1
|
Sun L, Zhang Y, Xu C, Xu Z, Chen X, Wang W, Hao C. Carnosol inhibits influenza A virus by disrupting the viral envelope and interfering with Jak2/STAT3 signaling pathway. Eur J Pharmacol 2025; 997:177606. [PMID: 40216182 DOI: 10.1016/j.ejphar.2025.177606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Carnosol is a natural diterpenoid compound derived from rosemary, a traditional Chinese herbal medicine used to treat many diseases. Recent studies have shown that carnosol has many pharmacological activities, including antioxidant, anti-inflammatory, and anticancer effects. In this study, the inhibitory activity and mechanism of action of carnosol against the influenza A virus (IAV) were investigated both in vitro and in vivo. Plaque and immunofluorescence assays were performed to evaluate the anti-IAV effects of carnosol in vitro. The antiviral mechanism was investigated using hemagglutination inhibition (HI) assay, virucidal assay, electron microscopy, and western blotting. anti-IAV activity in vivo was determined using a mouse pneumonia model combined with HE staining. The results showed that carnosol significantly inhibited H1N1 virus propagation in vitro and may block IAV infection by inactivating viral particles and interfering with some early stages of virus adsorption. The cellular Jak2/STAT3 signaling pathway may be involved in the anti-IAV effects of carnosol. Importantly, oral administration of carnosol significantly improved survival and reduced the symptoms of pneumonia in IAV-infected mice, comparable to the effect of oseltamivir. Thus, the natural compound carnosol has the potential to be developed as a novel anti-IAV agent.
Collapse
Affiliation(s)
- Lishan Sun
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yang Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiayu Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003China.
| |
Collapse
|
2
|
Ahmed S, Azli B, Abdul Razak M, Hair-Bejo M, Omar AR, Ideris A, Mat Isa N. Delayed nuclear localization of CRISPR/Cas9-modified fiber of fowl adenovirus serotype 8b reduces pathogenicity in Specific pathogen-free chicken embryonic liver cells. Microb Pathog 2025; 203:107482. [PMID: 40097027 DOI: 10.1016/j.micpath.2025.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Fowl adenovirus (FAdV) poses incessant outbreaks to poultry production worldwide, and Inclusion body hepatitis (IBH) is a predominant FAdV infectious disease. Currently, limited vaccines are available in Malaysia to fight against the local predominant FAdV strain 8b isolate (FAdV-8b), posing a desperate demand for efficient vaccine development. The fiber protein of FAdV is one of the major constituents of the adenoviral capsid involved in the virulence of pathogens. Hence, the aim was to modify the fiber gene of FAdV-8b UPMT27 to develop a live attenuated FAdV vaccine via the gene-editing CRISPR/Cas9 technology. Primary specific pathogen-free (SPF) chicken embryonic liver cells (CELs) infected with the modified isolated (cfUPMT27) were reported with significantly reduced cytopathic effects, delayed viral localization into the nucleus, and low apoptotic rates. cfUPMT27 isolate also exhibited constant amino acid substitution of Y179D in subsequent passages. Meanwhile, the liver of cfUPMT27 inoculated-SPF chicken embryonic eggs (CEE) was observed with mild hydropericardium and reported with a delayed mortality at 6-days post-infection (dpi). This holistic, integrative study incorporating genetic, pathology, and immunology analysis proposed cfUPMT27 isolate as a candidate vaccine for FAdV infections, providing efficient future protection in chickens.
Collapse
Affiliation(s)
- Salisu Ahmed
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Science Laboratory Technology, Jigawa State Polytechnic, 7040, Dutse, Jigawa state, Nigeria.
| | - Bahiyah Azli
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mariatulqabtiah Abdul Razak
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mohd Hair-Bejo
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Abdul Rahman Omar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Aini Ideris
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Nurulfiza Mat Isa
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
3
|
Soriaga LB, Balce DR, Bartha I, Park A, Wong E, McAllaster M, Mueller EA, Barauskas O, Carabajal E, Kowalski B, Lee S, Lo G, Mahoney TF, Metruccio M, Sahakyan A, Somasundaram L, Steinfeld T, Wang L, Wedel L, Yim SS, Yin L, Zhou J, Newby Z, Tse W, Grosse J, Virgin HW, Hwang S, Telenti A. Shared host genetic landscape of respiratory viral infection. Proc Natl Acad Sci U S A 2025; 122:e2414202122. [PMID: 40372436 DOI: 10.1073/pnas.2414202122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/01/2025] [Indexed: 05/16/2025] Open
Abstract
Respiratory viruses represent a major global health burden. Although these viruses have different life cycles, they may depend on common host genetic factors, which could be targeted by broad-spectrum host-directed therapies. We used genome-wide CRISPR screens and advanced data analytics to map a network of host genes that support infection by nine human respiratory viruses [influenza A virus, parainfluenza virus, human rhinovirus, respiratory syncytial virus, human coronavirus (HCoV)-229E, HCoV-NL63, HCoV-OC43, Middle East respiratory syndrome-related coronavirus, and severe acute respiratory syndrome-related coronavirus 2]. We explored shared pathways using knowledge graphs to inform on pharmacological targets. We selected and validated STT3A/B proteins of the N-oligosaccharyltransferase complex as host targets of broad-spectrum antiviral small molecules. Our work highlights the commonalities of viral host genetic dependencies and the feasibility of using this information to develop broad-spectrum antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Arnold Park
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Emily Wong
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | | | | | | | | | | | - Gary Lo
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | | | | | | | | | - Lisha Wang
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Laura Wedel
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | - Li Yin
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Jiayi Zhou
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Zach Newby
- Vir Biotechnology Inc., San Francisco, CA 94158
| | - Winston Tse
- Vir Biotechnology Inc., San Francisco, CA 94158
| | | | | | | | | |
Collapse
|
4
|
Adu OF, Sempere Borau M, Früh SP, Karakus U, Weichert WS, Wasik BR, Stertz S, Parrish CR. Cell binding, uptake, and infection of influenza A virus using recombinant antibody-based receptors. J Virol 2025; 99:e0227524. [PMID: 40207931 DOI: 10.1128/jvi.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Human and avian influenza A viruses bind to sialic acid (Sia) receptors on cells as their primary receptors, and this results in endocytic uptake of the virus. While the role of Sia on glycoproteins and/or glycolipids for virus entry is crucial, the roles of the carrier proteins are still not well understood. Furthermore, it is still unclear how receptor binding leads to infection, including whether the receptor plays a structural or other roles beyond being a simple tether. To enable the investigation of the receptor binding and cell entry processes in a more controlled manner, we have designed a protein receptor for pandemic H1 influenza A viruses. The engineered receptor possesses the binding domains of an anti-HA antibody prepared as a single-chain variable fragment (scFv) fused with the stalk, transmembrane, and cytoplasmic sequences of the feline transferrin receptor type-1 (fTfR). When expressed in cells that lack efficient display of Sia due to a knockout of the Slc35A1 gene, which encodes for the solute carrier family 35 transporter (SLC35A1), the anti-H1 receptor was displayed on the cell surface, bound virus, or hemagglutinin proteins, and the virus was efficiently endocytosed into the cells. Infection occurred at similar levels to those seen after reintroducing Sia expression, and lower affinity receptor mutants displayed enhanced infections. Treatment with clathrin-mediated endocytosis (CME) inhibitors significantly reduced viral entry, indicating that virus rescue by the antibody-based receptor follows a similar internalization route as Sia-expressing cells.IMPORTANCEInfluenza A viruses primarily circulate among avian reservoir hosts but can also jump species, causing outbreaks in mammals, including humans. A key interaction of the viruses is with host cell sialic acids, which vary in chemical form, in their linkages within the oligosaccharide, and in their display on various surface glycoproteins or glycolipids with differing properties. Here, we report a new method for examining the processes of receptor binding and uptake into cells during influenza A virus infection, by use of an engineered HA-binding membrane glycoprotein, where antibody variable domains are used to bind the virus, and the transferrin receptor uptake structures mediate efficient entry. This will allow us to test and manipulate the processes of cell binding, entry, and infection.
Collapse
Affiliation(s)
- Oluwafemi F Adu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | | | - Simon P Früh
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
- Department of Veterinary Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Wendy S Weichert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Colin R Parrish
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Wang G, Jiang L, Yan Y, Kong F, Li Q, Zhang J, Hou S, Wang B, Wang X, Kong H, Deng G, Shi J, Tian G, Zeng X, Chen H, Li C. Cellular SLC35B4 promotes internalization during influenza A virus entry. mBio 2025; 16:e0019425. [PMID: 40130891 PMCID: PMC12077083 DOI: 10.1128/mbio.00194-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
SLC35B4, a nucleotide sugar transporter that mediates the transport of UDP-GlcNAc and UDP-xylose, was found to be required for the replication of influenza A virus (IAV) of the H5N1 subtype in our genome-wide siRNA library screen. We found that defective IAV replication in SLC35B4-deficient A549 cells was independent of virus strain specificity, and the virulence of IAV in Slc35b4 knockdown mice was also decreased. By examining the individual stages of the IAV replication cycle, we discovered that the amount of internalized IAV was significantly reduced in SLC35B4-knockout A549 cells. Mechanistically, SLC35B4 facilitated IAV replication by transporting UDP-xylose, which attaches to the serine residue of heparan sulfate proteoglycans (HSPGs) in the heparan sulfate (HS) biosynthesis pathway. Knockdown of associated host factors (i.e., XYLT2, B4GALT7, EXT1, and EXT2) in the HS biosynthesis pathway also impaired IAV replication. Furthermore, we revealed that AGRN, a unique HSPG family member, was important for the endocytosis of IAV in A549 cells. Moreover, we found that the homeostasis of the AGRN protein was regulated by HS modification mediated by the initial UDP-xylose transporter SLC35B4, thereby affecting the expression level of endocytic adapter AP2B1 to influence IAV internalization. Collectively, these findings establish that SLC35B4 is an important regulator of IAV replication and uncover the underlying mechanisms by which SLC35B4 employs UDP-xylose transport activity to promote IAV internalization.IMPORTANCEThe entry process of IAV represents a favorable target for drug development. In this study, we identified SLC35B4 as an important host factor for the efficient replication of different subtypes of IAV in vitro and for the virulence of IAV in mice. We revealed that SLC35B4 employed its UDP-xylose transport activity to promote the HS biosynthesis pathway, thereby assisting IAV internalization into target cells in the early stage of viral infection. Consistently, several downstream factors in the HS biosynthesis pathway, i.e., XYLT2, B4GALT7, EXT1, and EXT2, as well as a specific HSPG member AGRN were also important for the replication of IAV. Furthermore, the UDP-xylose-transporting activity of SLC35B4 was involved in the regulation of the homeostasis of the AGRN protein by HS modification, which influenced virus internalization by affecting the expression levels of AP2B1. Together, the identification of the SLC35B4-XYLT2-B4GALT7-EXT1-EXT2-AGRN-AP2B1 axis may shed light on the development of potential anti-IAV therapeutics.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Ya Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fandi Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qibing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shuangshuang Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Bo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Lu J, Liu Z, Li Z, Su J, Zhen H, Qu Y, Herdewijn P, Liu H, Liu Y, Wang Z. A review-plant medicine and its extraction components inhibit influenza virus. Bioorg Med Chem Lett 2025; 120:130151. [PMID: 39988014 DOI: 10.1016/j.bmcl.2025.130151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Influenza is a highly prevalent and highly contagious lung disease caused by influenza viruses. The main anti-influenza strategies are vaccination and antiviral drugs. Vaccination is an effective means of prevention, but the time lag in research and development makes it difficult to respond immediately to an outbreak. Approved drugs are mainly inhibitors of neuraminidase and M2 ion channels, but, due to the variability of influenza viruses, resistance to these drugs may emerge. Botanicals and their extracts have shown unique advantages in influenza treatment and are widely used in clinics across China. However, there are few reviews on the prevention and treatment of influenza with herbal medicines. We undertook a review of relevant literature in recent years to analyze the research progress of various botanicals and their extracts in the prevention and treatment of influenza. Our review provides theoretical support for the prevention and treatment of influenza by plant-based medicines, as well as new ideas for the development of novel low-toxicity and multi-target drugs.
Collapse
Affiliation(s)
- Jiejie Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ziyan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahui Su
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haojie Zhen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Qu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Piet Herdewijn
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development,Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District, Longzi, China; XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Hage A, Janes M, Best SM. A No-Brainer! The Therapeutic Potential of TRIM Proteins in Viral and Central Nervous System Diseases. Viruses 2025; 17:562. [PMID: 40285004 PMCID: PMC12031127 DOI: 10.3390/v17040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Tripartite motif (TRIM) proteins comprise an important class of E3 ubiquitin ligases that regulate numerous biological processes including protein expression, cellular signaling pathways, and innate immunity. This ubiquitous participation in fundamental aspects of biology has made TRIM proteins a focus of study in many fields and has illuminated the negative impact they exert when functioning improperly. Disruption of TRIM function has been linked to the success of various pathogens and separately to the occurrence and development of several neurodegenerative diseases, making TRIM proteins an appealing candidate to study for novel therapeutic approaches. Here, we review the current findings on TRIM proteins that demonstrate their analogous properties in the distinct fields of viral infection and central nervous system (CNS) disorders. We also examine recent advancements in drug development and targeted protein degradation as potential strategies for TRIM-mediated therapeutic treatments and discuss the implications these technologies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (M.J.); (S.M.B.)
| | | | | |
Collapse
|
8
|
Manivasagam S, Han J, Teghanemt A, Keen H, Sownthirarajan B, Cheng B, Singh A, Lewis A, Vogel OA, Loganathan G, Huang L, Panis M, Meyerholz DK, tenOever B, Perez JT, Manicassamy S, Issuree PD, Manicassamy B. Transcriptional repressor Capicua is a gatekeeper of cell-intrinsic interferon responses. Cell Host Microbe 2025; 33:512-528.e7. [PMID: 40132591 PMCID: PMC11985295 DOI: 10.1016/j.chom.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
Early detection of viral infection and rapid activation of host antiviral defenses through transcriptional upregulation of interferons (IFNs) and IFN-stimulated genes (ISGs) are critical for controlling infection. However, aberrant production of IFN in the absence of viral infection leads to auto-inflammation and can be detrimental to the host. Here, we show that the DNA-binding transcriptional repressor complex composed of Capicua (CIC) and Ataxin-1 like (ATXN1L) binds to an 8-nucleotide motif near IFN and ISG promoters and prevents erroneous expression of inflammatory genes under homeostasis in humans and mice. By contrast, during respiratory viral infection, activation of the mitogen-activated protein kinase (MAPK) pathway results in rapid degradation of the CIC-ATXN1L complex, thereby relieving repression and allowing for robust induction of IFN and ISGs. Together, our studies define a new paradigm for host regulation of IFN and ISGs through the evolutionarily conserved CIC-ATXN1L transcriptional repressor complex during homeostasis and viral infection.
Collapse
Affiliation(s)
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Athmane Teghanemt
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Henry Keen
- Bioinformatics Division of the Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Boyang Cheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Abhiraj Singh
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Abigail Lewis
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Olivia A Vogel
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Gayathri Loganathan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lei Huang
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Maryline Panis
- Department of Microbiology, New York University, New York, NY, USA
| | | | | | - Jasmine T Perez
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | | - Priya D Issuree
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Sunshine S, Puschnik A, Retallack H, Laurie MT, Liu J, Peng D, Knopp K, Zinter MS, Ye CJ, DeRisi JL. Defining the host dependencies and the transcriptional landscape of RSV infection and bystander activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645108. [PMID: 40196489 PMCID: PMC11974880 DOI: 10.1101/2025.03.26.645108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Respiratory syncytial virus (RSV) is a globally prevalent pathogen, causes severe disease in older adults, and is the leading cause of bronchiolitis and pneumonia in the United States for children during their first year of life [1]. Despite its prevalence worldwide, RSV-specific treatments remain unavailable for most infected patients. Here, we leveraged a combination of genome-wide CRISPR knockout screening and single-cell RNA sequencing to improve our understanding of the host determinants of RSV infection and the host response in both infected cells, and uninfected bystanders. These data reveal temporal transcriptional patterns that are markedly different between RSV infected and bystander activated cells. Our data show that expression of interferon-stimulated genes is primarily observed in bystander activated cells, while genes implicated in the unfolded protein response and cellular stress are upregulated specifically in RSV infected cells. Furthermore, genome-wide CRISPR screens identified multiple host factors important for viral infection, findings which we contextualize relative to 29 previously published screens across 17 additional viruses. These unique data complement and extend prior studies that investigate the proinflammatory response to RSV infection, and juxtaposed to other viral infections, provide a rich resource for further hypothesis testing.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew T. Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Duo Peng
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Kristeene Knopp
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Matt S. Zinter
- Department of Pediatrics, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute (BARI), University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Kyawe PP, Liu P, Jiang Z, Bradley ES, Cicuto T, Trombly MI, Silverman N, Fitzgerald KA, McDougall WM, Wang JP. CRISPR editing of candidate host factors that impact influenza A virus infection. Microbiol Spectr 2025; 13:e0262724. [PMID: 39887213 PMCID: PMC11878000 DOI: 10.1128/spectrum.02627-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Influenza A virus (IAV) is a respiratory pathogen with a segmented negative-sense RNA genome that can cause epidemics and pandemics. The host factors required for the complete IAV infectious cycle have not been fully identified. Here, we examined three host factors for their contributions to IAV infectivity. We performed CRISPR-mediated knockout of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) as well as CRISPR-mediated overexpression of beta-1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2) and adenosine deaminase acting on RNA 1 (ADAR1) in the human bronchial epithelial A549 cell line and evaluated the impact on IAV and other RNA viruses. We confirmed that knockout of CMAS or overexpression of B4GALNT2 restricts IAV infection by diminishing binding to the cell surface but has no effect on vesicular stomatitis virus infection. Although ADAR1 overexpression does not significantly inhibit IAV replication, it has a pro-viral effect with coxsackie B virus (CVB) infection. This pro-viral effect is not likely secondary to reduced type I interferon (IFN) production, as the induction of the IFN-stimulated genes ISG15 and CXCL10 is negligible in both parent and ADAR1-overexpressing A549 cells following CVB challenge. In contrast, ISG15 and CXCL10 production is robust and equal for parent and ADAR1-overexpressing A549 cells challenged with IAV. Taken together, these data provide insights into how host factors can be further explored to understand the dynamics of pro- and anti-viral factors.IMPORTANCEInfluenza A virus (IAV) remains a global threat due to its ability to cause pandemics, making the identification of host factors essential for developing new antiviral strategies. In this study, we utilized CRISPR-based techniques to investigate host factors that impact IAV infectivity. Knockout of CMAS, a key enzyme in sialic acid biosynthesis, significantly reduced IAV binding and infection by disrupting sialic acid production on the cell surface. Overexpression of B4GALNT2 had similar effects, conferring resistance to IAV infection through diminished cell-surface binding. Overexpression of ADAR1, known for its role in RNA editing and immune regulation, impacted IAV replication minimally but enhanced coxsackie B virus replication. Such findings reveal the diverse roles of host factors in viral infection, offering insights for targeted therapeutic development against IAV and other pathogens.
Collapse
Affiliation(s)
- Pyae Phyo Kyawe
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, Worcester, Massachusetts, USA
| | - Ping Liu
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Zhaozhao Jiang
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Evan S. Bradley
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Thomas Cicuto
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Melanie I. Trombly
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Katherine A. Fitzgerald
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - William M. McDougall
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jennifer P. Wang
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Wang J, Xing Y, Chen L, Han S, Wang Y, Zhao Z, Li G, Li W, He H. Mechanisms of miR-18a-5p Target NEDD9-Mediated Suppression of H5N1 Influenza Virus in Mammalian and Avian Hosts. Vet Sci 2025; 12:240. [PMID: 40266966 PMCID: PMC11945371 DOI: 10.3390/vetsci12030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/25/2025] Open
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression, exerting post-translational control through mRNA silencing or degradation. These molecules play pivotal roles in host-pathogen interactions, particularly in modulating antiviral immune responses. The global public health threat posed by the H5N1 Highly Pathogenic Avian Influenza (HPAI) virus necessitates urgent exploration of novel therapeutic strategies. Our investigation revealed significant dysregulation of miR-18a-5p following influenza virus infection, observed consistently across both in vitro and in vivo models. Experimental evidence demonstrated that miR-18a-5p overexpression effectively inhibits H5N1 virus propagation through multiple mechanisms: (1) in vitro studies using A549 cells transfected with miR-18a-5p mimics showed a substantial reduction in viral replication; (2) animal models (mice and chickens) with elevated miR-18a-5p expression exhibited markedly suppressed AIV replication, reduced pathogenicity, and improved survival rates. The therapeutic potential of miR-18a-5p was particularly evident in its ability to significantly decrease mortality rates in H5N1-infected animals. Furthermore, this miRNA demonstrated robust protective effects against virus-induced lung damage, suggesting its dual role in both preventing and treating H5N1 infections. These findings position miR-18a-5p as a promising candidate for the development of broad-spectrum antiviral interventions, offering a novel strategic approach to combat this serious public health challenge.
Collapse
Affiliation(s)
- Jipu Wang
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China;
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
| | - Yanan Xing
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Chen
- National Center for Nanoscience and Technology, Beijing 100101, China;
| | - Shuyi Han
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhilei Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Gaojian Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Li
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China;
| | - Hongxuan He
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.X.); (S.H.); (Y.W.); (Z.Z.); (G.L.)
| |
Collapse
|
12
|
Jin Z, Yi C, Zhou D, Wang X, Xie M, Zhou H, Zhang A. Chicken genome-wide CRISPR library screen identifies potential candidates associated with Avian influenza virus infection. Int J Biol Macromol 2025; 293:139267. [PMID: 39733882 DOI: 10.1016/j.ijbiomac.2024.139267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Systematic identification of host factors involved in AIV infection in chicken is critical. In this study, we developed a comprehensive chicken genome-wide sgRNA library containing 76,350 sgRNAs, with 4-6 sgRNAs designed per gene. Then, we constructed a genome-wide CRISPR/Cas9 knockout chicken fibroblasts cells (DF-1 cells) library, covering 99.9 % of the total sgRNAs. Following multiple rounds of survival selection during AIV infection, 706 potential genes were identified, including 107 genes previously associated with AIV infection. These candidate genes were primarily involved in ubiquitin-related pathways, RNA transport, endocytosis, and other cellular processes. Among these, 18 novel hits were selected and confirmed to contribute to AIV-induced cell death, with eight genes specifically implicated in AIV proliferation. Notably, RNF2 was found to negatively regulate interferon-stimulated genes (ISGs), DCP1A was suggested to influence gene expression linked to AIV proliferation, and CREB3L3 may regulate membrane cholesterol levels during AIV invasion, further validating the screening results. This study identified 599 potential chicken genes involved in AIV infection, providing a foundation for a deeper understanding of the mechanisms underlying AIV infection in avian cells.
Collapse
Affiliation(s)
- Zehua Jin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Chenyang Yi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dongyu Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaoping Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Mengli Xie
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease prevention, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
13
|
Wang G, Jiang L, Wang J, Li Q, Zhang J, Kong F, Yan Y, Wang Y, Deng G, Shi J, Tian G, Zeng X, Liu L, Bu Z, Chen H, Li C. Genome-wide siRNA library screening identifies human host factors that influence the replication of the highly pathogenic H5N1 influenza virus. MLIFE 2025; 4:55-69. [PMID: 40026577 PMCID: PMC11868839 DOI: 10.1002/mlf2.12168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
The global dissemination of H5 avian influenza viruses represents a significant threat to both human and animal health. In this study, we conducted a genome-wide siRNA library screening against the highly pathogenic H5N1 influenza virus, leading us to the identification of 457 cellular cofactors (441 proviral factors and 16 antiviral factors) involved in the virus replication cycle. Gene Ontology term enrichment analysis revealed that the candidate gene data sets were enriched in gene categories associated with mRNA splicing via spliceosome in the biological process, integral component of membrane in the cellular component, and protein binding in the molecular function. Reactome pathway analysis showed that the immune system (up to 63 genes) was the highest enriched pathway. Subsequent comparisons with four previous siRNA library screenings revealed that the overlapping rates of the involved pathways were 8.53%-62.61%, which were significantly higher than those of the common genes (1.85%-6.24%). Together, our genome-wide siRNA library screening unveiled a panorama of host cellular networks engaged in the regulation of highly pathogenic H5N1 influenza virus replication, which may provide potential targets and strategies for developing novel antiviral countermeasures.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Qibing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Fandi Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Ya Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Yuqin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
14
|
Zou J, Jiang M, Xiao R, Sun H, Liu H, Peacock T, Tu S, Chen T, Guo J, Zhao Y, Barclay W, Xie S, Zhou H. GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding. Nat Commun 2025; 16:670. [PMID: 39809757 PMCID: PMC11733290 DOI: 10.1038/s41467-025-55903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells. Knocking out the enzyme gamma glutamyl carboxylase (GGCX) reduces virus replication in vitro and in vivo by inhibiting the carboxylation modification of viral haemagglutinin (HA) and the adhesion of progeny viruses, ultimately impeding the replication of EA H1N1 SIV. Furthermore, GGCX is revealed to be the determinant of the D225E substitution of EA H1N1 SIV, and GGCX-medicated carboxylation modification of HA 225E contributes to the receptor binding adaption of EA H1N1 SIV to the α-2,6 SA receptor. Taken together, our CRISPR screen has elucidated a novel function of GGCX in the support of EA H1N1 SIV adaption for binding to α-2,6 SA receptor. Consequently, GGCX emerges as a prospective antiviral target against the infection and transmission of EA H1N1 SIV.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Rong Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Thomas Peacock
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinli Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yaxin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, People's Republic of China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, People's Republic of China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
15
|
Shen Y, Feng Z, Zheng C, Chen Q. CRISPR-Mediated Library Screening of Gene-Knockout Cell Lines for Investigating Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:51-60. [PMID: 39192118 DOI: 10.1007/978-1-0716-4108-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The application of CRISPR-mediated library screening has fundamentally transformed functional genomics by revealing the complexity of virus-host interactions. This protocol describes the use of CRISPR-mediated library screening to identify key functional genes regulating the innate immune response to PEDV infection. We detail a step-by-step process, starting from the design and construction of a customized CRISPR knockout library targeting genes involved in innate immunity to the effective delivery of these constructs into cells using lentiviral vectors. Subsequently, we outline the process of identifying functional genes postviral attack, including the use of next-generation sequencing (NGS), to analyze and identify knockout cells that exhibit altered responses to infection. This integrated approach provides researchers in immunology and virology with a resource and a robust framework for uncovering the genetic basis of host-pathogen interactions and the arsenal of the innate immune system against viral invasions.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, AB, Canada
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
16
|
Yang Y, Wang Y, Campbell DE, Lee HW, Beatty W, Wang L, Baldridge M, López CB. SLC35A2 gene product modulates paramyxovirus fusion events during infection. PLoS Pathog 2025; 21:e1012531. [PMID: 39792924 PMCID: PMC11756793 DOI: 10.1371/journal.ppat.1012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/23/2025] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. As expected, SLC35A1 knockout (KO) cells showed drastic reduction in infections with SeV, NDV and MuV due to the lack of cell surface sialic acids receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events for the different paramyxoviruses. While UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, UGT promoted the formation of syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yuchen Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heng-Wei Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
17
|
You W, Luu H, Li M, Chen Z, Li F, Zhang Y, Cai M, He TC, Li J. Nuclear transmembrane protein 199 promotes immune escapes by up-regulating programmed death ligand 1. iScience 2024; 27:111485. [PMID: 39758995 PMCID: PMC11699465 DOI: 10.1016/j.isci.2024.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
The function of transmembrane protein 199 (TMEM199) in cancer development has rarely been studied thus far. We report the nuclear localization of the TMEM199 protein and further analyzed the truncated fractions that mediate its nuclear localization. Cut&Tag assay globally explores the nuclear-located TMEM199 functions and tests its influence on the immune checkpoint PD-L1 in vitro and in vivo. Nuclear-located TMEM199 regulates PD-L1 mRNA levels by binding to transcription factors such as IFNGR1, IRF1, MTMR9, and Trim28, which all promote PD-L1 mRNA expression. Our study demonstrates the nuclear localization of TMEM199 and its immune regulation functions in cancer development. We uncovered the nuclear localization of TMEM199. TMEM199 is involved in CD274 mRNA gene expression by the transcriptional regulation of the upstream transcription factors or cofactors of CD274, such as IFNGR1, IRF1, MTMR9, KAT8, and Trim28. The nuclear-located TMEM199 is reported to address the tumor immune microenvironment commanding function.
Collapse
Affiliation(s)
- Wulin You
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Meili Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Chen
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
| | - Fangchao Li
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanfei Zhang
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong-chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jingjing Li
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Hu S, Gan M, Wei Z, Shang P, Song L, Feng J, Chen L, Niu L, Wang Y, Zhang S, Shen L, Zhu L, Zhao Y. Identification of host factors for livestock and poultry viruses: genome-wide screening technology based on the CRISPR system. Front Microbiol 2024; 15:1498641. [PMID: 39640855 PMCID: PMC11619636 DOI: 10.3389/fmicb.2024.1498641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Genome-wide CRISPR library screening technology is a gene function research tool developed based on the CRISPR/Cas9 gene-editing system. The clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) system, considered the third generation of gene editing after zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), is widely used for screening various viral host factors. CRISPR libraries are classified into three main categories based on the different functions of Cas9 enzymes: CRISPR knockout (CRISPR KO) library screening, CRISPR transcriptional activation (CRISPRa) library screening, and CRISPR transcriptional interference (CRISPRi) library screening. Recently, genome-wide CRISPR library screening technology has been used to identify host factors that interact with viruses at various stages, including adsorption, endocytosis, and replication. By specifically modulating the expression of these host factors, it becomes possible to cultivate disease-resistant varieties, establish disease models, and design and develop vaccines, among other applications. This review provides an overview of the development and technical processes of genome-wide CRISPR library screening, as well as its applications in identifying viral host factors in livestock and poultry.
Collapse
Affiliation(s)
- Shijie Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Ziang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Pan Shang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Lei Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
19
|
Zhang H, Li C, Sun R, Zhang X, Li Z, Hua D, Yin B, Yang L, Zhang L, Huang J. NEIL1 block IFN-β production and enhance vRNP function to facilitate influenza A virus proliferation. NPJ VIRUSES 2024; 2:57. [PMID: 40295715 PMCID: PMC11721407 DOI: 10.1038/s44298-024-00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 04/30/2025]
Abstract
Influenza A virus (IAV) has developed multiple tactics to hinder the innate immune response including the epigenetic regulation during IAV infection, but the novel epigenetic factors and their mechanism in innate immunity remain well studied. Here, through a non-biased high-throughput sgRNA screening of 1041 known epigenetic modifiers in a cellular model of IAV-induced interferon-beta (IFN-β) production, we identified nei endonuclease VIII-like 1 (NEIL1) as a critical regulator of IFN-β in response to viral infection. Further studies showed that NEIL1 promoted the replication of the influenza virus by regulating the methylation of cytonuclear IFN-β promoter (mainly CpG-345), inhibiting the expression of IFN-β and IFN-stimulating genes. The structural domains of NEIL1, especially the catalytic domain, were critical for the suppression of IFN-β production, but the enzymatic activity of NEIL1 was dispensable. Furthermore, our results revealed that NEIL1 relied on interactions with the N- and C-terminus of the nucleoprotein (NP) of IAV, and NEIL1 expression facilitated the entry of the NP into the nucleus, which further enhanced the stability of the viral ribonucleoprotein (vRNP) complex and thus contributed to IAV replication and transcription. These findings reveal an enzyme-independent mechanism of host NEIL1 that negatively regulates IFN-β expression, thereby facilitating IAV propagation. Our study provides new insights into the roles of NEIL1, both in directly promoting virus replication and in evading innate immunity in IAV infection.
Collapse
Affiliation(s)
- Huixia Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xinyi Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Boxuan Yin
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
20
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
21
|
Zhu Y, Sullender ME, Campbell DE, Wang L, Lee S, Kawagishi T, Hou G, Dizdarevic A, Jais PH, Baldridge MT, Ding S. CRISPR/Cas9 screens identify key host factors that enhance rotavirus reverse genetics efficacy and vaccine production. NPJ Vaccines 2024; 9:211. [PMID: 39505878 PMCID: PMC11542071 DOI: 10.1038/s41541-024-01007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Rotaviruses pose a significant threat to young children. To identify novel pro- and anti-rotavirus host factors, we performed genome-wide CRISPR/Cas9 screens using rhesus rotavirus and African green monkey cells. Genetic deletion of either SERPINB1 or TMEM236, the top two antiviral factors, in MA104 cells increased virus titers in a rotavirus strain independent manner. Using this information, we optimized the existing rotavirus reverse genetics systems by combining SERPINB1 knockout MA104 cells with a C3P3-G3 helper plasmid. We improved the recovery efficiency and rescued several low-titer rotavirus reporter and mutant strains that prove difficult to rescue otherwise. Furthermore, we demonstrate that TMEM236 knockout in Vero cells supported higher yields of two live-attenuated rotavirus vaccine strains than the parental cell line and represents a more robust vaccine-producing cell substrate. Collectively, we developed a third-generation optimized rotavirus reverse genetics system and generated gene-edited Vero cells as a new substrate for improving rotavirus vaccine production.
Collapse
Affiliation(s)
- Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meagan E Sullender
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E Campbell
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanghyun Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alen Dizdarevic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe H Jais
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine 91000, Evry-Courcouronnes, France
| | - Megan T Baldridge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
22
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
23
|
Karakus U, Sempere Borau M, Martínez-Barragán P, von Kempis J, Yildiz S, Arroyo-Fernández LM, Pohl MO, Steiger JA, Glas I, Hunziker A, García-Sastre A, Stertz S. MHC class II proteins mediate sialic acid independent entry of human and avian H2N2 influenza A viruses. Nat Microbiol 2024; 9:2626-2641. [PMID: 39009691 DOI: 10.1038/s41564-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible. Here we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity in cell lines and primary human airway cultures. Using sialylation-deficient cells, we reveal that entry via MHC class II is independent of sialic acid. We find that MHC class II from humans, pigs, ducks, swans and chickens but not bats can mediate H2 IAV entry and that this is conserved in Eurasian avian H2. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II, and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.
Collapse
Affiliation(s)
- Umut Karakus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Julia A Steiger
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Li R, Yang F, Chu B, Kong D, Hu J, Qian H. Exploring retinal degenerative diseases through CRISPR-based screening. Mol Biol Rep 2024; 51:1029. [PMID: 39349793 DOI: 10.1007/s11033-024-09969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 02/06/2025]
Abstract
The CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein9) system has emerged as a powerful genetic tool, gaining global recognition as a versatile and efficient gene-editing technique. Its transformation into a high-throughput research platform, CRISPR Screening, has demonstrated wide applicability across various fields such as cancer biology, virology, and drug target discovery, resulting in significant advances. However, its potential in studying retinal degenerative diseases remains largely unexplored, despite the urgent need for effective treatments arising from an incomplete understanding of disease mechanisms. This review aims to present a comprehensive overview of the evolution and current state of CRISPR tools and CRISPR screening methodologies. Noteworthy pioneering studies utilizing these technologies are discussed, alongside experimental design guidelines, including positive and negative selection strategies and delivery methods for sgRNAs (single guide RNAs) and Cas proteins. Furthermore, we explore existing in vitro models appropriate for CRISPR screening in retinal research and identify relevant research questions that could be addressed through this approach. It is anticipated that this review will stimulate innovation in retinal research, facilitating a deeper comprehension of retinal pathophysiology and paving the way for groundbreaking therapeutic interventions and enhanced patient outcomes in the management of retinal degenerative disorders.
Collapse
Affiliation(s)
- Rui Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Boling Chu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dehua Kong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Liu P, Jiang J, Chen Y, Gao F, Wang S, Yu M, Liu Y, Guo R, Zhang L, Xu Z, Wang C, Qi X, Zhang Y, Cui H, Duan Y, Wu S, Gao Y. Identification of Cables1 as a critical host factor that promotes ALV-J replication via genome-wide CRISPR/Cas9 gene knockout screening. J Biol Chem 2024; 300:107804. [PMID: 39307305 PMCID: PMC11532952 DOI: 10.1016/j.jbc.2024.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Avian leukosis virus subgroup J (ALV-J), a member of the genus Alpharetrovirus, possesses a small genome and exploits a vast array of host factors during its replication cycle. To identify host factors required for ALV-J replication and potentially guide the development of key therapeutic targets for ALV-J prevention, we employed a chicken genome-wide CRISPR/Cas9 knockout library to screen host factors involved in ALV-J infection within DF-1 cells. This screening revealed 42 host factors critical for ALV-J infection. Subsequent knockout assays showed that the absence of the genes encoding cycle-regulatory proteins, namely, Cables1, CDK1, and DHFR, significantly inhibited ALV-J replication. Notably, Cables1 knockout cell lines displayed the most pronounced inhibitory effect. Conversely, overexpression assays confirmed that Cables1 significantly promotes ALV-J replication. Immunoprecipitation assays further indicated that Cables1 specifically interacts with the viral protein p15 (viral protease) among all ALV-J proteins, enhancing ALV-J p15 polyubiquitination. Additionally, we identified 26 lysine residues of ALV-J p15 as key sites for ubiquitination, and their replacement with arginine attenuated the replication ability of ALV-J in both in vitro and in vivo assays. This study demonstrates that Cables1 is a critical replication-dependent host factor of ALV-J by enhancing p15 ubiquitination and thereby promoting viral replication. Overall, these findings contribute to a deeper understanding of the ALJ-V replication mechanism and offer a potential target for the prevention and control of ALV-J infection.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jinghua Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yuntong Chen
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mengmeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongzhen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ru Guo
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Li Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhuangzhuang Xu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Caiying Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Xiaole Qi
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulu Duan
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China; Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China; National Poultry Laboratory Animal Resource Center, Harbin, PR China.
| |
Collapse
|
26
|
Yang Y, Wang Y, Campbell DE, Lee HW, Wang L, Baldridge M, López CB. SLC35A2 modulates paramyxovirus fusion events during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609835. [PMID: 39253522 PMCID: PMC11382999 DOI: 10.1101/2024.08.27.609835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuchen Wang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng-Wei Lee
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Frasson I, Diamante L, Zangrossi M, Carbognin E, Pietà AD, Penna A, Rosato A, Verin R, Torrigiani F, Salata C, Dizanzo MP, Vaccaro L, Cacchiarelli D, Richter SN, Montagner M, Martello G. Identification of druggable host dependency factors shared by multiple SARS-CoV-2 variants of concern. J Mol Cell Biol 2024; 16:mjae004. [PMID: 38305139 PMCID: PMC11411213 DOI: 10.1093/jmcb/mjae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent the development of resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Clustered regularly interspaced short palindromic repeats screening identified host genes required for each variant during infection. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed the US Food and Drug Administration-approved drugs. All the drugs were highly active against all the tested variants, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early viral replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanized mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Linda Diamante
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Manuela Zangrossi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Elena Carbognin
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Alessandro Penna
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua 35128, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | | | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples 80138, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Microbiology and Virology Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Montagner
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Graziano Martello
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| |
Collapse
|
28
|
Dupont M, Krischuns T, Gianetto QG, Paisant S, Bonazza S, Brault JB, Douché T, Arragain B, Florez-Prada A, Perez-Perri J, Hentze M, Cusack S, Matondo M, Isel C, Courtney D, Naffakh N. The RBPome of influenza A virus NP-mRNA reveals a role for TDP-43 in viral replication. Nucleic Acids Res 2024; 52:7188-7210. [PMID: 38686810 PMCID: PMC11229366 DOI: 10.1093/nar/gkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.
Collapse
Affiliation(s)
- Maud Dupont
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Jean-Baptiste Brault
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Benoît Arragain
- European Molecular Biology Laboratory, 38042Grenoble, France
| | | | | | | | - Stephen Cusack
- European Molecular Biology Laboratory, 38042Grenoble, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - David G Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| |
Collapse
|
29
|
Shen D, Zhang G, Weng X, Liu R, Liu Z, Sheng X, Zhang Y, Liu Y, Mu Y, Zhu Y, Sun E, Zhang J, Li F, Xia C, Ge J, Liu Z, Bu Z, Zhao D. A genome-wide CRISPR/Cas9 knockout screen identifies TMEM239 as an important host factor in facilitating African swine fever virus entry into early endosomes. PLoS Pathog 2024; 20:e1012256. [PMID: 39024394 PMCID: PMC11288436 DOI: 10.1371/journal.ppat.1012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/30/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.
Collapse
Affiliation(s)
- Dongdong Shen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guigen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Renqiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiheng Liu
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiangpeng Sheng
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiwen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
30
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
31
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Hu Y, Jiang L, Wang G, Song Y, Shan Z, Wang X, Deng G, Shi J, Tian G, Zeng X, Liu L, Chen H, Li C. M6PR interacts with the HA2 subunit of influenza A virus to facilitate the fusion of viral and endosomal membranes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:579-595. [PMID: 38038885 DOI: 10.1007/s11427-023-2471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor (M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR, the nuclear accumulation of viral nucleoprotein (NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking, or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin (HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes, thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR-HA interaction in the fusion of viral and late endosomal membranes during IAV replication.
Collapse
Affiliation(s)
- Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yangming Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhibo Shan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuyuan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
33
|
Dey S, Mondal A. Unveiling the role of host kinases at different steps of influenza A virus life cycle. J Virol 2024; 98:e0119223. [PMID: 38174932 PMCID: PMC10805039 DOI: 10.1128/jvi.01192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.
Collapse
Affiliation(s)
- Soumik Dey
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
34
|
Staheli JP, Neal ML, Navare A, Mast FD, Aitchison JD. Predicting host-based, synthetic lethal antiviral targets from omics data. NAR MOLECULAR MEDICINE 2024; 1:ugad001. [PMID: 38994440 PMCID: PMC11233254 DOI: 10.1093/narmme/ugad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024]
Abstract
Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Arti Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
35
|
Tan WS, Rong E, Dry I, Lillico SG, Law A, Digard P, Whitelaw B, Dalziel RG. GARP and EARP are required for efficient BoHV-1 replication as identified by a genome wide CRISPR knockout screen. PLoS Pathog 2023; 19:e1011822. [PMID: 38055775 PMCID: PMC10727446 DOI: 10.1371/journal.ppat.1011822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.
Collapse
Affiliation(s)
- Wenfang S. Tan
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Enguang Rong
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Inga Dry
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Simon G. Lillico
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andy Law
- Division of Genetics and Genomics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robert G. Dalziel
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
36
|
Liang CY, Huang I, Han J, Sownthirarajan B, Kulhankova K, Murray NB, Taherzadeh M, Archer-Hartmann S, Pepi L, Manivasagam S, Plung J, Sturtz M, Yu Y, Vogel OA, Kandasamy M, Gourronc FA, Klingelhutz AJ, Choudhury B, Rong L, Perez JT, Azadi P, McCray PB, Neelamegham S, Manicassamy B. Avian influenza A viruses exhibit plasticity in sialylglycoconjugate receptor usage in human lung cells. J Virol 2023; 97:e0090623. [PMID: 37843369 PMCID: PMC10688379 DOI: 10.1128/jvi.00906-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.
Collapse
Affiliation(s)
- Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| | - Iris Huang
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Nathan B. Murray
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mehrnoush Taherzadeh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lauren Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Jesse Plung
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Miranda Sturtz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| | - Yolanda Yu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olivia A. Vogel
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois, USA
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Paul B. McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, lowa, USA
| | - Sriram Neelamegham
- Department of Chemical and Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| |
Collapse
|
37
|
Du Y, Liu Y, Hu J, Peng X, Liu Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J Pharm Sci 2023; 18:100854. [PMID: 38089835 PMCID: PMC10711398 DOI: 10.1016/j.ajps.2023.100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2024] Open
Abstract
The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
38
|
Rømer TB, Khoder-Agha F, Aasted MKM, de Haan N, Horn S, Dylander A, Zhang T, Pallesen EMH, Dabelsteen S, Wuhrer M, Høgsbro CF, Thomsen EA, Mikkelsen JG, Wandall HH. CRISPR-screen identifies ZIP9 and dysregulated Zn2+ homeostasis as a cause of cancer-associated changes in glycosylation. Glycobiology 2023; 33:700-714. [PMID: 36648436 PMCID: PMC10627246 DOI: 10.1093/glycob/cwad003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION In epithelial cancers, truncated O-glycans, such as the Thomson-nouveau antigen (Tn) and its sialylated form (STn), are upregulated on the cell surface and associated with poor prognosis and immunological escape. Recent studies have shown that these carbohydrate epitopes facilitate cancer development and can be targeted therapeutically; however, the mechanism underpinning their expression remains unclear. METHODS To identify genes directly influencing the expression of cancer-associated O-glycans, we conducted an unbiased, positive-selection, whole-genome CRISPR knockout-screen using monoclonal antibodies against Tn and STn. RESULTS AND CONCLUSIONS We show that knockout of the Zn2+-transporter SLC39A9 (ZIP9), alongside the well-described targets C1GALT1 (C1GalT1) and its molecular chaperone, C1GALT1C1 (COSMC), results in surface-expression of cancer-associated O-glycans. No other gene perturbations were found to reliably induce O-glycan truncation. We furthermore show that ZIP9 knockout affects N-linked glycosylation, resulting in upregulation of oligo-mannose, hybrid-type, and α2,6-sialylated structures as well as downregulation of tri- and tetra-antennary structures. Finally, we demonstrate that accumulation of Zn2+ in the secretory pathway coincides with cell-surface presentation of truncated O-glycans in cancer tissue, and that over-expression of COSMC mitigates such changes. Collectively, the findings show that dysregulation of ZIP9 and Zn2+ induces cancer-like glycosylation on the cell surface by affecting the glycosylation machinery.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Koed Møller Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sabrina Horn
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - August Dylander
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Emil Marek Heymans Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Christine Flodgaard Høgsbro
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
39
|
Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, Platt OK, Sukhova K, Baillon L, Frise R, Peacock TP, Fodor E, Barclay WS. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nat Commun 2023; 14:6135. [PMID: 37816726 PMCID: PMC10564888 DOI: 10.1038/s41467-023-41308-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth. We find two mutations in different subunits of the influenza polymerase that enable the mutant virus to use a novel host factor, ANP32E, an alternative family member, which is unable to support the wild type polymerase. Both mutations reside in the symmetric dimer interface between two polymerase complexes and reduce polymerase dimerization. These mutations have previously been identified as adapting influenza viruses to mice. Indeed, the evolved virus gains the ability to use suboptimal mouse ANP32 proteins and becomes more virulent in mice. We identify further mutations in the symmetric dimer interface which we predict allow influenza to adapt to use suboptimal ANP32 proteins through a similar mechanism. Overall, our results suggest a balance between asymmetric and symmetric dimers of influenza virus polymerase that is influenced by the interaction between polymerase and ANP32 host proteins.
Collapse
Affiliation(s)
- Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Penn
- Department of Infectious Disease, Imperial College London, London, UK
| | - Olivia K Platt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
40
|
Sun H, Tu S, Luo D, Dai C, Jin M, Chen H, Zou J, Zhou H. Protein arginine methyltransferase 5 mediates arginine symmetric dimethylation of influenza A virus PB2 and supports viral replication. J Med Virol 2023; 95:e29171. [PMID: 37830751 DOI: 10.1002/jmv.29171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.
Collapse
Affiliation(s)
- Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Didan Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Dai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
41
|
Srivastava K, Pandit B. Genome-wide CRISPR screens and their applications in infectious disease. Front Genome Ed 2023; 5:1243731. [PMID: 37794981 PMCID: PMC10546192 DOI: 10.3389/fgeed.2023.1243731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Inactivation or targeted disruption of a gene provides clues to assess the function of the gene in many cellular processes. Knockdown or knocking out a gene has been widely used for this purpose. However, recently CRISPR mediated genome editing has taken over the knockout/knockdown system with more precision. CRISPR technique has enabled us to perform targeted mutagenesis or genome editing to address questions in fundamental biology to biomedical research. Its application is wide in understanding the role of genes in the disease process, and response to therapy in cancer, metabolic disorders, or infectious disease. In this article, we have focused on infectious disease and how genome-wide CRISPR screens have enabled us to identify host factors involved in the process of infection. Understanding the biology of the host-pathogen interaction is of immense importance in planning host-directed therapy to improve better management of the disease. Genome-wide CRISPR screens provide strong mechanistic ways to identify the host dependency factors involved in various infections. We presented insights into genome-wide CRISPR screens conducted in the context of infectious diseases both viral and bacterial that led to better understanding of host-pathogen interactions and immune networks. We have discussed the advancement of knowledge pertaining to influenza virus, different hepatitis viruses, HIV, most recent SARS CoV2 and few more. Among bacterial diseases, we have focused on infection with life threatening Mycobacteria, Salmonella, S. aureus, etc. It appears that the CRISPR technique can be applied universally to multiple infectious disease models to unravel the role of known or novel host factors.
Collapse
Affiliation(s)
| | - Bhaswati Pandit
- National Institute of Biomedical Genomics (NIBMG), Calcutta, West Bengal, India
| |
Collapse
|
42
|
Cao L, Hui X, Xu T, Mao H, Lin X, Huang K, Zhao L, Jin M. The RNA-Splicing Ligase RTCB Promotes Influenza A Virus Replication by Suppressing Innate Immunity via Interaction with RNA Helicase DDX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1020-1031. [PMID: 37556111 PMCID: PMC10476163 DOI: 10.4049/jimmunol.2200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
The RNA-splicing ligase RNA 2',3'-cyclic phosphate and 5'-OH ligase (RTCB) is a catalytic subunit of the tRNA-splicing ligase complex, which plays an essential role in catalyzing tRNA splicing and modulating the unfolded protein response. However, the function of RTCB in influenza A virus (IAV) replication has not yet been described. In this study, RTCB was revealed to be an IAV-suppressed host factor that was significantly downregulated during influenza virus infection in several transformed cell lines, as well as in primary human type II alveolar epithelial cells, and its knockout impaired the propagation of the IAV. Mechanistically, RTCB depletion led to a robust elevation in the levels of type I and type III IFNs and proinflammatory cytokines in response to IAV infection, which was confirmed by RTCB overexpression studies. Lastly, RTCB was found to compete with DDX21 for RNA helicase DDX1 binding, attenuating the DDX21-DDX1 association and thus suppressing the expression of IFN and downstream IFN-stimulated genes. Our study indicates that RTCB plays a critical role in facilitating IAV replication and reveals that the RTCB-DDX1 binding interaction is an important innate immunomodulator for the host to counteract viral infection.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lianzhong Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- China Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
43
|
King CR, Liu Y, Amato KA, Schaack GA, Mickelson C, Sanders AE, Hu T, Gupta S, Langlois RA, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. Cell Host Microbe 2023; 31:1552-1567.e8. [PMID: 37652009 PMCID: PMC10528757 DOI: 10.1016/j.chom.2023.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Host:pathogen interactions dictate the outcome of infection, yet the limitations of current approaches leave large regions of this interface unexplored. Here, we develop a novel fitness-based screen that queries factors important during the middle to late stages of infection. This is achieved by engineering influenza virus to direct the screen by programming dCas9 to modulate host gene expression. Our genome-wide screen for pro-viral factors identifies the cytoplasmic DNA exonuclease TREX1. TREX1 degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self-DNA. We reveal that this same process aids influenza virus replication. Infection triggers release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolizes the DNA, preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify innate immunity, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen-driven fitness-based screens to pinpoint key host regulators of infection.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clayton Mickelson
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Autumn E Sanders
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srishti Gupta
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
44
|
Pagis A, Alfi O, Kinreich S, Yilmaz A, Hamdan M, Gadban A, Panet A, Wolf DG, Benvenisty N. Genome-wide loss-of-function screen using human pluripotent stem cells to study virus-host interactions for SARS-CoV-2. Stem Cell Reports 2023; 18:1766-1774. [PMID: 37703821 PMCID: PMC10545482 DOI: 10.1016/j.stemcr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, has become a global health concern. Therefore, there is an immense need to understand the network of virus-host interactions by using human disease-relevant cells. We have thus conducted a loss-of-function genome-wide screen using haploid human embryonic stem cells (hESCs) to identify genes involved in SARS-CoV-2 infection. Although the undifferentiated hESCs are resistant to SARS-CoV-2, their differentiated definitive endoderm (DE) progenies, which express high levels of ACE2, are highly sensitive to the virus. Our genetic screening was able to identify the well-established entry receptor ACE2 as a host factor, along with additional potential novel modulators of SARS-CoV-2. Two such novel screen hits, the transcription factor MAFG and the transmembrane protein TMEM86A, were further validated as conferring resistance against SARS-CoV-2 by using CRISPR-mediated mutagenesis in hESCs, followed by differentiation of mutant lines into DE cells and infection by SARS-CoV-2. Our genome-wide genetic screening investigated SARS-CoV-2 host factors in non-cancerous human cells with endogenous ACE2 expression, providing a unique platform to identify novel modulators of SARS-CoV-2 cytopathology in human cells.
Collapse
Affiliation(s)
- Ariel Pagis
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Or Alfi
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Lautenberg Center for General and Tumor Immunology, The Hebrew University, Jerusalem 91121, Israel
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Leuven Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Marah Hamdan
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Aseel Gadban
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amos Panet
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem 91121, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Lautenberg Center for General and Tumor Immunology, The Hebrew University, Jerusalem 91121, Israel.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
45
|
Cheng X, Yang W, Lin W, Mei F. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Pharmacol Rev 2023; 75:979-1006. [PMID: 37137717 PMCID: PMC10441629 DOI: 10.1124/pharmrev.122.000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Lin
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fang Mei
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
46
|
Pannhorst K, Carlson J, Hölper JE, Grey F, Baillie JK, Höper D, Wöhnke E, Franzke K, Karger A, Fuchs W, Mettenleiter TC. The non-classical major histocompatibility complex II protein SLA-DM is crucial for African swine fever virus replication. Sci Rep 2023; 13:10342. [PMID: 37604847 PMCID: PMC10442341 DOI: 10.1038/s41598-023-36788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/09/2023] [Indexed: 08/23/2023] Open
Abstract
African swine fever virus (ASFV) is a lethal animal pathogen that enters its host cells through endocytosis. So far, host factors specifically required for ASFV replication have been barely identified. In this study a genome-wide CRISPR/Cas9 knockout screen in porcine cells indicated that the genes RFXANK, RFXAP, SLA-DMA, SLA-DMB, and CIITA are important for productive ASFV infection. The proteins encoded by these genes belong to the major histocompatibility complex II (MHC II), or swine leucocyte antigen complex II (SLA II). RFXAP and CIITA are MHC II-specific transcription factors, whereas SLA-DMA/B are subunits of the non-classical MHC II molecule SLA-DM. Targeted knockout of either of these genes led to severe replication defects of different ASFV isolates, reflected by substantially reduced plating efficiency, cell-to-cell spread, progeny virus titers and viral DNA replication. Transgene-based reconstitution of SLA-DMA/B fully restored the replication capacity demonstrating that SLA-DM, which resides in late endosomes, plays a crucial role during early steps of ASFV infection.
Collapse
Affiliation(s)
- Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Jolene Carlson
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
- Ceva Animal Health, Greifswald-Insel Riems, Germany
| | - Julia E Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Finn Grey
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
47
|
Staheli JP, Neal ML, Navare A, Mast FD, Aitchison JD. Predicting host-based, synthetic lethal antiviral targets from omics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553430. [PMID: 37645861 PMCID: PMC10462099 DOI: 10.1101/2023.08.15.553430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Traditional antiviral therapies often have limited effectiveness due to toxicity and development of drug resistance. Host-based antivirals, while an alternative, may lead to non-specific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR KO screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting SL drug targets of viral infections. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Comparing data from SARS-CoV-2 and influenza infections, we found possible broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.
Collapse
Affiliation(s)
- Jeannette P. Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - Arti Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| |
Collapse
|
48
|
Mazel-Sanchez B, Niu C, Williams N, Bachmann M, Choltus H, Silva F, Serre-Beinier V, Karenovics W, Iwaszkiewicz J, Zoete V, Kaiser L, Hartley O, Wehrle-Haller B, Schmolke M. Influenza A virus exploits transferrin receptor recycling to enter host cells. Proc Natl Acad Sci U S A 2023; 120:e2214936120. [PMID: 37192162 PMCID: PMC10214170 DOI: 10.1073/pnas.2214936120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/07/2023] [Indexed: 05/18/2023] Open
Abstract
Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.
Collapse
Affiliation(s)
- Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Chengyue Niu
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Hélèna Choltus
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | | | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
- Computer-Aided Molecular Engineering Group, Department of Oncology (University of Lausanne and the Lausanne University Hospital), Ludwig Institute for Cancer Research Lausanne, 1066Épalinges, Switzerland
| | - Laurent Kaiser
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Geneva Center of Inflammation Research, University of Geneva, 1211Geneva, Switzerland
| |
Collapse
|
49
|
Zhou A, Zhang W, Wang B. Host factor TNK2 is required for influenza virus infection. Genes Genomics 2023; 45:771-781. [PMID: 37133719 DOI: 10.1007/s13258-023-01384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Host factors are required for Influenza virus infection and have great potential to become antiviral target. OBJECTIVE Here we demonstrate the role of TNK2 in influenza virus infection. CRISPR/Cas9 induced TNK2 deletion in A549 cells. METHODS CRISPR/Cas9-mediated deletion of TNK2. Western blotting and qPCR was used to measure the expression of TNK2 and other proteins. RESULTS CRISPR/Cas9-mediated deletion of TNK2 decreased the replication of influenza virus and significantly inhibited the ex-pression of viral proteins and TNK2 inhibitors (XMD8-87 and AIM-100) reduced the expression of influenza M2, while over-expression of TNK2 weakened the resistance of TNK2-knockout cells to influenza virus infection. Furthermore, a decrease of nuclear import of IAV in the infected TNK2 mutant cells was observed in 3 h post-infection. Interestingly, TNK2 deletion enhanced the colocalization of LC3 with autophagic receptor p62 and led to the attenuation of influenza virus-caused accumulation of autophagosomes in TNK2 mutant cells. Further, confocal microscopy visualization result showed that influenza viral matrix 2 (M2) was colocalized with Lamp1 in the infected TNK2 mutant cells in early infection, while almost no colocalization between M2 and Lamp1 was observed in IAV-infected wild-type cells. Moreover, TNK2 depletion also affected the trafficking of early endosome and the movement of influenza viral NP and M2. CONCLUSION Our results identified TNK2 as a critical host factor for influenza viral M2 protein trafficking, suggesting that TNK2 will be an attractive target for the development of antivirals therapeutics.
Collapse
Affiliation(s)
- Ao Zhou
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Hubei Wuhan, Hubei, 430023, China.
| | - Wenhua Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Hubei Wuhan, Hubei, 430023, China
| | - Baoxin Wang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Hubei Wuhan, Hubei, 430023, China
| |
Collapse
|
50
|
Chien YAA, Alford BK, Wasik BR, Weichert WS, Parrish CR, Daniel S. Single Particle Analysis of H3N2 Influenza Entry Differentiates the Impact of the Sialic Acids (Neu5Ac and Neu5Gc) on Virus Binding and Membrane Fusion. J Virol 2023; 97:e0146322. [PMID: 36779754 PMCID: PMC10062150 DOI: 10.1128/jvi.01463-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/18/2023] [Indexed: 02/14/2023] Open
Abstract
Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry. Neu5Gc is commonly found in many natural influenza hosts, including pigs and horses, but not in humans or ferrets. Here, we engineered HEK293 cells to express the hydoxylase gene (CMAH) that converts Neu5Ac to Neu5Gc, or knocked out the Sia-CMP transport gene (SLC35A1), resulting in cells that express 95% Neu5Gc or minimal level of Sias, respectively. H3N2 (X-31) showed significantly reduced infectivity in Neu5Gc-rich cells compared to wild-type HEK293 (>95% Neu5Ac). To determine the effects on binding and fusion, we generated supported lipid bilayers (SLBs) derived from the plasma membranes of these cells and carried out single particle microscopy. H3N2 (X-31) exhibited decreased binding to Neu5Gc-containing SLBs, but no significant difference in H3N2 (X-31)'s fusion kinetics to either SLB type, suggesting that reduced receptor binding does not affect subsequent membrane fusion. This finding suggests that for this virus to adapt to host cells rich in Neu5Gc, only receptor affinity changes are required without further adaptation of virus fusion machinery. IMPORTANCE Influenza A virus (IAV) infections continue to threaten human health, causing over 300,000 deaths yearly. IAV infection is initiated by the binding of influenza glycoprotein hemagglutinin (HA) to host cell sialic acids (Sias) and the subsequent viral-host membrane fusion. Generally, human IAVs preferentially bind to the Sia N-acetylneuraminic acid (Neu5Ac). Yet, other mammalian hosts, including pigs, express diverse nonhuman Sias, including N-glycolylneuraminic acid (Neu5Gc). The role of Neu5Gc in human IAV infections in those hosts is not well-understood, and the variant form may play a role in incidents of cross-species transmission and emergence of new epidemic variants. Therefore, it is important to investigate how human IAVs interact with Neu5Ac and Neu5Gc. Here, we use membrane platforms that mimic the host cell surface to examine receptor binding and membrane fusion events of human IAV H3N2. Our findings improve the understanding of viral entry mechanisms that can affect host tropism and virus evolution.
Collapse
Affiliation(s)
- Yu-An Annie Chien
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Brynn K. Alford
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Brian R. Wasik
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Wendy S. Weichert
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Colin R. Parrish
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Susan Daniel
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|