1
|
Baldassari S, Klingler E, Teijeiro LG, Doladilhe M, Raoux C, Roig-Puiggros S, Bizzotto S, Couturier J, Gilbert A, Sami L, Ribierre T, Aronica E, Adle-Biassette H, Chipaux M, Jabaudon D, Baulac S. Single-cell genotyping and transcriptomic profiling of mosaic focal cortical dysplasia. Nat Neurosci 2025:10.1038/s41593-025-01936-z. [PMID: 40307383 DOI: 10.1038/s41593-025-01936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025]
Abstract
Focal cortical dysplasia type II (FCDII) is a cortical malformation causing refractory epilepsy. FCDII arises from developmental somatic activating mutations in mTOR pathway genes, leading to focal cortical dyslamination and abnormal cytomegalic cells. Which cell types carry pathogenic mutations and how they affect cell-type-specific transcriptional programs remain unknown. In the present study, we combined several single-nucleus genotyping and transcriptomics approaches with spatial resolution in surgical cortical specimens from patients with genetically mosaic FCDII. Mutations were detected in distinct cell types, including glutamatergic neurons and astrocytes, and a small fraction of mutated cells exhibited cytomegalic features. Moreover, we identified cell-type-specific transcriptional dysregulations in both mutated and nonmutated FCDII cells, including synapse- and neurodevelopment-related pathways, that may account for epilepsy and dysregulation of mitochondrial metabolism pathways in cytomegalic cells. Together, these findings reveal cell-autonomous and non-cell-autonomous features of FCDII that may be leveraged for precision medicine.
Collapse
Affiliation(s)
- Sara Baldassari
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Esther Klingler
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics, Leuven, Belgium
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Marion Doladilhe
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Corentin Raoux
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Sara Bizzotto
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jeanne Couturier
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alice Gilbert
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Lina Sami
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Théo Ribierre
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Homa Adle-Biassette
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Department of Pathology, AP-HP, Lariboisière Hospital, Paris, France
| | - Mathilde Chipaux
- Pediatric Neurosurgery Department, CCMR Epilepsies Rares, European Reference Network EpiCare Member, Rothschild Foundation Hospital, Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
2
|
Chan CK, Lim KS, Chan CY, Kumar TS, Audrey C, Narayanan V, Fong SL, Ng CC. A review of epilepsy syndromes and epileptogenic mechanism affiliated with brain tumor related genes. Gene 2025:149531. [PMID: 40294709 DOI: 10.1016/j.gene.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is one of the comorbidities often manifested by patients with brain tumors. While there are reviews commenting on the epileptogenicity of brain-tumor-related genes, the reviews are commonly restricted to BRAF, IDH and PIK3CA. According to World Health Organization (WHO), at least 50 genes have been proposed as brain-tumor-related genes. Hence, we aimed to provide a more comprehensive review of the epileptogenicity of the brain-tumor-related genes. We performed an extensive literature search on PubMed, classified the studies, and provided an overview of the associated epilepsy phenotype and epileptogenic mechanism of the brain-tumor-related genes advocated by WHO. Through our analysis, we found a minor overlap between brain-tumor-related genes and epilepsy-associated genes, as some brain-tumor-related genes have been classified as epilepsy-associated genes in earlier studies. Besides reviewing the well-studied genes like TSC1 and TSC2, we identified several under-discovered brain-tumor-related genes, including TP53, CIC, IDH1 and NOTCH1, that warrant future exploration due to the existence of clinical or in vivo evidence substantiating their pathogenic role in epileptogenesis. We also propounded some methodologies that can be applied in future research to enhance the study of the epileptogenic mechanism of brain-tumor-related genes. To date, this article covers the greatest number of brain-tumor-related genes.
Collapse
Affiliation(s)
- Chung-Kin Chan
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thinisha Sathis Kumar
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Fang C, Zhang X, Yang L, Sun L, Lu Y, Liu Y, Guo J, Wang M, Tan Y, Zhang J, Gao X, Zhu L, Liu G, Ren M, Xiao J, Zhang F, Ma S, Zhao R, Mei X, Qi D. Transcriptomic and morphologic vascular aberrations underlying FCDIIb etiology. Nat Commun 2025; 16:3320. [PMID: 40199880 PMCID: PMC11978774 DOI: 10.1038/s41467-025-58535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Focal cortical dysplasia type II (FCDII) is a major cause of drug-resistant epilepsy, but genetic factors explain only some cases, suggesting other mechanisms. In this study, we conduct a molecular analysis of brain lesions and adjacent areas in FCDIIb patients. By analyzing over 217,506 single-nucleus transcriptional profiles from 15 individuals, we find significant changes in smooth muscle cells (SMCs) and astrocytes. We identify abnormal vascular malformations and a unique type of SMC that we call "Firework cells", which migrate from blood vessels into the brain parenchyma and associate with VIM+ cells. These abnormalities create localized ischemic-hypoxic (I/H) microenvironments, as confirmed by clinical data, further impairing astrocyte function, activating the HIF-1α/mTOR/S6 pathway, and causing neuronal loss. Using zebrafish models, we demonstrate that vascular abnormalities resulting in I/H environments promote seizures. Our results highlight vascular malformations as a factor in FCDIIb pathogenesis, suggesting potential therapeutic avenues.
Collapse
Affiliation(s)
- Chuantao Fang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaodan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Licheng Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yujia Lu
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Jingjing Guo
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Li Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| | - Fayong Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Shaojie Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Neurosurgery, Children's Hospital of Shanghai, Shanghai, China.
- Department of Neurosurgery, Hainan Women and Children's Medical Center, Haikou, China.
| | - Xinyu Mei
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Obstetrics and Gynecology Hospital of Fudan University and Department of Neurology, Huashan Hospital of Fudan University, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Mo A, Walsh CA. Clinical and Neuropsychological Phenotyping of Individuals With Somatic Variants in Neurodevelopmental Disorders. Neurol Genet 2025; 11:e200254. [PMID: 40182320 PMCID: PMC11966520 DOI: 10.1212/nxg.0000000000200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/16/2025] [Indexed: 04/05/2025]
Abstract
Background and Objectives Somatic variants in brain-related genes can cause neurodevelopmental disorders, but detailed characterizations of their clinical phenotypes, neurobehavioral profiles, and comparisons with individuals with germline variants are limited. Methods Using data from the Simons Searchlight natural history cohort, which uses standardized parent-report data collection methods, we identified individuals with neurodevelopmental disorders caused by pathogenic somatic variants and examined their phenotypic data. We further used results from standardized measurements of adaptive functioning, social behavior, and emotional and behavioral problems to compare individuals with somatic variants with those with germline variants. Results We identified 15 probands with pathogenic or likely pathogenic somatic variants in the Simons Searchlight cohort. For 8 individuals with detailed phenotype information, symptoms included developmental delay or language delay (n = 8), hypotonia (n = 5), autism spectrum disorder (n = 4), and epilepsy (n = 3). Individuals with mosaic variants showed a range of severity in their scores on standardized measurements of adaptive functioning, social behavior, and emotional and behavioral problems. In particular, some individuals with mosaic variants showed impairments that were similar in severity or more severe compared with individuals with germline variants in the same gene. Discussion This study improves our understanding of the clinical phenotypes and neuropsychological profiles of individuals with mosaic pathogenic variants in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alisa Mo
- Neurology, Boston Children's Hospital, MA
| | - Christopher A Walsh
- Genetics and Genomics, Boston Children's Hospital, MA
- Pediatrics, Harvard Medical School, Boston, MA; and
- Howard Hughes Medical Institute, Boston Children's Hospital, MA
| |
Collapse
|
5
|
Mascarenhas R, Merrikh D, Khanbabaei M, Kaur N, Ghaderi N, Maroilley T, Liu Y, Soule T, Appendino JP, Jacobs J, Wiebe S, Hader W, Pfeffer G, Tarailo‐Graovac M, Klein KM. Detecting somatic variants in purified brain DNA obtained from surgically implanted depth electrodes in epilepsy. Epilepsia 2025; 66:1234-1249. [PMID: 39751777 PMCID: PMC11997914 DOI: 10.1111/epi.18251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies. Traditional methods relying on surgically resected brain tissue are limited to patients undergoing brain surgery. We developed an improved protocol to detect somatic variants using DNA from stereoelectroencephalographic (SEEG) depth electrodes, enabling access to a larger patient cohort and diverse brain regions. This protocol mitigates issues of contamination and low yields by purifying neuronal nuclei using fluorescence-activated nuclei sorting (FANS). METHODS SEEG depth electrodes were collected upon extraction from 41 brain regions across 17 patients undergoing SEEG. Nuclei were isolated separately from depth electrodes in the affected brain regions (seizure onset zone) and the unaffected brain regions. Neuronal nuclei were isolated using FANS, and DNA was amplified using primary template amplification. Short tandem repeat (STR) analysis and postsequencing allelic imbalance assessment were used to evaluate sample integrity. High-quality amplified DNA samples from affected brain regions, patient-matched unaffected brain regions, and genomic DNA were subjected to whole exome sequencing (WES). A bioinformatic workflow was developed to reduce false positives and to accurately detect somatic variants in the affected brain region. RESULTS Based on DNA yield and STR analysis, 14 SEEG-derived neuronal DNA samples (seven affected and seven unaffected) across seven patients underwent WES. From the variants prioritized using our bioinformatic workflow, we chose four candidate variants in MTOR, CSDE1, KLLN, and NLE1 across four patients based on pathogenicity scores and association with phenotype. All four variants were validated using digital droplet polymerase chain reaction. SIGNIFICANCE Our approach enhances the reliability and applicability of SEEG-derived DNA for epilepsy, offering insights into its molecular basis, facilitating epileptogenic zone identification, and advancing precision medicine.
Collapse
Affiliation(s)
- Rumika Mascarenhas
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Daria Merrikh
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Maryam Khanbabaei
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Navprabhjot Kaur
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Navid Ghaderi
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Tatiana Maroilley
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Yiping Liu
- Flow Cytometry Core FacilityUniversity of CalgaryCalgaryAlbertaCanada
| | - Tyler Soule
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Juan Pablo Appendino
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of PediatricsUniversity of Calgary, Alberta Children's HospitalCalgaryAlbertaCanada
| | - Julia Jacobs
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PediatricsUniversity of Calgary, Alberta Children's HospitalCalgaryAlbertaCanada
| | - Samuel Wiebe
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
- Clinical Research Unit, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Walter Hader
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Gerald Pfeffer
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Maja Tarailo‐Graovac
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Karl Martin Klein
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical Genetics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
6
|
Jerow LG, Krueger DA, Gross C, Danzer SC. Somatic mosaicism and interneuron involvement in mTORopathies. Trends Neurosci 2025:S0166-2236(25)00040-2. [PMID: 40121168 DOI: 10.1016/j.tins.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Somatic mutations in genes regulating mechanistic target of rapamycin (mTOR) pathway signaling can cause epilepsy, autism, and cognitive dysfunction. Research has predominantly focused on mTOR regulation of excitatory neurons in these conditions; however, dysregulated mTOR signaling among interneurons may also be critical. In this review, we discuss clinical evidence for interneuron involvement, and potential mechanisms, known and hypothetical, by which interneurons might come to directly harbor pathogenic mutations. To understand how mTOR hyperactive interneurons might drive dysfunction, we review studies in which mTOR signaling has been selectively disrupted among interneurons and interneuron progenitors in mouse model systems. Complex cellular mosaicism and dual roles for mTOR (hyper)activation in mediating disease pathogenesis and homeostatic responses raise challenging questions for effective treatment of these disorders.
Collapse
Affiliation(s)
- Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Darcy A Krueger
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina Gross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve C Danzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
D’Gama AM, Phillips HW, Wang Y, Chiu MY, Chahine Y, Swanson AC, Smith RS, Pearl PL, Tsuboyama M, Madsen JR, Lidov H, Lee EA, Prabhu SP, Huang AY, Stone SSD, Walsh CA, Poduri A. Analysis of DNA from brain tissue on stereo-EEG electrodes reveals mosaic epilepsy-related variants. Brain Commun 2025; 7:fcaf113. [PMID: 40177531 PMCID: PMC11961356 DOI: 10.1093/braincomms/fcaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/26/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Somatic mosaic variants contribute to focal epilepsy, with variants often present only in brain tissue and not in blood or other samples typically assayed for genetic testing. Thus, genetic analysis for mosaic variants in focal epilepsy has been limited to patients with drug-resistant epilepsy who undergo surgical resection and have resected brain tissue samples available. Stereo-EEG (sEEG) has become part of the evaluation for many patients with focal drug-resistant epilepsy, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of deleterious mosaic variants in epilepsy-associated genes in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of 10 paediatric patients with drug-resistant epilepsy who had sEEG electrodes implanted for invasive monitoring. We extracted unamplified DNA and in parallel performed whole-genome amplification from trace brain tissue on each sEEG electrode. We also extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep sequencing (panel and exome) and analysis for candidate germline and mosaic variants. We validated candidate mosaic variants and assessed the variant allele fraction in amplified and unamplified electrode-derived DNA and across electrodes. We extracted unamplified DNA and performed whole-genome amplification from >150 individual electrodes from 10 individuals. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified DNA samples but significantly more potential mosaic variants in amplified samples. We validated four deleterious mosaic variants in epilepsy-associated genes in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. Three of the four variants were detected in both amplified and unamplified electrode-derived DNA, with higher variant allele fraction observed in DNA from electrodes in closest proximity to the electrical seizure focus in one case. We demonstrate that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy, from both unamplified and amplified electrode-derived DNA. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with drug-resistant epilepsy as part of the surgical evaluation.
Collapse
Affiliation(s)
- Alissa M D’Gama
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - H Westley Phillips
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yilan Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Y Chiu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yasmine Chahine
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amanda C Swanson
- Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Richard S Smith
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hart Lidov
- Division of Neuropathology, Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sanjay P Prabhu
- Department of Radiology, Division of Neuroradiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - August Yue Huang
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Scellig S D Stone
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher A Walsh
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, Hayashi SY, Craddock B, Socci ND, Alberdi A, Baako A, Ay O, Ogishi M, Lopez-Rodrigo E, Kappagantula R, Viale A, Iacobuzio-Donahue CA, Zhou T, Ransohoff RM, Chesworth R, Abdel-Wahab O, Boisson B, Elemento O, Casanova JL, Miller WT, Geissmann F. A microglia clonal inflammatory disorder in Alzheimer's disease. eLife 2025; 13:RP96519. [PMID: 40085681 PMCID: PMC11908784 DOI: 10.7554/elife.96519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer's disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Leslie Weber
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell New YorkNew YorkUnited States
| | - Samantha Y Hayashi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Nicholas D Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Christine A Iacobuzio-Donahue
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | | | | | | | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell New YorkNew YorkUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| |
Collapse
|
9
|
Blümcke I, Vorndran J. Neuropathology of focal epilepsy: the promise of artificial intelligence and digital Neuropathology 3.0. Pathology 2025; 57:171-177. [PMID: 39827065 DOI: 10.1016/j.pathol.2024.12.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025]
Abstract
Focal lesions of the human neocortex often cause drug-resistant epilepsy, yet surgical resection of the epileptogenic region has been proven as a successful strategy to control seizures in a carefully selected patient cohort. Continuous efforts to study neurosurgically resected brain samples at the microscopic level, i.e., Neuropathology 1.0, unravelled a comprehensive description of the spectrum of underlying aetiologies, e.g., hippocampal sclerosis, congenital brain tumours or cortical malformations as the three most common aetiologies representing almost 80% of the entire lesional landscape. Human brain tissue was also instrumental to discover underlying molecular pathways and common somatic variants, e.g., MTOR, DEPDC5, SLC35A2, BRAF or PTPN11, that helped us to define specific phenotype-genotype associations, thereby promoting novel targets for medical treatment, i.e., Neuropathology 2.0. The increasing gap in accessing necessary resources to perform such studies around the world could be bridged, however, when introducing artificial intelligence (AI)-based algorithms to classify epileptogenic brain lesions on digital slide scans obtained from routine haematoxylin and eosin-stained, formalin-fixed paraffin-embedded tissue sections. This may also provide an advanced prediction of the lesion's phenotype-genotype association in the near future. Thus, digital Neuropathology 3.0 may be the promising next level of laboratory advancement in the realm of neuropathology in focal epilepsy.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Neuropathologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander Universität, Germany; Partner of the European Reference Network (ERN) EpiCARE, Germany.
| | - Jörg Vorndran
- Partner of the European Reference Network (ERN) EpiCARE, Germany
| |
Collapse
|
10
|
Fang Y, Zhang Y, Huang T, Yang S, Li Y, Zhou L. Focal cortical dysplasia type II: review of neuropathological manifestations and pathogenetic mechanisms. ACTA EPILEPTOLOGICA 2025; 7:12. [PMID: 40217346 PMCID: PMC11960379 DOI: 10.1186/s42494-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 04/15/2025] Open
Abstract
Focal cortical dysplasia (FCD) is an important cause of intractable epilepsy, with FCD type II (FCD II) being the most common subtype. FCD II is characterized by cortical dyslamination accompanied by dysmorphic neurons (DNs). Identifying the molecular alterations and targetable biomarkers is pivotal for developing therapies. Here, we provide a detailed description of the neuropathological manifestations of FCD II, including morphological alterations and immunophenotypic profiles, indicating that abnormal cells exhibit a diverse spectrum of mixed differentiation states. Furthermore, we summarize current research on the pathogenetic mechanisms, indicating that gene mutations, epigenetic alterations, cortical developmental protein disturbances, inflammatory processes, and extrinsic damages may lead to abnormal neuronal proliferation and migration, thereby contributing to the emergence and progression of FCD II. These findings not only enhance our understanding of the pathogenesis of FCD II but also offer new directions for clinical diagnosis and treatment. Future research should further explore the interactions among these factors and employ multidisciplinary approaches to advance our understanding of FCD II.
Collapse
Affiliation(s)
- Yubao Fang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaqian Zhang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tiancai Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengyu Yang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Bakouh N, Castaño-Martín R, Metais A, Dan EL, Balducci E, Chhuon C, Lepicka J, Barcia G, Losito E, Lourdel S, Planelles G, Muresan RC, Moca VV, Kaminska A, Bourgeois M, Chemaly N, Rguez Y, Auvin S, Huberfeld G, Varlet P, Asnafi V, Guerrera IC, Kabashi E, Nabbout R, Ciura S, Blauwblomme T. Chloride deregulation and GABA depolarization in MTOR-related malformations of cortical development. Brain 2025; 148:549-563. [PMID: 39106285 PMCID: PMC11788215 DOI: 10.1093/brain/awae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
Focal cortical dysplasia, hemimegalencephaly and cortical tubers are paediatric epileptogenic malformations of cortical development (MCDs) frequently pharmacoresistant and mostly treated surgically by the resection of epileptic cortex. Availability of cortical resection samples has allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes have been identified. GABAA-mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, has been shown to participate to ictogenesis in human paediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is unclear. Here, we studied the post-translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCCs), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and, ultimately, GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo-controls, diagnosed by histology plus genetic profiling) were operated for drug-resistant epilepsy. Postoperative cortical tissues were recorded on a multi-electrode array to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled measurement of the Cl- conductance and equilibrium potential for GABA. Of the 25 clinical cases, half harboured a somatic mutation in the mTOR pathway, and pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, which was reversed by WNK1 and SPAK antagonists (N-ethylmaleimide and staurosporine). The mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR-specific antagonist rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in the equilibrium potential for GABA by rapamycin, measured after incorporation of MCD membranes into X. laevis oocytes, in line with a re-establishment of normal Cl- reversal potential. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to deregulation of chloride cotransporters, increased neuronal Cl- levels and GABAA dysfunction in malformations of cortical development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.
Collapse
Affiliation(s)
- Naziha Bakouh
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Reyes Castaño-Martín
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Alice Metais
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
- Service de Neuropathologie, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | | | - Estelle Balducci
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Cerina Chhuon
- INSERM US24, Proteomic platform, SFR Necker, 75015 Paris, France
| | - Joanna Lepicka
- INSERM US24, Proteomic platform, SFR Necker, 75015 Paris, France
| | - Giulia Barcia
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Emma Losito
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Stéphane Lourdel
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, 75006 Paris, France
- CNRS EMR 8228—Laboratory of Renal Physiology and Tubulopathies, Université de Paris Cité, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Gabrielle Planelles
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, 75006 Paris, France
- CNRS EMR 8228—Laboratory of Renal Physiology and Tubulopathies, Université de Paris Cité, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Raul C Muresan
- STAR-UBB Institute, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- STAR-UBB Institute, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Anna Kaminska
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Marie Bourgeois
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Nicole Chemaly
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Yasmine Rguez
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
| | - Stéphane Auvin
- Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, 75019 Paris, France
| | - Gilles Huberfeld
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
| | - Pascale Varlet
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
- Service de Neuropathologie, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Vahid Asnafi
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | | | - Edor Kabashi
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Rima Nabbout
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Sorana Ciura
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Thomas Blauwblomme
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| |
Collapse
|
12
|
Macdonald‐Laurs E, Leventer RJ. ILAE genetic literacy series: Focal cortical dysplasia. Epileptic Disord 2025; 27:1-8. [PMID: 39641771 PMCID: PMC11829622 DOI: 10.1002/epd2.20308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
Focal cortical dysplasia (FCD) is a common cause of drug-resistant focal epilepsy in children and young adults and is often surgically remediable. The genetics of FCD are increasingly understood due to the ability to perform genomic testing including deep sequencing of resected FCD tissue specimens. There is clear evidence that FCD type II occurs secondary to both germline and somatic mTOR pathway variants, while emerging literature supports the role of SLC35A2, a glycosylation gene, in mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE). Herein, we provide a review of FCDs focusing on their clinical phenotypes, genetic basis, and management considerations when performing genetic testing in this patient group.
Collapse
Affiliation(s)
- Emma Macdonald‐Laurs
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| | - Richard J. Leventer
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
13
|
Dentel B, Angeles-Perez L, Flores AY, Lei K, Ren C, Sanchez AP, Tsai PT. Neuronal cell type specific roles for Nprl2 in neurodevelopmental disorder-relevant behaviors. Neurobiol Dis 2025; 205:106790. [PMID: 39765274 DOI: 10.1016/j.nbd.2025.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and Neurodevelopmental Disorders (NDDs) (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al., 2018; Dentel et al., 2022); however, studies focused on understanding mechanisms contributing to NDD-relevant behaviors are lacking, especially studies understanding the contributions of GATOR1's critical GAP catalytic subunit, nitrogen permease regulator like-2 (Nprl2). Given the clinical phenotypes observed in patients with Nprl2 mutations, in this study, we sought to investigate the neuronal cell type contributions of Nprl2 to NDD behaviors. We conditionally deleted Nprl2 broadly in most neurons (Synapsin1cre), in inhibitory neurons only (Vgatcre), and in Purkinje cells within the cerebellum (L7cre). Broad neuronal deletion of Nprl2 resulted in seizures, social and learning deficits, and hyperactivity. In contrast, deleting Nprl2 from inhibitory neurons led to increased motor learning, hyperactive behavior, in addition to social and learning deficits. Lastly, Purkinje cell (PC) loss of Nprl2 also led to learning and social deficits but did not affect locomotor activity. These phenotypes enhance understanding of the spectrum of disease found in human populations with GATOR1 loss of function and highlight the significance of distinct cellular populations to NDD-related behaviors. SIGNIFICANCE STATEMENT: We aim to elucidate the neuronal-specific contributions of nitrogen permease regulator like-2 (Nprl2) to its neurodevelopmental disorder (NDD)-relevant phenotypes. We conditionally deleted Nprl2 broadly in neurons (Syn1cre), in inhibitory neurons (Vgatcre), and in cerebellar Purkinje cells (L7cre). We identify seizures only in the Syn1cre conditional mutant (cKO); hyperactivity, learning difficulties, social deficits, and impulsivity in the Syn1cre and Vgatcre cKOs; and social deficits, and fear learning deficits in L7cre cKOs. To our knowledge, we are the first to describe the behavioral contributions of Nprl2's function across multiple cell types. Our findings highlight both critical roles for Nprl2 in learning and behavior and also distinct contributions of select neuronal populations to these NDD-relevant behaviors.
Collapse
Affiliation(s)
- Brianne Dentel
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Lidiette Angeles-Perez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Abigail Y Flores
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Katherine Lei
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Chongyu Ren
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Andrea Pineda Sanchez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Peter T Tsai
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience; O'Donnell Brain Institute, Dallas, TX, United States of America.
| |
Collapse
|
14
|
Kim SH, Kang H, Roh YH, Hahn J, Min KL, Lee S, Yang D, Choi HS, Park S, Lee JH, Lee S, Kim SH, Chang MJ, Kim HD. Efficacy and safety of everolimus for patients with focal cortical dysplasia type 2. Epilepsia Open 2025; 10:243-257. [PMID: 39607729 PMCID: PMC11803298 DOI: 10.1002/epi4.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness and safety of everolimus in treating seizures associated with focal cortical dysplasia type 2 (FCD 2). METHODS A prospective, crossover, placebo-controlled clinical trial (ClinicalTrials.gov: NCT03198949) enrolled patients aged 4-40 years with pathologically confirmed FCD 2 and a history of ≥3 seizures per month for two out of the 3 months prior to screening. The trial included a 4-week baseline phase, two 12-week core phases, and a 29-week extension phase. Patients received everolimus or placebo in a blinded manner during core phase I, with crossover to the alternate treatment in core phase II. Everolimus dosage started at 4.5 mg/m2/day, targeting a serum level of 5-15 ng/mL. The primary outcome was the proportion of patients achieving ≥50% seizure reduction from baseline in the last month of each core phase. Safety profiles were compared between groups. RESULTS Between May 11, 2017, and June 19, 2020, 21 patients completed the core phases. There was no significant difference in the primary outcome between everolimus and placebo groups (24% vs. 19%, p = 0.66). The patients showed varied responses. Three patients with a pathogenic variant in the MTOR gene or no genetic abnormalities achieved seizure freedom with everolimus in the last month of the core phase, while none of the patients with variants in other genes did. Adverse events, such as mucositis or skin ulceration, were more common with everolimus (19/21 vs. 7/21, p < 0.001). All adverse events resolved without study drug withdrawal. SIGNIFICANCE Everolimus treatment for 12 weeks did not show overall superiority in reducing seizures compared to placebo. However, it showed promise, mostly in patients with a pathogenic variant in the MTOR gene, highlighting the need for further research into patient-specific factors influencing treatment response. The everolimus treatment was generally safe and manageable. PLAIN LANGUAGE SUMMARY This study tested everolimus for reducing seizures in patients with focal cortical dysplasia type 2 (FCD 2). While the drug was not more effective than a placebo for most, few patients showed better results, with some becoming seizure-free. Side effects were common but manageable. More research is needed to understand why certain patients respond better to treatment.
Collapse
Affiliation(s)
- Se Hee Kim
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
| | - Hoon‐Chul Kang
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulRepublic of Korea
| | - Jongsung Hahn
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of PharmacyYonsei UniversityIncheonRepublic of Korea
- School of PharmacyJeonbuk National UniversityJeonjuRepublic of Korea
| | - Kyung Lok Min
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of PharmacyYonsei UniversityIncheonRepublic of Korea
- Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and PharmacyYonsei UniversityIncheonRepublic of Korea
| | - Seok‐Jin Lee
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
| | - Donghwa Yang
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Division of Pediatric Neurology, Department of PediatricsNational Health Insurance Service Ilsan HospitalGoyangRepublic of Korea
| | - Han Som Choi
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Department of PediatricsEwha Womans University Seoul Hospital, Ewha Womans University School of MedicineSeoulRepublic of Korea
| | - Soyoung Park
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Department of PediatricsSoonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)SoVarGen, Inc.DaejeonRepublic of Korea
| | - Sang‐Guk Lee
- Department of Laboratory MedicineSeverance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Se Hoon Kim
- Department of PathologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Min Jung Chang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of PharmacyYonsei UniversityIncheonRepublic of Korea
- Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and PharmacyYonsei UniversityIncheonRepublic of Korea
- Graduate Program of Industrial Pharmaceutical ScienceYonsei UniversityIncheonRepublic of Korea
| | - Heung Dong Kim
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Department of PediatricsKangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
15
|
Corrigan RR, Mashburn-Warren LM, Yoon H, Bedrosian TA. Somatic Mosaicism in Brain Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:13-32. [PMID: 39227323 DOI: 10.1146/annurev-pathmechdis-111523-023528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.
Collapse
Affiliation(s)
- Rachel R Corrigan
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | | | - Hyojung Yoon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | - Tracy A Bedrosian
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| |
Collapse
|
16
|
Arceneaux JS, Brockman AA, Khurana R, Chalkley MBL, Geben LC, Krbanjevic A, Vestal M, Zafar M, Weatherspoon S, Mobley BC, Ess KC, Ihrie RA. Multiparameter quantitative analyses of diagnostic cells in brain tissues from tuberous sclerosis complex. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2025; 108:35-54. [PMID: 38953209 PMCID: PMC11693778 DOI: 10.1002/cyto.b.22194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.
Collapse
Affiliation(s)
- Jerome S. Arceneaux
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College
| | - Asa A. Brockman
- Department of Cell & Developmental Biology, Vanderbilt University
| | - Rohit Khurana
- Department of Cell & Developmental Biology, Vanderbilt University
| | | | | | - Aleksandar Krbanjevic
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center
| | | | | | - Sarah Weatherspoon
- Neuroscience Institute, Le Bonheur Children’s Hospital
- University of Tennessee Health Science Center
| | - Bret C. Mobley
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center
| | - Kevin C. Ess
- Department of Cell & Developmental Biology, Vanderbilt University
- Department of Pediatrics, Vanderbilt University Medical Center
- Department of Neurology, Vanderbilt University Medical Center
- Section of Child Neurology, University of Colorado Anschutz Medical Center
| | - Rebecca A. Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| |
Collapse
|
17
|
Lai D, Sosicka P, Williams DJ, Bowyer ME, Ressler AK, Kohrt SE, Muron SJ, Crino PB, Freeze HH, Boland MJ, Heinzen EL. SLC35A2 loss of function variants affect glycomic signatures, neuronal fate, and network dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630524. [PMID: 39763953 PMCID: PMC11703275 DOI: 10.1101/2024.12.27.630524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
SLC35A2 encodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic SLC35A2 variants have been identified in congenital disorders of glycosylation and somatic SLC35A2 variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive. In this study, we use an isogenic human induced pluripotent stem cell-derived neuron model to comprehensively interrogate the functional impact of loss of function variants in SLC35A2 through the integration of cellular and molecular biology, protein glycosylation analysis, neural network dynamics, and single cell electrophysiology. We show that loss of function variants in SLC35A2 result in disrupted glycomic signatures and precocious neurodevelopment, yielding hypoactive, asynchronous neural networks. This aberrant network activity is attributed to an inhibitory/excitatory imbalance as characterization of neural composition revealed preferential differentiation of SLC35A2 loss of function variants towards the GABAergic fate. Additionally, electrophysiological recordings of synaptic activity reveal a shift in excitatory/inhibitory balance towards increased inhibitory drive, indicating changes occurring specifically at the pre-synaptic terminal. Our study is the first to provide mechanistic insight regarding the early development and functional connectivity of SLC35A2 loss of function variant harboring human neurons, providing important groundwork for future exploration of potential therapeutic interventions.
Collapse
Affiliation(s)
- Dulcie Lai
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Damian J Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - MaryAnn E Bowyer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew K Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sarah E Kohrt
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Savannah J Muron
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Epilepsy and Neurodevelopmental Disorders, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
18
|
Wang Y, Wang Y, Guo L, Shen C, Fu Y, Wei P, Shan Y, Wu Q, Piao YS, Zhao G. Spatial transcriptomics in focal cortical dysplasia type IIb. Acta Neuropathol Commun 2024; 12:185. [PMID: 39614299 DOI: 10.1186/s40478-024-01897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024] Open
Abstract
Focal cortical dysplasia (FCD) type IIb (FCD IIb) is an epileptogenic malformation of the neocortex that is characterized by cortical dyslamination, dysmorphic neurons (DNs) and balloon cells (BCs). Approximately 30-60% of lesions are associated with brain somatic mutations in the mTOR pathway. Herein, we investigated the transcriptional changes around the DNs and BCs regions in freshly frozen brain samples from three patients with FCD IIb by using spatial transcriptomics. We demonstrated that the DNs region in a gene enrichment network enriched for the mTOR signalling pathway, autophagy and the ubiquitin‒proteasome system, additionally which are involved in regulating membrane potential, may contribute to epileptic discharge. Moreover, differential expression analysis further demonstrated stronger expression of components of the inflammatory response and complement activation in the BCs region. And the DNs and BCs regions exhibited common functional modules, including regulation of cell morphogenesis and developmental growth. Furthermore, the expression of representative proteins in the functional enrichment module mentioned above was increased in the lesions of FCD IIb, such as p62 in DNs and BCs, UCHL1 in DNs, and C3 and CLU in BCs, which was confirmed via immunohistochemistry. Collectively, we constructed a spatial map showing the potential effects and functions of the DNs and BCs regions at the transcriptomic level and generated publicly available data on human FCD IIb to facilitate future research on human epileptogenesis.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
- Department of Pathology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Linai Guo
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Chunhao Shen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yue-Shan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
- National Center for Neurological Disorders, Beijing, 100053, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
- National Center for Neurological Disorders, Beijing, 100053, China.
| |
Collapse
|
19
|
Quatraccioni A, Cases-Cunillera S, Balagura G, Coleman M, Rossini L, Mills JD, Casillas-Espinosa PM, Moshé SL, Sankar R, Baulac S, Noebels JL, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Galanopoulou AS. WONOEP appraisal: Genetic insights into early onset epilepsies. Epilepsia 2024; 65:3138-3154. [PMID: 39302576 DOI: 10.1111/epi.18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.
Collapse
Affiliation(s)
- Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Silvia Cases-Cunillera
- Neuronal Signaling in Epilepsy and Glioma, Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matthew Coleman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Laura Rossini
- Epilepsy Unit, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Department of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jeffrey L Noebels
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stéphane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, member of European Reference Network EpiCARE, Université Paris Cité and Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics and FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Brunelli JM, Lopes TJP, Alves IS, Delgado DS, Lee HW, Martin MGM, Docema MFL, Alves SS, Pinho PC, Gonçalves VT, Oliveira LRLB, Takahashi JT, Maralani PJ, Amancio CT, Leite CC. Malformations of Cortical Development: Updated Imaging Review. Radiographics 2024; 44:e230239. [PMID: 39446612 DOI: 10.1148/rg.230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malformations of cortical development (MCD) are structural anomalies that disrupt the normal process of cortical development. Patients with these anomalies frequently present with seizures, developmental delay, neurologic deficits, and cognitive impairment, resulting in a wide spectrum of neurologic outcomes. The severity and type of malformation, in addition to the genetic pathways of brain development involved, contribute to the observed variability. While neuroimaging plays a central role in identifying congenital anomalies in vivo, the precise definition and classification of cortical developmental defects have undergone significant transformations in recent years due to advances in molecular and genetic knowledge. The authors provide a concise overview of embryologic brain development, recently standardized nomenclature, and the categorization system for abnormalities in cortical development, offering valuable insights into the interpretation of their neuroradiologic patterns. ©RSNA, 2024 Supplemental material is available for this article. The slide presentation from the RSNA Annual Meeting is available for this article.
Collapse
Affiliation(s)
- Julia M Brunelli
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Thiago J P Lopes
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Isabela S Alves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Daniel S Delgado
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Hae W Lee
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Maria G M Martin
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Marcos F L Docema
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Samya S Alves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Paula C Pinho
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Vinicius T Gonçalves
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Lucas R L B Oliveira
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Jorge T Takahashi
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Pejman J Maralani
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Camila T Amancio
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| | - Claudia C Leite
- From the Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo, Brazil 01308-050 (J.M.B., T.J.P.L., I.S.A., D.S.D., H.W.L., M.G.M.M., M.F.L.D., S.S.A., P.C.P., V.T.G., J.T.T., C.T.A.); Departments of Radiology (M.G.M.M., P.C.P., L.R.L.B.O., C.C.L.) and Oncology (C.C.L.), University of São Paulo, São Paulo, Brazil; and Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (P.J.M.)
| |
Collapse
|
21
|
Ntolkeras G, Touserkani FM, Chiu MY, Prabhu SP, Stone S, Rotenberg A. Transient Ipsilateral Hemineglect Following Brain Laser Ablation in Patient with Focal Cortical Dysplasia. Neurol Int 2024; 16:958-965. [PMID: 39311345 PMCID: PMC11417852 DOI: 10.3390/neurolint16050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Sensory integration is the province of the parietal lobe. The non-dominant hemisphere is responsible for both body sides, while the dominant hemisphere is responsible for the contralateral hemi-body. Furthermore, the posterior cingulate cortex (PCC) participates in a network involved in spatial orientation, attention, and spatial and episodic memory. Laser interstitial thermotherapy (LiTT) is a minimally invasive surgery for focal drug-resistant epilepsy (DRE) that can target deeper brain regions, and thus, region-specific symptoms can emerge. Here, we present an 18-year-old right-handed male with focal DRE who experienced seizures characterized by sensations of déjà vu, staring spells, and language disruption. A comprehensive evaluation localized the seizure focus and revealed a probable focal cortical dysplasia (FCD) in the left posterior cingulate gyrus. The patient underwent uneventful LiTT of the identified lesion. Post-operatively, he developed transient ipsilateral spatial neglect and contralateral sensory loss, as well as acalculia. His sensory symptoms gradually improved after the surgery, and he remained seizure-free after the intervention for at least 10 months (until the time of this writing). This rare case of ipsilateral spatial and visual hemineglect post-LiTT in epilepsy underscores the importance of recognizing atypical neurosurgical outcomes and considering individual variations in brain anatomy and function. Understanding the dynamics of cortical connectivity and handedness, particularly in pediatric epilepsy, may be crucial in anticipating and managing neurocognitive effects following epilepsy surgery.
Collapse
Affiliation(s)
- Georgios Ntolkeras
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.M.T.); (M.Y.C.); (A.R.)
| | - Fatemeh Mohammadpour Touserkani
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.M.T.); (M.Y.C.); (A.R.)
| | - Michelle Y. Chiu
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.M.T.); (M.Y.C.); (A.R.)
| | - Sanjay P. Prabhu
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Scellig Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Alexander Rotenberg
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.M.T.); (M.Y.C.); (A.R.)
| |
Collapse
|
22
|
Kim J, Park SM, Koh HY, Ko A, Kang HC, Chang WS, Kim DS, Lee JH. Threshold of somatic mosaicism leading to brain dysfunction with focal epilepsy. Brain 2024; 147:2983-2990. [PMID: 38916065 DOI: 10.1093/brain/awae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioural seizures. The mosaic burdens ranged from approximately 1000 to 40 000 neurons expressing the mTOR mutant in the somatosensory or medial prefrontal cortex. Surprisingly, approximately 8000-9000 neurons expressing the MTOR mutant, extrapolated to constitute 0.08%-0.09% of total cells or roughly 0.04% of variant allele frequency in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.
Collapse
Affiliation(s)
- Jintae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Min Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- SoVarGen Co., Ltd., Daejeon 34051, Republic of Korea
| | - Hyun Yong Koh
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston 77030, USA
| | - Ara Ko
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hoon-Chul Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Seok Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- SoVarGen Co., Ltd., Daejeon 34051, Republic of Korea
| |
Collapse
|
23
|
Gade M, Heinzen EL. Exploring the impact of somatic variant burden on seizures in focal cortical dysplasia. Brain 2024; 147:2899-2901. [PMID: 39101458 DOI: 10.1093/brain/awae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
This scientific commentary refers to ‘Threshold of somatic mosaicism leading to brain dysfunction with focal epilepsy’ by Kim et al. (https://doi.org/10.1093/brain/awae190).
Collapse
Affiliation(s)
- Meethila Gade
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Sran S, Ringland A, Bedrosian TA. Building the brain mosaic: an expanded view. Trends Genet 2024; 40:747-756. [PMID: 38853120 PMCID: PMC11387136 DOI: 10.1016/j.tig.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Ringland
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
25
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
26
|
Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, Hayashi SY, Craddock BP, Socci ND, Alberdi A, Baako A, Ay O, Ogishi M, Lopez-Rodrigo E, Kappagantula R, Viale A, Iacobuzio-Donahue CA, Zhou T, Ransohoff RM, Chesworth R, Abdel-Wahab O, Boisson B, Elemento O, Casanova JL, Miller WT, Geissmann F. A microglia clonal inflammatory disorder in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577216. [PMID: 38328106 PMCID: PMC10849735 DOI: 10.1101/2024.01.25.577216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leslie Weber
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine,Weill Cornell New York, NY 10021, USA
| | - Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine A. Iacobuzio-Donahue
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine,Weill Cornell New York, NY 10021, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
27
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
28
|
Xu Y, Lu R, Li H, Feng W, Zhao R. A spectrum of AKT3 activating mutations cause focal malformations of cortical development (FMCDs) in cortical organoids. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167232. [PMID: 38759814 DOI: 10.1016/j.bbadis.2024.167232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Focal malformations of cortical development (FMCDs) are brain disorders mainly caused by hyperactive mTOR signaling due to both inactivating and activating mutations of genes in the PI3K-AKT-mTOR pathway. Among them, mosaic and somatic activating mutations of the mTOR pathway activators are more frequently linked to severe form of FMCDs. A human stem cell-based FMCDs model to study these activating mutations is still lacking. Herein, we genetically engineer human embryonic stem cell lines carrying these activating mutations to generate cortical organoids. Mosaic and somatic expression of AKT3 activating mutations in cortical organoids mimicking the disease presentation with overproliferation and the formation of dysmorphic neurons. In parallel comparison of various AKT3 activating mutations reveals that stronger mutation is associated with more severe neuronal migratory and overgrowth defects. Together, we have established a feasible human stem cell-based model for FMCDs that could help to better understand pathogenic mechanism and develop novel therapeutic strategy.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongrong Lu
- Department of Neurosurgery, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China; Department of Neurosurgery, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Rui Zhao
- Department of Neurosurgery, Shanghai Children's Hospital, Shanghai 200333, China.
| |
Collapse
|
29
|
McDonough GA, Cheng Y, Morillo KS, Doan RN, Zhou Z, Kenny CJ, Foutz A, Kim C, Cohen ML, Appleby BS, Walsh CA, Safar JG, Huang AY, Miller MB. Neuropathologically directed profiling of PRNP somatic and germline variants in sporadic human prion disease. Acta Neuropathol 2024; 148:10. [PMID: 39048735 PMCID: PMC11328154 DOI: 10.1007/s00401-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Collapse
Affiliation(s)
- Gannon A McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuchen Cheng
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Katherine S Morillo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zinan Zhou
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Michael B Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
D'Gama AM, Phillips HW, Wang Y, Chiu MY, Chahine Y, Swanson AC, Smith RS, Pearl PL, Tsuboyama M, Madsen JR, Lidov H, Lee EA, Prabhu SP, Huang AY, Stone SSD, Walsh CA, Poduri A. Analysis of DNA from brain tissue on stereo-EEG electrodes reveals mosaic epilepsy-related variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.21.24310779. [PMID: 39108522 PMCID: PMC11302611 DOI: 10.1101/2024.07.21.24310779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.
Collapse
|
31
|
McDonough GA, Cheng Y, Morillo K, Doan RN, Kenny CJ, Foutz A, Kim C, Cohen ML, Appleby BS, Walsh CA, Safar JG, Huang AY, Miller MB. Neuropathologically-directed profiling of PRNP somatic and germline variants in sporadic human prion disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600668. [PMID: 38979287 PMCID: PMC11230391 DOI: 10.1101/2024.06.25.600668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, ~1% were transmitted by misfolded PrP, ~15% are inherited, and ~85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate focal initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of >5,000X across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a focal presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Collapse
Affiliation(s)
- Gannon A. McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yuchen Cheng
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Connor J. Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mark L. Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Wang Y, Niu W, Shi H, Bao X, Liu Y, Lu M, Sun Y. A novel variation in DEPDC5 causing familial focal epilepsy with variable foci. Front Genet 2024; 15:1414259. [PMID: 38974383 PMCID: PMC11227254 DOI: 10.3389/fgene.2024.1414259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Disheveled, EGL-10, and pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a component of GTPase-activating protein (GAP) activity toward the RAG complex 1 (GATOR1) protein, which is an inhibitor of the amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. GATOR1 complex variations were reported to correlate with familial focal epilepsy with variable foci (FFEVF). With the wide application of whole exome sequencing (WES), more and more variations in DEPDC5 were uncovered in FFEVF families. Methods A family with a proband diagnosed with familial focal epilepsy with variable foci (FFEVF) was involved in this study. Whole exome sequencing (WES) was performed in the proband, and Sanger sequencing was used to confirm the variation carrying status of the family members. Mini-gene splicing assay was performed to validate the effect on the alternative splicing of the variation. Results A novel variant, c.1217 + 2T>A, in DEPDC5 was identified by WES in the proband. This splicing variant that occurred at the 5' end of intron 17 was confirmed by mini-gene splicing assays, which impacted alternative splicing and led to the inclusion of an intron fragment. The analysis of the transcribed mRNA sequence indicates that the translation of the protein is terminated prematurely, which is very likely to result in the loss of function of the protein and lead to the occurrence of FFEVF. Conclusion The results suggest that c.1217 + 2T>A variations in DEPDC5 might be the genetic etiology for FFEVF in this pedigree. This finding expands the genotype spectrum of FFEVF and provides new etiological information for FFEVF.
Collapse
Affiliation(s)
- Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manman Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp AT, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598925. [PMID: 38915580 PMCID: PMC11195173 DOI: 10.1101/2024.06.14.598925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
Collapse
Affiliation(s)
- Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlo Colantuoni
- Depts. of Neurology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
34
|
Li X, Wang T, Liu N, Cai A, Zhang J, Zhang F, Liu Q, Wang J, Wu Y, Gao K, Jiang YW. Focal cortical dysplasia II caused by brain somatic mutation of IRS-1 is associated with ERK signaling pathway activation. Cereb Cortex 2024; 34:bhae227. [PMID: 38836287 DOI: 10.1093/cercor/bhae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.
Collapse
Affiliation(s)
- Xiao Li
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Tianshuang Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Minhang District, Shanghai 201102, China
| | - Nana Liu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Aojie Cai
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Junjiao Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Fan Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Qingzhu Liu
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Children Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, No. 1 Xi'an Men Street, West District, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, No. 1 Xi'an Men Street, West District, Beijing 100034, China
| |
Collapse
|
35
|
Ribierre T, Bacq A, Donneger F, Doladilhe M, Maletic M, Roussel D, Le Roux I, Chassoux F, Devaux B, Adle-Biassette H, Ferrand-Sorbets S, Dorfmüller G, Chipaux M, Baldassari S, Poncer JC, Baulac S. Targeting pathological cells with senolytic drugs reduces seizures in neurodevelopmental mTOR-related epilepsy. Nat Neurosci 2024; 27:1125-1136. [PMID: 38710875 PMCID: PMC11156583 DOI: 10.1038/s41593-024-01634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Cortical malformations such as focal cortical dysplasia type II (FCDII) are associated with pediatric drug-resistant epilepsy that necessitates neurosurgery. FCDII results from somatic mosaicism due to post-zygotic mutations in genes of the PI3K-AKT-mTOR pathway, which produce a subset of dysmorphic cells clustered within healthy brain tissue. Here we show a correlation between epileptiform activity in acute cortical slices obtained from human surgical FCDII brain tissues and the density of dysmorphic neurons. We uncovered multiple signatures of cellular senescence in these pathological cells, including p53/p16 expression, SASP expression and senescence-associated β-galactosidase activity. We also show that administration of senolytic drugs (dasatinib/quercetin) decreases the load of senescent cells and reduces seizure frequency in an MtorS2215F FCDII preclinical mouse model, providing proof of concept that senotherapy may be a useful approach to control seizures. These findings pave the way for therapeutic strategies selectively targeting mutated senescent cells in FCDII brain tissue.
Collapse
Affiliation(s)
- Théo Ribierre
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- NeuroNA Human Cellular Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Alexandre Bacq
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Florian Donneger
- Institut du Fer à Moulin, INSERM, Sorbonne Université, UMR-S 1270, Paris, France
| | - Marion Doladilhe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marina Maletic
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Delphine Roussel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Isabelle Le Roux
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Francine Chassoux
- Service de Neurochirurgie, AP-HP, Hôpital Lariboisière, Paris, France
- GHU Paris, Psychiatrie et Neurosciences, Paris, France
| | - Bertrand Devaux
- Service de Neurochirurgie, AP-HP, Hôpital Lariboisière, Paris, France
- GHU Paris, Psychiatrie et Neurosciences, Paris, France
| | - Homa Adle-Biassette
- Université de Paris Cité, Service d'Anatomie Pathologique, AP-HP, Hôpital Lariboisière, DMU DREAM, UMR 1141, INSERM, Paris, France
| | | | - Georg Dorfmüller
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Mathilde Chipaux
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
36
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
37
|
De Bortoli M, Ivars M, Revencu N, Nassogne MC, Lavarino C, Paco S, Lammens M, Renders A, Dumitriu D, Helaers R, Boon LM, Baselga E, Vikkula M. Epilepsy with faint capillary malformation or reticulated telangiectasia associated with mosaic AKT3 pathogenic variants. Am J Med Genet A 2024; 194:e63551. [PMID: 38321651 DOI: 10.1002/ajmg.a.63551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Capillary malformations (CMs) are the most common type of vascular anomalies, affecting around 0.3% of newborns. They are usually caused by somatic pathogenic variants in GNAQ or GNA11. PIK3CA and PIK3R1, part of the phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin pathway, are mutated in fainter CMs such as diffuse CM with overgrowth and megalencephaly CM. In this study, we present two young patients with a CM-like phenotype associated with cerebral anomalies and severe epilepsy. Pathogenic variants in PIK3CA and PIK3R1, as well as GNAQ and GNA11, were absent in affected cutaneous tissue biopsies. Instead, we identified two somatic pathogenic variants in the AKT3 gene. Subsequent analysis of the DNA obtained from surgically resected brain tissue of one of the two patients confirmed the presence of the AKT3 variant. Focal cortical dysplasia was also detected in this patient. Genetic analysis thus facilitated workup to reach a precise diagnosis for these patients, associating the vascular anomaly with the neurological symptoms. This study underscores the importance of searching for additional signs and symptoms to guide the diagnostic workup, especially in cases with atypical vascular malformations. In addition, it strongly emphasizes the significance of genotype-phenotype correlation studies in guiding clinicians' informed decision-making regarding patient care.
Collapse
Affiliation(s)
- Martina De Bortoli
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Marta Ivars
- Department of Dermatology, VASCERN VASCA European Reference Center, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Nicole Revencu
- Center for Human Genetics, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Marie-Cécile Nassogne
- Pediatric Neurology Unit, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, VASCERN VASCA European Reference Center, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sonia Paco
- Laboratory of Molecular Oncology, VASCERN VASCA European Reference Center, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Service d'anatomopathologie, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Anne Renders
- Rehabilitation Department, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Dana Dumitriu
- Pediatric Radiology Unit, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Eulalia Baselga
- Department of Dermatology, VASCERN VASCA European Reference Center, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
38
|
Sun C, Kathuria K, Emery SB, Kim B, Burbulis IE, Shin JH, Weinberger DR, Moran JV, Kidd JM, Mills RE, McConnell MJ. Mapping recurrent mosaic copy number variation in human neurons. Nat Commun 2024; 15:4220. [PMID: 38760338 PMCID: PMC11101435 DOI: 10.1038/s41467-024-48392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Kunal Kathuria
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA
| | - ByungJun Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, 22902, USA
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede de la Patagonia, Puerto Montt, Chile
| | - Joo Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences and Neuroscience, Johns Hopkins School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21230, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Jeffrey M Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
39
|
Carton RJ, Doyle MG, Kearney H, Steward CA, Lench NJ, Rogers A, Heinzen EL, McDonald S, Fay J, Lacey A, Beausang A, Cryan J, Brett F, El-Naggar H, Widdess-Walsh P, Costello D, Kilbride R, Doherty CP, Sweeney KJ, O'Brien DF, Henshall DC, Delanty N, Cavalleri GL, Benson KA. Somatic variants as a cause of drug-resistant epilepsy including mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2024; 65:1451-1461. [PMID: 38491957 DOI: 10.1111/epi.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.
Collapse
Affiliation(s)
- Robert J Carton
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael G Doyle
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
- Strategic Academic Recruitment Doctor of Medicine Programme, Royal College of Surgeons in Ireland in collaboration with Blackrock Clinic, Dublin, Ireland
| | - Hugh Kearney
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | | | - Anthony Rogers
- Congenica Limited, BioData Innovation Centre, Cambridge, UK
| | - Erin L Heinzen
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Seamus McDonald
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanna Fay
- Royal College of Surgeons in Ireland Biobanking Service, Dublin, Ireland
| | - Austin Lacey
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Hany El-Naggar
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Peter Widdess-Walsh
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Daniel Costello
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Cork University Hospital, Cork, Ireland
| | - Ronan Kilbride
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Colin P Doherty
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, St. James's Hospital, Dublin, Ireland
| | - Kieron J Sweeney
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Donncha F O'Brien
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - David C Henshall
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Gianpiero L Cavalleri
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine A Benson
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
40
|
Gooley S, Perucca P, Tubb C, Hildebrand MS, Berkovic SF. Somatic mosaicism in focal epilepsies. Curr Opin Neurol 2024; 37:105-114. [PMID: 38235675 DOI: 10.1097/wco.0000000000001244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Over the past decade, it has become clear that brain somatic mosaicism is an important contributor to many focal epilepsies. The number of cases and the range of underlying pathologies with somatic mosaicism are rapidly increasing. This growth in somatic variant discovery is revealing dysfunction in distinct molecular pathways in different focal epilepsies. RECENT FINDINGS We briefly summarize the current diagnostic yield of pathogenic somatic variants across all types of focal epilepsy where somatic mosaicism has been implicated and outline the specific molecular pathways affected by these variants. We will highlight the recent findings that have increased diagnostic yields such as the discovery of pathogenic somatic variants in novel genes, and new techniques that allow the discovery of somatic variants at much lower variant allele fractions. SUMMARY A major focus will be on the emerging evidence that somatic mosaicism may contribute to some of the more common focal epilepsies such as temporal lobe epilepsy with hippocampal sclerosis, which could lead to it being re-conceptualized as a genetic disorder.
Collapse
Affiliation(s)
- Samuel Gooley
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| | - Piero Perucca
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
- Department of Neuroscience, Central Clinical School, Monash University
- Department of Neurology, Alfred Health, Melbourne
- Department of Neurology, The Royal Melbourne Hospital
| | - Caitlin Tubb
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Neuroscience Group, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| |
Collapse
|
41
|
Man A, Di Scipio M, Grewal S, Suk Y, Trinari E, Ejaz R, Whitney R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes (Basel) 2024; 15:332. [PMID: 38540392 PMCID: PMC10970281 DOI: 10.3390/genes15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 06/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway serves as a master regulator of cell growth, proliferation, and survival. Upregulation of the mTOR pathway has been shown to cause malformations of cortical development, medically refractory epilepsies, and neurodevelopmental disorders, collectively described as mTORopathies. Tuberous sclerosis complex (TSC) serves as the prototypical mTORopathy. Characterized by the development of benign tumors in multiple organs, pathogenic variants in TSC1 or TSC2 disrupt the TSC protein complex, a negative regulator of the mTOR pathway. Variants in critical domains of the TSC complex, especially in the catalytic TSC2 subunit, correlate with increased disease severity. Variants in less crucial exons and non-coding regions, as well as those undetectable with conventional testing, may lead to milder phenotypes. Despite the assumption of complete penetrance, expressivity varies within families, and certain variants delay disease onset with milder neurological effects. Understanding these genotype-phenotype correlations is crucial for effective clinical management. Notably, 15% of patients have no mutation identified by conventional genetic testing, with the majority of cases postulated to be caused by somatic TSC1/TSC2 variants which present complex diagnostic challenges. Advancements in genetic testing, prenatal screening, and precision medicine hold promise for changing the diagnostic and treatment paradigm for TSC and related mTORopathies. Herein, we explore the genetic and molecular mechanisms of TSC and other mTORopathies, emphasizing contemporary genetic methods in understanding and diagnosing the condition.
Collapse
Affiliation(s)
- Alice Man
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matteo Di Scipio
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shan Grewal
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elisabetta Trinari
- Division of Developmental Pediatrics, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
42
|
Zhang H, Deng J, Gao Z, Wang Y, Zhao F, Zhao H, Fang F. Clinical phenotype and genotype of NPRL2-related epilepsy: Four cases reports and literature review. Seizure 2024; 116:100-106. [PMID: 37741786 DOI: 10.1016/j.seizure.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND NPRL2-related epilepsy, caused by pathogenic germline variants of the NPRL2 gene, is a newly discovered childhood epilepsy linked to enhanced mTORC1 signalling. However, the phenotype and genotype of NPRL2 variants are still poorly understood. Here, we summarize the association between the phenotype and genotype of NPRL2-related epilepsy. METHODS A retrospective analysis was conducted for four Chinese children with epilepsy due to likely pathogenic NPRL2 variants identified through whole-exome sequencing (WES). Previous reports of patients with NPRL2-related epilepsy were reviewed systematically. RESULTS One of our patients presented focal epilepsy involving the central region, which should be distinguished from self-limited epilepsy with centrotemporal spikes (SeLECTS). The four novel likely pathogenic NPRL2 variants consisted of two nonsense variants, one frameshift variant, and one copy number variant (CNV). Bioinformatics analysis revealed the two nonsense variants to be highly conserved and cause alterations in protein structure. Including our four cases, a total of 33 patients with NPRL2-related epilepsy have been identified to date. The most common presentation is focal epilepsy (70%), including sleep-related hypermotor epilepsy (SHE), temporal lobe epilepsy (TLE), and frontal lobe epilepsy (FLE). Infantile epileptic spasms syndrome (IESS) is also a notable feature of NPRL2-related epilepsy. Malformations of cortical development (MCD, 8/20), especially focal cortical dysplasia (FCD, 6/20), are common neuroimaging abnormalities. Two-thirds of the NPRL2 variants reported are loss of function (LoF) (14/21). Among these mutations, c.100C>T (p.Arg34*) and c.314T>C (p.Leu105Pro) have been detected in two families (likely due to a founder effect). CONCLUSION NPRL2-related epilepsy shows high phenotypic and genotypic heterogeneity. Our study expands the genotype spectrum of NPRL2-related epilepsy, and the phenotype of focal epilepsy involving the central region should be clearly distinguished with SeLECTS, with reference value for clinical diagnosis.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Neurology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China; Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China; Epilepsy Center, Jinan Children's Hospital, Jinan, China
| | - Jie Deng
- Department of Neurology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Zaifen Gao
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China; Epilepsy Center, Jinan Children's Hospital, Jinan, China
| | - Yaping Wang
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China; Epilepsy Center, Jinan Children's Hospital, Jinan, China
| | - Fen Zhao
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China; Epilepsy Center, Jinan Children's Hospital, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing 100045, China.
| |
Collapse
|
43
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. eLife 2024; 12:RP91010. [PMID: 38411613 PMCID: PMC10942629 DOI: 10.7554/elife.91010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activator genes, Rheb or MTOR, or biallelic inactivation of the mTORC1 repressor genes, Depdc5, Tsc1, or Pten in the mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at DallasRichardsonUnited States
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
44
|
Phillips HW, D'Gama AM, Wang Y, Chahine Y, Chiu M, Swanson AC, Ahtam B, Bolton JB, Madsen JR, Lee EA, Prabhu SP, Lidov HG, Papadakis J, Huang AY, Poduri A, Stone SS, Walsh CA. Somatic Mosaicism in PIK3CA Variant Correlates With Stereoelectroencephalography-Derived Electrophysiology. Neurol Genet 2024; 10:e200117. [PMID: 38149038 PMCID: PMC10751024 DOI: 10.1212/nxg.0000000000200117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
Objectives Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection. Methods We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes. Samples were mapped based on an anatomic relationship with the presumed seizure onset zone (SOZ). We performed deep panel sequencing of amplified and unamplified DNA to identify pathogenic variants with subsequent orthogonal validation. Results We detect a pathogenic somatic PIK3CA variant, c.1624G>A (p.E542K), in the brain tissue samples, with VAF inversely correlated with distance from the SOZ. In addition, we identify this variant in amplified electrode-derived samples, albeit with lower VAFs. Discussion We demonstrate regional mosaicism across epileptogenic tissue, suggesting a correlation between variant burden and SOZ. We also validate a pathogenic variant from individual amplified sEEG electrode-derived brain specimens, although further optimization of techniques is required.
Collapse
Affiliation(s)
- H Westley Phillips
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Alissa M D'Gama
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Yilan Wang
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Yasmine Chahine
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Michelle Chiu
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Amanda C Swanson
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Banu Ahtam
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Jeffrey B Bolton
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Joseph R Madsen
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Eunjung A Lee
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Sanjay P Prabhu
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Hart G Lidov
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Joanna Papadakis
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - August Y Huang
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Annapurna Poduri
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Scellig S Stone
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| | - Christopher A Walsh
- From the Department of Neurosurgery (H.W.P.), Stanford School of Medicine, Palo Alto, CA; Department of Neurosurgery (H.W.P., J.R.M., J.P., S.S.S.), Boston Children's Hospital, Harvard Medical School; Broad Institute of MIT and Harvard (H.W.P., Y.W., Y.C., E.A.L., A.Y.H., C.A.W.), Cambridge; Division of Genetics and Genomics (H.W.P., Y.W., E.A.L., A.Y.H., C.A.W.), Manton Center for Orphan Disease Research; Division of Newborn Medicine (A.M.D.G., B.A.), Department of Pediatrics; Epilepsy Genetics Program (A.M.D.G., J.B.B., A.P.), Department of Neurology; Department of Pediatrics (A.M.D.G., J.B.B., E.A.L., A.Y.H., C.A.W.), Harvard Medical School, Boston Children's Hospital; Program in Biological and Biomedical Sciences (Y.W.); Department of Neurology (M.C., J.B.B., A.P., C.A.W.), Boston Children's Hospital, Harvard Medical School; Translational Neuroscience Center (A.C.S.), Boston Children's Hospital; Department of Radiology (S.P.P.), Division of Neuroradiology; Department of Pathology (H.G.L.), Division of Neuropathology, Boston Children's Hospital, Harvard Medical School; and Howard Hughes Medical Institute (C.A.W.), Boston, MA
| |
Collapse
|
45
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes mTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553034. [PMID: 37609221 PMCID: PMC10441381 DOI: 10.1101/2023.08.11.553034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activators, Rheb or mTOR, or biallelic inactivation of the mTORC1 repressors, Depdc5, Tsc1, or Pten in mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
46
|
Maury EA, Walsh CA, Kahle KT. Neurosurgery elucidates somatic mutations. Science 2023; 382:1360-1362. [PMID: 38127765 DOI: 10.1126/science.adj2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Surgical innovation is helping to identify roles for somatic mutations in brain disorders.
Collapse
Affiliation(s)
- Eduardo A Maury
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Kristopher T Kahle
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Neuroscience, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Tidball AM, Luo J, Walker JC, Takla TN, Carvill GL, Parent JM. Genome-wide CRISPRi Screen in Human iNeurons to Identify Novel Focal Cortical Dysplasia Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571474. [PMID: 38168415 PMCID: PMC10760100 DOI: 10.1101/2023.12.13.571474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Focal cortical dysplasia (FCD) is a common cause of focal epilepsy that typically results from brain mosaic mutations in the mTOR cell signaling pathway. To identify new FCD genes, we developed an in vitro CRISPRi screen in human neurons and used FACS enrichment based on the FCD biomarker, phosphorylated S6 ribosomal protein (pS6). Using whole-genome (110,000 gRNAs) and candidate (129 gRNAs) libraries, we discovered 12 new genes that significantly increase pS6 levels. Interestingly, positive hits were enriched for brain-specific genes, highlighting the effectiveness of using human iPSC-derived induced neurons (iNeurons) in our screen. We investigated the signaling pathways of six candidate genes: LRRC4, EIF3A, TSN, HIP1, PIK3R3, and URI1. All six genes increased phosphorylation of S6. However, only two genes, PIK3R3 and HIP1, caused hyperphosphorylation more proximally in the AKT/mTOR/S6 signaling pathway. Importantly, these two genes have recently been found independently to be mutated in resected brain tissue from FCD patients, supporting the predictive validity of our screen. Knocking down each of the other four genes (LRRC4, EIF3A, TSN, and URI1) in iNeurons caused them to become resistant to the loss of growth factor signaling; without growth factor stimulation, pS6 levels were comparable to growth factor stimulated controls. Our data markedly expand the set of genes that are likely to regulate mTOR pathway signaling in neurons and provide additional targets for identifying somatic gene variants that cause FCD.
Collapse
Affiliation(s)
- Andrew M. Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
| | - Jinghui Luo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - J. Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Taylor N. Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Gemma L. Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
48
|
Johannesen KM, Tümer Z, Weckhuysen S, Barakat TS, Bayat A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023; 64:3143-3154. [PMID: 37750451 DOI: 10.1111/epi.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Dainelli A, Iacomino M, Rossato S, Bugin S, Traverso M, Severino M, Gustincich S, Capra V, Di Duca M, Zara F, Scala M, Striano P. Refining the electroclinical spectrum of NPRL3-related epilepsy: A novel multiplex family and literature review. Epilepsia Open 2023; 8:1314-1330. [PMID: 37491868 PMCID: PMC10690669 DOI: 10.1002/epi4.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE NPRL3-related epilepsy (NRE) is an emerging condition set within the wide GATOR-1 spectrum with a particularly heterogeneous and elusive phenotypic expression. Here, we delineated the genotype-phenotype spectrum of NRE, reporting an illustrative familial case and reviewing pertinent literature. METHODS Through exome sequencing (ES), we investigated a 12-year-old girl with recurrent focal motor seizures during sleep, suggestive of sleep-related hypermotor epilepsy (SHE), and a family history of epilepsy in siblings. Variant segregation analysis was performed by Sanger sequencing. All previously published NRE patients were thoroughly reviewed and their electroclinical features were analyzed and compared with the reported subjects. RESULTS In the proband, ES detected the novel NPRL3 frameshift variant (NM_001077350.3): c.151_152del (p.Thr51Glyfs*5). This variant is predicted to cause a loss of function and segregated in one affected brother. The review of 76 patients from 18 publications revealed the predominance of focal-onset seizures (67/74-90%), with mainly frontal and frontotemporal (32/67-47.7%), unspecified (19/67-28%), or temporal (9/67-13%) onset. Epileptic syndromes included familial focal epilepsy with variable foci (FFEVF) (29/74-39%) and SHE (11/74-14.9%). Fifteen patients out of 60 (25%) underwent epilepsy surgery, 11 of whom achieved complete seizure remission (11/15-73%). Focal cortical dysplasia (FCD) type 2A was the most frequent histopathological finding. SIGNIFICANCE We reported an illustrative NPRL3-related epilepsy (NRE) family with incomplete penetrance. This condition consists of a heterogeneous spectrum of clinical and neuroradiological features. Focal-onset motor seizures are predominant, and almost half of the cases fulfill the criteria for SHE or FFEVF. MRI-negative cases are prevalent, but the association with malformations of cortical developments (MCDs) is significant, especially FCD type 2a. The beneficial impact of epilepsy surgery in patients with MCD-related epilepsy further supports the inclusion of brain MRI in the workup of NRE patients.
Collapse
Affiliation(s)
- Alice Dainelli
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| | | | - Sara Rossato
- U.O.C. Pediatria, Ospedale San BortoloVicenzaItaly
| | | | - Monica Traverso
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | | | | | - Valeria Capra
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marco Di Duca
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Federico Zara
- UOC Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
| |
Collapse
|
50
|
Krochmalnek E, Accogli A, St-Onge J, Addour-Boudrahem N, Prakash G, Kim SH, Brunette-Clement T, Alhajaj G, Mougharbel L, Bruneau E, Myers KA, Dubeau F, Karamchandani J, Farmer JP, Atkinson J, Hall J, Chantal Poulin C, Rosenblatt B, Lafond-Lapalme J, Weil A, Fallet-Bianco C, Albrecht S, Sonenberg N, Riviere JB, Dudley RW, Srour M. mTOR Pathway Somatic Pathogenic Variants in Focal Malformations of Cortical Development: Novel Variants, Topographic Mapping, and Clinical Outcomes. Neurol Genet 2023; 9:e200103. [PMID: 37900581 PMCID: PMC10602370 DOI: 10.1212/nxg.0000000000200103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Background and Objectives Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.
Collapse
Affiliation(s)
- Eric Krochmalnek
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Andrea Accogli
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Judith St-Onge
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Nassima Addour-Boudrahem
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Gyan Prakash
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Sung-Hoon Kim
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Tristan Brunette-Clement
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Ghadd Alhajaj
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Lina Mougharbel
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Elena Bruneau
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Kenneth A Myers
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Francois Dubeau
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jason Karamchandani
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jean-Pierre Farmer
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jeffrey Atkinson
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jeffrey Hall
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Chantal Chantal Poulin
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Bernard Rosenblatt
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Joel Lafond-Lapalme
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Alexander Weil
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Catherine Fallet-Bianco
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Steffen Albrecht
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Nahum Sonenberg
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jean-Baptiste Riviere
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Roy W Dudley
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Myriam Srour
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| |
Collapse
|