensus on the precise nature of the precursor cells that maintain this essential HR+ lineage. Here we refine the identification of HR+ progenitors and demonstrate their unique regenerative capacity compared to mature HR+ cells. HR+ progenitors proliferate but do not expand, suggesting rapid differentiation. Subcellular resolution, 3D intravital microscopy was performed on terminal end buds (TEBs) during puberty to dissect the contribution of each luminal lineage. Surprisingly, HR+ TEB progenitors were highly elongated and motile compared to columnar HR- progenitors and static, conoid HR+ cells within ducts. This dynamic behavior was also observed in response to hormones. Development of an AI model for motility dynamics analysis highlighted stark behavioral changes in HR+ progenitors as they transitioned to mature cells. This work provides valuable insights into how progenitor behavior contributes to mammary morphogenesis.
Collapse
Affiliation(s)
- Caleb A Dawson
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Raymond K H Yip
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lexie Prokopuk
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC 3052, Australia
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| |
Collapse
|
8
|
Vallmajo-Martin Q, Ma Z, Srinivasan S, Murali D, Dravis C, Mukund K, Subramaniam S, Wahl GM, Lytle NK. The molecular chronology of mammary epithelial cell fate switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617155. [PMID: 39415993 PMCID: PMC11482796 DOI: 10.1101/2024.10.08.617155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The adult mammary gland is maintained by lineage-restricted progenitor cells through pregnancy, lactation, involution, and menopause. Injury resolution, transplantation-associated mammary gland reconstitution, and tumorigenesis are unique exceptions, wherein mammary basal cells gain the ability to reprogram to a luminal state. Here, we leverage newly developed cell-identity reporter mouse strains, and time-resolved single-cell epigenetic and transcriptomic analyses to decipher the molecular programs underlying basal-to-luminal fate switching in vivo. We demonstrate that basal cells rapidly reprogram toward plastic cycling intermediates that appear to hijack molecular programs we find in bipotent fetal mammary stem cells and puberty-associatiated cap cells. Loss of basal-cell specifiers early in dedifferentiation coincides with activation of Notch and BMP, among others. Pharmacologic blockade of each pathway disrupts basal-to-luminal transdifferentiation. Our studies provide a comprehensive map and resource for understanding the coordinated molecular changes enabling terminally differentiated epithelial cells to transition between cell lineages and highlights the stunning rapidity by which epigenetic reprogramming can occur in response to disruption of tissue structure.
Collapse
Affiliation(s)
- Queralt Vallmajo-Martin
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- These authors contributed equally
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- These authors contributed equally
| | - Sumana Srinivasan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally
| | - Divya Murali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nikki K. Lytle
- Department of Surgery, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- These authors contributed equally
| |
Collapse
|
9
|
Nagata K, Nishimura M, Daino K, Nishimura Y, Hattori Y, Watanabe R, Iizuka D, Yokoya A, Suzuki K, Kakinuma S, Imaoka T. Luminal progenitor and mature cells are more susceptible than basal cells to radiation-induced DNA double-strand breaks in rat mammary tissue. JOURNAL OF RADIATION RESEARCH 2024; 65:640-650. [PMID: 39238338 PMCID: PMC11420845 DOI: 10.1093/jrr/rrae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Indexed: 09/07/2024]
Abstract
Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuya Hattori
- Department of Electrical Engineering and Information Science, Faculty of Electrical Engineering and Information Science, National Institute of Technology Kure College, 2–2–11 Aga-minami, Kure, Hiroshima 737-8506, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1–12–4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
10
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Zhao J, Zhou Y, Tzelepis I, Burget NG, Shi J, Faryabi RB. Oncogenic transcription factors instruct promoter-enhancer hubs in individual triple negative breast cancer cells. SCIENCE ADVANCES 2024; 10:eadl4043. [PMID: 39110799 PMCID: PMC11305386 DOI: 10.1126/sciadv.adl4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Sequencing-based mapping of ensemble pairwise interactions among regulatory elements support the existence of topological assemblies known as promoter-enhancer hubs or cliques in cancer. Yet, prevalence, regulators, and functions of promoter-enhancer hubs in individual cancer cells remain unclear. Here, we systematically integrated functional genomics, transcription factor screening, and optical mapping of promoter-enhancer interactions to identify key promoter-enhancer hubs, examine heterogeneity of their assembly, determine their regulators, and elucidate their role in gene expression control in individual triple negative breast cancer (TNBC) cells. Optical mapping of individual SOX9 and MYC alleles revealed the existence of frequent multiway interactions among promoters and enhancers within spatial hubs. Our single-allele studies further demonstrated that lineage-determining SOX9 and signaling-dependent NOTCH1 transcription factors compact MYC and SOX9 hubs. Together, our findings suggest that promoter-enhancer hubs are dynamic and heterogeneous topological assemblies, which are controlled by oncogenic transcription factors and facilitate subtype-restricted gene expression in cancer.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ilias Tzelepis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noah G. Burget
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B. Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Muthuswamy SK, Brugge JS. Organoid Cultures for the Study of Mammary Biology and Breast Cancer: The Promise and Challenges. Cold Spring Harb Perspect Med 2024; 14:a041661. [PMID: 38110241 PMCID: PMC11216180 DOI: 10.1101/cshperspect.a041661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20894, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School Boston, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Gray GK, Girnius N, Kuiken HJ, Henstridge AZ, Brugge JS. Single-cell and spatial analyses reveal a tradeoff between murine mammary proliferation and lineage programs associated with endocrine cues. Cell Rep 2023; 42:113293. [PMID: 37858468 PMCID: PMC10840493 DOI: 10.1016/j.celrep.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Although distinct epithelial cell types have been distinguished in glandular tissues such as the mammary gland, the extent of heterogeneity within each cell type and the degree of endocrine control of this diversity across development are incompletely understood. By combining mass cytometry and cyclic immunofluorescence, we define a rich array of murine mammary epithelial cell subtypes associated with puberty, the estrous cycle, and sex. These subtypes are differentially proliferative and spatially segregate distinctly in adult versus pubescent glands. Further, we identify systematic suppression of lineage programs at the protein and RNA levels as a common feature of mammary epithelial expansion during puberty, the estrous cycle, and gestation and uncover a pervasive enrichment of ribosomal protein genes in luminal cells elicited specifically during progesterone-dominant expansionary periods. Collectively, these data expand our knowledge of murine mammary epithelial heterogeneity and connect endocrine-driven epithelial expansion with lineage suppression.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; The Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aylin Z Henstridge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Lin S, Margueron R, Charafe-Jauffret E, Ginestier C. Disruption of lineage integrity as a precursor to breast tumor initiation. Trends Cell Biol 2023; 33:887-897. [PMID: 37061355 DOI: 10.1016/j.tcb.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.
Collapse
Affiliation(s)
- Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Sorbonne University, Paris, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
15
|
Najafabadi MG, Gray GK, Kong LR, Gupta K, Perera D, Naylor H, Brugge JS, Venkitaraman AR, Shehata M. A transcriptional response to replication stress selectively expands a subset of Brca2-mutant mammary epithelial cells. Nat Commun 2023; 14:5206. [PMID: 37626143 PMCID: PMC10457340 DOI: 10.1038/s41467-023-40956-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Germline BRCA2 mutation carriers frequently develop luminal-like breast cancers, but it remains unclear how BRCA2 mutations affect mammary epithelial subpopulations. Here, we report that monoallelic Brca2mut/WT mammary organoids subjected to replication stress activate a transcriptional response that selectively expands Brca2mut/WT luminal cells lacking hormone receptor expression (HR-). While CyTOF analyses reveal comparable epithelial compositions among wildtype and Brca2mut/WT mammary glands, Brca2mut/WT HR- luminal cells exhibit greater organoid formation and preferentially survive and expand under replication stress. ScRNA-seq analysis corroborates the expansion of HR- luminal cells which express elevated transcript levels of Tetraspanin-8 (Tspan8) and Thrsp, plus pathways implicated in replication stress survival including Type I interferon responses. Notably, CRISPR/Cas9-mediated deletion of Tspan8 or Thrsp prevents Brca2mut/WT HR- luminal cell expansion. Our findings indicate that Brca2mut/WT cells activate a transcriptional response after replication stress that preferentially favours outgrowth of HR- luminal cells through the expression of interferon-responsive and mammary alveolar genes.
Collapse
Affiliation(s)
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA, USA
| | - Li Ren Kong
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, NUS School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore, Singapore
| | - Komal Gupta
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Huw Naylor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA, USA
| | - Ashok R Venkitaraman
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Institute of Molecular & Cellular Biology Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| | - Mona Shehata
- Department of Oncology, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
van Amerongen R, Bentires-Alj M, van Boxtel AL, Clarke RB, Fre S, Suarez EG, Iggo R, Jechlinger M, Jonkers J, Mikkola ML, Koledova ZS, Sørlie T, Vivanco MDM. Imagine beyond: recent breakthroughs and next challenges in mammary gland biology and breast cancer research. J Mammary Gland Biol Neoplasia 2023; 28:17. [PMID: 37450065 PMCID: PMC10349020 DOI: 10.1007/s10911-023-09544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward.
Collapse
Affiliation(s)
- Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Silvia Fre
- Institut Curie, Genetics and Developmental Biology Department, PSL Research University, CNRS UMR3215, U93475248, InsermParis, France
| | - Eva Gonzalez Suarez
- Transformation and Metastasis Laboratory, Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard Iggo
- INSERM U1312, University of Bordeaux, 33076, Bordeaux, France
| | - Martin Jechlinger
- Cell Biology and Biophysics Department, EMBL, Heidelberg, Germany
- Molit Institute of Personalized Medicine, Heilbronn, Germany
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marja L Mikkola
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, P.O.B. 56, 00014, Helsinki, Finland
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Technological Park Bizkaia, 48160, Derio, Spain
| |
Collapse
|
17
|
Song Y, Fioramonti M, Bouvencourt G, Dubois C, Blanpain C, Van Keymeulen A. Cell type and stage specific transcriptional, chromatin and cell-cell communication landscapes in the mammary gland. Heliyon 2023; 9:e17842. [PMID: 37456014 PMCID: PMC10339025 DOI: 10.1016/j.heliyon.2023.e17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy. Our analysis identified conserved genes, ligands and transcription factor (TF) associated with a specific lineage throughout life as well as genes, ligands and TFs specific for a particular stage of the MG. In summary, our study identified genes and TF network associated with the identity, function and cell-cell communication of the different epithelial lineages of the MG at different stages of life.
Collapse
Affiliation(s)
- Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
18
|
Cordero A, Santamaría PG, González-Suárez E. Rank ectopic expression in the presence of Neu and MMTV oncogenes alters mammary epithelial cell populations and their tumorigenic potential. J Mammary Gland Biol Neoplasia 2023; 28:2. [PMID: 36808257 PMCID: PMC9938814 DOI: 10.1007/s10911-023-09530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/24/2023] [Indexed: 02/21/2023] Open
Abstract
Determination of the mammary epithelial cell that serves as the cell of origin for breast cancer is key to understand tumor heterogeneity and clinical management. In this study, we aimed to decipher whether Rank expression in the presence of PyMT and Neu oncogenes might affect the cell of origin of mammary gland tumors. We observed that Rank expression in PyMT+/- and Neu+/- mammary glands alters the basal and luminal mammary cell populations already in preneoplasic tissue, which may interfere with the tumor cell of origin restricting their tumorigenesis ability upon transplantation assays. In spite of this, Rank expression eventually promotes tumor aggressiveness once tumorigenesis is established.
Collapse
Affiliation(s)
- Alex Cordero
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908, Barcelona, Spain
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Patricia G Santamaría
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Eva González-Suárez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908, Barcelona, Spain.
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
19
|
Chatzeli L, Bordeu I, Han S, Bisetto S, Waheed Z, Koo BK, Alcolea MP, Simons BD. A cellular hierarchy of Notch and Kras signaling controls cell fate specification in the developing mouse salivary gland. Dev Cell 2023; 58:94-109.e6. [PMID: 36693323 PMCID: PMC7614884 DOI: 10.1016/j.devcel.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
The development of the mouse salivary gland involves a tip-driven process of branching morphogenesis that takes place in concert with differentiation into acinar, myoepithelial, and ductal (basal and luminal) sub-lineages. By combining clonal lineage tracing with a three-dimensional (3D) reconstruction of the branched epithelial network and single-cell RNA-seq analysis, we show that in tips, a heterogeneous population of renewing progenitors transition from a Krt14+ multipotent state to unipotent states via two transcriptionally distinct bipotent states, one restricted to the Krt14+ basal and myoepithelial lineage and the other to the Krt8+ acinar and luminal lineage. Using genetic perturbations, we show how the differential expression of Notch signaling correlates with spatial segregation, exits from multipotency, and promotes the Krt8+ lineage, whereas Kras activation promotes proacinar fate. These findings provide a mechanistic basis for how positional cues within growing tips regulate the process of lineage segregation and ductal patterning.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Ignacio Bordeu
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile
| | - Seungmin Han
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara Bisetto
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Zahra Waheed
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Oncology, The Hutchison Building, Box 197 Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Benjamin D Simons
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
20
|
Hannezo E, Scheele CLGJ. A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland. Methods Mol Biol 2023; 2608:183-205. [PMID: 36653709 DOI: 10.1007/978-1-0716-2887-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.
Collapse
Affiliation(s)
- Edouard Hannezo
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
22
|
Kern JG, Tilston-Lunel AM, Federico A, Ning B, Mueller A, Peppler GB, Stampouloglou E, Cheng N, Johnson RL, Lenburg ME, Beane JE, Monti S, Varelas X. Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas. Nat Commun 2022; 13:7198. [PMID: 36443313 PMCID: PMC9705439 DOI: 10.1038/s41467-022-34864-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Basal-like breast cancers, an aggressive breast cancer subtype that has poor treatment options, are thought to arise from luminal mammary epithelial cells that undergo basal plasticity through poorly understood mechanisms. Using genetic mouse models and ex vivo primary organoid cultures, we show that conditional co-deletion of the LATS1 and LATS2 kinases, key effectors of Hippo pathway signaling, in mature mammary luminal epithelial cells promotes the development of Krt14 and Sox9-expressing basal-like carcinomas that metastasize over time. Genetic co-deletion experiments revealed that phenotypes resulting from the loss of LATS1/2 activity are dependent on the transcriptional regulators YAP/TAZ. Gene expression analyses of LATS1/2-deleted mammary epithelial cells notably revealed a transcriptional program that associates with human basal-like breast cancers. Our study demonstrates in vivo roles for the LATS1/2 kinases in mammary epithelial homeostasis and luminal-basal fate control and implicates signaling networks induced upon the loss of LATS1/2 activity in the development of basal-like breast cancer.
Collapse
Affiliation(s)
- Joseph G Kern
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew M Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Anthony Federico
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Boting Ning
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Amy Mueller
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Grace B Peppler
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Eleni Stampouloglou
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Nan Cheng
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Marc E Lenburg
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Jennifer E Beane
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Stefano Monti
- Department of Medicine, Computational Biomedicine Section, Boston University School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
23
|
Laws KM, Bashaw GJ. Diverse roles for axon guidance pathways in adult tissue architecture and function. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220021. [PMID: 37456985 PMCID: PMC10346896 DOI: 10.1002/ntls.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue-intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue-specific mechanisms of guidance receptor signaling in adult tissues.
Collapse
Affiliation(s)
- Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Lee SH, Yap YHY, Lim CL, Woo ARE, Lin VCL. Activation function 1 of progesterone receptor is required for mammary development and regulation of RANKL during pregnancy. Sci Rep 2022; 12:12286. [PMID: 35854046 PMCID: PMC9296660 DOI: 10.1038/s41598-022-16289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone receptor (PGR) is a member of the nuclear receptor superfamily of transcription factors. It is critical for mammary stem cells expansion, mammary ductal branching and alveologenesis. The transcriptional activity of PGR is mainly mediated by activation functions AF1 and AF2. Although the discovery of AF1 and AF2 propelled the understanding of the mechanism of gene regulation by nuclear receptors, their physiological roles are still poorly understood. This is largely due to the lack of suitable genetic models. The present study reports gain or loss of AF1 function mutant mouse models in the study of mammary development. The gain of function mutant AF1_QQQ exhibits hyperactivity while the loss of function mutant AF1_FFF shows hypoactivity on mammary development. However, the involvement of AF1 is context dependent. Whereas the AF1_FFF mutation causes significant impairment in mammary development during pregnancy or in response to estrogen and progesterone, it has no effect on mammary development in nulliparous mice. Furthermore, Rankl, but not Wnt4 and Areg is a major target gene of AF1. In conclusion, PGR AF1 is a pivotal ligand-dependent activation domain critical for mammary development during pregnancy and it exerts gene specific effect on PGR regulated genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yeannie H Y Yap
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.,Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Chew Leng Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Amanda Rui En Woo
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Valerie C L Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
25
|
Gray GK, Li CMC, Rosenbluth JM, Selfors LM, Girnius N, Lin JR, Schackmann RCJ, Goh WL, Moore K, Shapiro HK, Mei S, D'Andrea K, Nathanson KL, Sorger PK, Santagata S, Regev A, Garber JE, Dillon DA, Brugge JS. A human breast atlas integrating single-cell proteomics and transcriptomics. Dev Cell 2022; 57:1400-1420.e7. [PMID: 35617956 DOI: 10.1016/j.devcel.2022.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Carman Man-Chung Li
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jennifer M Rosenbluth
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Jia-Ren Lin
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Walter L Goh
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Kaitlin Moore
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Hana K Shapiro
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Shaolin Mei
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Kurt D'Andrea
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter K Sorger
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Sandro Santagata
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA.
| |
Collapse
|
26
|
Alveolar cells in the mammary gland: lineage commitment and cell death. Biochem J 2022; 479:995-1006. [PMID: 35551601 PMCID: PMC9162463 DOI: 10.1042/bcj20210734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
The mammary gland provides a spectacular example of physiological cell death whereby the cells that produce milk during lactation are removed swiftly, efficiently, and without inducing inflammation upon the cessation of lactation. The milk-producing cells arise primarily during pregnancy and comprise the alveolar lineage that is specified by signalling pathways and factors that are activated in response to pregnancy hormones. There are at least two alveolar sub-lineages, one of which is marked by the presence of binucleate cells that are especially susceptible to programmed cell death during involution. This process of post-lactational regression, or involution, is carefully orchestrated and occurs in two phases, the first results in a rapid switch in cell fate with the secretory epithelial cells becoming phagocytes whereupon they destroy dead and dying cells from milk. This reversible phase is followed by the second phase that is marked by an influx of immune cells and a remodelling of the gland to replace the alveolar cells with re-differentiated adipocytes, resulting in a return to the pre-pregnant state in preparation for any subsequent pregnancies. The mouse mammary gland provides an excellent experimental tool with which to investigate lineage commitment and the mechanisms of programmed cell death that occur in a normal physiological process. Importantly, involution has highlighted a role for lysoptosis, a mechanism of cell death that is mediated by lysosomal cathepsins and their endogenous inhibitors, serpins. In this review, I discuss alveolar lineage commitment during pregnancy and the programmed cell death pathways that destroy these cells during involution.
Collapse
|
27
|
Sahu S, Albaugh ME, Martin BK, Patel NL, Riffle L, Mackem S, Kalen JD, Sharan SK. Growth factor dependency in mammary organoids regulates ductal morphogenesis during organ regeneration. Sci Rep 2022; 12:7200. [PMID: 35504930 PMCID: PMC9065107 DOI: 10.1038/s41598-022-11224-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Signaling pathways play an important role in cell fate determination in stem cells and regulate a plethora of developmental programs, the dysregulation of which can lead to human diseases. Growth factors (GFs) regulating these signaling pathways therefore play a major role in the plasticity of adult stem cells and modulate cellular differentiation and tissue repair outcomes. We consider murine mammary organoid generation from self-organizing adult stem cells as a tool to understand the role of GFs in organ development and tissue regeneration. The astounding capacity of mammary organoids to regenerate a gland in vivo after transplantation makes it a convenient model to study organ regeneration. We show organoids grown in suspension with minimal concentration of Matrigel and in the presence of a cocktail of GFs regulating EGF and FGF signaling can recapitulate key epithelial layers of adult mammary gland. We establish a toolkit utilizing in vivo whole animal imaging and ultrasound imaging combined with ex vivo approaches including tissue clearing and confocal imaging to study organ regeneration and ductal morphogenesis. Although the organoid structures were severely impaired in vitro when cultured in the presence of individual GFs, ex vivo imaging revealed ductal branching after transplantation albeit with significantly reduced number of terminal end buds. We anticipate these imaging modalities will open novel avenues to study mammary gland morphogenesis in vivo and can be beneficial for monitoring mammary tumor progression in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nimit L Patel
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Lisa Riffle
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Joseph D Kalen
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
- Centre for Advanced Preclinical Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
28
|
Spina E, Simundza J, Incassati A, Chandramouli A, Kugler MC, Lin Z, Khodadadi-Jamayran A, Watson CJ, Cowin P. Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency. Nat Commun 2022; 13:1421. [PMID: 35302059 PMCID: PMC8931046 DOI: 10.1038/s41467-022-28937-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Gpr125 is an orphan G-protein coupled receptor, with homology to cell adhesion and axonal guidance factors, that is implicated in planar polarity and control of cell movements. By lineage tracing we demonstrate that Gpr125 is a highly specific marker of bipotent mammary stem cells in the embryo and of multiple long-lived unipotent basal mammary progenitors in perinatal and postnatal glands. Nipple-proximal Gpr125+ cells express a transcriptomic profile indicative of chemo-repulsion and cell movement, whereas Gpr125+ cells concentrated at invasive ductal tips display a hybrid epithelial-mesenchymal phenotype and are equipped to bind chemokine and growth factors and secrete a promigratory matrix. Gpr125 progenitors acquire bipotency in the context of transplantation and cancer and are greatly expanded and massed at the pushing margins of short latency MMTV-Wnt1 tumors. High Gpr125 expression identifies patients with particularly poor outcome within the basal breast cancer subtype highlighting its potential utility as a factor to stratify risk. Gpr125 has emerged as a specific marker of mammary stem cells and basal progenitors. Here they show that Gpr125 cells congregate at ductal tips during morphogenesis and amass at tumor margins, and that high Gpr125 predicts early tumor onset and poor outcome in basal breast cancer.
Collapse
Affiliation(s)
- Elena Spina
- Department of Cell Biology, New York University School of Medicine, New York, USA.
| | - Julia Simundza
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Angela Incassati
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, USA.,Department of Dermatology, New York University School of Medicine, New York, USA
| | - Matthias C Kugler
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, USA
| | - Ziyan Lin
- Department of Applied Bioinformatics, New York University School of Medicine, New York, USA
| | | | | | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, USA. .,Department of Dermatology, New York University School of Medicine, New York, USA.
| |
Collapse
|
29
|
A Runx1-enhancer element eR1 identified lineage restricted mammary luminal stem cells. Stem Cells 2022; 40:112-122. [DOI: 10.1093/stmcls/sxab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Mammary gland homeostasis is maintained by adult tissue stem-progenitor cells residing within the luminal and basal epithelia. Dysregulation of mammary stem cells is a key mechanism for cancer development. However, stem cell characterization is challenging because reporter models using cell-specific promoters do not fully recapitulate the mammary stem cell populations. We previously found that a 270-basepair Runx1 enhancer element, named eR1, marked stem cells in the blood and stomach. Here, we identified eR1 activity in a rare subpopulation of the ERα-negative luminal epithelium in mouse mammary glands. Lineage-tracing using an eR1-CreERT2 mouse model revealed that eR1+ luminal cells generated the entire luminal lineage and milk-secreting alveoli – eR1 therefore specifically marks lineage-restricted luminal stem cells. eR1-targeted-conditional knockout of Runx1 led to the expansion of luminal epithelial cells, accompanied by elevated ERα expression. Our findings demonstrate a definitive role for Runx1 in the regulation of the eR1-positive luminal stem cell proliferation during mammary homeostasis. Our findings identify a mechanistic link for Runx1 in stem cell proliferation and its dysregulation in breast cancer. Runx1 inactivation is therefore likely to be an early hit in the cell-of-origin of ERα+ luminal type breast cancer.
Collapse
|
30
|
Rodilla V, Fre S. Lineage Tracing Methods to Study Mammary Epithelial Hierarchies In Vivo. Methods Mol Biol 2022; 2471:141-157. [PMID: 35175595 DOI: 10.1007/978-1-0716-2193-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lineage tracing is now considered the gold standard approach to study cellular hierarchies and cell fate in vivo (McKenna and Gagnon, Development 146:dev169730, 2019; Kretzschmar and Watt, Cell 148:33-45, 2012). This type of clonal analysis consists of genetically labeling defined cells and following their destiny and progeny in vivo and in situ.Here we will describe different existing in vivo systems to clonally trace targeted cells and will discuss their respective advantages and inconveniences; we will then provide stepwise instructions for setting up and evaluate lineage tracing experiments, listing the most common downstream analyses and read-out assays.
Collapse
Affiliation(s)
- Verónica Rodilla
- Cancer Heterogeneity and Hierarchies Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Silvia Fre
- Department of Genetics and Developmental Biology, Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
| |
Collapse
|
31
|
Gieniec KA, Davis FM. Mammary basal cells: Stars of the show. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119159. [PMID: 34653580 DOI: 10.1016/j.bbamcr.2021.119159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Nearly all mammals rely on lactation to support their young and to ensure the continued survival of their species. Despite its importance, relatively little is known about how milk is produced and how it is ejected from the lumen of mammary alveoli and ducts. This review focuses on the latter. We discuss how a relatively small number of basal cells, wrapping around each alveolar unit, contract to forcibly expel milk from the alveolar lumen. We consider how individual basal cells coordinate their activity, the fate of these cells at the end of lactation and avenues for future deliberation and exploration.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Felicity M Davis
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; School of Pharmacy, University of Queensland, Brisbane, Australia; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
32
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
33
|
Englund JI, Ritchie A, Blaas L, Cojoc H, Pentinmikko N, Döhla J, Iqbal S, Patarroyo M, Katajisto P. Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk. Development 2021; 148:269157. [PMID: 34128985 PMCID: PMC8254867 DOI: 10.1242/dev.199281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation. Summary: Luminal mammary epithelial cells produce basement membrane laminin α5 necessary for mammary epithelial growth and differentiation. Laminin α5 loss compromises hormone receptor-positive luminal cell function and Wnt4-mediated crosstalk between epithelial cells.
Collapse
Affiliation(s)
- Johanna I Englund
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Alexandra Ritchie
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Leander Blaas
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Hanne Cojoc
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Nalle Pentinmikko
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Julia Döhla
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Sharif Iqbal
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Manuel Patarroyo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 11 Solna, Sweden
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.,Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Helsinki, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Solna, Sweden
| |
Collapse
|
34
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
35
|
Saeki K, Chang G, Kanaya N, Wu X, Wang J, Bernal L, Ha D, Neuhausen SL, Chen S. Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Commun Biol 2021; 4:660. [PMID: 34079055 PMCID: PMC8172904 DOI: 10.1038/s42003-021-02201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.
Collapse
Affiliation(s)
- Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
36
|
Twigger AJ, Khaled WT. Mammary gland development from a single cell 'omics view. Semin Cell Dev Biol 2021; 114:171-185. [PMID: 33810979 PMCID: PMC8158430 DOI: 10.1016/j.semcdb.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Understanding the complexity and heterogeneity of mammary cell subpopulations is vital to delineate the mechanisms behind breast cancer development, progression and prevention. Increasingly sophisticated tools for investigating these cell subtypes has led to the development of a greater understanding of these cell subtypes, complex interplay of certain subtypes and their developmental potential. Of note, increasing accessibility and affordability of single cell technologies has led to a plethora of studies being published containing data from mammary cell subtypes and their differentiation potential in both mice and human data sets. Here, we review the different types of single cell technologies and how they have been used to improve our understanding of mammary gland development.
Collapse
Affiliation(s)
- Alecia-Jane Twigger
- Department of Pharmacology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
37
|
Watson CJ. How should we define mammary stem cells? Trends Cell Biol 2021; 31:621-627. [PMID: 33902986 DOI: 10.1016/j.tcb.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Mammary stem cells (MaSCs) have been defined by cell surface marker expression and their ability to repopulate a cleared fat pad, a capacity now known to result from reprogramming upon transplantation. Furthermore, lineage-tracing studies have provoked controversy as to whether MaSCs are unipotent or bi/multipotent. Various innovative experimental approaches, including single-cell RNA sequencing (scRNA-Seq), epigenetic analyses, deep tissue and live imaging, and advanced mouse models, have provided new and unexpected insights into stem and progenitor cells; thus, it is now timely to reappraise our concept of the MaSC hierarchy. Here, I highlight misconceptions, suggest definitions of stem and progenitor cells, and propose a way forward in our search for an understanding of MaSCs.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
38
|
Lin MJ, Lu CPJ. Glandular stem cells in the skin during development, homeostasis, wound repair and regeneration. Exp Dermatol 2021; 30:598-604. [PMID: 33686662 DOI: 10.1111/exd.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Glands in the skin are essential for various physiological functions involving exocrine secretion. Like other tissues and organs, they possess the ability to repair injury and self-renew during homeostasis. Progenitor cells in glands are mostly unipotent but include some multipotent stem cells that function when extensive remodelling or regeneration is required. In this review, using two glandular models in skin, mouse sweat gland and mammary gland, we discuss lineage restriction that develops during glandular morphogenesis, as well as the mechanisms regulating cell fate and plasticity during wound repair and regeneration. Understanding the intrinsic and extrinsic factors that control the behaviours of glandular stem cell and maintain glandular functions will provide insight into future prospects for glandular regeneration.
Collapse
Affiliation(s)
- Meng-Ju Lin
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Catherine Pei-Ju Lu
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
39
|
Abstract
Wnt signaling is an important morphogenetic signaling pathway best known for its essential role in determining embryonic cell fates; it is often activated to re-specify fetal cells or to maintain the lineage flexibility of somatic stem cells. In this review, we consider the role of this pathway in the remarkable process of differentiation, growth and morphogenesis of the mammary gland during embryogenesis, ductal outgrowth and pregnancy. Specifically, mammary stem cells are compared with stem cells from other tissues, to identify commonalities and differences. Wnt signaling is known to be required to maintain the bipotent basal stem cell present in adult mammary ductal trees, however, the absence of this stem cell has little effect on growth or morphogenesis, and Wnt signaling is not induced during the ductal/alveolar expansion during pregnancy. The evidence for pre-determined hierarchies of mammary epithelial cells is reviewed, together with the role of signaling between mixtures of specified mammary epithelial cells in the maintenance of Wnt-dependent clonagenic stem cells. The dazzling variety of Wnt signaling components expressed by mammary epithelial cells is presented, along with some potential stromal sources of Wnt proteins that may be important starting points for the induction of plasticity in the epithelium.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
40
|
Dawson CA, Visvader JE. The Cellular Organization of the Mammary Gland: Insights From Microscopy. J Mammary Gland Biol Neoplasia 2021; 26:71-85. [PMID: 33835387 DOI: 10.1007/s10911-021-09483-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Despite rapid advances in our knowledge of the cellular heterogeneity and molecular regulation of the mammary gland, how these relate to 3D cellular organization remains unclear. In addition to hormonal regulation, mammary gland development and function is directed by para- and juxtacrine signaling among diverse cell-types, particularly the immune and mesenchymal populations. Precise mapping of the cellular landscape of the breast will help to decipher this complex coordination. Imaging of thin tissue sections has provided foundational information about cell positioning in the mammary gland and now technological advances in tissue clearing and subcellular-resolution 3D imaging are painting a more complete picture. In particular, confocal, light-sheet and multiphoton microscopy applied to intact tissue can fully capture cell morphology, position and interactions, and have the power to identify spatially rare events. This review will summarize our current understanding of mammary gland cellular organization as revealed by microscopy. We focus on the mouse mammary gland and cover a broad range of immune and stromal cell types at major developmental stages and give insights into important tissue niches and cellular interactions.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia
| |
Collapse
|
41
|
Liu Y, Guo W. SOX factors as cell-state regulators in the mammary gland and breast cancer. Semin Cell Dev Biol 2021; 114:126-133. [PMID: 33583737 DOI: 10.1016/j.semcdb.2021.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/27/2022]
Abstract
Emerging evidence has shown that several SOX family transcription factors are key regulators of stem/progenitor cell fates in the mammary gland. These cell-fate regulators are often upregulated in breast cancer and contribute to tumor initiation and progression. They induce lineage plasticity and the epithelial-mesenchymal transition, which promotes tumor invasion, metastasis, and therapeutic resistance. SOX factors act through modulating multiple oncogenic signaling pathways in breast cancer. In addition to the cell-autonomous functions, new evidence suggests they can shape the tumor immune microenvironment. Here, we will review the molecular and functional evidence linking SOX factors with mammary gland development and discuss how these cell-fate regulators are co-opted in breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
42
|
Stewart TA, Hughes K, Stevenson AJ, Marino N, Ju AL, Morehead M, Davis FM. Mammary mechanobiology - investigating roles for mechanically activated ion channels in lactation and involution. J Cell Sci 2021; 134:jcs248849. [PMID: 33262312 DOI: 10.1242/jcs.248849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of a mother to produce a nutritionally complete neonatal food source has provided a powerful evolutionary advantage to mammals. Milk production by mammary epithelial cells is adaptive, its release is exquisitely timed, and its own glandular stagnation with the permanent cessation of suckling triggers the cell death and tissue remodeling that enables female mammals to nurse successive progeny. Chemical and mechanical signals both play a role in this process. However, despite this duality of input, much remains unknown about the nature and function of mechanical forces in this organ. Here, we characterize the force landscape in the functionally mature gland and the capacity of luminal and basal cells to experience and exert force. We explore molecular instruments for force-sensing, in particular channel-mediated mechanotransduction, revealing increased expression of Piezo1 in mammary tissue in lactation and confirming functional expression in luminal cells. We also reveal, however, that lactation and involution proceed normally in mice with luminal-specific Piezo1 deletion. These findings support a multifaceted system of chemical and mechanical sensing in the mammary gland, and a protective redundancy that ensures continued lactational competence and offspring survival.
Collapse
Affiliation(s)
- Teneale A Stewart
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander J Stevenson
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Natascia Marino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
- Susan G. Komen Tissue Bank at Indiana University Simon Cancer Center, Indianapolis, 46202, USA
| | - Adler L Ju
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Michael Morehead
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, USA
| | - Felicity M Davis
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
43
|
Stewart TA, Davis FM. Got Milk? Identifying and Characterizing Lactation Defects in Genetically-Engineered Mouse Models. J Mammary Gland Biol Neoplasia 2020; 25:255-272. [PMID: 33211270 DOI: 10.1007/s10911-020-09467-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to produce and expel milk is important for the health and survival of all mammals. Nevertheless, our understanding of the molecular events underlying the execution of this process remains incomplete. Whilst impaired mammary gland development and lactational competence remains the subject of focused investigations, defects in these events may also be an unintended consequence of genetic manipulation in rodent models. In this technical report, we outline established and emerging methods to characterize lactation phenotypes in genetically-engineered mouse models. We discuss important considerations of common models, optimized conditions for mating and the importance of litter size and standardization. Methods for quantifying milk production and quality, as well as protocols for wholemount preparation, immunohistochemistry and the preparation of RNA and protein lysates are provided. This review is intended to help guide researchers new to the field of mammary gland biology in the systematic analysis of lactation defects and in the preparation of samples for more focused mechanistic investigations.
Collapse
Affiliation(s)
- Teneale A Stewart
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Felicity M Davis
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia.
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
44
|
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 33:108566. [PMID: 33378681 PMCID: PMC7898263 DOI: 10.1016/j.celrep.2020.108566] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk. Using single-cell RNA-sequencing, Li et al. compare mammary epithelia and stroma in young and aged mice. Age-dependent changes at cell and gene levels provide evidence suggesting alveolar maturation, functional deterioration, and potential pro-tumorigenic and inflammatory alterations. Additionally, identification of heterogeneous luminal and macrophage subpopulations underscores the complexity of mammary lineages.
Collapse
|
45
|
Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development 2020; 147:dev169862. [PMID: 33191272 DOI: 10.1242/dev.169862] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammary gland is a unique tissue and the defining feature of the class Mammalia. It is a late-evolving epidermal appendage that has the primary function of providing nutrition for the young, although recent studies have highlighted additional benefits of milk including the provision of passive immunity and a microbiome and, in humans, the psychosocial benefits of breastfeeding. In this Review, we outline the various stages of mammary gland development in the mouse, with a particular focus on lineage specification and the new insights that have been gained by the application of recent technological advances in imaging in both real-time and three-dimensions, and in single cell RNA sequencing. These studies have revealed the complexity of subpopulations of cells that contribute to the mammary stem and progenitor cell hierarchy and we suggest a new terminology to distinguish these cells.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
46
|
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc Natl Acad Sci U S A 2020; 117:26822-26832. [PMID: 33033227 DOI: 10.1073/pnas.2016905117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Collapse
|
47
|
Yeo SK, Zhu X, Okamoto T, Hao M, Wang C, Lu P, Lu LJ, Guan JL. Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer. eLife 2020; 9:e58810. [PMID: 32840210 PMCID: PMC7447441 DOI: 10.7554/elife.58810] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer stem cells (BCSCs) contribute to intra-tumoral heterogeneity and therapeutic resistance. However, the binary concept of universal BCSCs co-existing with bulk tumor cells is over-simplified. Through single-cell RNA-sequencing, we found that Neu, PyMT and BRCA1-null mammary tumors each corresponded to a spectrum of minimally overlapping cell differentiation states without a universal BCSC population. Instead, our analyses revealed that these tumors contained distinct lineage-specific tumor propagating cells (TPCs) and this is reflective of the self-sustaining capabilities of lineage-specific stem/progenitor cells in the mammary epithelial hierarchy. By understanding the respective tumor hierarchies, we were able to identify CD14 as a TPC marker in the Neu tumor. Additionally, single-cell breast cancer subtype stratification revealed the co-existence of multiple breast cancer subtypes within tumors. Collectively, our findings emphasize the need to account for lineage-specific TPCs and the hierarchical composition within breast tumors, as these heterogenous sub-populations can have differential therapeutic susceptibilities.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied ScienceCincinnatiUnited States
| | - Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Cailian Wang
- School of Information Management, Wuhan UniversityWuhanChina
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
- School of Information Management, Wuhan UniversityWuhanChina
| | - Long Jason Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied ScienceCincinnatiUnited States
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
48
|
Regan JL, Smalley MJ. Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. NPJ Breast Cancer 2020; 6:32. [PMID: 32793804 PMCID: PMC7391676 DOI: 10.1038/s41523-020-00175-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The identification and molecular characterization of cellular hierarchies in complex tissues is key to understanding both normal cellular homeostasis and tumorigenesis. The mammary epithelium is a heterogeneous tissue consisting of two main cellular compartments, an outer basal layer containing myoepithelial cells and an inner luminal layer consisting of estrogen receptor-negative (ER−) ductal cells and secretory alveolar cells (in the fully functional differentiated tissue) and hormone-responsive estrogen receptor-positive (ER+) cells. Recent publications have used single-cell RNA-sequencing (scRNA-seq) analysis to decipher epithelial cell differentiation hierarchies in human and murine mammary glands, and reported the identification of new cell types and states based on the expression of the luminal progenitor cell marker KIT (c-Kit). These studies allow for comprehensive and unbiased analysis of the different cell types that constitute a heterogeneous tissue. Here we discuss scRNA-seq studies in the context of previous research in which mammary epithelial cell populations were molecularly and functionally characterized, and identified c-Kit+ progenitors and cell states analogous to those reported in the recent scRNA-seq studies.
Collapse
Affiliation(s)
- Joseph L Regan
- Charité Comprehensive Cancer Centre, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Wales, CF24 4HQ UK
| |
Collapse
|
49
|
Phoon YP, Chivukula IV, Tsoi YL, Kanatani S, Uhlén P, Kuiper R, Lendahl U. Notch activation in the mouse mammary luminal lineage leads to ductal hyperplasia and altered partitioning of luminal cell subtypes. Exp Cell Res 2020; 395:112156. [PMID: 32707133 DOI: 10.1016/j.yexcr.2020.112156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022]
Abstract
Hyperactivated Notch signalling has been implicated in breast cancer, but how elevated levels of Notch signalling contribute to mammary dysplasia and tumorigenesis is not fully understood. In this study, we express an activated form of Notch1 in the mouse mammary luminal lineage and analyse the consequences for tumour formation and the transcriptomic landscape in the luminal lineage. Simultaneous conditional activation of a Notch1 intracellular domain (Notch1 ICD) and EGFP in the luminal lineage was achieved by removal of a stop cassette by CRE-recombinase expression from the whey acidic protein (WAP) promoter. Mice in which Notch1 ICD was activated in the luminal lineage (WAP-CRE;R26-N1ICD mice) exhibit ductal hyperplasia after lactation with an increase in branching frequency and in the number of side-branch ends in the ductal tree. A subset of the mice developed mammary tumours and the majority of the tumour cells expressed EGFP (as a proxy for Notch1 ICD), indicating that the tumours originate from the Notch1 ICD-expressing cells. Single-cell transcriptome analysis of the EGFP-positive mammary cells identified six subtypes of luminal cells. The same six subtypes were found in control mice (WAP-CRE;R26-tdTomato mice expressing the tdTomato reporter from WAP-CRE-mediated activation), but the proportion of cells in the various subtypes differed between the WAP-CRE;R26-N1ICD and control WAP-CRE;R26-tdTomato mice. In conclusion, we show that Notch1 ICD expression in the luminal lineage produces a ductal hyperplasia and branching phenotype accompanied by altered luminal cell subtype partitioning.
Collapse
Affiliation(s)
- Yee Peng Phoon
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Indira V Chivukula
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Yat Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
50
|
Christin JR, Wang C, Chung CY, Liu Y, Dravis C, Tang W, Oktay MH, Wahl GM, Guo W. Stem Cell Determinant SOX9 Promotes Lineage Plasticity and Progression in Basal-like Breast Cancer. Cell Rep 2020; 31:107742. [PMID: 32521267 PMCID: PMC7658810 DOI: 10.1016/j.celrep.2020.107742] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Lineage plasticity is important for the development of basal-like breast cancer (BLBC), an aggressive cancer subtype. While BLBC is likely to originate from luminal progenitor cells, it acquires substantial basal cell features and contains a heterogenous collection of cells exhibiting basal, luminal, and hybrid phenotypes. Why luminal progenitors are prone to BLBC transformation and what drives luminal-to-basal reprogramming remain unclear. Here, we show that the transcription factor SOX9 acts as a determinant for estrogen-receptor-negative (ER-) luminal stem/progenitor cells (LSPCs). SOX9 controls LSPC activity in part by activating both canonical and non-canonical nuclear factor κB (NF-κB) signaling. Inactivation of TP53 and RB via expression of SV40 TAg in a BLBC mouse tumor model leads to upregulation of SOX9, which drives luminal-to-basal reprogramming in vivo. Furthermore, SOX9 deletion inhibits the progression of ductal carcinoma in situ (DCIS)-like lesions to invasive carcinoma. These data show that ER- LSPC determinant SOX9 acts as a lineage plasticity driver for BLBC progression.
Collapse
Affiliation(s)
- John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wei Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|