1
|
She H, Zheng J, Zhao G, Du Y, Tan L, Chen ZS, Wu Y, Li Y, Liu Y, Sun Y, Hu Y, Zuo D, Mao Q, Liu L, Li T. Arginase 1 drives mitochondrial cristae remodeling and PANoptosis in ischemia/hypoxia-induced vascular dysfunction. Signal Transduct Target Ther 2025; 10:167. [PMID: 40425583 PMCID: PMC12117058 DOI: 10.1038/s41392-025-02255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Ischemic/hypoxic injury significantly damages vascular function, detrimentally impacting patient outcomes. Changes in mitochondrial structure and function are closely associated with ischemia/hypoxia-induced vascular dysfunction. The mechanism of this process remains elusive. Using rat models of ischemia and hypoxic vascular smooth muscle cells (VSMCs), we combined transmission electron microscopy, super-resolution microscopy, and metabolic analysis to analyze the structure and function change of mitochondrial cristae. Multi-omics approaches revealed arginase 1 (Arg1) upregulation in ischemic VSMCs, confirmed by in vivo and in vitro knockout models showing Arg1's protective effects on mitochondrial cristae, mitochondrial and vascular function, and limited the release of mtDNA. Mechanistically, Arg1 interacting with Mic10 led to mitochondrial cristae remodeling, together with hypoxia-induced VDAC1 lactylation resulting in the opening of MPTP and release of mtDNA of VSMCs. The released mtDNA led to PANoptosis of VSMCs via activation of the cGAS-STING pathway. ChIP-qPCR results demonstrated that lactate-mediated Arg1 up-regulation was due to H3K18la upregulation. VSMCs targeted nano-material PLGA-PEI-siRNA@PM-α-SMA (NP-siArg1) significantly improved vascular dysfunction. This study uncovers a new mechanism of vascular dysfunction following ischemic/hypoxic injury: a damaging positive feedback loop mediated by lactate-regulated Arg1 expression between the nucleus and mitochondria, leading to mitochondria cristae disorder and mtDNA release, culminating in VSMCs PANoptosis. Targeting VSMCs Arg1 inhibition offers a potential therapeutic strategy to alleviate ischemia/hypoxia-induced vascular impairments.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yiyan Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yue Sun
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
- Department of Research and Development, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China.
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Liangming Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Tao Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
VanPortfliet JJ, Lei Y, Ramanathan M, Martinez CG, Wong J, Stodola TJ, Hoffmann BR, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. Nat Commun 2025; 16:4640. [PMID: 40393978 PMCID: PMC12092707 DOI: 10.1038/s41467-025-59907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBP) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive cytokine secretion and activation of pyroptotic cell death pathways contribute to lung inflammation and morbidity after infection with PA. Our work provides a mechanistic framework for understanding innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | | | | | | | - Kathryn Pflug
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | | | | | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
3
|
Zhang H, Jiang H, Xie W, Qian B, Long Q, Qi Z, Huang S, Zhong Y, Zhang Y, Chang L, Zhang J, Zhao Q, Wang X, Ye X. LNPs-mediated VEGF-C mRNA delivery promotes heart repair and attenuates inflammation by stimulating lymphangiogenesis post-myocardial infarction. Biomaterials 2025; 322:123410. [PMID: 40393374 DOI: 10.1016/j.biomaterials.2025.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
Myocardial infarction (MI) initiates a strong inflammatory response, leading to adverse ventricular remodeling. The reconstruction of functional lymphatic networks is indispensable for relieving myocardial edema and regulating post-infarction inflammation. However, conventional protein-based therapies and viral delivery systems aimed at promoting lymphangiogenesis in the heart have shown limited therapeutic efficacy due to their inherent limitations. In this study, a lipid nanoparticle (LNP) platform encapsulating VEGF-C mRNA was developed as a novel approach to regulate gene expression and stimulate sustained lymphatic neogenesis after MI. Intramyocardial delivery of VEGF-C mRNA-loaded LNPs significantly promoted lymphangiogenesis, reduced the infiltration of inflammatory cells, and inhibited pro-inflammatory and fibrosis-associated signaling pathways. This ultimately resulted in a substantial reduction in the fibrotic area and improved functional recovery. Our findings demonstrated that VEGF-C mRNA@LNPs repair myocardial ischemic injury by facilitating immune modulation through lymphatic neogenesis, offering a promising new therapeutic strategy with strong translational potential for treating myocardial infarction.
Collapse
Affiliation(s)
- Haonan Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weichang Xie
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Chang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
5
|
Gu F, Huang D, Li R, Peng L, Huan T, Ye K, Bian Z, Yin W. Roles of Pyroptosis in the Progression of Pulpitis and Apical Periodontitis. J Inflamm Res 2025; 18:3361-3375. [PMID: 40084091 PMCID: PMC11905803 DOI: 10.2147/jir.s507198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Pyroptosis is a type of programmed cell death that induces proinflammatory cytokine release and is closely related to inflammatory diseases. Pulpitis and apical periodontitis are common inflammatory diseases that lead to alveolar bone destruction and tooth loss. Recent studies have revealed that pyroptosis is crucial in the progression of pulpitis and apical periodontitis, which involves various cell types and leads to different results. Odontoblasts are located at the periphery of dental pulp tissue and are susceptible to various irritants, the lysates from odontoblasts act as alerts and induce immune reactions in the inner pulp after pyroptosis. The expression levels of inflammasomes in dental pulp cells (DPCs) change with the progression of pulpitis, which may serve as a diagnostic marker of pulpitis. Periodontal ligament fibroblasts (PDLFs) undergo pyroptosis when stimulated by bacterial infection or cyclic stretch and are associated with both infection-induced and trauma-induced apical periodontitis. Immune cells can undergo pyroptosis directly after infection or are influenced by the pyroptotic secretome of other cells, which changes their composition. In this review, we briefly introduce the location and function of different cell types involved in the progression of pulpitis and apical periodontitis, summarize the roles of pyroptosis in different cells, and discuss the effects of drugs targeting pyroptosis in the treatment of pulpitis and apical periodontitis.
Collapse
Affiliation(s)
- Fan Gu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Delan Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Ruiqi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Linlin Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Tingting Huan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Kaili Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Zhuan Bian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Wei Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| |
Collapse
|
6
|
VanPortfliet JJ, Lei Y, Ramanathan M, Martinez CG, Wong J, Stodola TJ, Hoffmann BR, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this vulnerable population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive cytokine secretion and activation of pyroptotic cell death pathways contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J. VanPortfliet
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Jessica Wong
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | - Kathryn Pflug
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | | | | | - Peter. J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carolyn L. Cannon
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - A. Phillip West
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| |
Collapse
|
7
|
Torres-Escobar A, Wilkins A, Juárez-Rodríguez MD, Circu M, Latimer B, Dragoi AM, Ivanov SS. Iron-depleting nutritional immunity controls extracellular bacterial replication in Legionella pneumophila infections. Nat Commun 2024; 15:7848. [PMID: 39245746 PMCID: PMC11381550 DOI: 10.1038/s41467-024-52184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
The accidental human pathogen Legionella pneumophila (Lp) is the etiological agent for a severe atypical pneumonia known as Legionnaires' disease. In human infections and animal models of disease alveolar macrophages are the primary cellular niche that supports bacterial replication within a unique intracellular membrane-bound organelle. The Dot/Icm apparatus-a type IV secretion system that translocates ~300 bacterial proteins within the cytosol of the infected cell-is a central virulence factor required for intracellular growth. Mutant strains lacking functional Dot/Icm apparatus are transported to and degraded within the lysosomes of infected macrophages. The early foundational work from Dr. Horwitz's group unequivocally established that Legionella does not replicate extracellularly during infection-a phenomenon well supported by experimental evidence for four decades. Our data challenges this paradigm by demonstrating that macrophages and monocytes provide the necessary nutrients and support robust Legionella extracellular replication. We show that the previously reported lack of Lp extracellular replication is not a bacteria intrinsic feature but rather a result of robust restriction by serum-derived nutritional immunity factors. Specifically, the host iron-sequestering protein Transferrin is identified here as a critical suppressor of Lp extracellular replication in an iron-dependent manner. In iron-overload conditions or in the absence of Transferrin, Lp bypasses growth restriction by IFNγ-primed macrophages though extracellular replication. It is well established that certain risk factors associated with development of Legionnaires' disease, such as smoking, produce a chronic pulmonary environment of iron-overload. Our work indicates that iron-overload could be an important determinant of severe infection by allowing Lp to overcome nutritional immunity and replicate extracellularly, which in turn would circumvent intracellular cell intrinsic host defenses. Thus, we provide evidence for nutritional immunity as a key underappreciated host defense mechanism in Legionella pathogenesis.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ashley Wilkins
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Bacterial Physiology and Metabolism Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - María D Juárez-Rodríguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
| |
Collapse
|
8
|
Bai D, Zhou C, Du J, Zhao J, Gu C, Wang Y, Zhang L, Lu N, Zhao Y. TrxR1 is involved in the activation of Caspase-11 by regulating the oxidative-reductive status of Trx-1. Redox Biol 2024; 75:103277. [PMID: 39059206 PMCID: PMC11327437 DOI: 10.1016/j.redox.2024.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis is a common complication of infections that significantly impacts the survival of critically patients. Currently, effective pharmacological treatment strategies are lacking. Auranofin, known as an inhibitor of Thioredoxin reductase (TrxR), exhibits anti-inflammatory activity, but its role in sepsis is not well understood. Here, we demonstrate the significant inhibitory effect of Auranofin on sepsis in a cecal ligation and puncture (CLP) mouse model. In vitro, Auranofin inhibits pyroptosis triggered by Caspase-11 activation. Further investigations reveal that inhibiting TrxR1 suppresses macrophage pyroptosis induced by E. coli, while TrxR2 does not exhibit this effect. TrxR1, functioning as a reductase, regulates the oxidative-reductive status of Thioredoxin-1 (Trx-1). Mechanistically, the modulation of Trx-1's reductive activity by TrxR1 may be involved in Caspase-11 activation-induced pyroptosis. Additionally, inhibiting TrxR1 maintains Trx-1 in its oxidized state. The oxidized form of Trx-1 interacts with Caveolin-1 (CAV1), regulating outer membrane vesicle (OMV) internalization. In summary, our study suggests that inhibiting TrxR1 suppresses OMV internalization by maintaining the oxidized form of Trx-1, thereby restricting Caspase-11 activation and alleviating sepsis.
Collapse
Affiliation(s)
- Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chen Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jiaying Du
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jiawei Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chunyang Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - YuXiang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lulu Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
9
|
Tessema MB, Feng S, Enosi Tuipulotu D, Farrukee R, Ngo C, Gago da Graça C, Yamomoto M, Utzschneider DT, Brooks AG, Londrigan SL, Man SM, Reading PC. Mouse guanylate-binding proteins of the chromosome 3 cluster do not mediate antiviral activity in vitro or in mouse models of infection. Commun Biol 2024; 7:1050. [PMID: 39183326 PMCID: PMC11345437 DOI: 10.1038/s42003-024-06748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-like GTPase proteins, including myxoma (Mx) and guanylate-binding proteins (GBPs), are among the many interferon stimulated genes induced following viral infections. While studies report that human (h)GBPs inhibit different viruses in vitro, few have convincingly demonstrated that mouse (m)GBPs mediate antiviral activity, although mGBP-deficient mice have been used extensively to define their importance in immunity to diverse intracellular bacteria and protozoa. Herein, we demonstrate that individual (overexpression) or collective (knockout (KO) mice) mGBPs of the chromosome 3 cluster (mGBPchr3) do not inhibit replication of five viruses from different virus families in vitro, nor do we observe differences in virus titres recovered from wild type versus mGBPchr3 KO mice after infection with three of these viruses (influenza A virus, herpes simplex virus type 1 or lymphocytic choriomeningitis virus). These data indicate that mGBPchr3 do not appear to be a major component of cell-intrinsic antiviral immunity against the diverse viruses tested in our studies.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Masahiro Yamomoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| |
Collapse
|
10
|
Mascarenhas DP, Zamboni DS. Innate immune responses and monocyte-derived phagocyte recruitment in protective immunity to pathogenic bacteria: insights from Legionella pneumophila. Curr Opin Microbiol 2024; 80:102495. [PMID: 38908045 DOI: 10.1016/j.mib.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
Legionella species are Gram-negative intracellular bacteria that evolved in soil and freshwater environments, where they infect and replicate within various unicellular protozoa. The primary virulence factor of Legionella is the expression of a type IV secretion system (T4SS), which contributes to the translocation of effector proteins that subvert biological processes of the host cells. Because of its evolution in unicellular organisms, T4SS effector proteins are not adapted to subvert specific mammalian signaling pathways and immunity. Consequently, Legionella pneumophila has emerged as an interesting infection model for investigating immune responses against pathogenic bacteria in multicellular organisms. This review highlights recent advances in our understanding of mammalian innate immunity derived from studies involving L. pneumophila. This includes recent insights into inflammasome-mediated mechanisms restricting bacterial replication in macrophages, mechanisms inducing cell death in response to infection, induction of effector-triggered immunity, activation of specific pulmonary cell types in mammalian lungs, and the protective role of recruiting monocyte-derived cells to infected lungs.
Collapse
Affiliation(s)
- Danielle Pa Mascarenhas
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
11
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Marinho FV, Brito C, de Araujo ACVSC, Oliveira SC. Guanylate-binding protein-5 is involved in inflammasome activation by bacterial DNA but only the cooperation of multiple GBPs accounts for control of Brucella abortus infection. Front Immunol 2024; 15:1341464. [PMID: 38404575 PMCID: PMC10885698 DOI: 10.3389/fimmu.2024.1341464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Guanylate-binding proteins (GBPs) are produced in response to pro-inflammatory signals, mainly interferons. The most studied cluster of GBPs in mice is on chromosome 3. It comprises the genes for GBP1-to-3, GBP5 and GBP7. In humans, all GBPs are present in a single cluster on chromosome 1. Brucella abortus is a Gram-negative bacterium known to cause brucellosis, a debilitating disease that affects both humans and animals. Our group demonstrated previously that GBPs present on murine chromosome 3 (GBPchr3) is important to disrupt Brucella-containing vacuole and GBP5 itself is important to Brucella intracellular LPS recognition. In this work, we investigated further the role of GBPs during B. abortus infection. Methods and results We observed that all GBPs from murine chromosome 3 are significantly upregulated in response to B. abortus infection in mouse bone marrow-derived macrophages. Of note, GBP5 presents the highest expression level in all time points evaluated. However, only GBPchr3-/- cells presented increased bacterial burden compared to wild-type macrophages. Brucella DNA is an important Pathogen-Associated Molecular Pattern that could be available for inflammasome activation after BCV disruption mediated by GBPs. In this regard, we observed reduced IL-1β production in the absence of GBP2 or GBP5, as well as in GBPchr3-/- murine macrophages. Similar result was showed by THP-1 macrophages with downregulation of GBP2 and GBP5 mediated by siRNA. Furthermore, significant reduction on caspase-1 p20 levels, LDH release and Gasdermin-D conversion into its mature form (p30 N-terminal subunit) was observed only in GBPchr3-/- macrophages. In an in vivo perspective, we found that GBPchr3-/- mice had increased B. abortus burden and higher number of granulomas per area of liver tissue, indicating increased disease severity. Discussion/conclusion Altogether, these results demonstrate that although GBP5 presents a high expression pattern and is involved in inflammasome activation by bacterial DNA in macrophages, the cooperation of multiple GBPs from murine chromosome 3 is necessary for full control of Brucella abortus infection.
Collapse
Affiliation(s)
- Fabio V. Marinho
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Brito
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina V. S. C. de Araujo
- Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências Biomédicas, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio C. Oliveira
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências Biomédicas, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
14
|
Bass AR, Egan MS, Alexander-Floyd J, Lopes Fischer N, Doerner J, Shin S. Human GBP1 facilitates the rupture of the Legionella-containing vacuole and inflammasome activation. mBio 2023; 14:e0170723. [PMID: 37737612 PMCID: PMC10653807 DOI: 10.1128/mbio.01707-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Inflammasomes are essential for host defense against intracellular bacterial pathogens like Legionella, as they activate caspases, which promote cytokine release and cell death to control infection. In mice, interferon (IFN) signaling promotes inflammasome responses against bacteria by inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the Legionella-containing vacuole (LCV), while GBPs are dispensable for this process. Instead, GBPs facilitate the lysis of cytosol-exposed Legionella. In contrast, the functions of IFN and GBPs in human inflammasome responses to Legionella are poorly understood. We show that IFN-γ enhances inflammasome responses to Legionella in human macrophages. Human GBP1 is required for these IFN-γ-driven inflammasome responses. Furthermore, GBP1 co-localizes with Legionella and/or LCVs in a type IV secretion system (T4SS)-dependent manner and promotes damage to the LCV, which leads to increased exposure of the bacteria to the host cell cytosol. Thus, our findings reveal species- and pathogen-specific differences in how GBPs function to promote inflammasome responses.
Collapse
Affiliation(s)
- Antonia R. Bass
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Egan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jasmine Alexander-Floyd
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Lopes Fischer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Doerner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Xu Y, Chen C, Liao Z, Xu P. cGAS-STING signaling in cell death: Mechanisms of action and implications in pathologies. Eur J Immunol 2023; 53:e2350386. [PMID: 37424054 DOI: 10.1002/eji.202350386] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) monitors dsDNA in the cytosol in response to pathogenic invasion or tissue injury, initiating cGAS-STING signaling cascades that regulate various cellular physiologies, including IFN /cytokine production, autophagy, protein synthesis, metabolism, senescence, and distinct types of cell death. cGAS-STING signaling is crucial for host defense and tissue homeostasis; however, its dysfunction frequently leads to infectious, autoimmune, inflammatory, degenerative, and cancerous diseases. Our knowledge regarding the relationships between cGAS-STING signaling and cell death is rapidly evolving, highlighting their essential roles in pathogenesis and disease progression. Nevertheless, the direct control of cell death by cGAS-STING signaling, rather than IFN/NF-κB-mediated transcriptional regulation, remains relatively unexplored. This review examines the mechanistic interplays between cGAS-STING cascades and apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagic/lysosomal cell death. We will also discuss their pathological implications in human diseases, particularly in autoimmunity, cancer, and organ injury scenarios. We hope that this summary will stimulate discussion for further exploration of the complex life-or-death responses to cellular damage mediated by cGAS-STING signaling.
Collapse
Affiliation(s)
- Yifan Xu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center (HIC-ZJU), Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Kim S, Isberg RR. The Sde phosphoribosyl-linked ubiquitin transferases protect the Legionella pneumophila vacuole from degradation by the host. Proc Natl Acad Sci U S A 2023; 120:e2303942120. [PMID: 37549300 PMCID: PMC10437418 DOI: 10.1073/pnas.2303942120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
Legionella pneumophila grows intracellularly within the membrane-bound Legionella-containing vacuole (LCV) established by proteins translocated via the bacterial type IV secretion system (T4SS). The Sde family, one such group of translocated proteins, catalyzes phosphoribosyl-ubiquitin (pR-Ub) modification of target substrates. Mutational loss of the entire Sde family results in small defects in intracellular growth, making it difficult to identify a clear role for this posttranslational modification in supporting the intracellular lifestyle. Therefore, mutations that aggravate the loss of sde genes and caused intracellular growth defects were identified, providing a mechanistic connection between Sde function and vacuole biogenesis. These double mutants drove the formation of LCVs that showed vacuole disintegration within 2 h of bacterial contact. Sde proteins appeared critical for blocking access of membrane-disruptive early endosomal membrane material to the vacuole, as RNAi depletion of endosomal pathway components partially restored LCV integrity. The role of Sde proteins in preventing host degradation of the LCV was limited to the earliest stages of infection. The time that Sde proteins could prevent vacuole disruption, however, was extended by deletion of sidJ, which encodes a translocated protein that inactivates Sde protein active sites. These results indicate that Sde proteins act as temporally regulated vacuole guards during the establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments during the earliest steps of LCV biogenesis.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| |
Collapse
|
17
|
Wei ZY, Wang ZX, Li JH, Wen YS, Gao D, Xia SY, Li YN, Pan XB, Liu YS, Jin YY, Chen JH. Host A-to-I RNA editing signatures in intracellular bacterial and single-strand RNA viral infections. Front Immunol 2023; 14:1121096. [PMID: 37081881 PMCID: PMC10112020 DOI: 10.3389/fimmu.2023.1121096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundMicrobial infection is accompanied by remodeling of the host transcriptome. Involvement of A-to-I RNA editing has been reported during viral infection but remains to be elucidated during intracellular bacterial infections.ResultsHerein we analyzed A-to-I RNA editing during intracellular bacterial infections based on 18 RNA-Seq datasets of 210 mouse samples involving 7 tissue types and 8 intracellular bacterial pathogens (IBPs), and identified a consensus signature of RNA editing for IBP infections, mainly involving neutrophil-mediated innate immunity and lipid metabolism. Further comparison of host RNA editing patterns revealed remarkable similarities between pneumonia caused by IBPs and single-strand RNA (ssRNA) viruses, such as altered editing enzyme expression, editing site numbers, and levels. In addition, functional enrichment analysis of genes with RNA editing highlighted that the Rab GTPase family played a common and vital role in the host immune response to IBP and ssRNA viral infections, which was indicated by the consistent up-regulated RNA editing of Ras-related protein Rab27a. Nevertheless, dramatic differences between IBP and viral infections were also observed, and clearly distinguished the two types of intracellular infections.ConclusionOur study showed transcriptome-wide host A-to-I RNA editing alteration during IBP and ssRNA viral infections. By identifying and comparing consensus signatures of host A-to-I RNA editing, our analysis implicates the importance of host A-to-I RNA editing during these infections and provides new insights into the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Xin Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jia-Huan Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shuo Wen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Di Gao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Xu-Bin Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| |
Collapse
|
18
|
Kim S, Isberg RR. The Sde Phosphoribosyl-Linked Ubiquitin Transferases protect the Legionella pneumophila vacuole from degradation by the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533379. [PMID: 36993347 PMCID: PMC10055210 DOI: 10.1101/2023.03.19.533379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Legionella pneumophila grows intracellularly within a host membrane-bound vacuole that is formed in response to a bacterial type IV secretion system (T4SS). T4SS translocated Sde proteins promote phosphoribosyl-linked ubiquitination of endoplasmic reticulum protein Rtn4, but the role played by this modification is obscure due to lack of clear growth defects of mutants. To identify the steps in vacuole biogenesis promoted by these proteins, mutations were identified that unmasked growth defects in Δ sde strains. Mutations in the sdhA , ridL and legA3 genes aggravated the Δ sde fitness defect, resulting in disruption of the Legionella -containing vacuole (LCV) membrane within 2 hrs of bacterial contact with host cells. Depletion of Rab5B and sorting nexin 1 partially bypassed loss of Sde proteins, consistent with Sde blocking early endosome and retrograde trafficking, similar to roles previously demonstrated for SdhA and RidL proteins. Sde protein protection of LCV lysis was only observed shortly after infection, presumably because Sde proteins are inactivated by the metaeffector SidJ during the course of infection. Deletion of SidJ extended the time that Sde proteins could prevent vacuole disruption, indicating that Sde proteins are negatively regulated at the posttranslational level and are limited to protecting membrane integrity at the earliest stages of replication. Transcriptional analysis was consistent with this timing model for an early point of execution of Sde protein. Therefore, Sde proteins act as temporally-regulated vacuole guards during establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments early during biogenesis of the LCV. Significance statement Maintaining replication compartment integrity is critical for growth of intravacuolar pathogens within host cells. By identifying genetically redundant pathways, Legionella pneumophila Sde proteins that promote phosphoribosyl-linked ubiquitination of target eukaryotic proteins are shown to be temporally-regulated vacuole guards, preventing replication vacuole dissolution during early stages of infection. As targeting of reticulon 4 by these proteins leads to tubular endoplasmic reticulum aggregation, Sde proteins are likely to construct a barrier that blocks access of disruptive early endosomal compartments to the replication vacuole. Our study provides a new framework for how vacuole guards function to support biogenesis of the L. pneumophila replicative niche.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
19
|
Canfrán-Duque A, Rotllan N, Zhang X, Andrés-Blasco I, Thompson BM, Sun J, Price NL, Fernández-Fuertes M, Fowler JW, Gómez-Coronado D, Sessa WC, Giannarelli C, Schneider RJ, Tellides G, McDonald JG, Fernández-Hernando C, Suárez Y. Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation 2023; 147:388-408. [PMID: 36416142 PMCID: PMC9892282 DOI: 10.1161/circulationaha.122.059062] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Irene Andrés-Blasco
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Genomics and Diabetes Unit, Health Research Institute Clinic Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Bonne M Thompson
- Center for Human Nutrition. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marta Fernández-Fuertes
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph W. Fowler
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diego Gómez-Coronado
- Servicio Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, and CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiara Giannarelli
- Department of Medicine, Cardiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Robert J Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - George Tellides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, 06520 USA
| | - Jeffrey G McDonald
- Center for Human Nutrition. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
van Puffelen JH, Novakovic B, van Emst L, Kooper D, Zuiverloon TCM, Oldenhof UTH, Witjes JA, Galesloot TE, Vrieling A, Aben KKH, Kiemeney LALM, Oosterwijk E, Netea MG, Boormans JL, van der Heijden AG, Joosten LAB, Vermeulen SH. Intravesical BCG in patients with non-muscle invasive bladder cancer induces trained immunity and decreases respiratory infections. J Immunother Cancer 2023; 11:jitc-2022-005518. [PMID: 36693678 PMCID: PMC9884868 DOI: 10.1136/jitc-2022-005518] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND BCG is recommended as intravesical immunotherapy to reduce the risk of tumor recurrence in patients with non-muscle invasive bladder cancer (NMIBC). Currently, it is unknown whether intravesical BCG application induces trained immunity. METHODS The aim of this research was to determine whether BCG immunotherapy induces trained immunity in NMIBC patients. We conducted a prospective observational cohort study in 17 NMIBC patients scheduled for BCG therapy and measured trained immunity parameters at 9 time points before and during a 1-year BCG maintenance regimen. Ex vivo cytokine production by peripheral blood mononuclear cells, epigenetic modifications, and changes in the monocyte transcriptome were measured. The frequency of respiratory infections was investigated in two larger cohorts of BCG-treated and non-BCG treated NMIBC patients as a surrogate measurement of trained immunity. Gene-based association analysis of genetic variants in candidate trained immunity genes and their association with recurrence-free survival and progression-free survival after BCG therapy was performed to investigate the hypothesized link between trained immunity and clinical response. RESULTS We found that intravesical BCG does induce trained immunity based on an increased production of TNF and IL-1β after heterologous ex vivo stimulation of circulating monocytes 6-12 weeks after intravesical BCG treatment; and a 37% decreased risk (OR 0.63 (95% CI 0.40 to 1.01)) for respiratory infections in BCG-treated versus non-BCG-treated NMIBC patients. An epigenomics approach combining chromatin immuno precipitation-sequencing and RNA-sequencing with in vitro trained immunity experiments identified enhanced inflammasome activity in BCG-treated individuals. Finally, germline variation in genes that affect trained immunity was associated with recurrence and progression after BCG therapy in NMIBC. CONCLUSION We conclude that BCG immunotherapy induces trained immunity in NMIBC patients and this may account for the protective effects against respiratory infections. The data of our gene-based association analysis suggest that a link between trained immunity and oncological outcome may exist. Future studies should further investigate how trained immunity affects the antitumor immune responses in BCG-treated NMIBC patients.
Collapse
Affiliation(s)
- Jelmer H van Puffelen
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Boris Novakovic
- Department of Paediatrics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Denise Kooper
- Department of Urology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
| | | | | | - J Alfred Witjes
- Department of Urology, Radboudumc, Nijmegen, The Netherlands
| | | | - Alina Vrieling
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Katja K H Aben
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands,IKNL, Utrecht, The Netherlands
| | | | | | - Mihai G Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department of Immunology and Metabolism, University of Bonn, Life & Medical Sciences Institute, Bonn, Germany
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
| | | | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sita H Vermeulen
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Hardesty JE, Warner JB, Song YL, Rouchka EC, McClain CJ, Warner DR, Kirpich IA. Resolvin D1 attenuated liver injury caused by chronic ethanol and acute LPS challenge in mice. FASEB J 2023; 37:e22705. [PMID: 36520060 PMCID: PMC9832974 DOI: 10.1096/fj.202200778r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Alcohol-associated liver disease (ALD) is a major health problem with limited effective treatment options. Alcohol-associated hepatitis (AH) is a subset of severe ALD with a high rate of mortality due to infection, severe inflammation, and ultimately multi-organ failure. There is an urgent need for novel therapeutic approaches to alleviate the human suffering associated with this condition. Resolvin D1 (RvD1) promotes the resolution of inflammation and regulates immune responses. The current study aimed to test the therapeutic efficacy and mechanisms of RvD1-mediated effects on liver injury and inflammation in an experimental animal model that mimics severe AH in humans. Our data demonstrated that mice treated with RvD1 had attenuated liver injury and inflammation caused by EtOH and LPS exposure by limiting hepatic neutrophil accumulation and decreasing hepatic levels of pro-inflammatory cytokines. In addition, RvD1 treatment attenuated hepatic pyroptosis, an inflammatory form of cell death, via downregulation of pyroptosis-related genes such as GTPase family member b10 and guanylate binding protein 2, and reducing cleavage of caspase 11 and gasdermin-D. In vitro experiments with primary mouse hepatocytes and bone marrow-derived macrophages confirmed the effectiveness of RvD1 in the attenuation of pyroptosis. In summary, our data demonstrated that RvD1 treatment provided beneficial effects against liver injury and inflammation in an experimental animal model recapitulating features of severe AH in humans. Our results suggest that RvD1 may be a novel adjunct strategy to traditional therapeutic options for AH patients.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Ying L. Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eric C. Rouchka
- Department of Computer Science and Engineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Robley Rex Veterans Medical Center, Louisville, KY 40206, USA
- University of Louisville Alcohol Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
22
|
5′ Untranslated mRNA Regions Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. Infect Immun 2022; 90:e0017922. [DOI: 10.1128/iai.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila
grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS).
Collapse
|
23
|
Wang Y, Karki R, Mall R, Sharma BR, Kalathur RC, Lee S, Kancharana B, So M, Combs KL, Kanneganti TD. Molecular mechanism of RIPK1 and caspase-8 in homeostatic type I interferon production and regulation. Cell Rep 2022; 41:111434. [PMID: 36198273 PMCID: PMC9630927 DOI: 10.1016/j.celrep.2022.111434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Type I interferons (IFNs) are essential innate immune proteins that maintain tissue homeostasis through tonic expression and can be upregulated to drive antiviral resistance and inflammation upon stimulation. However, the mechanisms that inhibit aberrant IFN upregulation in homeostasis and the impacts of tonic IFN production on health and disease remain enigmatic. Here, we report that caspase-8 negatively regulates type I IFN production by inhibiting the RIPK1-TBK1 axis during homeostasis across multiple cell types and tissues. When caspase-8 is deleted or inhibited, RIPK1 interacts with TBK1 to drive elevated IFN production, leading to heightened resistance to norovirus infection in macrophages but also early onset lymphadenopathy in mice. Combined deletion of caspase-8 and RIPK1 reduces the type I IFN signaling and lymphadenopathy, highlighting the critical role of RIPK1 in this process. Overall, our study identifies a mechanism to constrain tonic type I IFN during homeostasis which could be targeted for infectious and inflammatory diseases. Wang et al. report the mechanistic regulation of homeostatic type I IFN production by caspase-8 through the RIPK1-TBK1 axis. Hyper-activation of this pathway due to loss of caspase-8 has profound physiological impacts on natural resistance to viral infection and the pathogenesis of lymphadenopathy.
Collapse
|
24
|
Alexander-Floyd J, Bass AR, Harberts EM, Grubaugh D, Buxbaum JD, Brodsky IE, Ernst RK, Shin S. Lipid A Variants Activate Human TLR4 and the Noncanonical Inflammasome Differently and Require the Core Oligosaccharide for Inflammasome Activation. Infect Immun 2022; 90:e0020822. [PMID: 35862709 PMCID: PMC9387229 DOI: 10.1128/iai.00208-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/16/2023] Open
Abstract
Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.
Collapse
Affiliation(s)
- Jasmine Alexander-Floyd
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Antonia R. Bass
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erin M. Harberts
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Role of GBP1 in innate immunity and potential as a tuberculosis biomarker. Sci Rep 2022; 12:11097. [PMID: 35773466 PMCID: PMC9247026 DOI: 10.1038/s41598-022-15482-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tuberculosis (TB) is a global health problem of major concern. Identification of immune biomarkers may facilitate the early diagnosis and targeted treatment of TB. We used public RNA-sequencing datasets of patients with TB and healthy controls to identify differentially expressed genes and their associated functional networks. GBP1 expression was consistently significantly upregulated in TB, and 4492 differentially expressed genes were simultaneously associated with TB and high GBP1 expression. Weighted gene correlation analysis identified 12 functional modules. Modules positively correlated with TB and high GBP1 expression were associated with the innate immune response, neutrophil activation, neutrophil-mediated immunity, and NOD receptor signaling pathway. Eleven hub genes (GBP1, HLA-B, ELF4, HLA-E, IFITM2, TNFRSF14, CD274, AIM2, CFB, RHOG, and HORMAD1) were identified. The least absolute shrinkage and selection operator model based on hub genes accurately predicted the occurrence of TB (area under the receiver operating characteristic curve = 0.97). The GBP1-module-pathway network based on the STRING database showed that GBP1 expression correlated with the expression of interferon-stimulated genes (GBP5, BATF2, EPSTI1, RSAD2, IFI44L, IFIT3, and OAS3). Our study suggests GBP1 as an optimal diagnostic biomarker for TB, further indicating an association of the AIM2 inflammasome signaling pathway in TB pathology.
Collapse
|
26
|
Tupik JD, Markov Madanick JW, Ivester HM, Allen IC. Detecting DNA: An Overview of DNA Recognition by Inflammasomes and Protection against Bacterial Respiratory Infections. Cells 2022; 11:1681. [PMID: 35626718 PMCID: PMC9139316 DOI: 10.3390/cells11101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a key role in modulating host immune defense during bacterial disease. Upon sensing pathogen-associated molecular patterns (PAMPs), the multi-protein complex known as the inflammasome serves a protective role against bacteria burden through facilitating pathogen clearance and bacteria lysis. This can occur through two mechanisms: (1) the cleavage of pro-inflammatory cytokines IL-1β/IL-18 and (2) the initiation of inflammatory cell death termed pyroptosis. In recent literature, AIM2-like Receptor (ALR) and Nod-like Receptor (NLR) inflammasome activation has been implicated in host protection following recognition of bacterial DNA. Here, we review current literature synthesizing mechanisms of DNA recognition by inflammasomes during bacterial respiratory disease. This process can occur through direct sensing of DNA or indirectly by sensing pathogen-associated intracellular changes. Additionally, DNA recognition may be assisted through inflammasome-inflammasome interactions, specifically non-canonical inflammasome activation of NLRP3, and crosstalk with the interferon-inducible DNA sensors Stimulator of Interferon Genes (STING) and Z-DNA Binding Protein-1 (ZBP1). Ultimately, bacterial DNA sensing by inflammasomes is highly protective during respiratory disease, emphasizing the importance of inflammasome involvement in the respiratory tract.
Collapse
Affiliation(s)
- Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Justin W. Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Hannah M. Ivester
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
27
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
28
|
Fisch D, Clough B, Khan R, Healy L, Frickel EM. Toxoplasma-proximal and distal control by GBPs in human macrophages. Pathog Dis 2022; 79:ftab058. [PMID: 34931666 PMCID: PMC8752258 DOI: 10.1093/femspd/ftab058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Human guanylate binding proteins (GBPs) are key players of interferon-gamma (IFNγ)-induced cell intrinsic defense mechanisms targeting intracellular pathogens. In this study, we combine the well-established Toxoplasmagondii infection model with three in vitro macrophage culture systems to delineate the contribution of individual GBP family members to control this apicomplexan parasite. Use of high-throughput imaging assays and genome engineering allowed us to define a role for GBP1, 2 and 5 in parasite infection control. While GBP1 performs a pathogen-proximal, parasiticidal and growth-restricting function through accumulation at the parasitophorous vacuole of intracellular Toxoplasma, GBP2 and GBP5 perform a pathogen-distal, growth-restricting role. We further find that mutants of the GTPase or isoprenylation site of GBP1/2/5 affect their normal function in Toxoplasma control by leading to mis-localization of the proteins.
Collapse
Affiliation(s)
- Daniel Fisch
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Barbara Clough
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rabia Khan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lyn Healy
- HESCU (Human Embryo and Stem Cell Unit), The Francis Crick Institute, London NW1 1AT, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
29
|
Ragland SA, Kagan JC. Cytosolic detection of phagosomal bacteria-Mechanisms underlying PAMP exodus from the phagosome into the cytosol. Mol Microbiol 2021; 116:1420-1432. [PMID: 34738270 DOI: 10.1111/mmi.14841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Rep 2021; 37:109894. [PMID: 34731604 PMCID: PMC8669613 DOI: 10.1016/j.celrep.2021.109894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.
Collapse
|
31
|
Kutsch M, Coers J. Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 2021; 288:5826-5849. [PMID: 33314740 PMCID: PMC8196077 DOI: 10.1111/febs.15662] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Disease-causing microorganisms not only breach anatomical barriers and invade tissues but also frequently enter host cells, nutrient-enriched environments amenable to support parasitic microbial growth. Protection from many infectious diseases is therefore reliant on the ability of individual host cells to combat intracellular infections through the execution of cell-autonomous defense programs. Central players in human cell-autonomous immunity are members of the family of dynamin-related guanylate binding proteins (GBPs). The importance of these interferon-inducible GTPases in host defense to viral, bacterial, and protozoan pathogens has been established for some time; only recently, cell biological and biochemical studies that largely focused on the prenylated paralogs GBP1, GBP2, and GBP5 have provided us with robust molecular frameworks for GBP-mediated immunity. Specifically, the recent characterization of GBP1 as a bona fide pattern recognition receptor for bacterial lipopolysaccharide (LPS) disrupting the integrity of bacterial outer membranes through LPS aggregation, the discovery of a link between hydrolysis-induced GMP production by GBP1 and inflammasome activation, and the classification of GBP2 and GBP5 as inhibitors of viral envelope glycoprotein processing via suppression of the host endoprotease furin have paved the way for a vastly improved conceptual understanding of the molecular mechanisms by which GBP nanomachines execute cell-autonomous immunity. The herein discussed models incorporate our current knowledge of the antimicrobial, proinflammatory, and biochemical properties of human GBPs and thereby provide testable hypotheses that will guide future studies into the intricacies of GBP-controlled host defense and their role in human disease.
Collapse
Affiliation(s)
- Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 22710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 22710, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 22710, USA
| |
Collapse
|
32
|
Cindy Yang SY, Lien SC, Wang BX, Clouthier DL, Hanna Y, Cirlan I, Zhu K, Bruce JP, El Ghamrasni S, Iafolla MAJ, Oliva M, Hansen AR, Spreafico A, Bedard PL, Lheureux S, Razak A, Speers V, Berman HK, Aleshin A, Haibe-Kains B, Brooks DG, McGaha TL, Butler MO, Bratman SV, Ohashi PS, Siu LL, Pugh TJ. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat Commun 2021; 12:5137. [PMID: 34446728 PMCID: PMC8390680 DOI: 10.1038/s41467-021-25432-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor genome and immune microenvironment in patients receiving ICB. Here, we present an in-depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes (primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond with survival and clinical benefit. High mutation burden, high expression of immune signatures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity, while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell populations are consistent with sensitivity and resistance. We identified the upregulated expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of adaptive resistance to ICB. Together, these findings provide insights into the diversity of immunogenomic mechanisms that underpin pembrolizumab outcomes.
Collapse
Affiliation(s)
- S Y Cindy Yang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott C Lien
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iulia Cirlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marco A J Iafolla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marc Oliva
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aaron R Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Albiruni Razak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Speers
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcus O Butler
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
33
|
Abstract
Engagement of LC3-associated phagocytosis (LAP) in response to the uptake of certain particles modulates innate immune responses. Now in Cell Host and Microbe, Akoumianaki et al. (2021) show how a regulatory role of IL-6 on LAP may be at the core of susceptibility to secondary infection during severe sepsis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
34
|
Rafeld HL, Kolanus W, van Driel IR, Hartland EL. Interferon-induced GTPases orchestrate host cell-autonomous defence against bacterial pathogens. Biochem Soc Trans 2021; 49:1287-1297. [PMID: 34003245 PMCID: PMC8286824 DOI: 10.1042/bst20200900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility. In this mini-review, we provide an update on how the IFN-induced GTPases target pathogens and mediate host defence, emphasising findings on protection against bacterial pathogens.
Collapse
Affiliation(s)
- Heike L. Rafeld
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Life and Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Ian R. van Driel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
35
|
Anand IS, Choi W, Isberg RR. Components of the endocytic and recycling trafficking pathways interfere with the integrity of the Legionella-containing vacuole. Cell Microbiol 2021; 22:e13151. [PMID: 32096265 PMCID: PMC7154685 DOI: 10.1111/cmi.13151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high-throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection.
Collapse
Affiliation(s)
- Ila S Anand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Wonyoung Choi
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
36
|
Pyroptosis by caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases. Pharmacol Res 2021; 165:105408. [PMID: 33412278 DOI: 10.1016/j.phrs.2020.105408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Inflammasomes are a group of supramolecular complexes primarily comprise a sensor, adaptor protein and an effector. Among them, canonical inflammasomes are assembled by one specific pattern recognition receptor, the adaptor protein apoptosis-associated speck-like protein containing a CARD and procaspase-1. Murine caspase-11 and its human ortholog caspase-4/5 are identified as cytosolic sensors which directly responds to LPS. Once gaining access to cytosol, LPS further trigger inflammasome activation in noncanonical way. Downstream pore-forming Gasdermin D is a pyroptosis executioner. Emerging evidence announced in recent years demonstrate the vital role played by caspase-11 non-canonical inflammasome in a range of autoimmune diseases. Pharmacological ablation of caspase-11 and its related effector results in potent therapeutic effects. Though recent advances have highlighted the potential of caspase-11 as a drug target, the understanding of caspase-11 molecular activation and regulation mechanism remains to be limited and thus hampered the discovery and progression of novel inhibitors. Here in this timeline review, we explored how caspase-11 get involved in the pathogenesis of autoimmune diseases, we also collected the reported small-molecular caspase-11 inhibitors. Moreover, the clinical implications and therapeutic potential of caspase-11 inhibitors are discussed. Targeting non-canonical inflammasomes is a promising strategy for autoimmune diseases treatment, while information about the toxicity and physiological disposition of the promising caspase-11 inhibitors need to be supplemented before they can be translated from bench to bedside.
Collapse
|
37
|
Hachim MY, Hachim IY, Talaat IM, Yakout NM, Hamoudi R. M1 Polarization Markers Are Upregulated in Basal-Like Breast Cancer Molecular Subtype and Associated With Favorable Patient Outcome. Front Immunol 2020; 11:560074. [PMID: 33304345 PMCID: PMC7701279 DOI: 10.3389/fimmu.2020.560074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breast cancer heterogeneity is an essential element that plays a role in the therapy response variability and the patient's outcome. This highlights the need for more precise subtyping methods that focus not only on tumor cells but also investigate the profile of stromal cells as well as immune cells. OBJECTIVES To mine publicly available transcriptomic breast cancer datasets and reanalyze their transcriptomic profiling using unsupervised clustering in order to identify novel subsets in molecular subtypes of breast cancer, then explore the stromal and immune cells profile in each subset using bioinformatics and systems immunology approaches. MATERIALS AND METHODS Transcriptomic data from 1,084 breast cancer patients obtained from The Cancer Genome Atlas (TCGA) database were extracted and subjected to unsupervised clustering using a recently described, multi-step algorithm called Iterative Clustering and Guide-gene Selection (ICGS). For each cluster, the stromal and immune profile was investigated using ESTIMATE and CIBERSORT analytical tool. Clinical outcomes and differentially expressed genes of the characterized clusters were identified and validated in silico and in vitro in a cohort of 80 breast cancer samples by immunohistochemistry. RESULTS Seven unique sub-clusters showed distinct molecular and clinical profiles between the well-known breast cancer subtypes. Those unsupervised clusters identified more homogenous subgroups in each of the classical subtypes with a different prognostic profile. Immune profiling of the identified clusters showed that while the classically activated macrophages (M1) are correlated with the more aggressive basal-like breast cancer subtype, the alternatively activated macrophages (M2) showed a higher level of infiltration in luminal A and luminal B subtypes. Indeed, patients with higher levels of M1 expression showed less advanced disease and better patient outcomes presented as prolonged overall survival. Moreover, the M1 high basal-like breast cancer group showed a higher expression of interferon-gamma induced chemokines and guanylate-binding proteins (GBPs) involved in immunity against microbes. CONCLUSION Adding immune profiling using transcriptomic data can add precision for diagnosis and prognosis and can cluster patients according to the available modalities of therapy in a more personalized approach.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada M. Yakout
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
38
|
Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia 2020; 35:1964-1975. [PMID: 33168949 PMCID: PMC8257498 DOI: 10.1038/s41375-020-01082-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
The oncogenic protein Bcr-Abl has two major isoforms, p190Bcr-Abl and p210Bcr-Abl. While p210Bcr-Abl is the hallmark of chronic myeloid leukemia (CML), p190Bcr-Abl occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) patients. In CML, p190Bcr-Abl occurs in a minority of patients associating with distinct hematological features and inferior outcomes, yet the pathogenic role of p190Bcr-Abl and potential targeting therapies are largely uncharacterized. We employed next generation sequencing, phospho-proteomic profiling, and drug sensitivity testing to characterize p190Bcr-Abl in CML and hematopoietic progenitor cell line models (Ba/f3 and HPC-LSK). p190Bcr-Abl CML patients demonstrated poor response to imatinib and frequent mutations in epigenetic modifiers genes. In contrast with p210Bcr-Abl, p190Bcr-Abl exhibited specific transcriptional upregulation of interferon, interleukin-1 receptor, and P53 signaling pathways, associated with hyperphosphorylation of relevant signaling molecules including JAK1/STAT1 and PAK1 in addition to Src hyperphosphorylation. Comparable to p190Bcr-Abl CML patients, p190Bcr-Abl cell lines demonstrated similar transcriptional and phospho-signaling signatures. With the drug sensitivity screening we identified targeted drugs with specific activity in p190Bcr-Abl cell lines including IAP-, PAK1-, and Src inhibitors and glucocorticoids. Our results provide novel insights into the mechanisms underlying the distinct features of p190Bcr-Abl CML and promising therapeutic targets for this high-risk patient group.
Collapse
|
39
|
Finethy R, Dockterman J, Kutsch M, Orench‐Rivera N, Wallace GD, Piro AS, Luoma S, Haldar AK, Hwang S, Martinez J, Kuehn MJ, Taylor GA, Coers J. Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock. EMBO Rep 2020; 21:e50830. [PMID: 33124745 PMCID: PMC7645254 DOI: 10.15252/embr.202050830] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Jacob Dockterman
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
| | - Miriam Kutsch
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | | | - Graham D Wallace
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Anthony S Piro
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Sarah Luoma
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Arun K Haldar
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Present address:
Division of BiochemistryCentral Drug Research Institute (CDRI)Council of Scientific and Industrial Research (CSIR)LucknowIndia
| | - Seungmin Hwang
- Department of PathologyThe University of ChicagoChicagoILUSA
- Present address:
VIR BiotechnologySan FranciscoCAUSA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease LaboratoryNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke University Medical CenterDurhamNCUSA
| | - Gregory A Taylor
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
- Division of GeriatricsDepartment of MedicineCenter for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNCUSA
- Geriatric Research, Education, and Clinical Center, VA Medical CenterDurhamNCUSA
| | - Jörn Coers
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
40
|
Eren E, Planès R, Bagayoko S, Bordignon P, Chaoui K, Hessel A, Santoni K, Pinilla M, Lagrange B, Burlet‐Schiltz O, Howard JC, Henry T, Yamamoto M, Meunier E. Irgm2 and Gate-16 cooperatively dampen Gram-negative bacteria-induced caspase-11 response. EMBO Rep 2020; 21:e50829. [PMID: 33124769 PMCID: PMC7645206 DOI: 10.15252/embr.202050829] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Collapse
Affiliation(s)
- Elif Eren
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Pierre‐Jean Bordignon
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Karima Chaoui
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
- Mass Spectrometry Core FacilityInstitute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Brice Lagrange
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111CNRS, UMR5308École Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Univ LyonLyonFrance
| | - Odile Burlet‐Schiltz
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
- Mass Spectrometry Core FacilityInstitute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Jonathan C Howard
- Fundação Calouste GulbenkianInstituto Gulbenkian de CiênciaOeirasPortugal
| | - Thomas Henry
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111CNRS, UMR5308École Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Univ LyonLyonFrance
| | - Masahiro Yamamoto
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of ImmunoparasitologyWPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
- Present address:
Institute of Pharmacology and Structural Biology (IPBS)CNRSToulouseFrance
| |
Collapse
|
41
|
Ming SL, Zeng L, Guo YK, Zhang S, Li GL, Ma YX, Zhai YY, Chang WR, Yang L, Wang J, Yang GY, Chu BB. The Human-Specific STING Agonist G10 Activates Type I Interferon and the NLRP3 Inflammasome in Porcine Cells. Front Immunol 2020; 11:575818. [PMID: 33072119 PMCID: PMC7543045 DOI: 10.3389/fimmu.2020.575818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023] Open
Abstract
Pigs have anatomical and physiological characteristics comparable to those in humans and, therefore, are a favorable model for immune function research. Interferons (IFNs) and inflammasomes have essential roles in the innate immune system. Here, we report that G10, a human-specific agonist of stimulator of interferon genes (STING), activates both type I IFN and the canonical NLRP3 inflammasome in a STING-dependent manner in porcine cells. Without a priming signal, G10 alone transcriptionally stimulated Sp1-dependent p65 expression, thus triggering activation of the nuclear factor-κB (NF-κB) signaling pathway and thereby priming inflammasome activation. G10 was also found to induce potassium efflux- and NLRP3/ASC/Caspase-1-dependent secretion of IL-1β and IL-18. Pharmacological and genetic inhibition of NLRP3 inflammasomes increased G10-induced type I IFN expression, thereby preventing virus infection, suggesting negative regulation of the NLRP3 inflammasome in the IFN response in the context of STING-mediated innate immune activation. Overall, our findings reveal a new mechanism through which G10 activates the NLRP3 inflammasome in porcine cells and provide new insights into STING-mediated innate immunity in pigs compared with humans.
Collapse
Affiliation(s)
- Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Kun Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guo-Li Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ying-Xian Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yun-Yun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wen-Ru Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Le Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guo-Yu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
42
|
Fisch D, Clough B, Domart MC, Encheva V, Bando H, Snijders AP, Collinson LM, Yamamoto M, Shenoy AR, Frickel EM. Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Rep 2020; 32:108008. [PMID: 32783936 PMCID: PMC7435695 DOI: 10.1016/j.celrep.2020.108008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) promote cell-intrinsic defense through host cell death. GBPs target pathogens and pathogen-containing vacuoles and promote membrane disruption for release of microbial molecules that activate inflammasomes. GBP1 mediates pyroptosis or atypical apoptosis of Salmonella Typhimurium (STm)- or Toxoplasma gondii (Tg)- infected human macrophages, respectively. The pathogen-proximal detection-mechanisms of GBP1 remain poorly understood, as humans lack functional immunity-related GTPases (IRGs) that assist murine Gbps. Here, we establish that GBP1 promotes the lysis of Tg-containing vacuoles and parasite plasma membranes, releasing Tg-DNA. In contrast, we show GBP1 targets cytosolic STm and recruits caspase-4 to the bacterial surface for its activation by lipopolysaccharide (LPS), but does not contribute to bacterial vacuole escape. Caspase-1 cleaves and inactivates GBP1, and a cleavage-deficient GBP1D192E mutant increases caspase-4-driven pyroptosis due to the absence of feedback inhibition. Our studies elucidate microbe-specific roles of GBP1 in infection detection and its triggering of the assembly of divergent caspase signaling platforms.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
43
|
Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 2020; 217:jem.20190314. [PMID: 31611248 PMCID: PMC7037238 DOI: 10.1084/jem.20190314] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Specific IL-1 family cytokines are initially expressed as inactive, cytosolic pro-forms. Chan and Schroder review inflammasome signaling and cell death decisions, mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37 maturation and release, and the functions of these cytokines in protective and pathological inflammation. Specific IL-1 family cytokines are expressed by cells as cytosolic pro-forms that require cleavage for their activity and cellular release. IL-1β, IL-18, and IL-37 maturation and secretion is governed by inflammatory caspases within signaling platforms called inflammasomes. By inducing pyroptosis, inflammasomes can also drive the release of the alarmin IL-1α. Recent advances have transformed our mechanistic understanding of inflammasome signaling, cell death decisions, and cytokine activation and secretion. Here, we provide an updated view of inflammasome signaling; mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37 maturation and release; and the functions of these cytokines in protective and pathological inflammation.
Collapse
Affiliation(s)
- Amy H Chan
- Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
44
|
Matikainen S, Nyman TA, Cypryk W. Function and Regulation of Noncanonical Caspase-4/5/11 Inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3063-3069. [PMID: 32513874 DOI: 10.4049/jimmunol.2000373] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2025]
Abstract
Inflammasomes are multiprotein complexes of the innate immune system that orchestrate development of inflammation by activating the secretion of proinflammatory cytokines, IL-1β and IL-18. The LPS of Gram-negative bacteria have been shown to activate a novel, noncanonical inflammasome by directly binding in the cytosol to human caspase-4 and mouse caspase-11. Activation of noncanonical inflammasome exerts two major effects: it activates the NLRP3-caspase-1-mediated processing and secretion of IL-1β and IL-18 and induces the inflammatory cell death, pyroptosis, via gasdermin D. This previously unexpected cytosolic LPS sensing of the innate immune system provides critical hints for host response to Gram-negative bacterial infections and development of different inflammatory diseases. However, many of its molecular regulatory mechanisms are yet to be discovered. In this review, we provide comprehensive analysis of current understanding of intracellular LPS detection and pyroptosis via noncanonical inflammasome and discuss the recently proposed mechanisms of its function and regulation.
Collapse
Affiliation(s)
- Sampsa Matikainen
- Helsinki Rheumatic Disease and Inflammation Research Group, Translational Immunology Research Program, University of Helsinki, Helsinki University Clinicum, 00290 Helsinki, Finland;
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372 Oslo, Norway; and
| | - Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland
| |
Collapse
|
45
|
Kutsch M, Sistemich L, Lesser CF, Goldberg MB, Herrmann C, Coers J. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J 2020; 39:e104926. [PMID: 32510692 PMCID: PMC7327485 DOI: 10.15252/embj.2020104926] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
In the outer membrane of gram‐negative bacteria, O‐antigen segments of lipopolysaccharide (LPS) form a chemomechanical barrier, whereas lipid A moieties anchor LPS molecules. Upon infection, human guanylate binding protein‐1 (hGBP1) colocalizes with intracellular gram‐negative bacterial pathogens, facilitates bacterial killing, promotes activation of the lipid A sensor caspase‐4, and blocks actin‐driven dissemination of the enteric pathogen Shigella. The underlying molecular mechanism for hGBP1's diverse antimicrobial functions is unknown. Here, we demonstrate that hGBP1 binds directly to LPS and induces “detergent‐like” LPS clustering through protein polymerization. Binding of polymerizing hGBP1 to the bacterial surface disrupts the O‐antigen barrier, thereby unmasking lipid A, eliciting caspase‐4 recruitment, enhancing antibacterial activity of polymyxin B, and blocking the function of the Shigella outer membrane actin motility factor IcsA. These findings characterize hGBP1 as an LPS‐binding surfactant that destabilizes the rigidity of the outer membrane to exert pleiotropic effects on the functionality of gram‐negative bacterial cell envelopes.
Collapse
Affiliation(s)
- Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Linda Sistemich
- Department of Physical Chemistry I, Ruhr-University Bochum, Bochum, Germany
| | - Cammie F Lesser
- Division of Infectious Diseases, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, MA, USA.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, MA, USA.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr-University Bochum, Bochum, Germany
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
46
|
Kohler KM, Kutsch M, Piro AS, Wallace GD, Coers J, Barber MF. A Rapidly Evolving Polybasic Motif Modulates Bacterial Detection by Guanylate Binding Proteins. mBio 2020; 11:e00340-20. [PMID: 32430466 PMCID: PMC7240152 DOI: 10.1128/mbio.00340-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous immunity relies on the rapid detection of invasive pathogens by host proteins. Guanylate binding proteins (GBPs) have emerged as key mediators of vertebrate immune defense through their ability to recognize a diverse array of intracellular pathogens and pathogen-containing cellular compartments. Human and mouse GBPs have been shown to target distinct groups of microbes, although the molecular determinants of pathogen specificity remain unclear. We show that rapid diversification of a C-terminal polybasic motif (PBM) in primate GBPs controls recognition of the model cytosolic bacterial pathogen Shigella flexneri By swapping this membrane-binding motif between primate GBP orthologs, we found that the ability to target S. flexneri has been enhanced and lost in specific lineages of New World primates. Single substitutions in rapidly evolving sites of the GBP1 PBM are sufficient to abolish or restore bacterial detection abilities, illustrating a role for epistasis in the evolution of pathogen recognition. We further demonstrate that the squirrel monkey GBP2 C-terminal domain recently gained the ability to target S. flexneri through a stepwise process of convergent evolution. These findings reveal a mechanism by which accelerated evolution of a PBM shifts GBP target specificity and aid in resolving the molecular basis of GBP function in cell-autonomous immune defense.IMPORTANCE Many infectious diseases are caused by microbes that enter and survive within host cells. Guanylate binding proteins (GBPs) are a group of immune proteins which recognize and inhibit a variety of intracellular pathogenic microbes. We discovered that a short sequence within GBPs required for the detection of bacteria, the polybasic motif (PBM), has been rapidly evolving between primate species. By swapping PBMs between primate GBP1 genes, we were able to show that specific sequences can both reduce and improve the ability of GBP1 to target intracellular bacteria. We also show that the ability to envelop bacteria has independently evolved in GBP2 of South American monkeys. Taking the results together, this report illustrates how primate GBPs have adapted to defend against infectious pathogens.
Collapse
Affiliation(s)
- Kristin M Kohler
- Institute of Ecology & Evolution, University of Oregon, Eugene, Oregon, USA
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anthony S Piro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Graham D Wallace
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew F Barber
- Institute of Ecology & Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
47
|
Burke TP, Engström P, Chavez RA, Fonbuena JA, Vance RE, Welch MD. Inflammasome-mediated antagonism of type I interferon enhances Rickettsia pathogenesis. Nat Microbiol 2020; 5:688-696. [PMID: 32123346 PMCID: PMC7239376 DOI: 10.1038/s41564-020-0673-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
The innate immune system fights infection with inflammasomes and interferons. Facultative bacterial pathogens that inhabit the host cytosol avoid inflammasomes1-6 and are often insensitive to type I interferons (IFN-I), but are restricted by IFN-γ7-11. However, it remains unclear how obligate cytosolic bacterial pathogens, including Rickettsia species, interact with innate immunity. Here, we report that the human pathogen Rickettsia parkeri is sensitive to IFN-I and benefits from inflammasome-mediated host cell death that antagonizes IFN-I. R. parkeri-induced cell death requires the cytosolic lipopolysaccharide (LPS) receptor caspase-11 and antagonizes IFN-I production mediated by the DNA sensor cGAS. The restrictive effects of IFN-I require the interferon regulatory factor IRF5, which upregulates genes encoding guanylate-binding proteins (GBPs) and inducible nitric oxide synthase (iNOS), which we found to inhibit R. parkeri. Mice lacking both IFN-I and IFN-γ receptors succumb to R. parkeri, revealing critical and overlapping roles for these cytokines in vivo. The interactions of R. parkeri with inflammasomes and interferons are similar to those of viruses, which can exploit the inflammasome to avoid IFN-I12, are restricted by IFN-I via IRF513,14, and are controlled by IFN-I and IFN-γ in vivo15-17. Our results suggest that the innate immune response to an obligate cytosolic bacterial pathogen lies at the intersection of antibacterial and antiviral responses.
Collapse
Affiliation(s)
- Thomas P Burke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Roberto A Chavez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua A Fonbuena
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
48
|
Karki R, Lee E, Sharma BR, Banoth B, Kanneganti TD. IRF8 Regulates Gram-Negative Bacteria-Mediated NLRP3 Inflammasome Activation and Cell Death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2514-2522. [PMID: 32205422 PMCID: PMC7291389 DOI: 10.4049/jimmunol.1901508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
Inflammasomes are intracellular signaling complexes that are assembled in response to a variety of pathogenic or physiologic stimuli to initiate inflammatory responses. Ubiquitously present LPS in Gram-negative bacteria induces NLRP3 inflammasome activation that requires caspase-11. We have recently demonstrated that IFN regulatory factor (IRF) 8 was dispensable for caspase-11-mediated NLRP3 inflammasome activation during LPS transfection; however, its role in Gram-negative bacteria-mediated NLRP3 inflammasome activation remains unknown. In this study, we found that IRF8 promotes NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) infected with Gram-negative bacteria such as Citrobacter rodentium, Escherichia coli, or Pseudomonas aeruginosa mutant strain ΔpopB Moreover, BMDMs deficient in IRF8 showed substantially reduced caspase-11 activation and gasdermin D cleavage, which are required for NLRP3 inflammasome activation. Mechanistically, IRF8-mediated phosphorylation of IRF3 was required for Ifnb transcription, which in turn triggered the caspase-11-dependent NLRP3 inflammasome activation in the infected BMDMs. Overall, our findings suggest that IRF8 promotes NLRP3 inflammasome activation during infection with Gram-negative bacteria.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Bhesh R Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | | |
Collapse
|
49
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
50
|
Liang F, Zhang F, Zhang L, Wei W. The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases. Inflamm Res 2020; 69:159-166. [PMID: 31932850 DOI: 10.1007/s00011-020-01315-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Pyroptosis is a programmed and inflammatory cell death initiated by inflammasome. During pyroptosis, cytosolic pattern recognition receptors, apoptosis-associated speck-like protein and pro-Caspase-1 form activated inflammasome together. Caspase-1 activated by inflammasome results in generating an N-terminal cleavage product of gasdermin D (GSDMD), which is a major executor of pyroptosis. As a consequence of pyroptosis, a large number of pro-inflammatory cytokines are released including IL-1β and IL-18. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and absent in melanoma 2 (AIM2)-like receptors (ALRs) belong to cytosolic pattern recognition receptors and assemble inflammasomes by detecting host cell damage signals. Pyroptosis pathways are divided into canonical and non-canonical pathways according to the identification of damage signals by cytoplasmic protein sensors. Pyroptosis not only plays an important role in infection, but also plays a vital role in inflammatory immune diseases. This article reviews the advances research of pyroptosis initiated by inflammasome in inflammatory and immune diseases.
Collapse
Affiliation(s)
- Faqin Liang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| |
Collapse
|