1
|
Hu M, Xu B, Ge L, Bian H, Zhou C, Xia S, Yang H, Bao X, Zhao H, Xu Y, Shu S. Beraprost sodium ameliorates cognitive impairment by promoting oligodendrocyte precursor cell proliferation and differentiation in vascular cognitive impairment mouse model. Neuropharmacology 2025; 278:110547. [PMID: 40473102 DOI: 10.1016/j.neuropharm.2025.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/30/2025] [Accepted: 06/02/2025] [Indexed: 06/19/2025]
Abstract
Chronic cerebral hypoperfusion (CCH) leads to white matter injury (WMI), a key contributor to the development of vascular cognitive impairment (VCI). Beraprost sodium (BPS) is a chemically stable and orally active prostaglandin I2 (PGI2) analog, while the role and mechanism of BPS in VCI have not been well understood. In this study, we used a mouse model of bilateral carotid artery stenosis (BCAS mice) and demonstrated that BPS treatment facilitated the proliferation and differentiation of oligodendrocyte precursor cells (OPCs), potentially via PDGFR-α pathway modulation. This intervention promoted remyelination and attenuated WMI and cognitive dysfunction in BCAS mice. Collectively, our results suggested that BPS mitigates chronic ischemic WMI by targeting OPC development, providing a potential therapeutic avenue for VCI.
Collapse
Affiliation(s)
- Mengsha Hu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Bingsong Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Linzhi Ge
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Huijie Bian
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Disease, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Disease, Nanjing University, Nanjing, 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Disease, Nanjing University, Nanjing, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China; Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Sun W, Dion E, Laredo F, Okonak A, Sepeda JA, Haykal E, Zhou M, El-Hodiri HM, Fischer AJ, Silver J, Peng J, Sas A, Tedeschi A. In vivo programming of adult pericytes aids axon regeneration by providing cellular bridges for SCI repair. Mol Ther 2025:S1525-0016(25)00294-1. [PMID: 40253585 DOI: 10.1016/j.ymthe.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Pericytes are contractile cells of the microcirculation that participate in wound healing after spinal cord injury (SCI). Thus far, the extent to which pericytes cause or contribute to axon growth and regeneration failure after SCI remains controversial. Here, we found that SCI leads to profound changes in vasculature architecture and pericyte coverage. We demonstrated that pericytes constrain sensory axons on their surface, causing detrimental structural and functional changes in adult dorsal root ganglion neurons that contribute to axon regeneration failure after SCI. Perhaps more excitingly, we discovered that in vivo programming of adult pericytes via local administration of platelet-derived growth factor BB (PDGF-BB) effectively promotes axon regeneration and recovery of hindlimb function by contributing to the formation of cellular bridges that span the lesion. Ultrastructural analysis showed that PDGF-BB induced fibronectin fibril alignment and extension, effectively converting adult pericytes into a permissive substrate for axon growth. In addition, PDGF-BB localized delivery positively affects the physical and chemical nature of the lesion environment, thereby creating more favorable conditions for SCI repair. Thus, therapeutic manipulation rather than wholesale ablation of pericytes can be exploited to prime axon regeneration and SCI repair.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Elliot Dion
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; University of Nottingham, Nottingham NG7 2QL, UK
| | - Allyson Okonak
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jesse A Sepeda
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Esraa Haykal
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juan Peng
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Sas
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Zhang Y, Peng Z, Guo M, Wang Y, Liu J, Liu Y, Li M, Wei T, Li P, Zhao Y, Wang Y. TET3-facilitated differentiation of human umbilical cord mesenchymal stem cells into oligodendrocyte precursor cells for spinal cord injury recovery. J Transl Med 2024; 22:1118. [PMID: 39707356 DOI: 10.1186/s12967-024-05929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood. This study aimed to explore the TET3-mediated one-step induction of HUCMSCs into OPCs. METHODS In vitro, HUCMSCs were induced into OPCs following TET3 overexpression. Changes of methylation and hydroxymethylation during differentiation were monitored, mechanisms involved in the TET3-driven HUCMSC differentiation into OPCs were identified by RNA sequencing. Methylation levels in NG2 and PDGFRA promoter region were detected using Bisulfite Polymerase Chain Reaction (BSP).In vivo, therapeutic effects of iOPCs were evaluated through a rat Allen's SCI model. RESULTS The in vitro analysis confirmed that TET3 enhances HUCMSC differentiation into OPCs, validitied by specific marker expression. The induced OPCs (iOPCs) exhibited methylation and hydroxymethylation patterns similar to native OPCs. BSP analysis demonstrated that TET3 overexpression significantly reduced CpG island methylation in the NG2 and PDGFRA promoter regions. RNA sequencing revealed that TET3 induces iOPCs to express a series of genes essential for OPC formation while inhibiting the signaling pathways that hinder OPC development. In a rat model of SCI, TET3-overexpressing HUCMSCs appear to have the potential to differentiate into iOPCs in vivo, suppressed secondary injury, and promoted functional recovery. The therapeutic effects of iOPCs on SCI were superior to those of standard mesenchymal stem cell treatments. CONCLUSIONS Our study demonstrated that TET3-mediated demethylation reshapes the methylation patterns of HUCMSCs, enabling their efficient one-step conversion into OPCs and significantly reducing the time required for cell preparation. This approach offers a potential strategy for early intervention in SCI. In an SCI model, TET3-induced OPCs contributed to spinal cord repair, providing novel insights into cell therapy strategies for SCI through the lens of methylation regulation.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Zhibin Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Man Guo
- Department of Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Yangyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Jingsong Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yishu Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Mi Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Tianli Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Pengfei Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yingwei Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yansong Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
5
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
6
|
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
7
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
8
|
Michalettos G, Clausen F, Özen I, Ruscher K, Marklund N. Impaired oligodendrogenesis in the white matter of aged mice following diffuse traumatic brain injury. Glia 2024; 72:728-747. [PMID: 38180164 DOI: 10.1002/glia.24499] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Senescence is a negative prognostic factor for outcome and recovery following traumatic brain injury (TBI). TBI-induced white matter injury may be partially due to oligodendrocyte demise. We hypothesized that the regenerative capacity of oligodendrocyte precursor cells (OPCs) declines with age. To test this hypothesis, the regenerative capability of OPCs in young [(10 weeks ±2 (SD)] and aged [(62 weeks ±10 (SD)] mice was studied in mice subjected to central fluid percussion injury (cFPI), a TBI model causing widespread white matter injury. Proliferating OPCs were assessed by immunohistochemistry for the proliferating cell nuclear antigen (PCNA) marker and labeled by 5-ethynyl-2'-deoxyuridine (EdU) administered daily through intraperitoneal injections (50 mg/kg) from day 2 to day 6 after cFPI. Proliferating OPCs were quantified in the corpus callosum and external capsule on day 2 and 7 post-injury (dpi). The number of PCNA/Olig2-positive and EdU/Olig2-positive cells were increased at 2dpi (p < .01) and 7dpi (p < .01), respectively, in young mice subjected to cFPI, changes not observed in aged mice. Proliferating Olig2+/Nestin+ cells were less common (p < .05) in the white matter of brain-injured aged mice, without difference in proliferating Olig2+/PDGFRα+ cells, indicating a diminished proliferation of progenitors with different spatial origin. Following TBI, co-staining for EdU/CC1/Olig2 revealed a reduced number of newly generated mature oligodendrocytes in the white matter of aged mice when compared to the young, brain-injured mice (p < .05). We observed an age-related decline of oligodendrogenesis following experimental TBI that may contribute to the worse outcome of elderly patients following TBI.
Collapse
Affiliation(s)
| | - Fredrik Clausen
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ilknur Özen
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences, Neurosurgery, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Hill RA, Nishiyama A, Hughes EG. Features, Fates, and Functions of Oligodendrocyte Precursor Cells. Cold Spring Harb Perspect Biol 2024; 16:a041425. [PMID: 38052500 PMCID: PMC10910408 DOI: 10.1101/cshperspect.a041425] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a central nervous system resident population of glia with a distinct molecular identity and an ever-increasing list of functions. OPCs generate oligodendrocytes throughout development and across the life span in most regions of the brain and spinal cord. This process involves a complex coordination of molecular checkpoints and biophysical cues from the environment that initiate the differentiation and integration of new oligodendrocytes that synthesize myelin sheaths on axons. Outside of their progenitor role, OPCs have been proposed to play other functions including the modulation of axonal and synaptic development and the participation in bidirectional signaling with neurons and other glia. Here, we review OPC identity and known functions and discuss recent findings implying other roles for these glial cells in brain physiology and pathology.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
10
|
Brousse B, Mercier O, Magalon K, Gubellini P, Malapert P, Cayre M, Durbec P. Characterization of a new mouse line triggering transient oligodendrocyte progenitor depletion. Sci Rep 2023; 13:21959. [PMID: 38081969 PMCID: PMC10713661 DOI: 10.1038/s41598-023-48926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPC) are the main proliferative cells in the healthy adult brain. They produce new myelinating oligodendrocytes to ensure physiological myelin remodeling and regeneration after various pathological insults. Growing evidence suggests that OPC have other functions. Here, we aimed to develop an experimental model that allows the specific ablation of OPC at the adult stage to unravel possible new functions. We generated a transgenic mouse expressing a floxed human diphtheria toxin receptor under the control of the PDGFRa promoter, crossed with an Olig2Cre mouse to limit the recombination to the oligodendrocyte lineage in the central nervous system. We determined a diphtheria toxin dose to substantially decrease OPC density in the cortex and the corpus callosum without triggering side toxicity after a few daily injections. OPC density was normalized 7 days post-treatment, showing high repopulation capacity from few surviving OPC. We took advantage of this strong but transient depletion to show that OPC loss was associated with behavioral impairment, which was restored by OPC recovery, as well as disruption of the excitation/inhibition balance in the sensorimotor cortex, reinforcing the hypothesis of a neuromodulatory role of OPC in the adult brain.
Collapse
Affiliation(s)
- B Brousse
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - O Mercier
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - K Magalon
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - P Gubellini
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
- Aix Marseille Univ, CNRS, LNC UMR7291, 3 Place Victor Hugo, 13331, Marseille Cedex 3, France
| | - P Malapert
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - M Cayre
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
- Aix Marseille Univ, CNRS, LNC UMR7291, 3 Place Victor Hugo, 13331, Marseille Cedex 3, France
| | - P Durbec
- Aix Marseille Univ, CNRS, IBDM UMR7288, Case 907, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
11
|
Ying C, Zhang J, Zhang H, Gao S, Guo X, Lin J, Wu H, Hong Y. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol 2023; 369:114543. [PMID: 37743001 DOI: 10.1016/j.expneurol.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Central nervous system (CNS) diseases are a leading cause of death and disability. Due to CNS neurons have no self-renewal and regenerative ability as they mature, their loss after injury or disease is irreversible and often leads to functional impairments. Unfortunately, therapeutic options for CNS diseases are still limited, and effective treatments for these notorious diseases are warranted to be explored. At present, stem cell therapy has emerged as a potential therapeutic strategy for improving the prognosis of CNS diseases. Accumulating preclinical and clinical evidences have demonstrated that multiple molecular mechanisms, such as cell replacement, immunoregulation and neurotrophic effect, underlie the use of stem cell therapy for CNS diseases. However, several issues have yet to be addressed to support its clinical application. Thus, this review article aims to summarize the role and underlying mechanisms of stem cell therapy in treating CNS diseases. And it is worthy of further evaluation for the potential therapeutic applications of stem cell treatment in CNS disease.
Collapse
Affiliation(s)
- Caidi Ying
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jun Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Mayrhofer F, Hanson AM, Navedo MF, Xiang YK, Soulika AM, Deng W, Chechneva OV. Transfer of nuclear and ribosomal material from Sox10-lineage cells to neurons in the mouse brain. J Exp Med 2023; 220:e20221632. [PMID: 37067791 PMCID: PMC10114922 DOI: 10.1084/jem.20221632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Material transfer is an essential form of intercellular communication to exchange information and resources between cells. Material transfer between neurons and from glia to neurons has been demonstrated to support neuronal survival and activity. Understanding the extent of material transfer in the healthy nervous system is limited. Here we report that in the mouse central nervous system (CNS), neurons receive nuclear and ribosomal material of Sox10-lineage cell (SOL) origin. We show that transfer of SOL-derived material to neurons is region dependent, establishes during postnatal brain maturation, and dynamically responds to LPS-induced neuroinflammation in the adult mouse brain. We identified satellite oligodendrocyte-neuron pairs with loss of plasma membrane integrity between nuclei, suggesting direct material transfer. Together, our findings provide evidence of regionally coordinated transfer of SOL-derived nuclear and ribosomal material to neurons in the mouse CNS, with potential implications for the understanding and modulation of neuronal function and treatment of neurological disorders.
Collapse
Affiliation(s)
- Florian Mayrhofer
- Institute for Pediatric Regenerative Medicine, Shriners Children’s Northern California, Sacramento, CA, USA
| | - Angela M. Hanson
- Institute for Pediatric Regenerative Medicine, Shriners Children’s Northern California, Sacramento, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- Northern California Health Care System, Mather, CA, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Children’s Northern California, Sacramento, CA, USA
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Wenbin Deng
- Institute for Pediatric Regenerative Medicine, Shriners Children’s Northern California, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Guangdong, China
| | - Olga V. Chechneva
- Institute for Pediatric Regenerative Medicine, Shriners Children’s Northern California, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
13
|
Lotun A, Li D, Xu H, Su Q, Tuncer S, Sanmiguel J, Mooney M, Baer CE, Ulbrich R, Eyles SJ, Strittmatter L, Hayward LJ, Gessler DJ, Gao G. Renewal of oligodendrocyte lineage reverses dysmyelination and CNS neurodegeneration through corrected N-acetylaspartate metabolism. Prog Neurobiol 2023; 226:102460. [PMID: 37149081 PMCID: PMC10330635 DOI: 10.1016/j.pneurobio.2023.102460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Myelinating oligodendrocytes are essential for neuronal communication and homeostasis of the central nervous system (CNS). One of the most abundant molecules in the mammalian CNS is N-acetylaspartate (NAA), which is catabolized into L-aspartate and acetate by the enzyme aspartoacylase (ASPA) in oligodendrocytes. The resulting acetate moiety is thought to contribute to myelin lipid synthesis. In addition, affected NAA metabolism has been implicated in several neurological disorders, including leukodystrophies and demyelinating diseases such as multiple sclerosis. Genetic disruption of ASPA function causes Canavan disease, which is hallmarked by increased NAA levels, myelin and neuronal loss, large vacuole formation in the CNS, and early death in childhood. Although NAA's direct role in the CNS is inconclusive, in peripheral adipose tissue, NAA-derived acetate has been found to modify histones, a mechanism known to be involved in epigenetic regulation of cell differentiation. We hypothesize that a lack of cellular differentiation in the brain contributes to the disruption of myelination and neurodegeneration in diseases with altered NAA metabolism, such as Canavan disease. Our study demonstrates that loss of functional Aspa in mice disrupts myelination and shifts the transcriptional expression of neuronal and oligodendrocyte markers towards less differentiated stages in a spatiotemporal manner. Upon re-expression of ASPA, these oligodendrocyte and neuronal lineage markers are either improved or normalized, suggesting that NAA breakdown by Aspa plays an essential role in the maturation of neurons and oligodendrocytes. Also, this effect of ASPA re-expression is blunted in old mice, potentially due to limited ability of neuronal, rather than oligodendrocyte, recovery.
Collapse
Affiliation(s)
- Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Danning Li
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hongxia Xu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; University of Science and Technology of Kunming, People's Republic of China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Julio Sanmiguel
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Morgan Mooney
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina E Baer
- Sanderson Center for Optical Experimentation, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Russell Ulbrich
- ScientiaLux LLC, Tissue-Gnostics USA-East, Worcester, MA, USA
| | - Stephen J Eyles
- Mass Spectrometry Core, University of Massachusetts, Amherst, MA, USA
| | - Lara Strittmatter
- Electron Microscopy Core, University of Massachusetts Chan Medical School, MA, USA
| | - Lawrence J Hayward
- Department of Neurology, University of Massachusetts Chan Medical School, MA, USA
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology & Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Takashima Y, Yamamoto S, Okuno N, Hamashima T, Dang ST, Tran ND, Okita N, Miwa F, Dang TC, Matsuo M, Takao K, Fujimori T, Mori H, Tobe K, Noguchi M, Sasahara M. PDGF receptor signal mediates the contribution of Nestin-positive cell lineage to subcutaneous fat development. Biochem Biophys Res Commun 2023; 658:27-35. [PMID: 37018886 DOI: 10.1016/j.bbrc.2023.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The beiging of white adipose tissue (WAT) is expected to improve systemic metabolic conditions; however, the regulation and developmental origin of this process remain insufficiently understood. In the present study, the implication of platelet-derived growth factor receptor alpha (PDGFRα) was examined in the beiging of inguinal WAT (ingWAT) of neonatal mice. Using in vivo Nestin expressing cell (Nestin+) lineage tracing and deletion mouse models, we found that, in the mice with Pdgfra gene inactivation in Nestin+ lineage (N-PRα-KO mice), the growth of inguinal WAT (ingWAT) was suppressed during neonatal periods as compared with control wild-type mice. In the ingWAT of N-PRα-KO mice, the beige adipocytes appeared earlier that were accompanied by the increased expressions of both adipogenic and beiging markers compared to control wild-type mice. In the perivascular adipocyte progenitor cell (APC) niche of ingWAT, many PDGFRα+ cells of Nestin+ lineage were recruited in Pdgfra-preserving control mice, but were largely decreased in N-PRα-KO mice. This PDGFRα+ cell depletion was replenished by PDGFRα+ cells of non-Nestin+ lineage, unexpectedly resulting in an increase of total PDGFRα+ cell number in APC niche of N-PRα-KO mice over that of control mice. These represented a potent homeostatic control of PDGFRα+ cells between Nestin+ and non-Nestin+ lineages that was accompanied by the active adipogenesis and beiging as well as small WAT depot. This highly plastic nature of PDGFRα+ cells in APC niche may contribute to the WAT remodeling for the therapeutic purpose against metabolic diseases.
Collapse
|
15
|
Xing YL, Poh J, Chuang BH, Moradi K, Mitew S, Richardson WD, Kilpatrick TJ, Osanai Y, Merson TD. High-efficiency pharmacogenetic ablation of oligodendrocyte progenitor cells in the adult mouse CNS. CELL REPORTS METHODS 2023; 3:100414. [PMID: 36936074 PMCID: PMC10014347 DOI: 10.1016/j.crmeth.2023.100414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Approaches to investigate adult oligodendrocyte progenitor cells (OPCs) by targeted cell ablation in the rodent CNS have limitations in the extent and duration of OPC depletion. We have developed a pharmacogenetic approach for conditional OPC ablation, eliminating >98% of OPCs throughout the brain. By combining recombinase-based transgenic and viral strategies for targeting OPCs and ventricular-subventricular zone (V-SVZ)-derived neural precursor cells (NPCs), we found that new PDGFRA-expressing cells born in the V-SVZ repopulated the OPC-deficient brain starting 12 days after OPC ablation. Our data reveal that OPC depletion induces V-SVZ-derived NPCs to generate vast numbers of PDGFRA+NG2+ cells with the capacity to proliferate and migrate extensively throughout the dorsal anterior forebrain. Further application of this approach to ablate OPCs will advance knowledge of the function of both OPCs and oligodendrogenic NPCs in health and disease.
Collapse
Affiliation(s)
- Yao Lulu Xing
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jasmine Poh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bernard H.A. Chuang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kaveh Moradi
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Stanislaw Mitew
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - William D. Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Trevor J. Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Yasuyuki Osanai
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tobias D. Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
Xu L, Nirwane A, Xu T, Kang M, Devasani K, Yao Y. Fibroblasts repair blood-brain barrier damage and hemorrhagic brain injury via TIMP2. Cell Rep 2022; 41:111709. [DOI: 10.1016/j.celrep.2022.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
|
17
|
Sun J, Song Y, Chen Z, Qiu J, Zhu S, Wu L, Xing L. Heterogeneity and Molecular Markers for CNS Glial Cells Revealed by Single-Cell Transcriptomics. Cell Mol Neurobiol 2022; 42:2629-2642. [PMID: 34704168 PMCID: PMC11421601 DOI: 10.1007/s10571-021-01159-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
Glial cells, including astrocytes, oligodendrocytes, and microglia, are the major components in the central nervous system (CNS). Studies have revealed the heterogeneity of each glial cell type and that they each may play distinct roles in physiological processes and/or neurological diseases. Single-cell sequencing (scRNA-seq) technology developed in recent years has extended our understanding of glial cell heterogeneity from the perspective of transcriptome profiling. This review summarizes the marker genes of major glial cells in the CNS and reveals their heterogeneity in different species, CNS regions, developmental stages, and pathological states (Alzheimer's disease and spinal cord injury), expanding our knowledge of glial cell heterogeneity on both molecular and functional levels.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhiheng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Nantong Maternal and Child Health Hospital affiliated to Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
18
|
Szpakowski P, Ksiazek-Winiarek D, Turniak-Kusy M, Pacan I, Glabinski A. Human Primary Astrocytes Differently Respond to Pro- and Anti-Inflammatory Stimuli. Biomedicines 2022; 10:biomedicines10081769. [PMID: 35892669 PMCID: PMC9331936 DOI: 10.3390/biomedicines10081769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, astrocytes were considered a passive brain cell population. However, recently, many studies have shown that their role in the central nervous system (CNS) is more active. Previously, it was stated that there are two main functional phenotypes of astrocytes. However, nowadays, it is clear that there is rather a broad spectrum of these phenotypes. The major goal of this study was to evaluate the production of some inflammatory chemokines and neurotrophic factors by primary human astrocytes after pro- or anti-inflammatory stimulation. We observed that only astrocytes induced by inflammatory mediators TNFα/IL-1a/C1q produced CXCL10, CCL1, and CXCL13 chemokines. Unstimulated astrocytes and those cultured with anti-inflammatory cytokines (IL-4, IL-10, or TGF-β1) did not produce these chemokines. Interestingly, astrocytes cultured in proinflammatory conditions significantly decreased the release of neurotrophic factor PDGF-A, as compared to unstimulated astrocytes. However, in response to anti-inflammatory cytokine TGF-β1, astrocytes significantly increased PDGF-A production compared to the medium alone. The production of another studied neurotrophic factor BDNF was not influenced by pro- or anti-inflammatory stimulation. The secretory response was accompanied by changes in HLA-DR, CD83, and GFAP expression. Our study confirms that astrocytes differentially respond to pro- and anti-inflammatory stimuli, especially to inflammatory cytokines TNF-α, IL-1a, and C1q, suggesting their role in leukocyte recruitment.
Collapse
|
19
|
Reciprocal Interactions between Oligodendrocyte Precursor Cells and the Neurovascular Unit in Health and Disease. Cells 2022; 11:cells11121954. [PMID: 35741083 PMCID: PMC9221698 DOI: 10.3390/cells11121954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are mostly known for their capability to differentiate into oligodendrocytes and myelinate axons. However, they have been observed to frequently interact with cells of the neurovascular unit during development, homeostasis, and under pathological conditions. The functional consequences of these interactions are largely unclear, but are increasingly studied. Although OPCs appear to be a rather homogenous cell population in the central nervous system (CNS), they present with an enormous potential to adapt to their microenvironment. In this review, it is summarized what is known about the various roles of OPC-vascular interactions, and the circumstances under which they have been observed.
Collapse
|
20
|
Bu Shen Yi Sui Capsules Promote Remyelination by Regulating MicroRNA-219 and MicroRNA-338 in Exosomes to Promote Oligodendrocyte Precursor Cell Differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3341481. [PMID: 35463062 PMCID: PMC9020954 DOI: 10.1155/2022/3341481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Remyelination is a refractory feature of demyelinating diseases such as multiple sclerosis (MS). Studies have shown that promoting oligodendrocyte precursor cell (OPC) differentiation, which cannot be achieved by currently available therapeutic agents, is the key to enhancing remyelination. Bu Shen Yi Sui capsule (BSYSC) is a traditional Chinese herbal medicine over many years of clinical practice. We have found that BSYSC can effectively treat MS. In this study, the effects of BSYSC in promoting OPCs differentiation and remyelination were assessed using an experimental autoimmune encephalomyelitis (EAE) model in vivo and cultured OPCs in vitro. The results showed that BSYSC reduced clinical function scores and increased neuroprotection. The expression of platelet-derived growth factor receptor α (PDGFR-α) was decreased and the level of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was increased in the brains and spinal cords of mice as well as in OPCs after treatment with BSYSC. We further found that BSYSC elevated the expression of miR-219 or miR-338 in the serum exosomes of mice with EAE, thereby suppressing the expression of Sox6, Lingo1, and Hes5, which negatively regulate OPCs differentiation. Therefore, serum exosomes of BSYSC-treated mice (exos-BSYSC) were extracted and administered to OPCs in which miR-219 or miR-338 expression was knocked down by adenovirus, and the results showed that Sox6, Lingo1, and Hes5 expression was downregulated, MBP expression was upregulated, OPCs differentiation was increased, and the ability of OPCs to wrap around neuronal axons was improved. In conclusion, BSYSC may exert clinically relevant effects by regulating microRNA (miR) levels in exosomes and thus promoting the differentiation and maturation of OPCs.
Collapse
|
21
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Heo D, Ling JP, Molina-Castro GC, Langseth AJ, Waisman A, Nave KA, Möbius W, Wong PC, Bergles DE. Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43. eLife 2022; 11:e75230. [PMID: 35311646 PMCID: PMC8970587 DOI: 10.7554/elife.75230] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocalization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligodendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP-43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to eventual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43-deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jonathan P Ling
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gian C Molina-Castro
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of GöttingenGöttingenGermany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental MedicineGöttingenGermany
| | - Phil C Wong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
23
|
The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents. Nat Commun 2022; 13:1423. [PMID: 35301318 PMCID: PMC8931116 DOI: 10.1038/s41467-022-29068-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
OLIG2 is a transcription factor that activates the expression of myelin-associated genes in the oligodendrocyte-lineage cells. However, the mechanisms of myelin gene inactivation are unclear. Here, we uncover a non-canonical function of OLIG2 in transcriptional repression to modulate myelinogenesis by functionally interacting with tri-methyltransferase SETDB1. Immunoprecipitation and chromatin-immunoprecipitation assays show that OLIG2 recruits SETDB1 for H3K9me3 modification on the Sox11 gene, which leads to the inhibition of Sox11 expression during the differentiation of oligodendrocytes progenitor cells (OPCs) into immature oligodendrocytes (iOLs). Tissue-specific depletion of Setdb1 in mice results in the hypomyelination during development and remyelination defects in the injured rodents. Knockdown of Sox11 by siRNA in rat primary OPCs or depletion of Sox11 in the oligodendrocyte lineage in mice could rescue the hypomyelination phenotype caused by the loss of OLIG2. In summary, our work demonstrates that the OLIG2-SETDB1 complex can mediate transcriptional repression in OPCs, affecting myelination. Transcription factors regulate gene programs during myelination. Here, the authors show that the Oligodendrocyte Transcription Factor 2 (OLIG2) regulates the differentiation of oligodendrocyte progenitor cells into immature oligodendrocytes via SETDB1 during myelination and remyelination in rodents.
Collapse
|
24
|
Li C, Huang S, Zhou W, Xie Z, Xie S, Li M. Effects of the Notch Signaling Pathway on Secondary Brain Changes Caused by Spinal Cord Injury in Mice. Neurochem Res 2022; 47:1651-1663. [PMID: 35211828 DOI: 10.1007/s11064-022-03558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch signaling pathway activation can regulate oligodendrocyte maturation and myelination. The aim of this study was to investigate whether inhibition of the Notch signaling pathway can alleviate hypomyelination in the dlPFC caused by SCI. Moreover, we further investigated whether the changes in myelination in the dlPFC are associated with neuropathic pain following SCI. We established a mouse model of SCI and observed the changes in mechanical and thermal hyperalgesia. Western blotting and immunofluorescence were used to analyze the changes in myelination in the dlPFC. The results indicated the existence of a relationship between activation of the Notch signaling pathway and hypomyelination in the dlPFC and confirmed the existence of a relationship between hypomyelination in the dlPFC and decreases in mechanical and thermal hyperalgesia thresholds. In conclusion, these results suggested that the Notch signaling pathway is activated after SCI, leading to hypomyelination in the dlPFC, and that DAPT can inhibit the Notch signaling pathway and improve mechanical and thermal hyperalgesia thresholds. Our findings provide a new target for the treatment of neuropathic pain caused by SCI.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, 332005, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
25
|
Li Y, Dittmann NL, Watson AES, de Almeida MMA, Footz T, Voronova A. Hepatoma Derived Growth Factor Enhances Oligodendrocyte Genesis from Subventricular Zone Precursor Cells. ASN Neuro 2022; 14:17590914221086340. [PMID: 35293825 PMCID: PMC8943302 DOI: 10.1177/17590914221086340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), perform vital functions in neural protection and communication, as well as cognition. Enhanced production of oligodendrocytes has been identified as a therapeutic approach for neurodegenerative and neurodevelopmental disorders. In the postnatal brain, oligodendrocytes are generated from the neural stem and precursor cells (NPCs) in the subventricular zone (SVZ) and parenchymal oligodendrocyte precursor cells (OPCs). Here, we demonstrate exogenous Hepatoma Derived Growth Factor (HDGF) enhances oligodendrocyte genesis from murine postnatal SVZ NPCs in vitro without affecting neurogenesis or astrogliogenesis. We further show that this is achieved by increasing proliferation of both NPCs and OPCs, as well as OPC differentiation into oligodendrocytes. In vivo results demonstrate that intracerebroventricular infusion of HDGF leads to increased oligodendrocyte genesis from SVZ NPCs, as well as OPC proliferation. Our results demonstrate a novel role for HDGF in regulating SVZ precursor cell proliferation and oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Nicole Leanne Dittmann
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Monique Marylin Alves de Almeida
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW Edmonton, Alberta, Canada, T6G 1C9
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Multiple Sclerosis Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
26
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
27
|
Sherafat A, Pfeiffer F, Nishiyama A. Shaping of Regional Differences in Oligodendrocyte Dynamics by Regional Heterogeneity of the Pericellular Microenvironment. Front Cell Neurosci 2021; 15:721376. [PMID: 34690700 PMCID: PMC8531270 DOI: 10.3389/fncel.2021.721376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into mature oligodendrocytes (OLs) to generate new myelin sheaths. While OPCs are distributed uniformly throughout the gray and white matter in the developing and adult brain, those in white matter proliferate and differentiate into oligodendrocytes at a greater rate than those in gray matter. There is currently lack of evidence to suggest that OPCs comprise genetically and transcriptionally distinct subtypes. Rather, the emerging view is that they exist in different cell and functional states, depending on their location and age. Contrary to the normal brain, demyelinated lesions in the gray matter of multiple sclerosis brains contain more OPCs and OLs and are remyelinated more robustly than those in white matter. The differences in the dynamic behavior of OL lineage cells are likely to be influenced by their microenvironment. There are regional differences in astrocytes, microglia, the vasculature, and the composition of the extracellular matrix (ECM). We will discuss how the regional differences in these elements surrounding OPCs might shape their phenotypic variability in normal and demyelinated states.
Collapse
Affiliation(s)
- Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States.,The Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
28
|
Zorzin S, Corsi A, Ciarpella F, Bottani E, Dolci S, Malpeli G, Pino A, Amenta A, Fumagalli GF, Chiamulera C, Bifari F, Decimo I. Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling. Int J Mol Sci 2021; 22:ijms221910657. [PMID: 34638999 PMCID: PMC8508649 DOI: 10.3390/ijms221910657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced β3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.
Collapse
Affiliation(s)
- Stefania Zorzin
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Andrea Corsi
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesca Ciarpella
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Emanuela Bottani
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Sissi Dolci
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy;
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Guido Franceso Fumagalli
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
- Correspondence: ; Tel.: +39-045-802-7509; Fax: +39-045-802-7452
| |
Collapse
|
29
|
Goranci-Buzhala G, Mariappan A, Ricci-Vitiani L, Josipovic N, Pacioni S, Gottardo M, Ptok J, Schaal H, Callaini G, Rajalingam K, Dynlacht B, Hadian K, Papantonis A, Pallini R, Gopalakrishnan J. Cilium induction triggers differentiation of glioma stem cells. Cell Rep 2021; 36:109656. [PMID: 34496239 DOI: 10.1016/j.celrep.2021.109656] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of GSCs' fundamental biology is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit elevated levels of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components is sufficient to induce ciliogenesis in a subset of GSCs via relocating platelet-derived growth factor receptor-alpha (PDGFR-α) to a newly induced cilium. Importantly, restoring ciliogenesis enabled GSCs to switch from self-renewal to differentiation. Finally, using an organoid-based glioma invasion assay and brain xenografts in mice, we establish that ciliogenesis-induced differentiation can prevent the infiltration of GSCs into the brain. Our findings illustrate a role for cilium as a molecular switch in determining GSCs' fate and suggest cilium induction as an attractive strategy to intervene in GSCs proliferation.
Collapse
Affiliation(s)
- Gladiola Goranci-Buzhala
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Giuliano Callaini
- Department of Life Sciences University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Brian Dynlacht
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
30
|
Gould E, Kim JH. SCN2A contributes to oligodendroglia excitability and development in the mammalian brain. Cell Rep 2021; 36:109653. [PMID: 34496232 PMCID: PMC8486143 DOI: 10.1016/j.celrep.2021.109653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/04/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Spiking immature oligodendrocytes (OLs), referred to as spiking OLs, express voltage-activated Na+ channels (Nav) and K+ (Kv) channels, endowing a subpopulation of OLs with the ability to generate Nav-driven spikes. In this study, we investigate the molecular profile of spiking OLs, using single-cell transcriptomics paired with whole-cell patch-clamp recordings. SCN2A, which encodes the channel Nav1.2, is specifically expressed in spiking OLs in the brainstem and cerebellum, both in mice and in Olive baboons. Spiking OLs express lineage markers of OL progenitor cells (OPCs) and pre-myelinating OLs, indicating they belong to a transitional stage during differentiation. Deletion of SCN2A reduces the Nav current-expressing OL population and eliminates spiking OLs, indicating that SCN2A is essential for spiking in OLs. Deletion of SCN2A does not impact global OL proliferation but disrupts maturation of a subpopulation of OLs, suggesting that Nav1.2 is involved in heterogeneity in OL lineage cells and their development.
Collapse
Affiliation(s)
- Elizabeth Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA,Lead contact,Correspondence:
| |
Collapse
|
31
|
Xu L, Yao Y. Central Nervous System Fibroblast-Like Cells in Stroke and Other Neurological Disorders. Stroke 2021; 52:2456-2464. [PMID: 33940953 DOI: 10.1161/strokeaha.120.033431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblasts are the most common cell type of connective tissues. In the central nervous system (CNS), fibroblast-like cells are mainly located in the meninges and perivascular Virchow-Robin space. The origins of these fibroblast-like cells and their functions in both CNS development and pathological conditions remain largely unknown. In this review, we first introduce the anatomic location and molecular markers of CNS fibroblast-like cells. Next, the functions of fibroblast-like cells in CNS development and neurological disorders, including stroke, CNS traumatic injuries, and other neurological diseases, are discussed. Third, current challenges and future directions in the field are summarized. We hope to provide a synthetic review that stimulates future research on CNS fibroblast-like cells.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens
| |
Collapse
|
32
|
Dysregulation of Amphiregulin stimulates the pathogenesis of cystic lymphangioma. Proc Natl Acad Sci U S A 2021; 118:2019580118. [PMID: 33941693 DOI: 10.1073/pnas.2019580118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Along with blood vessels, lymphatic vessels play an important role in the circulation of body fluid and recruitment of immune cells. Postnatal lymphangiogenesis commonly occurs from preexisting lymphatic vessels by sprouting, which is induced by lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C). However, the key signals and cell types that stimulate pathological lymphangiogenesis, such as human cystic lymphangioma, are less well known. Here, we found that mouse dermal fibroblasts that infiltrate to sponges subcutaneously implanted express VEGF-D and sushi, Von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) in response to PDGFRβ signal. In vitro, Pdgfrb knockout (β-KO) fibroblasts had reduced expression of VEGF-D and SVEP1 and overproduced Amphiregulin. Dysregulation of these three factors was involved in the cyst-like and uneven distribution of lymphatic vessels observed in the β-KO mice. Similarly, in human cystic lymphangioma, which is one of the intractable diseases and mostly occurs in childhood, fibroblasts surrounding cystic lymphatics highly expressed Amphiregulin. Moreover, fibroblast-derived Amphiregulin could induce the expression of Amphiregulin in lymphatic endothelial cells. The dual source of Amphiregulin activated EGFR expressed on the lymphatic endothelial cells. This exacerbation cascade induced proliferation of lymphatic endothelial cells to form cystic lymphangioma. Ultimately, excessive Amphiregulin produced by fibroblasts surrounding lymphatics and by lymphatic endothelial cells per se results in pathogenesis of cystic lymphangioma and will be a fascinating therapeutic target of cystic lymphangioma.
Collapse
|
33
|
Hayashi T, Yamamoto S, Hamashima T, Mori H, Sasahara M, Kuroda S. Critical role of platelet-derived growth factor-α in angiogenesis after indirect bypass in a murine moyamoya disease model. J Neurosurg 2021; 134:1535-1543. [PMID: 32442967 DOI: 10.3171/2020.3.jns193273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to clarify the underlying mechanism of pathognomonic angiogenesis between the temporal muscle and neocortex after indirect bypass for moyamoya disease by shedding light on the role of platelet-derived growth factor receptor-α (PDGFRα) in angiogenesis. METHODS The gene for PDGFRα was systemically inactivated in adult mice (α-KO mice). The Pdgfra-preserving mice (Flox mice) and α-KO mice were exposed to bilateral common carotid artery stenosis (BCAS) by using microcoils. One week later the animals underwent encephalomyosynangiosis (EMS) on the right side. Cerebral blood flow (CBF) was serially measured using a laser Doppler flowmeter. Histological analysis was performed on the distribution of CD31-positive vessels and collagen deposit at 28 days after BCAS. Reverse transcription polymerase chain reaction (RT-PCR) was performed to assess the expression of collagen mRNA in the skin fibroblasts derived from Flox and α-KO mice. RESULTS BCAS significantly reduced CBF up to approximately 70% of the control level at 28 days after the onset. There was no significant difference in CBF between Flox and α-KO mice. EMS significantly enhanced the improvement of CBF on the ipsilateral side of Flox mice, but not α-KO mice. EMS significantly induced the development of CD31-positive vessels in both the neocortex and temporal muscle on the ipsilateral side of Flox mice, but not α-KO mice. Deposition of collagen was distinctly observed between them in Flox mice, but not α-KO mice. Expression of mRNA of collagen type 1 alpha 1 (Col1a1) and collagen type 3 alpha 1 (Col3a1) was significantly downregulated in the skin fibroblasts from α-KO mice. CONCLUSIONS This is the first study that denotes the role of a specific growth factor in angiogenesis after EMS for moyamoya disease by inactivating its gene in mice. The findings strongly suggest that PDGFRα signal may play an important role in developing spontaneous angiogenesis between the temporal muscle and neocortex after EMS in moyamoya disease.
Collapse
Affiliation(s)
| | | | | | - Hisashi Mori
- 3Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | |
Collapse
|
34
|
Nishiyama A, Serwanski DR, Pfeiffer F. Many roles for oligodendrocyte precursor cells in physiology and pathology. Neuropathology 2021; 41:161-173. [PMID: 33913208 DOI: 10.1111/neup.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) are a fourth resident glial cell population in the mammalian central nervous system. They are evenly distributed throughout the gray and white matter and continue to proliferate and generate new oligodendrocytes (OLs) throughout life. They were understudied until a few decades ago when immunolabeling for NG2 and platelet-derived growth factor receptor alpha revealed cells that are distinct from mature OLs, astrocytes, neurons, and microglia. In this review, we provide a summary of the known properties of OPCs with some historical background, followed by highlights from recent studies that suggest new roles for OPCs in certain pathological conditions.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Skoff RP, Bessert D, Banerjee S, Luo X, Thummel R. Characterization of the Expression of Vacuolar Protein Sorting 11 (Vps11) in Mammalian Oligodendrocytes. ASN Neuro 2021; 13:17590914211009851. [PMID: 33874780 PMCID: PMC8060772 DOI: 10.1177/17590914211009851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A founder mutation in human VPS11 (Vacuolar
Protein Sorting 11) was recently linked to a genetic
leukoencephalopathy in Ashkenazi Jews that presents with the classical
features of white matter disorders of the central nervous system
(CNS). The neurological deficits include hypomyelination, hypotonia,
gradual loss of vision, and seizures. However, the cells expressing
the mutation were not identified. Here we describe, using
immunocytochemistry, the strong expression of Vps11 in mouse
oligodendrocytes and, specifically, its localization with Myelin
Associated Glycoprotein (MAG) in the inner tongue of myelin. In
longitudinal sections of myelin, it forms a bead-like structure,
alternating with Myelin Basic Protein (MBP). Immunofluorescent
staining with Vps11 and neurofilament proteins indicates the absence
of Vps11 in axons in vivo. Finally, changes in Vps11
expression are associated with altered proteolipid protein (PLP)
levels based upon mice with duplications or deletions of the
Plp1 gene. To determine potential functional
contributions of Vps11, we combined Vps11 with Platelet Derived Growth
Factor Receptor-α (PDGFRα) in vitro and in
vivo: in both conditions, co-localization of the two
proteins was frequently found in round vesicles of
OPCs/oligodendrocytes, suggesting retrograde transport for degradation
by the endolysosomal system. Neuron-to-glial communication has been
invoked to explain degenerative changes in myelin followed by
degenerative changes in axons, and vice versa; but to our knowledge,
no specific proteins in retrograde transport from the myelin inner
tongue to oligodendrocyte perikarya have been identified. The
identification of mutations in VPS11 and its
localization at the axon-myelin interface should open new avenues of
research.
Collapse
Affiliation(s)
- Robert P Skoff
- Department of Ophthalmology, Visual and Anatomical Sciences, 12267Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Denise Bessert
- Department of Ophthalmology, Visual and Anatomical Sciences, 12267Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Shreya Banerjee
- Department of Ophthalmology, Visual and Anatomical Sciences, 12267Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, 12267Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, 12267Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
36
|
Danesh-Seta T, Emami F, Nasr-Esfahani MH, Ghaedi K, Aliomrani M. Bee Venom-Derived BBB Shuttle and its Correlation with Oligodendrocyte Proliferation Markers in Mice Model of Multiple Sclerosis. Neurotox Res 2021; 39:1181-1188. [PMID: 33871814 DOI: 10.1007/s12640-021-00361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis is a chronic demyelinating disease with a functional disturbance in the immune system and axonal damages. It was shown that Apamin as a blood-brain barrier shuttle acts as a Ca2+ activated K+ channels (SK channels) blocker. In this study, the effects of Apamin on oligodendrocyte differentiation markers were evaluated on an induced model of MS. Briefly, C57BL/6 male mice (22 ± 5 g) except the control group were fed with 0.2% (w/w) cuprizone pellets for 6 weeks. After cuprizone withdrawal, mice were divided randomly into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week. Mice were anesthetized, perfused with phosphate-buffered saline, then fixed brains were coronally sectioned and the changes in oligodendrocytes markers such as Olig2, PDGFR-α, and BrdU incorporation were assessed by immunohistochemistry assay. Apamin administration increased Olig2+ cells in phase I as compared to the control group (p < 0.0001). Also, a decreasing trend in PDGFRa+ cells observed after cuprizone withdrawal (p < 0.001). 5-Bromo-2'-deoxyuridine (BrdU) incorporation test was confirmed stimulation of oligodendrocyte progenitor cell proliferation in phase I in the Apamin exposed group (p < 0.0001), especially at the subventricular zone. This study highlights the potential therapeutic effects of Apamin as a bee venom-derived peptide on oligodendrocyte precursor proliferation and elevation in myelin content in an oxidative induced multiple sclerosis model due to cuprizone exposure.
Collapse
Affiliation(s)
- Tannaz Danesh-Seta
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Emami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Iranian National Science Foundation, Tehran, Iran.
| |
Collapse
|
37
|
Fletcher JL, Makowiecki K, Cullen CL, Young KM. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 2021; 118:14-23. [PMID: 33863642 DOI: 10.1016/j.semcdb.2021.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
During cortical development and throughout adulthood, oligodendrocytes add myelin internodes to glutamatergic projection neurons and GABAergic inhibitory neurons. In addition to directing node of Ranvier formation, to enable saltatory conduction and influence action potential transit time, oligodendrocytes support axon health by communicating with axons via the periaxonal space and providing metabolic support that is particularly critical for healthy ageing. In this review we outline the timing of oligodendrogenesis in the developing mouse and human cortex and describe the important role that oligodendrocytes play in sustaining and modulating neuronal function. We also provide insight into the known and speculative impact that myelination has on cortical axons and their associated circuits during the developmental critical periods and throughout life, particularly highlighting their life-long role in learning and remembering.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
38
|
Nishiyama A, Shimizu T, Sherafat A, Richardson WD. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol 2021; 116:25-37. [PMID: 33741250 PMCID: PMC8292179 DOI: 10.1016/j.semcdb.2021.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) originate in localized germinal zones in the embryonic neural tube, then migrate and proliferate to populate the entire central nervous system, both white and gray matter. They divide and generate myelinating oligodendrocytes (OLs) throughout postnatal and adult life. OPCs express NG2 and platelet-derived growth factor receptor alpha subunit (PDGFRα), two functionally important cell surface proteins, which are also widely used as markers for OPCs. The proliferation of OPCs, their terminal differentiation into OLs, survival of new OLs, and myelin synthesis are orchestrated by signals in the local microenvironment. We discuss advances in our mechanistic understanding of paracrine effects, including those mediated through PDGFRα and neuronal activity-dependent signals such as those mediated through AMPA receptors in OL survival and myelination. Finally, we review recent studies supporting the role of new OL production and “adaptive myelination” in specific behaviours and cognitive processes contributing to learning and long-term memory formation. Our article is not intended to be comprehensive but reflects the authors’ past and present interests.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
39
|
Nguyen QL, Okuno N, Hamashima T, Dang ST, Fujikawa M, Ishii Y, Enomoto A, Maki T, Nguyen HN, Nguyen VT, Fujimori T, Mori H, Andrae J, Betsholtz C, Takao K, Yamamoto S, Sasahara M. Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis 2021; 24:35-46. [PMID: 32918673 DOI: 10.1007/s10456-020-09742-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) dysfunction underlies the pathogenesis of many neurological diseases. Platelet-derived growth factor receptor-alpha (PDGFRα) induces hemorrhagic transformation (HT) downstream of tissue plasminogen activator in thrombolytic therapy of acute stroke. Thus, PDGFs are attractive therapeutic targets for BBB dysfunction. In the present study, we examined the role of PDGF signaling in the process of tissue remodeling after middle cerebral arterial occlusion (MCAO) in mice. Firstly, we found that imatinib increased lesion size after permanent MCAO in wild-type mice. Moreover, imatinib-induced HT only when administrated in the subacute phase of MCAO, but not in the acute phase. Secondly, we generated genetically mutated mice (C-KO mice) that showed decreased expression of perivascular PDGFRα. Additionally, transient MCAO experiments were performed in these mice. We found that the ischemic lesion size was not affected; however, the recruitment of PDGFRα/type I collagen-expressing perivascular cells was significantly downregulated, and HT and IgG leakage was augmented only in the subacute phase of stroke in C-KO mice. In both experiments, we found that the expression of tight junction proteins and PDGFRβ-expressing pericyte coverage was not significantly affected in imatinib-treated mice and in C-KO mice. The specific implication of PDGFRα signaling was suggestive of protective effects against BBB dysfunction during the subacute phase of stroke. Vascular TGF-β1 expression was downregulated in both imatinib-treated and C-KO mice, along with sustained levels of MMP9. Therefore, PDGFRα effects may be mediated by TGF-β1 which exerts potent protective effects in the BBB.
Collapse
Affiliation(s)
- Quang Linh Nguyen
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Stroke Center, The 108 Military Central Hospital, Ha Noi, Vietnam
| | - Noriko Okuno
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takeru Hamashima
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Son Tung Dang
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Miwa Fujikawa
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoko Ishii
- Department of Health Science, Faculty of Health and Human Development, The University of Nagano, Nagano, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Van Tuyen Nguyen
- Stroke Center, The 108 Military Central Hospital, Ha Noi, Vietnam
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Seiji Yamamoto
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
40
|
Kosaraju J, Seegobin M, Gouveia A, Syal C, Sarma SN, Lu KJ, Ilin J, He L, Wondisford FE, Lagace D, De Repentigny Y, Kothary R, Wang J. Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Exp Neurol 2020; 334:113454. [PMID: 32877653 DOI: 10.1016/j.expneurol.2020.113454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
Individuals with demyelinating diseases often experience difficulties during social interactions that are not well studied in preclinical models. Here, we describe a novel juvenile focal corpus callosum demyelination murine model exhibiting a social interaction deficit. Using this preclinical murine demyelination model, we discover that application of metformin, an FDA-approved drug, in this model promotes oligodendrocyte regeneration and remyelination and improves the social interaction. This beneficial effect of metformin acts through stimulating Ser436 phosphorylation in CBP, a histone acetyltransferase. In addition, we found that metformin acts through two distinct molecular pathways to enhance oligodendrocyte precursor (OPC) proliferation and differentiation, respectively. Metformin enhances OPC proliferation through early-stage autophagy inhibition, while metformin promotes OPC differentiation into mature oligodendrocytes through activating CBP Ser436 phosphorylation. In summary, we identify that metformin is a promising remyelinating agent to improve juvenile demyelination-associated social interaction deficits by promoting oligodendrocyte regeneration and remyelination.
Collapse
Affiliation(s)
- Jayasankar Kosaraju
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Matthew Seegobin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ayden Gouveia
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sailendra Nath Sarma
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kevin Jiaqi Lu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Julius Ilin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Diane Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada.
| |
Collapse
|
41
|
Medved J, Wood WM, van Heyst MD, Sherafat A, Song JY, Sakya S, Wright DL, Nishiyama A. Novel guanidine compounds inhibit platelet-derived growth factor receptor alpha transcription and oligodendrocyte precursor cell proliferation. Glia 2020; 69:792-811. [PMID: 33098183 DOI: 10.1002/glia.23930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 cells or polydendrocytes, are distributed widely throughout the developing and mature central nervous system. They remain proliferative throughout life and are an important source of myelinating cells in normal and demyelinating brain as well as a source of glioma, the most common type of primary brain tumor with a poor prognosis. OPC proliferation is dependent on signaling mediated by platelet-derived growth factor (PDGF) AA binding to its alpha receptor (PDGFRα). Here, we describe a group of structurally related compounds characterized by the presence of a basic guanidine group appended to an aromatic core that is effective in specifically repressing the transcription of Pdgfra but not the related beta receptor (Pdgfrb) in OPCs. These compounds specifically and dramatically reduced proliferation of OPCs but not that of astrocytes and did not affect signal transduction by PDGFRα. These findings suggest that the compounds could be further developed for potential use in combinatorial treatment strategies for neoplasms with dysregulated PDGFRα function.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael D van Heyst
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ju-Young Song
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Sagune Sakya
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Mansfield, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Mansfield, Connecticut, USA
| |
Collapse
|
42
|
Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020; 11:573256. [PMID: 33117368 PMCID: PMC7561408 DOI: 10.3389/fimmu.2020.573256] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play important roles in numerous central nervous system disorders including autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and temporal context, activated astrocytes may contribute to the pathogenesis, progression, and recovery of disease. Recent progress in the dissection of transcriptional responses to varying forms of central nervous system insult has shed light on the mechanisms that govern the complexity of reactive astrocyte functions. While a large body of research focuses on the pathogenic effects of reactive astrocytes, little is known about how they limit inflammation and contribute to tissue regeneration. However, these protective astrocyte pathways might be of relevance for the understanding of the underlying pathology in disease and may lead to novel targeted approaches to treat autoimmune inflammatory and degenerative disorders of the central nervous system. In this review article, we have revisited the emerging concept of protective astrocyte functions and discuss their role in the recovery from inflammatory and ischemic disease as well as their role in degenerative disorders. Focusing on soluble astrocyte derived mediators, we aggregate the existing knowledge on astrocyte functions in the maintenance of homeostasis as well as their reparative and tissue-protective function after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how these mediators may guide future therapeutic strategies to tackle yet untreatable disorders of the central nervous system.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Decimo I, Dolci S, Panuccio G, Riva M, Fumagalli G, Bifari F. Meninges: A Widespread Niche of Neural Progenitors for the Brain. Neuroscientist 2020; 27:506-528. [PMID: 32935634 PMCID: PMC8442137 DOI: 10.1177/1073858420954826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence highlights the several roles that meninges play in
relevant brain functions as they are a protective membrane for the
brain, produce and release several trophic factors important for
neural cell migration and survival, control cerebrospinal fluid
dynamics, and embrace numerous immune interactions affecting neural
parenchymal functions. Furthermore, different groups have identified
subsets of neural progenitors residing in the meninges during
development and in the adulthood in different mammalian species,
including humans. Interestingly, these immature neural cells are able
to migrate from the meninges to the neural parenchyma and
differentiate into functional cortical neurons or oligodendrocytes.
Immature neural cells residing in the meninges promptly react to brain
disease. Injury-induced expansion and migration of meningeal neural
progenitors have been observed following experimental demyelination,
traumatic spinal cord and brain injury, amygdala lesion, stroke, and
progressive ataxia. In this review, we summarize data on the function
of meninges as stem cell niche and on the presence of immature neural
cells in the meninges, and discuss their roles in brain health and
disease. Furthermore, we consider the potential exploitation of
meningeal neural progenitors for the regenerative medicine to treat
neurological disorders.
Collapse
Affiliation(s)
- Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sissi Dolci
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Riva
- Unit of Neurosurgery, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Guido Fumagalli
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Huang P, Chen X, Hu X, Zhou Q, Lin L, Jiang S, Fu H, Xiong Y, Zeng H, Fang M, Chen C, Deng Y. Experimentally Induced Sepsis Causes Extensive Hypomyelination in the Prefrontal Cortex and Hippocampus in Neonatal Rats. Neuromolecular Med 2020; 22:420-436. [PMID: 32638208 DOI: 10.1007/s12017-020-08602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Neonatal sepsis is associated with cognitive deficit in the later life. Axonal myelination plays a pivotal role in neurotransmission and formation of learning and memory. This study aimed to explore if systemic lipopolysaccharide (LPS) injection would induce hypomyelination in the prefrontal cortex and hippocampus in developing septic neonatal rats. Sprague-Dawley rats (1-day old) were injected with LPS (1 mg/kg) intraperitoneally. By electron microscopy, axonal hypomyelination was evident in the subcortical white matter and hippocampus. The expression of myelin proteins including CNPase, MBP, PLP and MAG was downregulated in both areas of the brain at 7, 14 and 28 days after LPS injection. The frequency of MBP and PLP-positive oligodendrocyte was significantly reduced using in situ hybridization in the cerebral cortex and hippocampus at the corresponding time points after LPS injection, whereas the expression of NG2 and PDGFRα was noticeably increased. In tandem with this was reduction of Olig1 and Olig2 expressions which are involved in differentiation/maturation of OPCs. Expression of NFL, NFM, and NFH was significantly downregulated, indicating that axon development was disrupted after LPS injection. Morris Water Maze behavioral test, Open field test, Rotarod test, and Pole test were used to evaluate neurological behaviors of 28 days rats. The rats in the LPS group showed the impairment of motor coordination, balance, memory, and learning ability and represented bradykinesia and anxiety-like behavior. The present results suggest that following systemic LPS injection, differentiation/maturation of OPCs was affected which may be attributed to the inhibition of transcription factors Olig1 and Olig2 expression resulting in impairment to axonal development. It is suggested that this would ultimately lead to axonal hypomyelination in the prefrontal cortex and hippocampus, which may be associated with neurological deficits in later life.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Hui Fu
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Yajie Xiong
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ming Fang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
45
|
Oligodendrogenesis and Myelin Formation in the Forebrain Require Platelet-derived Growth Factor Receptor-alpha. Neuroscience 2020; 436:11-26. [PMID: 32278722 DOI: 10.1016/j.neuroscience.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
The platelet-derived growth factor receptor-α (PDGFRα) principally mediates growth factor signals in oligodendroglial progenitors and is involved in oligodendrogenesis and myelinogenesis in the developing spinal cord. However, the role of PDGFRα in the developing forebrain remains relatively unknown. We established a conditional knockout mouse for the Pdgfra gene (N-PRα-KO) using a Nestin promoter/enhancer-driven Cre recombinase and examined forebrain development. The expression of PDGFRα was efficiently suppressed in the Olig2+ cells in N-PRα-KO mice. In these mice, Olig2+ cells were slightly decreased during embryonic periods. The decrease was particularly striking during the postnatal period. The commitment of Pdgfra-inactivated Olig2+ cells to Sox10+ oligodendroglial-lineage was largely suppressed. Surviving Olig2+ cells and Sox10+ cells were distributed widely in the N-PRα-KO mouse brain, similarly to those in control mice until the early neonatal period. After that, these cells were drastically depleted in the forebrain during the second postnatal week. The brains of N-PRα-KO mice were severely hypomyelinated, and these mice died on approximately P17 with motor disturbances. Disturbed axonal fibers and extensively aberrant vascular formations appeared in the postnatal N-PRα-KO mouse brains. After the defective PDGFRα signal in the forebrain, these phenotypes were clearly different from those in the spinal cord that showed defective populations expansion and migration of oligodendroglial lineage and premature myelination, as previously described. In contrast, areas of severe hypomyelination were common to both anatomical sites. PDGFRα was critically involved in the myelination of the forebrain and may differently regulate oligodendroglial lineage between the forebrain and spinal cord.
Collapse
|
46
|
Tirou L, Russo M, Faure H, Pellegrino G, Sharif A, Ruat M. C9C5 positive mature oligodendrocytes are a source of Sonic Hedgehog in the mouse brain. PLoS One 2020; 15:e0229362. [PMID: 32078657 PMCID: PMC7032736 DOI: 10.1371/journal.pone.0229362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the mature rodent brain, Sonic Hedgehog (Shh) signaling regulates stem and progenitor cell maintenance, neuronal and glial circuitry and brain repair. However, the sources and distribution of Shh mediating these effects are still poorly characterized. Here, we report in the adult mouse brain, a broad expression pattern of Shh recognized by the specific monoclonal C9C5 antibody in a subset (11–12%) of CC1+ mature oligodendrocytes that do not express carbonic anhydrase II. These cells express also Olig2 and Sox10, two oligodendrocyte lineage-specific markers, but not PDGFRα, a marker of oligodendrocyte progenitors. In agreement with oligodendroglial cells being a source of Shh in the adult mouse brain, we identify Shh transcripts by single molecule fluorescent in situ hybridization in a subset of cells expressing Olig2 and Sox10 mRNAs. These findings also reveal that Shh expression is more extensive than originally reported. The Shh-C9C5-associated signal labels the oligodendroglial cell body and decorates by intense puncta the processes. C9C5+ cells are distributed in a grid-like manner. They constitute small units that could deliver locally Shh to its receptor Patched expressed in GFAP+ and S100β+ astrocytes, and in HuC/D+ neurons as shown in PtcLacZ/+ reporter mice. Postnatally, C9C5 immunoreactivity overlaps the myelination peak that occurs between P10 and P20 and is down regulated during ageing. Thus, our data suggest that C9C5+CC1+ oligodendroglial cells are a source of Shh in the mouse postnatal brain.
Collapse
Affiliation(s)
- Linda Tirou
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | - Mariagiovanna Russo
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | - Helene Faure
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | - Giuliana Pellegrino
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
| | | | - Martial Ruat
- UMR-9197, Neuroscience Paris-Saclay Institute, CNRS, Paris Saclay University, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
47
|
Lendahl U, Nilsson P, Betsholtz C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 2019; 20:e48070. [PMID: 31617312 PMCID: PMC6831996 DOI: 10.15252/embr.201948070] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
- Department of MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
48
|
Liu Y, Aguzzi A. NG2 glia are required for maintaining microglia homeostatic state. Glia 2019; 68:345-355. [PMID: 31518022 DOI: 10.1002/glia.23721] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Microglia play vital roles in the health and diseases of the central nervous system. Loss of microglia homeostatic state is a key feature of brain aging and neurodegeneration. However, the mechanisms underlying the maintenance of distinct microglia cellular states are largely unclear. Here, we show that NG2 glia, also known as oligodendrocyte precursor cells, are essential for maintaining the homeostatic microglia state. We developed a highly efficient and selective NG2 glia depletion method using small-molecule inhibitors of platelet-derived growth factor (PDGF) signaling in cultured brain slices. We found that loss of NG2 glia abolished the homeostatic microglia signature without affecting the disease-associated microglia profiles. Similar findings were also observed in vivo by genetically depleting NG2 glia or conditionally inhibiting NG2 glia PDGF signaling in the adult mouse brain. These data suggest that NG2 glia exert a crucial influence onto microglia cellular states that are relevant to brain aging and neurodegenerative diseases. In addition, our results provide a powerful, convenient, and selective tool for the investigation of NG2 glia function.
Collapse
Affiliation(s)
- Yingjun Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|