1
|
Henningfield CM, Ngo M, Murray KM, Kwang NE, Tsourmas KI, Neumann J, Pashkutz ZA, Kawauchi S, Swarup V, Lane TE, MacGregor GR, Green KN. Generation of an Inducible Destabilized-Domain Cre Mouse Line to Target Disease Associated Microglia. Glia 2025; 73:1272-1287. [PMID: 39988890 DOI: 10.1002/glia.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
The function of microglia during progression of Alzheimer's disease (AD) can be investigated using mouse models that enable genetic manipulation of microglial subpopulations in a temporal manner. We developed mouse lines that express either Cre recombinase (Cre) for constitutive targeting, or destabilized-domain Cre recombinase (DD-Cre) for inducible targeting from the Cst7 locus (Cst7 DD-Cre) to specifically manipulate disease associated microglia (DAM) and crossed with Ai14 tdTomato cre-reporter line mice. Cst7Cre was found to target all brain resident myeloid cells, due to transient developmental expression of Cst7, but no expression was found in the inducible Cst7 DD-Cre mice. Further crossing of this line with 5xFAD mice combined with dietary administration of trimethoprim to induce DD-Cre activity produces long-term labeling in DAM without evidence of leakiness, with tdTomato-expression restricted to cells surrounding plaques. Using this model, we found that DAMs are a subset of plaque-associated microglia (PAMs) and their transition to DAM increases with age and disease stage. Spatial transcriptomic analysis revealed that tdTomato+ cells show higher expression of disease and inflammatory genes compared to other microglial populations, including non-labeled PAMs. These models allow either complete cre-loxP targeting of all brain myeloid cells (Cst7Cre), or inducible targeting of DAMs, without leakiness (Cst7 DD-Cre).
Collapse
Affiliation(s)
- Caden M Henningfield
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Minh Ngo
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Kaitlin M Murray
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Nellie E Kwang
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Kate I Tsourmas
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, University Laboratory Animal Services, Office of Research, University of California, Irvine, California, USA
| | - Zachary A Pashkutz
- Transgenic Mouse Facility, University Laboratory Animal Services, Office of Research, University of California, Irvine, California, USA
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University Laboratory Animal Services, Office of Research, University of California, Irvine, California, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Thomas E Lane
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, USA
| | - Grant R MacGregor
- Transgenic Mouse Facility, University Laboratory Animal Services, Office of Research, University of California, Irvine, California, USA
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Ayyubova G, Madhu LN. Microglial NLRP3 Inflammasomes in Alzheimer's Disease Pathogenesis: From Interaction with Autophagy/Mitophagy to Therapeutics. Mol Neurobiol 2025; 62:7124-7143. [PMID: 39951189 DOI: 10.1007/s12035-025-04758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, discovered 20 years ago, is crucial in controlling innate immune reactions in Alzheimer's disease (AD). By initiating the release of inflammatory molecules (including caspases, IL-1β, and IL-18), the excessively activated inflammasome complex in microglia leads to chronic inflammation and neuronal death, resulting in the progression of cognitive deficiencies. Even though the involvement of NLRP3 has been implicated in neuroinflammation and widely explored in several studies, there are plenty of controversies regarding its precise roles and activation mechanisms in AD. Another prominent feature of AD is impairment in microglial autophagy, which can be either the cause or the consequence of NLRP3 activation and contributes to the aggregation of misfolded proteins and aberrant chronic inflammatory state seen in the disease course. Studies also demonstrate that intracellular buildup of dysfunctional and damaged mitochondria due to defective mitophagy enhances inflammasome activation, further suggesting that restoration of impaired autophagy and mitophagy can effectively suppress it, thereby reducing inflammation and protecting microglia and neurons. This review is primarily focused on the role of NLRP3 inflammasome in the etiopathology of AD, its interactions with microglial autophagy/mitophagy, and the latest developments in NLRP3 inflammasome-targeted therapeutic interventions being implicated for AD treatment.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
3
|
Sanchez-Garcia MA, Lara-Ureña N, March-Diaz R, Ortega-de San Luis C, Quiñones-Cañete S, Mora-Romero B, Barba-Reyes JM, Cabello-Rivera D, Romero-Molina C, Heras-Garvin A, Navarro V, Lopez-Barneo J, Vizuete M, Vitorica J, Muñoz-Cabello AM, Muñoz-Manchado AB, Cokman ME, Rosales-Nieves AE, Pascual A. Inactivation of the PHD3-FOXO3 axis blunts the type I interferon response in microglia and ameliorates Alzheimer's disease progression. SCIENCE ADVANCES 2025; 11:eadu2244. [PMID: 40435260 PMCID: PMC12118632 DOI: 10.1126/sciadv.adu2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025]
Abstract
Microglia respond to Alzheimer's disease (AD) with varied transcriptional responses. We show that oligomeric Aß (oAß) induces the expression of Hif1a and Egln3 in microglia in vitro, together with the transcription of the type I interferon signature (IFNS) genes in a PHD3-dependent manner. We identify FOXO3 as a repressor of IFNS, whose abundance decreases upon PHD3 induction in response to oAß. In vivo, loss of PHD3 correlates with abrogation of the IFNS and activation of the disease-associated microglia signature, an increase in microglia proximity to Aß plaques and phagocytosis of both Aß and small plaques. PHD3 deficiency mitigated the Aß plaque-associated neuropathology and rescued behavioral deficits of an AD mouse model. Last, we demonstrate that microglial PHD3 overexpression in the absence of Aß pathology is sufficient to induce the IFNS and behavioral alterations. Together, our data strongly indicate that the inactivation of the PHD3-FOXO3 axis controls the microglial IFNS in a cell autonomous manner, improving AD outcome.
Collapse
Affiliation(s)
- Manuel A. Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Silvia Quiñones-Cañete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Bella Mora-Romero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Juan M. Barba-Reyes
- Departamento de Neurociencias. Unidad de Biología Celular. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). Universidad de Cádiz, Cadiz, Spain
| | - Daniel Cabello-Rivera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Carmen Romero-Molina
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio Heras-Garvin
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Victoria Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M. Muñoz-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Ana B. Muñoz-Manchado
- Departamento de Neurociencias. Unidad de Biología Celular. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). Universidad de Cádiz, Cadiz, Spain
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
- Ciber of Mental Health (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Matthew E. Cokman
- Hypoxia Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Alicia E. Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Saeki K, Ozato K. Transcription factors that define the epigenome structures and transcriptomes in microglia. Exp Hematol 2025:104814. [PMID: 40425139 DOI: 10.1016/j.exphem.2025.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025]
Abstract
Microglia, the resident macrophages of the brain, play critical roles in maintaining brain health. Recent genome-wide analyses, including ATAC-seq, ChIP-seq/CUT&RUN, and single-cell RNA-seq, have identified key transcription factors that define the transcriptome programs of microglia. Four transcription factors-PU.1, IRF8, SALL1, and SMAD4-form enhancer complexes and act as lineage-determining factors, shaping microglial identity. These factors co-bind with other lineage-determining transcription factors, directing one towards designated regions that program microglia while inhibiting the other from binding to DNA. Other transcription factors, such as BATF3 and MAFB, contribute to transcriptional cascades in microglia. TGF-β is a crucial cytokine driving these transcription factors to bind DNA and maintain homeostatic microglia. These findings provide insights into the physiological aspects of microglia and their roles in neuroinflammatory and neurodegenerative diseases. TEASER ABSTRACT: eTOC blurb: In this article, we compiled more than 100 transcription factors expressed in microglia. Our analysis illustrates that some transcription factors are under a distinct hierarchical rank and are sequentially activated to achieve microglia specific transcriptome programs. This article offers a new scope on the mechanistic foundation underlying microglia's complex activity.
Collapse
Affiliation(s)
- Keita Saeki
- Section on Molecular Genetics of Immunity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Keiko Ozato
- Section on Molecular Genetics of Immunity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Peng M, Zeng Q, Zheng W, Xia X. Peripheral Choroid/RPE/Sclera as a Shared Pathogenic Hub: Multi-Tissue Transcriptomic Profiling Identifies Common Differentially Expressed Genes in Age-Related Macular Degeneration and Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-05078-y. [PMID: 40411685 DOI: 10.1007/s12035-025-05078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/15/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND Age-related macular degeneration (AMD) and Alzheimer's disease (AD), two prevalent neurodegenerative disorders, share overlapping pathophysiological features yet lack cross-disease therapeutic strategies. This study systematically investigates their parallel genes and shared molecular mechanisms to identify potential therapeutic targets for dry AMD, a condition with limited treatment options. METHODS Transcriptomic datasets for AMD (GSE155154) and AD (GSE95587) were retrieved from the GEO database. AMD tissues were stratified into four subgroups: macular retina (MR), macular choroid/RPE/sclera (MCRS), peripheral retina (PR), and peripheral choroid/RPE/sclera (PCRS). Common differentially expressed genes (DEGs) were identified and analyzed via functional enrichment (GO, KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) networks. Drug-gene interactions and competing endogenous RNA (ceRNA) networks were constructed to prioritize therapeutic targets. Key hub genes were experimentally validated in a sodium iodate-induced AMD murine model using RT-qPCR. RESULTS Comparative analysis revealed 89, 56, 4, and 130 common DEGs between AD and MR, MCRS, PR, and PCRS subgroups, respectively. Neuroactive ligand-receptor interactions were prioritized in MR/MCRS-AD analyses, while extracellular matrix organization emerged as the dominant pathway in PCRS-AD comparisons. GSEA identified conserved the TNFα signaling pathway via NF-κB across both diseases. PCRS exhibited consistent expression trends for shared genes and pathways with AD. Computational screening prioritized seven druggable targets (COL1A1, COL1A2, COL3A1, MMP2, MMP9, VCAN, ITGA5) with dual therapeutic potential, along with a reconstructed circRNA (circRNA_002179)-miRNA (miR-124)-mRNA (VCAN) regulatory axis. Experimental validation in a sodium iodate-induced AMD murine model confirmed region-specific dysregulation: hub genes were significantly downregulated in MCRS but upregulated in PCRS. CONCLUSIONS Our study delineates both convergent and divergent molecular landscapes of AMD and AD, with PCRS emerging as a critical locus for shared pathophysiology. These findings bridge a critical gap in understanding AMD-AD comorbidity, offering actionable strategies for targeted drug development.
Collapse
Affiliation(s)
- Manjuan Peng
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Provincial People's Hospital and The First-Affiliated Hospital of Hunan Normal University, Changsha, China
- Department of Ophthalmology, the 921, Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Qi Zeng
- Department of Ophthalmology, Hunan Provincial People's Hospital and The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei Zheng
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Xiang X, Feng Z, Wang L, Wang D, Li T, Yang J, Wang S, Xiao F, Zhang W. CLIC1 and IFITM2 expression in brain tissue correlates with cognitive impairment via immune dysregulation in sepsis and Alzheimer's disease. Int Immunopharmacol 2025; 155:114628. [PMID: 40215772 DOI: 10.1016/j.intimp.2025.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Sepsis, a life-threatening condition driven by dysregulated host responses to infection, is associated with long-term cognitive impairments resembling Alzheimer's disease (AD). However, the molecular mechanisms linking sepsis-induced cognitive dysfunction and AD remain unclear. We hypothesized that shared genetic pathways underlie cognitive deficits in both conditions. METHODS Cecal ligation and puncture (CLP) in C57BL/6 J mice modeled sepsis-induced cognitive decline and amyloid pathology. Brain tissue datasets (GSE33000 for AD; GSE135838 for sepsis) were analyzed via Weighted Gene Co-expression Network Analysis (WGCNA), machine learning, and functional enrichment. Key genes were validated through ROC analysis, immune infiltration profiling, and in vivo/in vitro experiments. RESULTS Sepsis accelerated cognitive decline and AD-like pathology in mice. Bioinformatics identified CLIC1 and IFITM2 as co-diagnostic genes linked to immune dysregulation in both sepsis and AD. Immune infiltration revealed reduced neutrophils/NK cells, M1 macrophage polarization, and naïve-to-memory B cell shifts in sepsis versus AD. CLIC1 and IFITM2 were upregulated in CLP mice and cytokine-stimulated human cerebral endothelial cells, aligning with bioinformatics predictions. CONCLUSION CLIC1 and IFITM2, pivotal in immune cell activation, emerged as shared biomarkers of sepsis-related cognitive impairment and AD. These findings highlight immune-driven molecular intersections in cognitive deficits, offering novel targets for mechanistic research and therapeutic development.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Lijun Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Denian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tingting Li
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Jing Yang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan Province, China
| | - Siying Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Wei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Aisenberg WH, O'Brien CA, Sangster M, Yaqoob F, Zhang Y, Temsamrit B, Thom S, Gosse L, Chaluvadi S, Elfayomi B, Lee G, Polam V, Levitt EM, Liu G, Lombroso SI, Nemec KM, Clowry G, Nieves C, Rawat P, Church E, Martinez D, Shoffler C, Kancheva D, Petucci C, Taylor D, Kofler J, Erskine D, Movahedi K, Bennett ML, Bennett FC. Direct microglia replacement reveals pathologic and therapeutic contributions of brain macrophages to a monogenic neurological disease. Immunity 2025; 58:1254-1268.e9. [PMID: 40311614 PMCID: PMC12078009 DOI: 10.1016/j.immuni.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/20/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Krabbe disease, also named globoid cell (GC) leukodystrophy (GLD) for its distinct lipid-laden macrophages, is a severe leukodystrophy caused by galactosylceramidase (GALC) mutations. Hematopoietic stem cell transplant (HSCT) ameliorates disease and is associated with central nervous system (CNS) engraftment of GALC+ donor macrophages. Yet, the role of macrophages in GLD pathophysiology and HSCT remains unclear. Using single-cell sequencing, we revealed early interferon response signatures that preceded progressively severe macrophage dyshomeostasis and identified a molecular signature of GCs, which we validated in human brain specimens. Genetic depletion and direct microglia replacement by CNS monocyte injection rapidly replaced >80% of endogenous microglia with healthy macrophages in the twitcher (GalcW355∗) mouse model of GLD. Perinatal microglia replacement completely normalized transcriptional signatures, rescued histopathology, and doubled average survival. Overall, we uncovered distinct forms of microglial dysfunction and evidence that direct, CNS-limited microglia replacement improves a monogenic neurodegenerative disease, identifying a promising therapeutic target.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Sangster
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanchao Zhang
- Department of Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian Temsamrit
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Searlait Thom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luca Gosse
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bilal Elfayomi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gavin Lee
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vidhur Polam
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eli M Levitt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary Liu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gavin Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Cassaundra Nieves
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priyanka Rawat
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Church
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Clarissa Shoffler
- Penn Metabolomics Core, Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christopher Petucci
- Penn Metabolomics Core, Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deanne Taylor
- Department of Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julia Kofler
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Depp C, Doman JL, Hingerl M, Xia J, Stevens B. Microglia transcriptional states and their functional significance: Context drives diversity. Immunity 2025; 58:1052-1067. [PMID: 40328255 DOI: 10.1016/j.immuni.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
In the brain, microglia are continuously exposed to a dynamic microenvironment throughout life, requiring them to adapt accordingly to specific developmental or disease-related demands. The advent of single-cell sequencing technologies has revealed the diversity of microglial transcriptional states. In this review, we explore the various contexts that drive transcriptional diversity in microglia and assess the extent to which non-homeostatic conditions induce context-specific signatures. We discuss our current understanding and knowledge gaps regarding the relationship between transcriptional states and microglial function, review the influence of complex microenvironments and prior experiences on microglial state induction, and highlight strategies to bridge the gap between mouse and human studies to advance microglia-targeting therapeutics.
Collapse
Affiliation(s)
- Constanze Depp
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jordan L Doman
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Maximilian Hingerl
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy Xia
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Qi H, Zhao H, Li E, Lu X, Yu N, Liu J, Han J. DeepQA: A Unified Transcriptome-Based Aging Clock Using Deep Neural Networks. Aging Cell 2025; 24:e14471. [PMID: 39757434 PMCID: PMC12074024 DOI: 10.1111/acel.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Understanding the complex biological process of aging is of great value, especially as it can help develop therapeutics to prolong healthy life. Predicting biological age from gene expression data has shown to be an effective means to quantify aging of a subject, and to identify molecular and cellular biomarkers of aging. A typical approach for estimating biological age, adopted by almost all existing aging clocks, is to train machine learning models only on healthy subjects, but to infer on both healthy and unhealthy subjects. However, the inherent bias in this approach results in inaccurate biological age as shown in this study. Moreover, almost all existing transcriptome-based aging clocks were built around an inefficient procedure of gene selection followed by conventional machine learning models such as elastic nets, linear discriminant analysis etc. To address these limitations, we proposed DeepQA, a unified aging clock based on mixture of experts. Unlike existing methods, DeepQA is equipped with a specially designed Hinge-Mean-Absolute-Error (Hinge-MAE) loss so that it can train on both healthy and unhealthy subjects of multiple cohorts to reduce the bias of inferring biological age of unhealthy subjects. Our experiments showed that DeepQA significantly outperformed existing methods for biological age estimation on both healthy and unhealthy subjects. In addition, our method avoids the inefficient exhaustive search of genes, and provides a novel means to identify genes activated in aging prediction, alternative to such as differential gene expression analysis.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- College of PharmacyNankai UniversityTianjinChina
| | - Hongchen Zhao
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Enyi Li
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Ningbo Yu
- College of Artificial IntelligenceNankai UniversityTianjinChina
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of EducationNankai UniversityChina
| | - Jinchao Liu
- College of Artificial IntelligenceNankai UniversityTianjinChina
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of EducationNankai UniversityChina
| | - Jianda Han
- College of Artificial IntelligenceNankai UniversityTianjinChina
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of EducationNankai UniversityChina
| |
Collapse
|
10
|
Lopez-Atalaya JP, Bhojwani-Cabrera AM. Type I interferon signalling and interferon-responsive microglia in health and disease. FEBS J 2025. [PMID: 40299722 DOI: 10.1111/febs.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Recent evidence suggests that type I interferon (IFN-I) signalling extends beyond its canonical roles in antiviral defence and immunomodulation. Over the past decade, dysregulated IFN-I signalling has been linked to genetic disorders and neurodegenerative diseases, where it may contribute to neurological impairments. Microglia have emerged as key mediators of IFN-I responses in the central nervous system. A distinct transcriptional state responsive to interferons has recently been identified in microglia. The activation of the IFN-I pathway in these cells is now recognised as pivotal in both development and neurodegeneration. This review is divided into two main sections: the first examines the broader role of IFN-I signalling in the central nervous system, particularly its contribution to neurological dysfunction; the second focuses on the specific state of interferon-responsive microglia, exploring its mechanisms and relevance in neurodegenerative conditions. Finally, we discuss how these areas intersect and their implications for both healthy and diseased states.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Aysha M Bhojwani-Cabrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
11
|
Di Liberto G, Egervari K, Vogrig A, Spatola M, Piccinno M, Vincenti I, Wagner I, Kreutzfeldt M, Endmayr V, Ostertag K, Rahimi J, Vicino A, Pröbstel AK, Meyronet D, Frank S, Prinz M, Hewer E, Brouland JP, de Leval L, Parkkinen L, Draganski B, Desestret V, Dubey D, Pittock SJ, Roemer SF, Dickson DW, Höftberger R, Irani SR, Honnorat J, Du Pasquier R, Merkler D. Neuronal pSTAT1 hallmarks synaptic pathology in autoimmune encephalitis against intracellular antigens. Acta Neuropathol 2025; 149:35. [PMID: 40278930 PMCID: PMC12031792 DOI: 10.1007/s00401-025-02882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Autoimmune encephalitis (AE) is an inflammatory syndrome of the central nervous system (CNS) triggered by aberrant immune responses against neuronal intracellular (IC-AE) or surface (NS-AE) autoantigens. The resulting neuronal alterations and clinical trajectories differ, with IC-AE often leading to fatal outcomes. Unfortunately, the scarce availability of tissue from AE cases has hampered systematic analyses that would allow an understanding of the pathogenesis underlying neuronal alterations in T cell-mediated AE syndromes. Here, we assembled a cohort comprising both NS-AE (n = 8) and IC-AE (n = 12) from multiple institutions to delineate key histopathological features that distinguish neuronal pathology between IC-AE and NS-AE. In contrast to NS-AE, IC-AE lesions present a prominent neuronal pSTAT1 signature, accompanied by a high proportion of brain-resident memory CD8 + T cells and neurodegenerative GPNMB + phagocytes which show synaptic engulfment with little C3-complement deposition. Our findings highlight distinct histopathological features of IC-AE compared to NS-AE, providing actionable biomarkers for diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Alberto Vogrig
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Marianna Spatola
- Neuroimmunology Program, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona and Caixa Research Institute (CRI), Barcelona, Spain
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Jasmin Rahimi
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders Klinik Donaustadt, Vienna, Austria
| | - Alex Vicino
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Center of Neurology, Department of Neuroimmunology, University Hospital and University Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, 69008, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, CEDEX 08, 69373, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69373, Lyon, France
| | - Stephan Frank
- Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ekkehard Hewer
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bogdan Draganski
- Universitätsklinik für Neurologie, Inselspital, University of Bern, Bern, Switzerland
- University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Virginie Desestret
- French Reference Center On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Divyanshu Dubey
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Shanu F Roemer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sarosh R Irani
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Autoimmune Neurology Group, West Wing, Level 3, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jérôme Honnorat
- French Reference Center On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Neurology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
12
|
Belaidi AA, Bush AI, Ayton S. Apolipoprotein E in Alzheimer's disease: molecular insights and therapeutic opportunities. Mol Neurodegener 2025; 20:47. [PMID: 40275327 PMCID: PMC12023563 DOI: 10.1186/s13024-025-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Apolipoprotein E (APOE- gene; apoE- protein) is the strongest genetic modulator of late-onset Alzheimer's disease (AD), with its three major isoforms conferring risk for disease ε2 < ε3 < ε4. Emerging protective gene variants, such as APOE Christchurch and the COLBOS variant of REELIN, an alternative target of certain apoE receptors, offer novel insights into resilience against AD. In recent years, the role of apoE has been shown to extend beyond its primary function in lipid transport, influencing multiple biological processes, including amyloid-β (Aβ) aggregation, tau pathology, neuroinflammation, autophagy, cerebrovascular integrity and protection from lipid peroxidation and the resulting ferroptotic cell death. While the detrimental influence of apoE ε4 on these and other processes has been well described, the molecular mechanisms underpinning this disadvantage require further enunciation, particularly to realize therapeutic opportunities related to apoE. This review explores the multifaceted roles of apoE in AD pathogenesis, emphasizing recent discoveries and translational approaches to target apoE-mediated pathways. These findings underscore the potential for apoE-based therapeutic strategies to prevent or mitigate AD in genetically at-risk populations.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
13
|
Marino KM, Shippy DC, Ulland TK. Sugar utilization by microglia in Alzheimer's disease. J Neuroimmunol 2025; 401:578552. [PMID: 39970850 PMCID: PMC11908943 DOI: 10.1016/j.jneuroim.2025.578552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD), yet the effect of specific carbohydrate sources in the diet on AD pathology remains unclear. The primary neuroimmune cell, microglia, undergo a metabolic shift during neuroinflammation associated with AD pathology. We utilized existing gene expression data and identified changes in sugar transporters (increased Slc2a1 (glucose) and decreased Slc2a5 (fructose) expression). To examine gene expression with respect to primary sugar source, N9 cells, a mouse microglia cell line, were cultured in glucose or fructose supplemented media and stimulated with lipopolysaccharide (LPS). RNA-sequencing analyses indicated significant changes between control and sugar supplemented media and several differentially expressed genes between glucose and fructose media. Concurrently, 5XFAD mice received equicaloric diets with specific carbohydrate sources: dextrose or fructose. Regardless of diet, sex, or genotype, all mice developed high blood sugar levels; confocal microscopy analyses indicated similar amyloid plaque burden and microglial response relative to the control diet, but there was a change in the microglial response between dextrose and fructose fed mice. Overall, these data indicate microglia preferentially express sugar transporters and sugar source may influence microglial reactivity in response to plaque pathology.
Collapse
Affiliation(s)
- Kaitlyn M Marino
- Neuroscience Training Program, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Tyler K Ulland
- Neuroscience Training Program, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America.
| |
Collapse
|
14
|
Fumagalli L, Nazlie Mohebiany A, Premereur J, Polanco Miquel P, Bijnens B, Van de Walle P, Fattorelli N, Mancuso R. Microglia heterogeneity, modeling and cell-state annotation in development and neurodegeneration. Nat Neurosci 2025:10.1038/s41593-025-01931-4. [PMID: 40195564 DOI: 10.1038/s41593-025-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Within the CNS, microglia execute various functions associated with brain development, maintenance of homeostasis and elimination of pathogens and protein aggregates. This wide range of activities is closely associated with a plethora of cellular states, which may reciprocally influence or be influenced by their functional dynamics. Advancements in single-cell RNA sequencing have enabled a nuanced exploration of the intricate diversity of microglia, both in health and disease. Here, we review our current understanding of microglial transcriptional heterogeneity. We provide an overview of mouse and human microglial diversity encompassing aspects of development, neurodegeneration, sex and CNS regions. We offer an insight into state-of-the-art technologies and model systems that are poised to improve our understanding of microglial cell states and functions. We also provide suggestions and a tool to annotate microglial cell states on the basis of gene expression.
Collapse
Affiliation(s)
- Laura Fumagalli
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alma Nazlie Mohebiany
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jessie Premereur
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paula Polanco Miquel
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Baukje Bijnens
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Nicola Fattorelli
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Vicario R, Fragkogianni S, Pokrovskii M, Meyer C, Lopez-Rodrigo E, Hu Y, Ogishi M, Alberdi A, Baako A, Ay O, Plu I, Sazdovitch V, Heritier S, Cohen-Aubart F, Shor N, Miyara M, Nguyen-Khac F, Viale A, Idbaih A, Amoura Z, Rosenblum MK, Zhang H, Karnoub ER, Sashittal P, Jakatdar A, Iacobuzio-Donahue CA, Abdel-Wahab O, Tabar V, Socci ND, Elemento O, Diamond EL, Boisson B, Casanova JL, Seilhean D, Haroche J, Donadieu J, Geissmann F. Role of clonal inflammatory microglia in histiocytosis-associated neurodegeneration. Neuron 2025; 113:1065-1081.e13. [PMID: 40081365 DOI: 10.1016/j.neuron.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) are clonal myeloid disorders associated with mitogen-activated protein (MAP)-kinase-activating mutations and an increased risk of neurodegeneration. We found microglial mutant clones in LCH and ECD patients, whether or not they presented with clinical symptoms of neurodegeneration, associated with microgliosis, astrocytosis, and neuronal loss, predominantly in the rhombencephalon gray nuclei. Neurological symptoms were associated with PU.1+ clone size (p = 0.0003) in patients with the longest evolution of the disease, indicating a phase of subclinical incipient neurodegeneration. Genetic barcoding analysis suggests that clones may originate from definitive or yolk sac hematopoiesis, depending on the patients. In a mouse model, disease topography was attributable to a local clonal proliferative advantage, and microglia depletion by a CSF1R-inhibitor limited neuronal loss and improved survival. These studies characterize a neurodegenerative disease associated with clonal proliferation of inflammatory microglia. The long preclinical stage represents a therapeutic window before irreversible neuronal depletion.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Pokrovskii
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carina Meyer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY 10021, USA
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Plu
- Department of Neuropathology, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Véronique Sazdovitch
- Department of Neuropathology, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Sebastien Heritier
- French Langerhans cell histiocytosis registry, Department of Pediatric Hematology and Oncology, Trousseau Hospital, AP-HP, Paris, France
| | - Fleur Cohen-Aubart
- Department of Internal Medicine & Institut E3M, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Natalia Shor
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Makoto Miyara
- Center for Immunology and Infectious Diseases (CIMI-PARIS), Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Florence Nguyen-Khac
- Department of Hematology, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, MSKCC, New York, NY 10065, USA
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Zahir Amoura
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | | | - Haochen Zhang
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | | | - Palash Sashittal
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Akhil Jakatdar
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, MSKCC, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, and Center for Stem Cell Biology, MSKCC, New York, NY, USA; Department of Neurology, MSKCC, New York, NY 10065, USA
| | - Nicholas D Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, MSKCC, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY 10021, USA
| | - Eli L Diamond
- Department of Neurosurgery, and Center for Stem Cell Biology, MSKCC, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Danielle Seilhean
- Department of Neuropathology, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France
| | - Julien Haroche
- Department of Internal Medicine & Institut E3M, Pitié-Salpêtrière Hospital, APHP-Sorbonne Université, Paris, France.
| | - Jean Donadieu
- French Langerhans cell histiocytosis registry, Department of Pediatric Hematology and Oncology, Trousseau Hospital, AP-HP, Paris, France
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
16
|
Yang Y, Li Y, Chen Y. Changes in transcriptional regulation in the temporal lobe in patients with Alzheimer's disease. J Alzheimers Dis 2025; 104:1075-1091. [PMID: 40095520 DOI: 10.1177/13872877251322536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a complex neurodegenerative disorder with intricate pathophysiological mechanisms. Transcriptome analysis has been used to investigate the pathogenesis of AD from the perspectives of mRNA expression, alternative splicing, and alternative polyadenylation. However, these 3 transcriptomic regulatory layers have not been comprehensively explored, limiting our understanding of the transcriptomic landscapes of AD pathogenesis.ObjectiveWe aimed to describe the transcriptomic landscapes of AD pathogenesis, detect the contributions of different regulatory layers to the total transcriptional variance, and identify diagnostic candidates for AD prediction.MethodsWe collected RNA sequencing data derived from the temporal lobes of 257 patients with AD and 97 controls, performed joint transcriptional analysis with multi-omics factor analysis (MOFA2) and weighted gene co-expression network analysis (WGCNA), and evaluated the signals with regression models.ResultsWe found that increasing Braak stage is associated with progressive downregulation of SYT1, CHN1, SNAP25, VSNL1, and ENC1 as well as upregulation of TNS1, SGK1, CPM, PPFIBP, and CLMN. Subsequent MOFA2 revealed that alternative splicing contributes most (R2 = 0.558) to the transcriptional variance between patients with AD and controls followed by alternative polyadenylation (R2 = 0.449) and mRNA expression (R2 = 0.438). In addition, the regression model constructed with SNAP25, VSNL1, and ENC1 expression could distinguish between patients with AD and controls (AUC = 0.752).ConclusionsWe systematically detailed the transcriptional landscapes in patients with AD and report mRNA signals associated with AD, offering novel insights into AD pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- Yujie Yang
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Rao C, Semrau S, Fossati V. Decoding microglial functions in Alzheimer's disease: insights from human models. Trends Immunol 2025; 46:310-323. [PMID: 40113535 PMCID: PMC11993344 DOI: 10.1016/j.it.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Microglia, key orchestrators of the brain's immune responses, play a pivotal role in the progression of Alzheimer's disease (AD). Emerging human models, including stem cell-derived microglia and cerebral organoids, are transforming our understanding of microglial contributions to AD pathology. In this review, we highlight how these models have uncovered human-specific microglial responses to amyloid plaques and their regulation of neuroinflammation, which are not recapitulated in animal models. We also illustrate how advanced human models that better mimic brain physiology and AD pathology are providing unprecedented insights into the multifaceted roles of microglia. These innovative approaches, combined with sophisticated technologies for cell editing and analysis, are shaping AD research and opening new avenues for therapeutic interventions targeting microglia.
Collapse
Affiliation(s)
- Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Stefan Semrau
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, USA.
| |
Collapse
|
18
|
Marshe VS, Tuddenham JF, Chen K, Chiu R, Haage VC, Ma Y, Lee AJ, Shneider NA, Agin-Liebes JP, Alcalay RN, Teich AF, Canoll P, Riley CS, Keene D, Schneider JA, Bennett DA, Menon V, Taga M, Klein HU, Olah M, Fujita M, Zhang Y, Sims PA, De Jager PL. A factor-based analysis of individual human microglia uncovers regulators of an Alzheimer-related transcriptional signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.641500. [PMID: 40196633 PMCID: PMC11974870 DOI: 10.1101/2025.03.27.641500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Human microglial heterogeneity is only beginning to be appreciated at the molecular level. Here, we present a large, single-cell atlas of expression signatures from 441,088 live microglia broadly sampled across a diverse set of brain regions and neurodegenerative and neuroinflammatory diseases obtained from 161 donors sampled at autopsy or during a neurosurgical procedure. Using single-cell hierarchical Poisson factorization (scHPF), we derived a 23-factor model for continuous gene expression signatures across microglia which capture specific biological processes (e.g., metabolism, phagocytosis, antigen presentation, inflammatory signaling, disease-associated states). Using external datasets, we evaluated the aspects of microglial phenotypes that are encapsulated in various in vitro and in vivo microglia models and identified and replicated the role of two factors in human postmortem tissue of Alzheimer's disease (AD). Further, we derived a complex network of transcriptional regulators for all factors, including regulators of an AD-related factor enriched for the mouse disease-associated microglia 2 (DAM2) signature: ARID5B, CEBPA, MITF, and PPARG. We replicated the role of these four regulators in the AD-related factor and then designed a multiplexed MERFISH panel to assess our microglial factors using spatial transcriptomics. We find that, unlike cells with high expression of the interferon-response factor, cells with high expression of the AD DAM2-like factor are widely distributed in neocortical tissue. We thus propose a novel analytic framework that provides a taxonomic approach for microglia that is more biologically interpretable and use it to uncover new therapeutic targets for AD.
Collapse
Affiliation(s)
- Victoria S. Marshe
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - John F. Tuddenham
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, USA
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, 10029, USA
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Kevin Chen
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Verena C. Haage
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Yiyi Ma
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Neil A. Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Julian P. Agin-Liebes
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Andrew F. Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Claire S. Riley
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Hans-Ulrich Klein
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Marta Olah
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, USA
- Dept. of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, USA
- Chan Zuckerberg Biohub, New York, New York, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
19
|
Kahn OI, Dominguez SL, Glock C, Hayne M, Vito S, Sengupta Ghosh A, Adrian M, Burgess BL, Meilandt WJ, Friedman BA, Hoogenraad CC. Secreted neurofilament light chain after neuronal damage induces myeloid cell activation and neuroinflammation. Cell Rep 2025; 44:115382. [PMID: 40056413 DOI: 10.1016/j.celrep.2025.115382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Neurofilament light chain (NfL) is a neuron-specific cytoskeletal protein that provides structural support for axons and is released into the extracellular space following neuronal injury. While NfL has been extensively studied as a disease biomarker, the underlying release mechanisms and role in neurodegeneration remain poorly understood. Here, we find that neurons secrete low baseline levels of NfL, while neuronal damage triggers calpain-driven proteolysis and release of fragmented NfL. Secreted NfL activates microglial cells, which can be blocked with anti-NfL antibodies. We utilize in vivo single-cell RNA sequencing to profile brain cells after injection of recombinant NfL into the mouse hippocampus and find robust macrophage and microglial responses. Consistently, NfL knockout mice ameliorate microgliosis and delay symptom onset in the SOD1 mouse model of amyotrophic lateral sclerosis (ALS). Our results show that released NfL can activate myeloid cells in the brain and is, thus, a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Caspar Glock
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Margaret Hayne
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steve Vito
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Braydon L Burgess
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
20
|
Walter E, Angst G, Bollinger J, Truong L, Ware E, Wohleb ES, Fan Y, Wang C. Atg5 in microglia regulates sex-specific effects on postnatal neurogenesis in Alzheimer's disease. NPJ AGING 2025; 11:18. [PMID: 40091054 PMCID: PMC11911432 DOI: 10.1038/s41514-025-00209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Female Alzheimer's disease (AD) patients display greater cognitive deficits and worse AD pathology as compared to male AD patients. In this study, we found that conditional knockout (cKO) of Atg5 in female microglia failed to obtain disease-associated microglia (DAM) gene signatures in familiar AD mouse model (5xFAD). Next, we analyzed the maintenance and neurogenesis of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ) from 5xFAD mice with Atg5 cKO. Our data indicated that Atg5 cKO reduced the NSC number in hippocampus of female but not male 5xFAD mice. However, in the SVZ, Atg5 cKO only impaired NSCs in male 5xFAD mice. Interestingly, female 5xFAD;Fip200 cKO mice and 5xFAD;Atg14 cKO mice did not show NSC defects. These autophagy genes cKO 5xFAD mice exhibited a higher neurogenesis activity in their SVZ. Together, our data indicate a sex-specific role for microglial Atg5 in postnatal neurogenesis in AD mice.
Collapse
Affiliation(s)
- Ellen Walter
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Gabrielle Angst
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and College of Medicine at The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, USA
| | - Justin Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Linh Truong
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Elena Ware
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA.
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and College of Medicine at The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Sturno AM, Hassell JE, Lanaspa MA, Bruce KD. Do microglia metabolize fructose in Alzheimer's disease? J Neuroinflammation 2025; 22:85. [PMID: 40089786 PMCID: PMC11910010 DOI: 10.1186/s12974-025-03401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with a complex etiology. While emerging AD therapeutics can slow cognitive decline, they may worsen dementia in certain groups of individuals. Therefore, alternative treatments are much needed. Microglia, the brain resident macrophages, have the potential to be novel therapeutic targets as they regulate many facets of AD, including lipid droplet (LD) accumulation, amyloid beta (Aβ) clearance, and neuroinflammation. To carry out such functions, microglia undergo phenotypic changes, which are linked to shifts in metabolism and substrate utilization. While homeostatic microglia are driven by oxidative phosphorylation (OXPHOS) and glycolysis, in aging and AD, microglia shift further towards glycolysis. Interestingly, this "metabolic reprogramming" may be linked to an increase in fructose metabolism. In the brain, microglia predominantly express the fructose transporter SLC2A5 (GLUT5), and enzymes involved in fructolysis and endogenous fructose production, with their expression being upregulated in aging and disease. Here, we review evidence for fructose uptake, breakdown, and production in microglia. We also evaluate emerging literature targeting fructose metabolism in the brain and periphery to assess its ability to modulate microglial function in AD. The ability of microglia to transport and utilize fructose, coupled with the well-established role of fructose in metabolic dysfunction, supports the notion that microglial fructose metabolism may be a novel potential therapeutic target for AD.
Collapse
Affiliation(s)
- Annalise M Sturno
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - James E Hassell
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Hu L, Tang Q, Meng F, Xu Y, Chen W, Xu S. TCM-ADIP: A Multidimensional Database Linking Traditional Chinese Medicine to Functional Brain Zones of Alzheimer's Disease. J Mol Biol 2025; 437:168874. [PMID: 39577557 DOI: 10.1016/j.jmb.2024.168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, with existing therapeutic drugs typically targeting specific disease stages. Traditional Chinese medicine (TCM), known for its multi-target and multi-mechanism therapeutic approach, has demonstrated efficacy in treating various stages of AD. In the present work, through a systematic review of classical Chinese medical texts, the formulae for preventing and treating AD were identified. Meanwhile, the active ingredients within these formulae were extracted and cataloged. A comprehensive bioinformatics analysis of omics data was performed to identify differentially expressed genes across different functional brain zones in AD patients at various stages. Finally, by integrating the multidimensional data, we proposed the first database, TCM-ADIP, dedicated to TCM based AD prevention and treatment, which is freely available at https://cbcb.cdutcm.edu.cn/TCM-ADIP/. TCM-ADIP not only supports interactive searching of multidimensional data, but also provides tools for gene localization and functional enrichment analysis of formulae, herbs, and ingredients for AD intervention in specific brain zones. TCM-ADIP fills a crucial gap in existing databases, offering a comprehensive resource for TCM in the treatment of AD.
Collapse
Affiliation(s)
- Lianjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovation Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovation Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yixi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovation Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
23
|
Cardona CL, Wei L, Kim J, Angeles E, Singh G, Chen S, Patel R, Ifediora N, Canoll P, Teich AF, Hargus G, Chavez A, Sproul AA. High throughput identification of genetic regulators of microglial inflammatory processes in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642133. [PMID: 40161839 PMCID: PMC11952304 DOI: 10.1101/2025.03.09.642133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Genome-wide association studies (GWAS) have identified over a hundred genetic risk factors for Alzheimer's disease (AD), many of which are predominantly expressed in microglia. However, the pathogenic role for most of them remains unclear. To systematically investigate how AD GWAS variants influence human microglial inflammatory responses, we conducted CRISPR inhibition (CRISPRi) screens targeting 119 AD GWAS hits in hiPSC-derived microglia (iMGLs) and used the production of reactive oxygen species (ROS) in response to the viral mimic poly(I:C) as a functional readout. Top hits whose knockdown either increased or decreased ROS levels in response to poly(I:C) were further analyzed using CROP-seq to integrate CRISPRi with single-cell RNA sequencing (scRNA-seq). This analysis identified 9 unique microglial clusters, including a poly(I:C)-driven inflammatory cluster 2. Emerging evidence supports a pathogenic role of viral infections in AD and cross comparison of our scRNA-seq data with iMGLs xenotransplanted into an AD mouse model shows significant overlap between our clusters and AD-relevant microglial clusters. Knockdown of MS4A6A and EED , which resulted in elevated ROS production in the presence of poly(I:C), increased the proportion of cluster 2 cells and induced functionally related changes in gene expression. In addition, KD of MS4A6 led to a reduction in the proportion of iMGLs in the DAM (disease associated microglia) cluster under all conditions, suggesting that this gene may modulate the DAM response. In contrast, KD of INPP5D or RAPEP1 which lead to low levels of ROS in the presence of poly(I:C), did not significantly affect the proportion of cells in cluster 2 but rather shaped the inflammatory response. This included the upregulation of an HLA-associated inflammatory cluster (cluster 6) by INPP5D knockdown under all conditions, independent of poly(I:C) stimulation. Importantly, KD of INPP5D or RAPEP1 had many shared differentially expressed genes (DEGs) under both vehicle and poly(I:C) treated conditions. Overall, our findings demonstrate that despite the diverse biological functions of AD GWAS variants, they converge functionally to regulate human microglial states and shape inflammatory responses relevant to AD pathology.
Collapse
|
24
|
Clare AJ, Langer PM, Ward A, Chan YK, Dick AD, Copland DA. Characterization of the ocular inflammatory response to AAV reveals divergence by sex and age. Mol Ther 2025; 33:1246-1263. [PMID: 39825566 PMCID: PMC11897812 DOI: 10.1016/j.ymthe.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Progress for ocular adeno-associated virus (AAV) gene therapy has been hindered by AAV-induced inflammation, limiting dose escalation and long-term efficacy. Broadly, the extent of inflammatory responses alters with age and sex, yet these factors are poorly represented in pre-clinical development of ocular AAV gene therapies. Here, we combined clinical imaging, flow cytometry, and bulk sequencing of sorted microglia to interrogate the longitudinal inflammatory response following intravitreal delivery of AAV2 in young (3-month-old), middle aged (9-month-old), and old (18-month-old) Cx3cr1-creER:R26tdTomato+/- mice of both sexes. Young males and females exhibited a similar dynamic response, with peak inflammation evident at days 10-12 and signs of clinical resolution by day 28. However, the magnitude of the transcriptional response by microglia and adaptive T cell infiltrate differed between sexes. With age, increased and persistent inflammation were observed in both sexes, although old males maintained their microglia transcriptional AAV response signature. Contrarily, females demonstrated greater divergence in their inflammatory response across age, with enriched cellular stress and inflammatory gene expression in older mice and corresponding signs of retinal degeneration. These findings inform crucial sex and age differences for the therapeutic application of ocular gene therapy, highlighting the need to further understand these factors to overcome AAV immunogenicity.
Collapse
Affiliation(s)
- Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK.
| | - Philip M Langer
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Amy Ward
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK; University College London Institute of Ophthalmology, EC1V 9EL London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK.
| |
Collapse
|
25
|
John RK, Vogel SP, Zia S, Lee KV, Nguyen AT, Torres-Espin A, Fenrich KK, Ng C, Schmidt EKA, Vavrek R, Raposo PJF, Smith K, Fouad K, Plemel JR. Reawakening inflammation in the chronically injured spinal cord using lipopolysaccharide induces diverse microglial states. J Neuroinflammation 2025; 22:56. [PMID: 40022205 PMCID: PMC11871772 DOI: 10.1186/s12974-025-03379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Rehabilitative training is an effective method to promote recovery following spinal cord injury (SCI), with lower training efficacy observed in the chronic stage. The increased training efficacy during the subacute period is associated with a shift towards a more adaptive or proreparative state induced by the SCI. A potential link is SCI-induced inflammation, which is elevated in the subacute period, and, as injection of lipopolysaccharide (LPS) alongside training improves recovery in chronic SCI, suggesting LPS could reopen a window of plasticity late after injury. Microglia may play a role in LPS-mediated plasticity as they react to LPS and are implicated in facilitating recovery following SCI. However, it is unknown how microglia change in response to LPS following SCI to promote neuroplasticity. MAIN BODY Here we used single-cell RNA sequencing to examine microglial responses in subacute and chronic SCI with and without an LPS injection. We show that subacute SCI is characterized by a disease-associated microglial (DAM) signature, while chronic SCI is highly heterogeneous, with both injury-induced and homeostatic states. DAM states exhibit predicted metabolic pathway activity and neuronal interactions that are associated with potential mediators of plasticity. With LPS injection, microglia shifted away from the homeostatic signature to a primed, translation-associated state and increased DAM in degenerated tracts caudal to the injury. CONCLUSION Microglial states following an inflammatory stimulus in chronic injury incompletely recapitulate the subacute injury environment, showing both overlapping and distinct microglial signatures across time and with LPS injection. Our results contribute to an understanding of how microglia and LPS-induced neuroinflammation contribute to plasticity following SCI.
Collapse
Affiliation(s)
- Rebecca K John
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sadie P Vogel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kelly V Lee
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Antoinette T Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Carmen Ng
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Emma K A Schmidt
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Pamela J F Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Keira Smith
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
26
|
Mhatre-Winters I, Eid A, Blum N, Han Y, Sammoura FM, Wu LJ, Richardson JR. Effects of Pesticide Exposure on Neuroinflammation and Microglial Gene Expression: Relevance to Mechanisms of Alzheimer's Disease Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638293. [PMID: 40027678 PMCID: PMC11870447 DOI: 10.1101/2025.02.14.638293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Alzheimer's disease (AD) is characterized by the presence of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Previously, we reported serum levels of dichlorodiphenyldichloroethylene (DDE), the primary metabolite of the pesticide dichlorodiphenyltrichloroethane (DDT), were significantly higher in AD patients compared to age-matched controls and that DDT exposure worsened AD pathology in animal models. Objective Here, we investigated the effect of DDT on neuroinflammation in primary mouse microglia (PMG) and C57BL/6J mice. Methods Effects of DDT on inflammation and disease-associated microglia were determined in primary mouse microglia and C57BL/6J mice. Results PMG exposed to DDT (0.5-5.0 µM) elicited a ∼2-3-fold increase in Il-1b mRNA levels, with similar concentration-dependent upregulation in Il-6, Nos2, and Tnfa . These effects were blocked by the sodium channel antagonist tetrodotoxin, demonstrating the role of DDT-microglial sodium channel interactions in mediating this response. Additionally, NOS2 protein levels increased by ∼1.5-2-fold, while TNFa was elevated by 2-4-fold. C57BL/6J male and female mice exposed to DDT (30 mg/kg) demonstrated significantly increased mRNA levels of Nos2 , Il-1b , and Il-6 in the frontal cortex (1.5-2.3-fold), and Nos2 , Il-1b, and Tnfa (1.5-1.8-fold) in the hippocampus. Furthermore, microglial homeostatic genes, Cx3cr1 , P2ry12, and Tmem119 , were downregulated, while stage 1 disease-associated microglia genes were upregulated both in vitro and in vivo . Notably, Apoe and Trem2 were only upregulated in the frontal cortex and hippocampus of females. Conclusion These data indicate that DDT increases neuroinflammation, which may result from direct actions of DDT on microglia, providing a novel pathway by which DDT may contribute to AD risk.
Collapse
|
27
|
Izumi Y, O'Dell KA, Mennerick S, Zorumski CF. Effects of acute pro-inflammatory stimulation and 25-hydroxycholesterol on hippocampal plasticity and learning involve NLRP3 inflammasome and cellular stress responses. Sci Rep 2025; 15:6149. [PMID: 39979396 PMCID: PMC11842721 DOI: 10.1038/s41598-025-90149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Neuroinflammation is an increasingly important target for therapeutics in neuropsychiatry and contributes to cognitive dysfunction, disability and death across a range of illnesses. We previously found that acute effects of pro-inflammatory stimulation with lipopolysaccharide (LPS) on hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, requires synthesis of the oxysterol, 25-hydroxycholesterol (25HC) and exogenous 25HC mimics effects of LPS. However, downstream mechanisms engaged by LPS and 25HC remain uncertain. Here we use rat hippocampal slices and in vivo behavioral studies to provide evidence that acute modulation of synaptic plasticity by both LPS and 25HC requires activation of the NLRP3 inflammasome, caspase-1 and interleukin-1 receptor. Furthermore, both LPS and 25HC engage cellular stress responses including synthesis of 5α-reduced neurosteroids and effects on plasticity are prevented by modulators of these responses. In studies of acute learning using a one-trial inhibitory avoidance task, inhibition of learning by LPS and 25HC are prevented by pre-treatment with an inhibitor of NLRP3. The present studies provide strong support for the role of 25HC as a mediator of pro-inflammatory stimulation on hippocampal synaptic plasticity and for the importance of NLRP3 inflammasome and caspase-1 activation in the deleterious effects of acute inflammation.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Mai YD, Zhang Q, Fung CL, Leung SO, Chong CH. CD22 modulation alleviates amyloid β-induced neuroinflammation. J Neuroinflammation 2025; 22:32. [PMID: 39910617 PMCID: PMC11800469 DOI: 10.1186/s12974-025-03361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Neuroinflammation is a crucial driver of multiple neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Yet, therapeutic targets for neurodegenerative diseases based on neuroinflammation still warrant investigation. CD22 has been implicated in neuroinflammatory diseases, namely AD. Specifically, plasma soluble CD22 (sCD22) level is upregulated in patients with AD. Direct experimental evidence for the role of CD22 in neuroinflammation is needed, as is a better understanding of its impact on microglia activation and therapeutic potential. Here we reported that sCD22 promotes neuroinflammation both in vivo and in vitro. sCD22 activated microglia via both p38 and ERK1/2 signaling pathway for the secretion of TNFα, IL-6 and CCL3. Moreover, sCD22 activated microglia via sialic acid binding domain and 2,6 linked sialic acid glycan on sCD22. The pivotal therapeutic potential of targeting CD22 was demonstrated in Amyloid β (Aβ) induced-neuroinflammation in hCD22 transgenic mice. Suciraslimab improved working memory and resolved neuroinflammation in vivo. Further, membrane CD22 inhibited Amyloid β (Aβ) induced-NFκB signaling pathway and mechanistic study delineated that suciraslimab suppressed Aβ-induced IL-1β secretion in human microglia and PBMC. Suciraslimab also suppressed IL-12 and IL-23 secretion in human PBMC. Moreover, suciraslimab reduced the surface expression of α4 integrin on B cells. Intriguingly, we discovered that CD22 interact with Aβ and suciraslimab enhanced internalization of CD22-Aβ complex in microglia. Our data highlights the importance of sCD22 in driving neuroinflammation and the dual mechanism of targeting CD22 to resolve Aβ-induced inflammation and promote Aβ phagocytosis.
Collapse
Affiliation(s)
- Yu Dong Mai
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Qingqing Zhang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 5/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Hong Kong, China.
- Centre for Translational Stem Cell Biology, 17W Science Park, Hong Kong SAR, China.
| | - Cheuk Lim Fung
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Shui On Leung
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Chi Ho Chong
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China.
| |
Collapse
|
29
|
de Vries LE, Bahnerth A, Swaab DF, Verhaagen J, Carulli D. Resilience to Alzheimer's disease associates with alterations in perineuronal nets. Alzheimers Dement 2025; 21:e14504. [PMID: 39737731 PMCID: PMC11848190 DOI: 10.1002/alz.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Some individuals show intact cognition despite the presence of neuropathological hallmarks of Alzheimer's disease (AD). The plasticity of parvalbumin (PV)-containing interneurons might contribute to resilience. Perineuronal nets (PNNs), that is, extracellular matrix structures around neurons, modulate PV neuron function. We hypothesize that PNNs play a role in resilience to AD. METHODS PNN amount and morphology were determined in immunolabelled sections of the frontal cortex of control, AD and resilient subjects. Expression levels of genes related to PNNs and microglia signatures were evaluated by bulk RNA sequencing. RESULTS The expression of the PNN-component aggrecan around PV neurons is decreased in resilient and AD subjects, whereas PNN-sugar chains are reduced only in resilient subjects. In AD, fewer presynaptic terminals on PV neurons are detected and genes related to PNN degradation are upregulated. DISCUSSION These data show distinct PNN changes in individuals resilient to AD, which may contribute to preserved cognition despite the neuropathology. HIGHLIGHTS Aggrecan levels are decreased in the frontal cortex of AD and resilient subjects. In resilient subjects, WFA+ PNNs are reduced around neuronal somata. In AD patients, PV neurons show disrupted WFA peridendritic staining and synaptic loss. Expression levels of PNN-degrading enzymes are higher in AD. Excitatory neurons bearing a PNN show low amounts of ptau.
Collapse
Affiliation(s)
- Luuk E. de Vries
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Anouck Bahnerth
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Joost Verhaagen
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Daniela Carulli
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
30
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues, age and disease. Nat Commun 2025; 16:1068. [PMID: 39870615 PMCID: PMC11772838 DOI: 10.1038/s41467-024-55607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that splicing inaccuracies occur at different rates across introns and tissues and are affected by the abundance of core components of the spliceosome assembly and its regulators. We find that age is positively correlated with a global decline in splicing fidelity, mostly affecting genes implicated in neurodegenerative diseases. We find support for the latter by observing a genome-wide increase in splicing inaccuracies in samples affected with Alzheimer's disease as compared to neurologically normal individuals. In this work, we provide an in-depth characterisation of splicing accuracy, with implications for our understanding of the role of inaccuracies in ageing and neurodegenerative disorders.
Collapse
Affiliation(s)
- S García-Ruiz
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - E K Gustavsson
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - M Grant-Peters
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A Fairbrother-Browne
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - J W Brenton
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A L Gil-Martínez
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - M Ryten
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
31
|
Li LJ, Liang SY, Sun XY, Zhu J, Niu XY, Du XY, Huang YR, Liu RT. Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration. J Neuroinflammation 2025; 22:11. [PMID: 39833906 PMCID: PMC11745000 DOI: 10.1186/s12974-025-03333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al., Transl Neurodegener 13:39, 2024). Although it has been verified that DNase II participates in type I interferons (IFN-I) mediated autoinflammation and senescence in peripheral systems, the role of microglial DNase II in neuroinflammation and neurodegenerative diseases such as Alzheimer's disease (AD) is still unknown. METHODS The levels of microglial DNase II in triple transgenic AD mice (3xTg-AD) were measured by immunohistochemistry. The cognitive performance of microglial DNase II deficient WT and AD mice was determined using the Morris water maze test, Y-maze test, novel object recognition test and open filed test. To investigate the impact of microglial DNase II deficiency on microglial morphology, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and IFN-I pathway, neuroinflammation, synapses loss, amyloid pathology and tauopathy, the levels of cGAS-STING and IFN-I pathway related protein, gliosis and proinflammatory cytokines, synaptic protein, complement protein, Aβ levels, phosphorylated tau in the brains of the microglial DNase II deficient WT and AD mice were evaluated by immunolabeling, immunoblotting, q-PCR or ELISA. RESULTS We found that the levels of DNase II were significantly decreased in the microglia of 3xTg-AD mice. Microglial DNase II deficiency altered microglial morphology and transcriptional signatures, activated the cGAS-STING and IFN-I pathway, initiated neuroinflammation, led to synapse loss via complement-dependent pathway, increased Aβ levels and tauopathy, and induced cognitive decline. CONCLUSIONS Our study shows the effect of microglial DNase II deficiency and cytoplasmic accumulated dsDNA on neuroinflammation, and reveals the initiatory mechanism of AD pathology, suggesting that DNase II is a potential target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Liang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Xiao-Yu Du
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Ru Huang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
32
|
Gargus M, Ben-Azu B, Landwehr A, Dunn J, Errico JP, Tremblay MÈ. Mechanisms of vagus nerve stimulation for the treatment of neurodevelopmental disorders: a focus on microglia and neuroinflammation. Front Neurosci 2025; 18:1527842. [PMID: 39881804 PMCID: PMC11774973 DOI: 10.3389/fnins.2024.1527842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy. While the mechanistic understanding linking the VN, microglia, and neurodevelopmental disorders remains incomplete, vagus nerve stimulation (VNS) may provide a better understanding of the VN's mechanisms and act as a possible treatment modality. In this review we examine the VN's important role in modulating the immune system through the inflammatory reflex, which involves the cholinergic anti-inflammatory pathway, which releases acetylcholine. Within the central nervous system (CNS), the direct release of acetylcholine can also be triggered by VNS. Homeostatic balance in the CNS is notably maintained by microglia. Microglia facilitate neurogenesis, oligodendrogenesis, and astrogenesis, and promote neuronal survival via trophic factor release. These cells also monitor the CNS microenvironment through a complex sensome, including groups of receptors and proteins enabling microglia to modify neuroimmune health and CNS neurochemistry. Given the limitations of pharmacological interventions for the treatment of neurodevelopmental disorders, this review seeks to explore the application of VNS as an intervention for neurodevelopmental conditions. Accordingly, we review the established mechanisms of VNS action, e.g., modulation of microglia and various neurotransmitter pathways, as well as emerging preclinical and clinical evidence supporting VNS's impact on symptoms associated with neurodevelopmental disorders, such as those related to CNS inflammation induced by infections. We also discuss the potential of adapting non-invasive VNS for the prevention and treatment of these conditions. Overall, this review is intended to increase the understanding of VN's potential for alleviating microglial dysfunction involved in schizophrenia, ADHD, ASD, and epilepsy. Additionally, we aim to reveal new concepts in the field of CNS inflammation and microglia, which could serve to understand the mechanisms of VNS in the development of new therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Jaclyn Dunn
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Liang Z, Shostak D, Hao Y, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Zilberter M, Huang Y. Microglia depletion reduces human neuronal APOE4-related pathologies in a chimeric Alzheimer's disease model. Cell Stem Cell 2025; 32:86-104.e7. [PMID: 39500314 DOI: 10.1016/j.stem.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Despite strong evidence supporting the important roles of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-related AD pathogenesis remain elusive. To examine such effects, we utilized microglial depletion in a chimeric model with induced pluripotent stem cell (iPSC)-derived human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) iPSC-derived human neurons into the hippocampus of human APOE3 or APOE4 knockin mice and then depleted microglia in half of the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA sequencing analysis identified two pro-inflammatory microglial subtypes with elevated MHC-II gene expression enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - David Shostak
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Henry RJ, Loane DJ. Unraveling the complexity of microglial responses in traumatic brain and spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:113-132. [PMID: 40148040 DOI: 10.1016/b978-0-443-19102-2.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in neuroimmune signaling, neuroprotection, and neuroinflammation. In the healthy CNS, microglia adopt a surveillant and antiinflammatory phenotype characterized by a ramified scanning morphology that maintains CNS homeostasis. In response to acquired insults, such as traumatic brain injury (TBI) or spinal cord injury (SCI), microglia undergo a dramatic morphologic and functional switch to that of a reactive state. This microglial switch is initially protective and supports the return of the injured tissue to a physiologic homeostatic state. However, there is now a significant body of evidence that both TBI and SCI can result in a chronic state of microglial activation, which contributes to neurodegeneration and impairments in long-term neurologic outcomes in humans and animal models. In this review, we discuss the complex role of microglia in the pathophysiology of TBI and SCI, and recent advancements in knowledge of microglial phenotypic states in the injured CNS. Furthermore, we highlight novel therapeutic strategies targeting chronic microglial responses in experimental models and discuss how they may ultimately be translated to the clinic for human brain and SCI.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Pharmacology, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Sridhar S, Zhou Y, Ibrahim A, Bertazzo S, Wyss T, Swain A, Maheshwari U, Huang SF, Colonna M, Keller A. Targeting TREM2 signaling shows limited impact on cerebrovascular calcification. Life Sci Alliance 2025; 8:e202402796. [PMID: 39467636 PMCID: PMC11519321 DOI: 10.26508/lsa.202402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Brain calcification, the ectopic mineral deposits of calcium phosphate, is a frequent radiological finding and a diagnostic criterion for primary familial brain calcification. We previously showed that microglia curtail the growth of small vessel calcification via the triggering receptor expressed in myeloid 2 (TREM2) in the Pdgfb ret/ret mouse model of primary familial brain calcification. Because boosting TREM2 function using activating antibodies has been shown to be beneficial in other disease conditions by aiding in microglial clearance of diverse pathologies, we investigated whether administration of a TREM2-activating antibody could mitigate vascular calcification in Pdgfb ret/ret mice. Single-nucleus RNA-sequencing analysis showed that calcification-associated microglia share transcriptional similarities to disease-associated microglia and exhibited activated TREM2 and TGFβ signaling. Administration of a TREM2-activating antibody increased TREM2-dependent microglial deposition of cathepsin K, a collagen-degrading protease, onto calcifications. However, this did not ameliorate the calcification load or alter the mineral composition and the microglial phenotype around calcification. We therefore conclude that targeting microglia with TREM2 agonistic antibodies is insufficient to demineralize and clear vascular calcifications.
Collapse
Affiliation(s)
- Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tania Wyss
- TDS-facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Yang H, Yang J, Park N, Hwang DS, Park SY, Kim S, Bae H. Adoptive Transfer of CX3CR1-Transduced Tregs Homing to the Forebrain in Lipopolysaccharide-Induced Neuroinflammation and 3xTg Alzheimer's Disease Models. Int J Mol Sci 2024; 25:13682. [PMID: 39769442 PMCID: PMC11727661 DOI: 10.3390/ijms252413682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
CX3CR1-transduced regulatory T cells (Tregs) have shown potential in reducing neuroinflammation by targeting microglial activation. Reactive microglia are implicated in neurological disorders, and CX3CR1-CX3CL1 signaling modulates microglial activity. The ability of CX3CR1-transduced Tregs to inhibit LPS-induced neuroinflammation was assessed in animal models. CX3CR1 Tregs were administered to LPS-induced and 3xTg Alzheimer's mouse models, resulting in reduced proinflammatory marker expression in both the cortices and hippocampi. In the 3xTg Alzheimer's model, neuroinflammation was significantly reduced, demonstrating the efficacy of CX3CR1 Tregs even in chronic neuroinflammatory conditions. These findings highlight the therapeutic potential of CX3CR1 Treg therapy in modulating microglial activity and offer promising treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyejin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Namgyeong Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (N.P.); (D.-S.H.)
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (N.P.); (D.-S.H.)
| | - Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Soyoung Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| |
Collapse
|
38
|
Lee D, Vicari JM, Porras C, Spencer C, Pjanic M, Wang X, Kinrot S, Weiler P, Kosoy R, Bendl J, Prashant NM, Psychogyiou K, Malakates P, Hennigan E, Monteiro Fortes J, Zheng S, Therrien K, Mathur D, Kleopoulos SP, Shao Z, Argyriou S, Alvia M, Casey C, Hong A, Beaumont KG, Sebra R, Kellner CP, Bennett DA, Yuan GC, Voloudakis G, Theis FJ, Haroutunian V, Hoffman GE, Fullard JF, Roussos P. Plasticity of Human Microglia and Brain Perivascular Macrophages in Aging and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.25.23297558. [PMID: 39677435 PMCID: PMC11643149 DOI: 10.1101/2023.10.25.23297558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The complex roles of myeloid cells, including microglia and perivascular macrophages, are central to the neurobiology of Alzheimer's disease (AD), yet they remain incompletely understood. Here, we profiled 832,505 human myeloid cells from the prefrontal cortex of 1,607 unique donors covering the human lifespan and varying degrees of AD neuropathology. We delineated 13 transcriptionally distinct myeloid subtypes organized into 6 subclasses and identified AD-associated adaptive changes in myeloid cells over aging and disease progression. The GPNMB subtype, linked to phagocytosis, increased significantly with AD burden and correlated with polygenic AD risk scores. By organizing AD-risk genes into a regulatory hierarchy, we identified and validated MITF as an upstream transcriptional activator of GPNMB, critical for maintaining phagocytosis. Through cell-to-cell interaction networks, we prioritized APOE-SORL1 and APOE-TREM2 ligand-receptor pairs, associated with AD progression. In both human and mouse models, TREM2 deficiency disrupted GPNMB expansion and reduced phagocytic function, suggesting that GPNMB's role in neuroprotection was TREM2-dependent. Our findings clarify myeloid subtypes implicated in aging and AD, advancing the mechanistic understanding of their role in AD and aiding therapeutic discovery.
Collapse
Affiliation(s)
- Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James M. Vicari
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Porras
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Collin Spencer
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xinyi Wang
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seon Kinrot
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philipp Weiler
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N M Prashant
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Psychogyiou
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Periklis Malakates
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn Hennigan
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Monteiro Fortes
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen Therrien
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven P. Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stathis Argyriou
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Alvia
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clara Casey
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aram Hong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - George Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Gabriel E. Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| |
Collapse
|
39
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
40
|
Huang Z, Shi B, Mu X, Qiao S, Xiao G, Wang Y, Xu Y. Construction of a Dataset for All Expressed Transcripts for Alzheimer's Disease Research. Brain Sci 2024; 14:1180. [PMID: 39766379 PMCID: PMC11674848 DOI: 10.3390/brainsci14121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Accurate identification and functional annotation of splicing isoforms and non-coding RNAs (lncRNAs), alongside full-length protein-encoding transcripts, are critical for understanding gene (mis)regulation and metabolic reprogramming in Alzheimer's disease (AD). This study aims to provide a comprehensive and accurate transcriptome resource to improve existing AD transcript databases. Background/Objectives: Gene mis-regulation and metabolic reprogramming play a key role in AD, yet existing transcript databases lack accurate and comprehensive identification of splicing isoforms and lncRNAs. This study aims to generate a refined transcriptome dataset, expanding the understanding of AD onset and progression. Methods: Publicly available RNA-seq data from pre-AD and AD tissues were utilized. Advanced bioinformatics tools were applied to assemble and annotate full-length transcripts, including splicing isoforms and lncRNAs, with an emphasis on correcting errors and enhancing annotation accuracy. Results: A significantly improved transcriptome dataset was generated, which includes detailed annotations of splicing isoforms and lncRNAs. This dataset expands the scope of existing AD transcript databases and provides new insights into the molecular mechanisms underlying AD. The findings demonstrate that the refined dataset captures more relevant details about AD progression compared to publicly available data. Conclusions: The newly developed transcriptome resource and the associated analysis tools offer a valuable contribution to AD research, providing deeper insights into the disease's molecular mechanisms. This work supports future research into gene regulation and metabolic reprogramming in AD and serves as a foundation for exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Zhenyu Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (Z.H.); (G.X.)
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
| | - Bocheng Shi
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Xuechen Mu
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Siyu Qiao
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
| | - Gangyi Xiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (Z.H.); (G.X.)
| | - Yan Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (Z.H.); (G.X.)
| | - Ying Xu
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
| |
Collapse
|
41
|
Maurya S, Lin M, Karnam S, Singh T, Kumar M, Ward E, Sivak J, Flanagan JG, Gronert K. Regulation of disease-associated microglia in the optic nerve by lipoxin B 4 and ocular hypertension. Mol Neurodegener 2024; 19:86. [PMID: 39568070 PMCID: PMC11580672 DOI: 10.1186/s13024-024-00775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. METHODS Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups were assessed by Student's t-test and one-way ANOVA. RESULTS Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. CONCLUSION We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.
Collapse
Affiliation(s)
- Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Maggie Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Tanirika Singh
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Matangi Kumar
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
- Vision Science Program, University of California, Berkeley, CA, USA
| | - Emily Ward
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
- Vision Science Program, University of California, Berkeley, CA, USA
| | - Jeremy Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
- Vision Science Program, University of California, Berkeley, CA, USA
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.
- Vision Science Program, University of California, Berkeley, CA, USA.
- Infectious Disease and Immunity Program, University of California, Berkeley, CA, USA.
| |
Collapse
|
42
|
Arber C, Casey JM, Crawford S, Rambarack N, Yaman U, Wiethoff S, Augustin E, Piers TM, Price M, Rostagno A, Ghiso J, Lewis PA, Revesz T, Hardy J, Pocock JM, Houlden H, Schott JM, Salih DA, Lashley T, Wray S. Microglia contribute to the production of the amyloidogenic ABri peptide in familial British dementia. Acta Neuropathol 2024; 148:65. [PMID: 39546024 PMCID: PMC11568029 DOI: 10.1007/s00401-024-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Mutations in ITM2B cause familial British, Danish, Chinese, and Korean dementias. In familial British dementia (FBD), a mutation in the stop codon of the ITM2B gene (also known as BRI2) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. The ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. The pathological examination of post-mortem tissue supports the presence of ABri in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. These data have implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jackie M Casey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Samuel Crawford
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
| | | | - Umran Yaman
- Dementia Research Institute at UCL, London, UK
| | - Sarah Wiethoff
- Klinik für Neurologie mit Institut für Translationale Neurologie Albert Schweitzer Campus, Gebäude A1, 48149, Münster, Germany
| | - Emma Augustin
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas M Piers
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew Price
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Agueda Rostagno
- Department of Pathology, New York University Grossman School of Medicine, New York, USA
| | - Jorge Ghiso
- Department of Pathology, New York University Grossman School of Medicine, New York, USA
| | - Patrick A Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Royal Veterinary College, Royal College Street, London, UK
| | - Tamas Revesz
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Institute at UCL, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
43
|
Garland EF, Antony H, Kulagowska L, Scott T, Rogien C, Bottlaender M, Nicoll JAR, Boche D. The microglial translocator protein (TSPO) in Alzheimer's disease reflects a phagocytic phenotype. Acta Neuropathol 2024; 148:62. [PMID: 39540994 PMCID: PMC11564344 DOI: 10.1007/s00401-024-02822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Translocator protein (TSPO) is a mitochondrial protein expressed by microglia, ligands for which are used as a marker of neuroinflammation in PET studies of Alzheimer's disease (AD). We previously showed increasing TSPO load in the cerebral cortex with AD progression, consistent with TSPO PET scan findings. Here, we aim to characterise the microglial phenotype associated with TSPO expression to aid interpretation of the signal generated by TSPO ligands in patients. Human post-mortem sections of temporal lobe (TL) and cerebellum (Cb) from cases classified by Braak group (0-II, III-IV, V-VI; each n = 10) were fluorescently double labelled for TSPO and microglial markers: Iba1, HLA-DR, CD68, MSR-A and CD64. Quantification was performed on scanned images using QuPath software to assess the microglial phenotype of TSPO. Qualitative analysis was also performed for TSPO with GFAP (astrocytes), CD31 (endothelial cells) and CD163 (perivascular macrophages) to characterise the cellular profile of TSPO. The percentage of CD68+TSPO+ double-labelled cells was significantly higher than for other microglial markers in both brain regions and in all Braak stages, followed by MSR-A+TSPO+ microglia. Iba1+TSPO+ cells were more numerous in the cerebellum than the temporal lobe, while CD64+TSPO+ cells were more numerous in the temporal lobe. No differences were observed for the other microglial markers. TSPO expression was also detected in endothelial cells, but not detected in astrocytes nor in perivascular macrophages. Our data suggest that TSPO is mainly related to a phagocytic profile of microglia (CD68+) in human AD, potentially highlighting the ongoing neurodegeneration.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Henrike Antony
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laura Kulagowska
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Thomas Scott
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Charlotte Rogien
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- Paris-Saclay University, CEA, CNRS, Service Hospitalier Frederic Joliot, Orsay, Inserm, BioMaps, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
44
|
Ma W, Zhao L, Xu B, Fariss RN, Redmond TM, Zou J, Wong WT, Li W. Human-induced pluripotent stem cell-derived microglia integrate into mouse retina and recapitulate features of endogenous microglia. eLife 2024; 12:RP90695. [PMID: 39514271 PMCID: PMC11587526 DOI: 10.7554/elife.90695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Wenxin Ma
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| | - Lian Zhao
- Genetic Engineering Core, National Eye InstituteBethesdaUnited States
| | - Biying Xu
- Immunoregulation Section, National Eye InstituteBethesdaUnited States
| | - Robert N Fariss
- Biological Imaging Core, National Eye InstituteBethesdaUnited States
| | - T Michael Redmond
- Molecular Mechanisms Section, National Eye InstituteBethesdaUnited States
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood InstituteBethesdaUnited States
| | | | - Wei Li
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| |
Collapse
|
45
|
Madhu LN, Kodali M, Upadhya R, Rao S, Somayaji Y, Attaluri S, Shuai B, Kirmani M, Gupta S, Maness N, Rao X, Cai JJ, Shetty AK. Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease. J Extracell Vesicles 2024; 13:e12519. [PMID: 39499013 PMCID: PMC11536387 DOI: 10.1002/jev2.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024] Open
Abstract
As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.
Collapse
Affiliation(s)
- Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maha Kirmani
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shreyan Gupta
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Nathaniel Maness
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - James J. Cai
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| |
Collapse
|
46
|
Sypek EI, Tassou A, Collins HY, Huang K, McCallum WM, Bourdillon AT, Barres BA, Bohlen CJ, Scherrer G. Diversity of microglial transcriptional responses during opioid exposure and neuropathic pain. Pain 2024; 165:2615-2628. [PMID: 39073407 PMCID: PMC11474913 DOI: 10.1097/j.pain.0000000000003275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 07/30/2024]
Abstract
ABSTRACT Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Microglia display similar morphological responses in the spinal cord after peripheral nerve injury (PNI). Consistent with this observation, functional studies have suggested that microglia activated by opioids or PNI engage common molecular mechanisms to induce hypersensitivity. In this article, we conducted deep RNA sequencing (RNA-seq) and morphological analysis of spinal cord microglia in male mice to comprehensively interrogate transcriptional states and mechanistic commonality between multiple models of OIH and PNI. After PNI, we identify an early proliferative transcriptional event across models that precedes the upregulation of histological markers of microglial activation. However, we found no proliferative transcriptional response associated with opioid-induced microglial activation, consistent with histological data, indicating that the number of microglia remains stable during morphine treatment, whereas their morphological response differs from PNI models. Collectively, these results establish the diversity of pain-associated microglial transcriptomic responses and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other central nervous system pathologies.
Collapse
Affiliation(s)
- Elizabeth I. Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Stanford Neurosciences Institute, Stanford, CA, United States
- Stanford University Neurosciences Graduate Program, Stanford, CA, United States
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hannah Y. Collins
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Karen Huang
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William M. McCallum
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Ben A. Barres
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Christopher J. Bohlen
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- New York Stem Cell Foundation—Robertson Investigator Chapel Hill, NC, United States
| |
Collapse
|
47
|
Podlesny-Drabiniok A, Romero-Molina C, Patel T, See WY, Liu Y, Marcora E, Goate AM. Cytokine-induced reprogramming of human macrophages toward Alzheimer's disease-relevant molecular and cellular phenotypes in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619910. [PMID: 39554174 PMCID: PMC11565805 DOI: 10.1101/2024.10.24.619910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Myeloid cells including brain-resident (microglia) and peripheral macrophages play a crucial role in various pathological conditions, including neurodegenerative disorders like Alzheimer's disease (AD). They respond to disruption of tissue homeostasis associated with disease conditions by acquiring various transcriptional and functional states. Experimental investigation of these states is hampered by the lack of tools that enable accessible and robust reprogramming of human macrophages toward Alzheimer's disease-relevant molecular and cellular phenotypes in vitro. In this study, we investigated the ability of a cytokine mix, including interleukin-4 (IL4), colony stimulating factor 1 (CSF1/MCSF), interleukin 34 (IL34) and transforming growth factor beta (TGFβ), to induce reprogramming of cultured human THP-1 macrophages. Our results indicate this treatment led to significant transcriptomic changes, driving THP-1 macrophages towards a transcriptional state reminiscent of disease-associated microglia (DAM) and lipid-associated macrophages (LAM) collectively referred to as DLAM. Transcriptome profiling revealed gene expression changes related to oxidative phosphorylation, lysosome function, and lipid metabolism. Single-cell RNA sequencing revealed an increased proportion of DLAM clusters in cytokine mix-treated THP-1 macrophages. Functional assays demonstrated alterations in cell motility, phagocytosis, lysosomal activity, and metabolic and energetic profiles. Our findings provide insights into the cytokine-mediated reprogramming of macrophages towards disease-relevant states, highlighting their role in neurodegenerative diseases and potential for therapeutic development.
Collapse
Affiliation(s)
- Anna Podlesny-Drabiniok
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Tulsi Patel
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Wen Yi See
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alison M. Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
48
|
Maurya S, Lin M, Karnam S, Singh T, Kumar M, Ward E, Sivak J, Flanagan JG, Gronert K. Regulation of Diseases-Associated Microglia in the Optic Nerve by Lipoxin B 4 and Ocular Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585452. [PMID: 38562864 PMCID: PMC10983965 DOI: 10.1101/2024.03.18.585452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. Methods Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of the mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups were assessed by Student's t-test and one-way ANOVA. Results Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. Conclusion We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.
Collapse
Affiliation(s)
- Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Maggie Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Tanirika Singh
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Matangi Kumar
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Emily Ward
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Jeremy Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
- Infectious Disease and Immunity Program, University of California Berkeley, CA, United States
| |
Collapse
|
49
|
Garg A, Vo S, Brase L, Aladyeva E, Albanus RD, Nallapu A, Fu H, Harari O. Exploring Cellular Heterogeneity: Single-Cell and Spatial Transcriptomics of Alzheimer Disease Brains and iPSC-Derived Microglia. RESEARCH SQUARE 2024:rs.3.rs-5045715. [PMID: 39483903 PMCID: PMC11527241 DOI: 10.21203/rs.3.rs-5045715/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Substantial evidence has established the critical role of microglia, the brain's resident immune cells, in the pathogenesis of Alzheimer's disease (AD). Microglia exhibit diverse transcriptional states in response to neuroinflammatory stimuli, and understanding these states is crucial for elucidating the underlying mechanisms of AD. Methods In this work, we integrated single-cell and spatially resolved transcriptomics data from multiple cohorts and brain regions, including microglia from experimental and human brains. Results This comprehensive atlas revealed a great heterogeneity of microglial states, with a significant enrichment of specific states, including activated microglia, in AD brains compared to controls. Further integration of spatial transcriptomics and immunohistochemistry showed that activated microglia are predominantly located in the external cortical layers near amyloid plaques, while homeostatic microglia are more prevalent in the internal cortical layers and further away from the plaques. These spatial patterns were further validated using P2RY12 immunostaining, which confirmed the reliability of the transcriptomic data. Conclusion By integrating single-cell and spatial transcriptomics, we have provided a detailed atlas of microglial diversity, revealing the regional and pathological specificity of microglial states.
Collapse
Affiliation(s)
- Anjali Garg
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Sheeny Vo
- Department of Neuroscience, OSU Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Logan Brase
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Ekaterina Aladyeva
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Ricardo D'O Albanus
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Aasritha Nallapu
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Hongjun Fu
- Department of Neuroscience, OSU Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
50
|
Haage V, Tuddenham JF, Bautista A, White CC, Garcia F, Patel R, Comandante-Lou N, Marshe V, Soni RK, Sims PA, Menon V, Sproul AA, De Jager PL. HDAC Inhibitors recapitulate Human Disease-Associated Microglia Signatures in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617544. [PMID: 39416157 PMCID: PMC11482930 DOI: 10.1101/2024.10.11.617544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Disease-associated microglia (DAM), initially described in mouse models of neurodegenerative diseases, have been classified into two related states; starting from a TREM2-independent DAM1 state to a TREM2 dependent state termed DAM2, with each state being characterized by the expression of specific marker genes1. Recently, single-cell (sc)RNA-Seq studies have reported the existence of DAMs in humans2-6; however, whether DAMs play beneficial or detrimental roles in the context of neurodegeneration is still under debate7,8. Here, we present a pharmacological approach to mimic human DAM in vitro by exposing different human microglia models to selected histone deacetylase (HDAC) inhibitors. We also provide an initial functional characterization of our model system, showing a specific increase of amyloid beta phagocytosis along with a reduction of MCP-1 secretion. Additionally, we report an increase in MITF expression, a transcription factor previously described to drive expression towards the DAM phenotype. We further identify CADM1, LIPA and SCIN as DAM-marker genes shared across various proposed DAM signatures and in our model systems. Overall, our strategy for targeted microglial polarization bears great potential to further explore human DAM function and biology.
Collapse
Affiliation(s)
- Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - John F. Tuddenham
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Bautista
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Charles C. White
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Frankie Garcia
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Ronak Patel
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Natacha Comandante-Lou
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Victoria Marshe
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center
| |
Collapse
|