1
|
Cho E, Kim J, Ha NC, Ryu S. Amino acid residues in the tail fiber differentiate the host specificity of Cronobacter sakazakii bacteriophage. J Virol 2025; 99:e0028925. [PMID: 40214228 DOI: 10.1128/jvi.00289-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 05/21/2025] Open
Abstract
Cronobacter sakazakii is a Gram-negative pathogen that causes severe infections such as neonatal meningitis and sepsis. Bacteriophages (phages) rely on tail fibers for host recognition and infection, but the mechanisms of how phages recognize their bacterial hosts are not completely elucidated. In this study, two lytic C. sakazakii phages belonging to the Drexlerviridae family, CRES7 and CRES9, were isolated from sewage in South Korea. The genomes of both phages are almost the same, with only two nucleotide differences in the gene encoding a putative tail fiber, causing two amino acid differences at amino acid residues 400 and 550 of the tail fiber. The predicted structure of the tail fiber revealed that the two amino acid residues are located on the surface of the tail fiber, suggesting that these two amino acid residues may affect receptor binding. These amino acid differences resulted in differential host ranges, adsorption rates, and burst sizes of CRES7 and CRES9; CRES7, which could infect only the C. sakazakii serotype O1 strain, exhibited a higher adsorption rate and larger burst size compared to CRES9, whereas CRES9 could infect both serotypes O1 and O3 strains. These findings provide insights into how the mutations in the tail fiber gene contribute to the fitness of phages within natural environments and help develop phage-based strategies with expanded host range or enhanced specificity for targeted biocontrol of C. sakazakii.IMPORTANCEAccurate recognition and attachment to the bacterial host, mediated by tail fibers, are crucial for successful phage infection. Understanding the mechanisms underlying host specificity of phages is essential for developing targeted biocontrol applications. This study identified specific amino acid residues responsible for host specificity in the tail fibers of two newly isolated Cronobacter sakazakii phages, CRES7 and CRES9. Differences in these residues showed variation in O serotype recognition, leading to differences in host range, adsorption efficiency, and burst size. These findings provide valuable insights into tail fiber-mediated host specificity, facilitating the development of more effective phage-based strategies against C. sakazakii.
Collapse
Affiliation(s)
- Eunshin Cho
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li P, Li Z, Peng W, Li X, Guo G, Chen L, Pang X, Chen M, Li J, Wei Y, Zheng Y, Zhang W. Antimicrobial potential of a novel K5-specific phage and its recombinant strains against Klebsiella pneumoniae in milk. J Dairy Sci 2025:S0022-0302(25)00272-3. [PMID: 40306415 DOI: 10.3168/jds.2024-25895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/29/2025] [Indexed: 05/02/2025]
Abstract
The nutrient-rich composition of milk creates an optimal environment for bacterial proliferation, making the inhibition of microbial growth essential for maintaining dairy product quality and ensuring consumer safety. Klebsiella pneumoniae is an important contaminant of milk and a leading cause of bovine mastitis. Although the increasingly serious antibiotic resistance has led to a renewed interest in phage therapy, research on antimicrobial potential of Klebsiella phages in milk remains scarce. The K5 serotype of K. pneumoniae is a major concern due to its high virulence and prevalence in dairy farming operations. Despite its clinical and economic importance, the availability of phages specifically targeting this serotype remains substantially limited. Here, we successfully isolated and sequenced 2 K1-specific Klebsiella phages, P284 and P287, and one K5-specific Klebsiella phage P252. We identified the receptor-binding proteins with depolymerization activity in these phages. The phage library against K5 K. pneumoniae was enriched by phage genome modification. Specifically, we replaced the receptor-binding protein of K1-specific phage P284 with that of K5-specific phage P252, resulting in the generation of recombinant phages T and F, which exhibit specific lytic activity against K5 K. pneumoniae. Compared with phage P252, recombinant phages T and F exhibited better and more prolonged antibacterial potential in planktonic assay. In addition, all these K5-specific phages could significantly inhibit bacterial growth and reduce bacterial populations in milk at 4°C and 38°C. In summary, this study provided K5-specific phages with potential application in managing K. pneumoniae contamination and infection in the dairy industry.
Collapse
Affiliation(s)
- Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zhuojun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Wan Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Xiaoyue Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Genglin Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital, affiliated with Soochow University, Zhangjiagang, China
| | - Xiaoxiao Pang
- Department of Clinical Laboratory, Zhangjiagang Hospital, affiliated with Soochow University, Zhangjiagang, China
| | - Mianmian Chen
- College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Juan Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Yinglu Wei
- The third obstetrics department, Cangzhou Central Hospital, China
| | - Yishan Zheng
- Department of Intensive Care Unit, The Second Hospital of Nanjing, affiliated with Nanjing University of Chinese Medicine, China.
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
3
|
Huss P, Kieft K, Meger A, Nishikawa K, Anantharaman K, Raman S. Engineering bacteriophages through deep mining of metagenomic motifs. SCIENCE ADVANCES 2025; 11:eadt6432. [PMID: 40249811 PMCID: PMC12007582 DOI: 10.1126/sciadv.adt6432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where these motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to find sequence motifs in metagenomic datasets to engineer phage activity. Meta-SIFT uses experimental deep mutational scanning data to create sequence profiles to mine metagenomes for functional motifs invisible to other searches. We experimentally tested ~17,000 Meta-SIFT-derived sequence motifs in the receptor binding protein of the T7 phage. The screen revealed thousands of T7 variants with novel host specificity with motifs sourced from distant families. Position, substitution, and location preferences dictated specificity across a panel of 20 hosts and conditions. To demonstrate therapeutic utility, we engineered active T7 variants against foodborne pathogen Escherichia coli O121. Meta-SIFT is a powerful tool to unlock the potential encoded in phage metagenomes to engineer bacteriophages.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Meger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kyle Nishikawa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Choi D, Ryu S, Kong M. Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2025; 24:e70124. [PMID: 39898971 PMCID: PMC11891642 DOI: 10.1111/1541-4337.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The emergence of antimicrobial-resistant foodborne pathogens poses a continuous health risk and economic burden as they can easily spread through contaminated food. Therefore, the demand for new antimicrobial agents to address this problem is steadily increasing. Similarly, the development of rapid, sensitive, and accurate pathogen detection tools is a prerequisite for ensuring food safety. Phage-derived proteins have become innovative tools for combating these pathogens because of their potent antimicrobial activity and host specificity. Phage proteins are relatively free from regulation compared to phages per se, and there are no concerns about the transduction of harmful genes. With recent progress in next-generation sequencing technology, the analysis of phage genomes has become more accessible, and numerous phage proteins with potential for biocontrol and detection have been identified. This review provides a comprehensive overview of phage protein research on food safety from 2006 to the present, a pivotal period marked by the certification of phages as Generally Recognized As Safe (GRAS). Emphasizing recent advancements, we investigated the diverse applications of various phage proteins for biocontrol and detection purposes. While highlighting the successful implementation of these proteins, we also address the current bottlenecks and propose strategies to overcome these challenges. By summarizing the current state of research on phage-derived proteins, this review contributes to a deeper understanding of their potential as effective antimicrobial agents and tools for detecting foodborne pathogens.
Collapse
Affiliation(s)
- Dahee Choi
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| |
Collapse
|
5
|
Kabwe M, Tucci J, Darby I, Dashper S. Oral bacteriophages and their potential as adjunctive treatments for periodontitis: a narrative review. J Oral Microbiol 2025; 17:2469890. [PMID: 40013014 PMCID: PMC11864011 DOI: 10.1080/20002297.2025.2469890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Background There is no specific cure for periodontitis and treatment is symptomatic, primarily by physical removal of the subgingival plaque biofilm. Current non-surgical periodontal therapy becomes less effective as the periodontal pocket depth increases and as such new adjunctive treatments are required. The development of antibiotic resistance has driven a recent resurgence of interest in bacteriophage therapy. Methods Here we review the published literature with a focus on the subgingival phageome, key oral pathobionts and the dysbiotic nature of periodontitis leading to the emergence of synergistic, proteolytic and inflammophilic bacterial species in subgingival plaque. We discuss the opportunities available, the barriers and the steps needed to develop bacteriophage therapy as an adjunctive treatment for periodontitis. Results The oral phageome (or virome) is diverse, featuring abundant bacteriophage, that could target key subgingival bacteria. Yet to date few bacteriophages have been isolated and characterised from oral bacterial species, although many more have been predicted by genomic analyses. Bacteriophage therapy has yet to be tested against chronic diseases that are caused by dysbiosis of the endogenous microbial communities. Conclusion To be effective as an adjunctive treatment for periodontitis, bacteriophage therapy must cause the collapse of the dysbiotic bacterial community, thereby resolving inflammation and enabling the reestablishment of a health-associated mutualistic subgingival bacterial community. The isolation and characterisation of novel oral bacteriophage is an essential first step in this process.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School & La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School & La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Ivan Darby
- Melbourne Dental School, University of Melbourne, Parkville, Victoria, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Hou X, Zhai L, Fu L, Lu J, Guo P, Zhang Y, Zheng D, Ma G. Advances in Engineered Phages for Disease Treatment. SMALL METHODS 2025:e2401611. [PMID: 39935185 DOI: 10.1002/smtd.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Phage therapy presents a promising solution for combating multidrug-resistant (MDR) bacterial infections and other bacteria-related diseases, attributed to their innate ability to target and lyse bacteria. Recent clinical successes, particularly in treating MDR-related respiratory and post-surgical infections, validated the therapeutic potential of phage therapy. However, the complex microenvironment within the human body poses significant challenges to phage activity and efficacy in vivo. To overcome these barriers, recent advances in phage engineering have aimed to enhance targeting accuracy, improve stability and survivability, and explore synergistic combinations with other therapeutic modalities. This review provides a comprehensive overview of phage therapy, emphasizing the application of engineered phages in antibacterial therapy, tumor therapy, and vaccine development. Furthermore, the review highlights the current challenges and future trends for advancing phage therapy toward broader clinical applications.
Collapse
Affiliation(s)
- Xiaolin Hou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
| | - Lin Zhai
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laiying Fu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
| | - Peilin Guo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Yue X, Yang H, Li J, Zhu Z, Ouyang H, Guo T, Fu Z. Fluorescent lateral flow assay strip for Mycobacterium tuberculosis and Mycobacterium smegmatis based on mycobacteriophage tail protein and aptamer. Talanta 2025; 282:127000. [PMID: 39378764 DOI: 10.1016/j.talanta.2024.127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Timely and facile monitoring of Mycobacterium tuberculosis (M. tuberculosis) plays an important role for preventing and controlling tuberculosis infection. Mycobacterium smegmatis (M. smegmatis) has long been employed as a safe surrogate for the investigation of M. tuberculosis. In this work, an aqueous soluble tail protein derived from our previously isolated mycobacteriophage was prepared with a recombinant expression technique and noted as GP89, which shows noticeable binding capacity to Mycobacterium genus. GP89 was sprayed as a capture agent onto a nitrocellulose membrane for forming the test line of a lateral flow assay (LFA) strip. Moreover, an aptamer binding M. tuberculosis and M. smegmatis was labeled with fluorescent microspheres to act as the signal tracer of the LFA method. With the GP89 based LFA, M. tuberculosis and M. smegmatis can be detected with the aid of a handheld UV flashlight or a portable fluorescent strip reader within 10 min. The concentration range for quantitating M. tuberculosis and M. smegmatis are both 1.0 × 102 CFU mL-1 - 1.0 × 106 CFU mL-1, and the detection limits for the two mycobacteria are 2.0 and 24 CFU mL-1 (S/N = 3), respectively. The test strip was applied to detect M. tuberculosis and M. smegmatis in different samples such as physiological salt solution, urine, and saliva. This study offers a promising screening tool for diagnosing M. tuberculosis infection in resource-limited institutes.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Honglin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jizhou Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongjie Zhu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Wan H, Zhong X, Yang S, Deng J, Song X, Liu Y, Li Y, Yin Z, Zhao X. Enhancing the Therapeutic Potential of Peptide Antibiotics Using Bacteriophage Mimicry Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411753. [PMID: 39587836 PMCID: PMC11744576 DOI: 10.1002/advs.202411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The rise of antibiotic resistance, coupled with a dwindling antibiotic pipeline, presents a significant threat to public health. Consequently, there is an urgent need for novel therapeutics targeting antibiotic-resistant pathogens. Nisin, a promising peptide antibiotic, exhibits potent bactericidal activity through a mechanism distinct from that of clinically used antibiotics. However, its cationic nature leads to hemolysis and cytotoxicity, which has limited its clinical application. Here, nanodelivery systems have been developed by mimicking the mechanisms bacteriophages use to deliver their genomes to host bacteria. These systems utilize bacteriophage receptor-binding proteins conjugated to loading modules, enabling efficient targeting of bacterial pathogens. Peptide antibiotics are loaded via dynamic covalent bonds, allowing for infection microenvironment-responsive payload release. These nanodelivery systems demonstrate remarkable specificity against target pathogens and effectively localize to bacteria-infected lungs in vivo. Notably, they significantly reduce the acute toxicity of nisin, rendering it suitable for intravenous administration. Additionally, these bacteriophage-mimicking nanomedicines exhibit excellent therapeutic efficacy in a mouse model of MRSA-induced pneumonia. The facile synthesis, potent antimicrobial performance, and favorable biocompatibility of these nanomedicines highlight their potential as alternative therapeutics for combating antibiotic-resistant pathogens. This study underscores the effectiveness of bacteriophage mimicry as a strategy for transforming peptide antibiotics into viable therapeutics.
Collapse
Affiliation(s)
- Hongping Wan
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xinyi Zhong
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Shinong Yang
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Jiarong Deng
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xu Song
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Yuanfeng Li
- Translational Medicine LaboratoryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Zhongqiong Yin
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Xinghong Zhao
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
10
|
Tsoumbris PR, Vincent RM, Jaschke PR. Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA. Arch Virol 2024; 169:248. [PMID: 39557717 DOI: 10.1007/s00705-024-06170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Multidrug-resistant infections are becoming increasingly prevalent worldwide. One of the fastest-emerging alternative and adjuvant therapies being proposed is phage therapy. Naturally isolated phages are used in the vast majority of phage therapy treatments today. Engineered phages are being developed to enhance the effectiveness of phage therapy, but concerns over their potential escape remain a salient issue. To address this problem, we designed a biocontained phage system based on conditional replication using amber stop codon suppression. This system can be easily installed on any natural phage with a known genome sequence. To test the system, we individually mutated the start codons of three essential capsid genes in phage φX174 to the amber stop codon (UAG). These phages were able to efficiently infect host cells expressing the amber initiator tRNA, which suppresses the amber stop codon and initiates translation at TAG stop codons. The amber phage mutants were also able to successfully infect host cells and reduce their population on solid agar and liquid culture but could not produce infectious particles in the absence of the amber initiator tRNA or complementing capsid gene. We did not detect any growth-inhibiting effects on E. coli strains known to lack a receptor for φX174 and we showed that engineered phages have a limited propensity for reversion. The approach outlined here may be useful to control engineered phage replication in both the lab and clinic.
Collapse
Affiliation(s)
- Pamela R Tsoumbris
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Russel M Vincent
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
11
|
Yan J, Guo Z, Xie J. A Critical Analysis of the Opportunities and Challenges of Phage Application in Seafood Quality Control. Foods 2024; 13:3282. [PMID: 39456344 PMCID: PMC11506950 DOI: 10.3390/foods13203282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Seafood is an important source of food and protein for humans. However, it is highly susceptible to microbial contamination, which has become a major challenge for the seafood processing industry. Bacteriophages are widely distributed in the environment and have been successfully used as biocontrol agents against pathogenic microorganisms in certain food processing applications. However, due to the influence of environmental factors and seafood matrices, using bacteriophages for commercial-scale biocontrol strategies still faces some challenges. This article briefly introduces the current processes used for the production and purification of bacteriophages, lists the latest findings on the application of phage-based biocontrol in seafood, summarizes the challenges faced at the current stage, and provides corresponding strategies for solving these issues.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenghao Guo
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
12
|
Huss P, Kieft K, Meger A, Nishikawa K, Anantharaman K, Raman S. Engineering bacteriophages through deep mining of metagenomic motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527309. [PMID: 36798209 PMCID: PMC9934549 DOI: 10.1101/2023.02.07.527309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where such motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to discover sequence motifs in metagenomic datasets that can be used to engineer phage activity. Meta-SIFT uses experimental deep mutational scanning data to create sequence profiles to enable deep mining of metagenomes for functional motifs which are otherwise invisible to searches. We experimentally tested over 17,000 Meta-SIFT derived sequence motifs in the receptor-binding protein of the T7 phage. The screen revealed thousands of T7 variants with novel host specificity with functional motifs sourced from distant families. Position, substitution and location preferences dictated specificity across a panel of 20 hosts and conditions. To demonstrate therapeutic utility, we engineered active T7 variants against foodborne pathogen E. coli O121. Meta-SIFT is a powerful tool to unlock the functional potential encoded in phage metagenomes to engineer bacteriophages.
Collapse
|
13
|
Nuytten M, Leprince A, Goulet A, Mahillon J. Deciphering the adsorption machinery of Deep-Blue and Vp4, two myophages targeting members of the Bacillus cereus group. J Virol 2024; 98:e0074524. [PMID: 39177355 PMCID: PMC11406892 DOI: 10.1128/jvi.00745-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two Herelleviridae phages infecting members of the Bacillus cereus group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the Listeria phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind B. cereus strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against B. cereus strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection. IMPORTANCE The Bacillus cereus group comprises closely related species, including some with pathogenic potential (e.g., Bacillus anthracis and Bacillus cytotoxicus). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about B. cereus phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Herelleviridae Vp4 and Deep-Blue myophages preying on B. cereus hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.
Collapse
Affiliation(s)
- Manon Nuytten
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), CNRS and Aix-Marseille Université UMR7255, Marseille, France
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
15
|
Fishman CB, Crawford KD, Bhattarai-Kline S, Poola D, Zhang K, González-Delgado A, Rojas-Montero M, Shipman SL. Continuous multiplexed phage genome editing using recombitrons. Nat Biotechnol 2024:10.1038/s41587-024-02370-5. [PMID: 39237706 DOI: 10.1038/s41587-024-02370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 09/07/2024]
Abstract
Bacteriophage genome editing can enhance the efficacy of phages to eliminate pathogenic bacteria in patients and in the environment. However, current methods for editing phage genomes require laborious screening, counterselection or in vitro construction of modified genomes. Here, we present a scalable approach that uses modified bacterial retrons called recombitrons to generate recombineering donor DNA paired with single-stranded binding and annealing proteins for integration into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. The approach also supports larger insertions and deletions, which can be combined with simultaneous counterselection for >99% efficiency. Moreover, we show that the process is continuous, with more edits accumulating the longer the phage is cultured with the host, and multiplexable. We install up to five distinct mutations on a single lambda phage genome without counterselection in only a few hours of hands-on time and identify a residue-level epistatic interaction in the T7 gp17 tail fiber.
Collapse
Affiliation(s)
- Chloe B Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Kate D Crawford
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | - Santi Bhattarai-Kline
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Darshini Poola
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Karen Zhang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | | | | | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
16
|
Gamarra MD, Dieterle ME, Ortigosa J, Lannot JO, Blanco Capurro JI, Di Paola M, Radusky L, Duette G, Piuri M, Modenutti CP. Unveiling crucial amino acids in the carbohydrate recognition domain of a viral protein through a structural bioinformatic approach. Glycobiology 2024; 34:cwae068. [PMID: 39214076 DOI: 10.1093/glycob/cwae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Carbohydrate binding modules (CBMs) are protein domains that typically reside near catalytic domains, increasing substrate-protein proximity by constraining the conformational space of carbohydrates. Due to the flexibility and variability of glycans, the molecular details of how these protein regions recognize their target molecules are not always fully understood. Computational methods, including molecular docking and molecular dynamics simulations, have been employed to investigate lectin-carbohydrate interactions. In this study, we introduce a novel approach that integrates multiple computational techniques to identify the critical amino acids involved in the interaction between a CBM located at the tip of bacteriophage J-1's tail and its carbohydrate counterparts. Our results highlight three amino acids that play a significant role in binding, a finding we confirmed through in vitro experiments. By presenting this approach, we offer an intriguing alternative for pinpointing amino acids that contribute to protein-sugar interactions, leading to a more thorough comprehension of the molecular determinants of protein-carbohydrate interactions.
Collapse
Affiliation(s)
- Marcelo D Gamarra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Maria Eugenia Dieterle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Juan Ortigosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Jorge O Lannot
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Juan I Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Matias Di Paola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Leandro Radusky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Gabriel Duette
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Carlos P Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
17
|
Kristensen CS, Petersen AØ, Kilstrup M, van der Helm E, Takos A. Cell-free synthesis of infective phages from in vitro assembled phage genomes for efficient phage engineering and production of large phage libraries. Synth Biol (Oxf) 2024; 9:ysae012. [PMID: 39296367 PMCID: PMC11409935 DOI: 10.1093/synbio/ysae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Bacteriophages are promising alternatives to traditional antimicrobial treatment of bacterial infections. To further increase the potential of phages, efficient engineering methods are needed. This study investigates an approach to phage engineering based on phage rebooting and compares selected methods of assembly and rebooting of phage genomes. GG assembly of phage genomes and subsequent rebooting by cell-free transcription-translation reactions yielded the most efficient phage engineering and allowed production of a proof-of-concept T7 phage library of 1.8 × 107 phages. We obtained 7.5 × 106 different phages, demonstrating generation of large and diverse libraries suitable for high-throughput screening of mutant phenotypes. Implementing versatile and high-throughput phage engineering methods allows vastly accelerated and improved phage engineering, bringing us closer to applying effective phages to treat infections in the clinic.
Collapse
Affiliation(s)
- Camilla S Kristensen
- SNIPR Biome, Copenhagen 2100, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Mogens Kilstrup
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | | |
Collapse
|
18
|
Brödel AK, Charpenay LH, Galtier M, Fuche FJ, Terrasse R, Poquet C, Havránek J, Pignotti S, Krawczyk A, Arraou M, Prevot G, Spadoni D, Yarnall MTN, Hessel EM, Fernandez-Rodriguez J, Duportet X, Bikard D. In situ targeted base editing of bacteria in the mouse gut. Nature 2024; 632:877-884. [PMID: 38987595 PMCID: PMC11338833 DOI: 10.1038/s41586-024-07681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Microbiome research is now demonstrating a growing number of bacterial strains and genes that affect our health1. Although CRISPR-derived tools have shown great success in editing disease-driving genes in human cells2, we currently lack the tools to achieve comparable success for bacterial targets in situ. Here we engineer a phage-derived particle to deliver a base editor and modify Escherichia coli colonizing the mouse gut. Editing of a β-lactamase gene in a model E. coli strain resulted in a median editing efficiency of 93% of the target bacterial population with a single dose. Edited bacteria were stably maintained in the mouse gut for at least 42 days following treatment. This was achieved using a non-replicative DNA vector, preventing maintenance and dissemination of the payload. We then leveraged this approach to edit several genes of therapeutic relevance in E. coli and Klebsiella pneumoniae strains in vitro and demonstrate in situ editing of a gene involved in the production of curli in a pathogenic E. coli strain. Our work demonstrates the feasibility of modifying bacteria directly in the gut, offering a new avenue to investigate the function of bacterial genes and opening the door to the design of new microbiome-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Bikard
- Eligo Bioscience, Paris, France.
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France.
| |
Collapse
|
19
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
20
|
Ye B, Tian W, Wang B, Liang J. CASTpFold: Computed Atlas of Surface Topography of the universe of protein Folds. Nucleic Acids Res 2024; 52:W194-W199. [PMID: 38783102 PMCID: PMC11223844 DOI: 10.1093/nar/gkae415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a widely used web server for locating, delineating, and measuring these geometric and topological properties of protein structures. Recent developments in AI-based protein structure prediction such as AlphaFold2 (AF2) have significantly expanded our knowledge on protein structures. Here we present CASTpFold, a continuation of CASTp that provides accurate and comprehensive identifications and quantifications of protein topography. It now provides (i) results on an expanded database of proteins, including the Protein Data Bank (PDB) and non-singleton representative structures of AlphaFold2 structures, covering 183 million AF2 structures; (ii) functional pockets prediction with corresponding Gene Ontology (GO) terms or Enzyme Commission (EC) numbers for AF2-predicted structures and (iii) pocket similarity search function for surface and protein-protein interface pockets. The CASTpFold web server is freely accessible at https://cfold.bme.uic.edu/castpfold/.
Collapse
Affiliation(s)
- Bowei Ye
- Center for Bioinformatics and Quantitative Biology, and Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wei Tian
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Boshen Wang
- UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, and Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Parthasarathy G, Malhi H, Bajaj JS. Therapeutic manipulation of the microbiome in liver disease. Hepatology 2024:01515467-990000000-00932. [PMID: 38922826 DOI: 10.1097/hep.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome-dependent approach. To bring successful microbiome-targeted and microbiome-inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease-relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted-from prebiotics, probiotics, synbiotics, and antibiotics to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, cirrhosis, HE as well as liver cancer. Lastly, we discuss lessons learned from previous attempts at developing such therapies, the regulatory framework that needs to be navigated, and the challenges that remain.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
22
|
Lewis JM, Williams J, Sagona AP. Making the leap from technique to treatment - genetic engineering is paving the way for more efficient phage therapy. Biochem Soc Trans 2024; 52:1373-1384. [PMID: 38716972 PMCID: PMC11346441 DOI: 10.1042/bst20231289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Bacteriophages (phages) are viruses specific to bacteria that target them with great efficiency and specificity. Phages were first studied for their antibacterial potential in the early twentieth century; however, their use was largely eclipsed by the popularity of antibiotics. Given the surge of antimicrobial-resistant strains worldwide, there has been a renaissance in harnessing phages as therapeutics once more. One of the key advantages of phages is their amenability to modification, allowing the generation of numerous derivatives optimised for specific functions depending on the modification. These enhanced derivatives could display higher infectivity, expanded host range or greater affinity to human tissues, where some bacterial species exert their pathogenesis. Despite this, there has been a noticeable discrepancy between the generation of derivatives in vitro and their clinical application in vivo. In most instances, phage therapy is only used on a compassionate-use basis, where all other treatment options have been exhausted. A lack of clinical trials and numerous regulatory hurdles hamper the progress of phage therapy and in turn, the engineered variants, in becoming widely used in the clinic. In this review, we outline the various types of modifications enacted upon phages and how these modifications contribute to their enhanced bactericidal function compared with wild-type phages. We also discuss the nascent progress of genetically modified phages in clinical trials along with the current issues these are confronted with, to validate it as a therapy in the clinic.
Collapse
Affiliation(s)
| | - Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, U.K
| | | |
Collapse
|
23
|
Zhao X, Zhong X, Yang S, Deng J, Deng K, Huang Z, Li Y, Yin Z, Liu Y, Viel JH, Wan H. Guiding antibiotics towards their target using bacteriophage proteins. Nat Commun 2024; 15:5287. [PMID: 38902231 PMCID: PMC11190222 DOI: 10.1038/s41467-024-49603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Novel therapeutic strategies against difficult-to-treat bacterial infections are desperately needed, and the faster and cheaper way to get them might be by repurposing existing antibiotics. Nanodelivery systems enhance the efficacy of antibiotics by guiding them to their targets, increasing the local concentration at the site of infection. While recently described nanodelivery systems are promising, they are generally not easy to adapt to different targets, and lack biocompatibility or specificity. Here, nanodelivery systems are created that source their targeting proteins from bacteriophages. Bacteriophage receptor-binding proteins and cell-wall binding domains are conjugated to nanoparticles, for the targeted delivery of rifampicin, imipenem, and ampicillin against bacterial pathogens. They show excellent specificity against their targets, and accumulate at the site of infection to deliver their antibiotic payload. Moreover, the nanodelivery systems suppress pathogen infections more effectively than 16 to 32-fold higher doses of free antibiotics. This study demonstrates that bacteriophage sourced targeting proteins are promising candidates to guide nanodelivery systems. Their specificity, availability, and biocompatibility make them great options to guide the antibiotic nanodelivery systems that are desperately needed to combat difficult-to-treat infections.
Collapse
Affiliation(s)
- Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shinong Yang
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengqun Huang
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| | - Jakob H Viel
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, Netherlands
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
25
|
Ye B, Tian W, Wang B, Liang J. CASTpFold: Computed Atlas of Surface Topography of the universe of protein Folds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592496. [PMID: 38766001 PMCID: PMC11100609 DOI: 10.1101/2024.05.04.592496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Geometric and topological properties of protein structures, including surface pockets, interior cavities, and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a widely used web server for locating, delineating, and measuring these geometric and topological properties of protein structures. Recent developments in AI-based protein structure prediction such as AlphaFold2 (AF2) have significantly expanded our knowledge on protein structures. Here we present CASTpFold, a continuation of CASTp that provides accurate and comprehensive identifications and quantifications of protein topography. It now provides (i) results on an expanded database of proteins, including the Protein Data Bank (PDB) and non-singleton representative structures of AlphaFold2 structures, covering 183 million AF2 structures; (ii) functional pockets prediction with corresponding Gene Ontology (GO) terms or Enzyme Commission (EC) numbers for AF2-predicted structures; and (iii) pocket similarity search function for surface and protein-protein interface pockets. The CASTpFold web server is freely accessible at https://cfold.bme.uic.edu/castpfold/.
Collapse
Affiliation(s)
- Bowei Ye
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wei Tian
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Boshen Wang
- UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
26
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
27
|
Zhang C, Quan X, Lian W, Liu R, Wen Q, Chen X. Phenotypic characterization and genomic analysis of Limosilactobacillus fermentum phage. Curr Res Food Sci 2024; 8:100748. [PMID: 38764976 PMCID: PMC11098726 DOI: 10.1016/j.crfs.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Limosilactobacillus (L.) fermentum is widely utilized for its beneficial properties, but lysogenic phages can integrate into its genome and can be induced to enter the lysis cycle under certain conditions, thus accomplishing lysis of host cells, resulting in severe economic losses. In this study, a lysogenic phage, LFP03, was induced from L. fermentum IMAU 32510 by UV irradiation for 70 s. The electron microscopy showed that this phage belonged to Caudoviricetes class. Its genome size was 39,556 bp with a GC content of 46.08%, which includes 20 functional proteins. Compared with other L. fermentum phages, the genome of phage LFP03 exhibited deletions, inversions and translocations. Biological analysis showed that its optimal multiplicity of infection was 0.1, with a burst size of 133.5 ± 4.9 PFU/infective cell. Phage LFP03 was sensitive to temperature and pH value, with a survival rate of 48.98% at 50 °C. It could be completely inactivated under pH 2. The adsorption ability of this phage was minimally affected by temperature and pH value, with adsorption rates reaching 80% under all treated conditions. Divalent cations could accelerate phage adsorption, while chloramphenicol expressed little influence. This study might expand the related knowledge of L. fermentum phages, and provide some theoretical basis for improving the stability of related products and establishing phage control measures.
Collapse
Affiliation(s)
- Can Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xingyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Weiqi Lian
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Runze Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| |
Collapse
|
28
|
Yu RC, Yang F, Zhang HY, Hou P, Du K, Zhu J, Cui N, Xu X, Chen Y, Li Q, Zhou CZ. Structure of the intact tail machine of Anabaena myophage A-1(L). Nat Commun 2024; 15:2654. [PMID: 38531972 DOI: 10.1038/s41467-024-47006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The Myoviridae cyanophage A-1(L) specifically infects the model cyanobacteria Anabaena sp. PCC 7120. Following our recent report on the capsid structure of A-1(L), here we present the high-resolution cryo-EM structure of its intact tail machine including the neck, tail and attached fibers. Besides the dodecameric portal, the neck contains a canonical hexamer connected to a unique pentadecamer that anchors five extended bead-chain-like neck fibers. The 1045-Å-long contractile tail is composed of a helical bundle of tape measure proteins surrounded by a layer of tube proteins and a layer of sheath proteins, ended with a five-component baseplate. The six long and six short tail fibers are folded back pairwise, each with one end anchoring to the baseplate and the distal end pointing to the capsid. Structural analysis combined with biochemical assays further enable us to identify the dual hydrolytic activities of the baseplate hub, in addition to two host receptor binding domains in the tail fibers. Moreover, the structure of the intact A-1(L) also helps us to reannotate its genome. These findings will facilitate the application of A-1(L) as a chassis cyanophage in synthetic biology.
Collapse
Affiliation(s)
- Rong-Cheng Yu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Feng Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, China
| | - Hong-Yan Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Pu Hou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Kang Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jie Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuxing Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
29
|
Kang D, Bagchi D, Chen IA. Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy. ADVANCED THERAPEUTICS 2024; 7:2300355. [PMID: 38933919 PMCID: PMC11198966 DOI: 10.1002/adtp.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| |
Collapse
|
30
|
Turner PE, Azeredo J, Buurman ET, Green S, Haaber JK, Haggstrom D, Kameda de Figueiredo Carvalho K, Kirchhelle C, Gonzalez Moreno M, Pirnay JP, Portillo MA. Addressing the Research and Development Gaps in Modern Phage Therapy. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:30-39. [PMID: 40114805 PMCID: PMC11920706 DOI: 10.1089/phage.2023.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Antimicrobial resistance is on the rise globally, prompting increased research and development (R&D) of phage therapy as a strategy to address difficult-to-treat bacterial infections. We review the current state of phage therapy research, including major operational, epistemic, and biological challenges for phage R&D, and discuss some new approaches to developing the technology motivated by recent breakthroughs such as artificial intelligence and synthetic phage production. In addition, we contextualize these R&D challenges and opportunities in light of the ongoing predicament of commercial antimicrobial innovation and current public-private efforts to reinvigorate the pipeline of antimicrobial drug discovery. We conclude with reflections on the potential for new phage therapies to be readily accessible across all income contexts to better ensure broad patient access, and consider possible alternatives to current public and public-private solutions for phage therapy and production.
Collapse
Affiliation(s)
- Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Microbiology Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, USA
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Ed T Buurman
- CARB-X, Boston University, Boston, Massachusetts, USA
| | - Sabrina Green
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | | | - Douglas Haggstrom
- INCubator for Antibiotic Therapies Europe (INCATE), Basel, Switzerland
- Innovation Office, University of Basel, Basel, Switzerland
| | | | | | - Mercedes Gonzalez Moreno
- INCubator for Antibiotic Therapies Europe (INCATE), Basel, Switzerland
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | | |
Collapse
|
31
|
Wang X, Leptihn S. Defense and anti-defense mechanisms of bacteria and bacteriophages. J Zhejiang Univ Sci B 2024; 25:181-196. [PMID: 38453634 PMCID: PMC10918411 DOI: 10.1631/jzus.b2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 03/09/2024]
Abstract
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Medicine, Lishui University, Lishui 323000, China.
| | - Sebastian Leptihn
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK.
- HMU Health and Medical University, Am Anger 64/73- 99084 Erfurt, Germany.
| |
Collapse
|
32
|
Chen L, Zhao X, Wongso S, Lin Z, Wang S. Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence. THE ISME JOURNAL 2024; 18:wrae214. [PMID: 39441988 PMCID: PMC11538992 DOI: 10.1093/ismejo/wrae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Parasite-host co-evolution results in population extinction or co-existence, yet the factors driving these distinct outcomes remain elusive. In this study, Salmonella strains were individually co-evolved with the lytic phage SF1 for 30 days, resulting in phage extinction or co-existence. We conducted a systematic investigation into the phenotypic and genetic dynamics of evolved host cells and phages to elucidate the evolutionary mechanisms. Throughout co-evolution, host cells displayed diverse phage resistance patterns: sensitivity, partial resistance, and complete resistance, to wild-type phage. Moreover, phage resistance strength showed a robust linear correlation with phage adsorption, suggesting that surface modification-mediated phage attachment predominates as the resistance mechanism in evolved bacterial populations. Additionally, bacterial isolates eliminating phages exhibited higher mutation rates and lower fitness costs in developing resistance compared to those leading to co-existence. Phage resistance genes were classified into two categories: key mutations, characterized by nonsense/frameshift mutations in rfaH-regulated rfb genes, leading to the removal of the receptor O-antigen; and secondary mutations, which involve less critical modifications, such as fimbrial synthesis and tRNA modification. The accumulation of secondary mutations resulted in partial and complete resistance, which could be overcome by evolved phages, whereas key mutations conferred undefeatable complete resistance by deleting receptors. In conclusion, higher key mutation frequencies with lower fitness costs promised strong resistance and eventual phage extinction, whereas deficiencies in fitness cost, mutation rate, and key mutation led to co-existence. Our findings reveal the distinct population dynamics and evolutionary trade-offs of phage resistance during co-evolution, thereby deepening our understanding of microbial interactions.
Collapse
Affiliation(s)
- Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street SW, Blacksburg, Virginia 24061, United States
| | - Shelyn Wongso
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zhuohui Lin
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
33
|
Costa AR, Azeredo J, Pires DP. Synthetic Biology to Engineer Bacteriophage Genomes. Methods Mol Biol 2024; 2734:261-277. [PMID: 38066375 DOI: 10.1007/978-1-0716-3523-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered toward a wide range of applications, including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes will be addressed: the bacteriophage recombineering of electroporated DNA (BRED) and the yeast-based phage-engineering platform.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Priscila Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
34
|
Baykov I, Kurchenko O, Mikhaylova E, Morozova VV, Tikunova NV. Robust and Reproducible Protocol for Phage Genome "Rebooting" Using Transformation-Associated Recombination (TAR) Cloning into Yeast Centromeric Plasmid. Methods Mol Biol 2024; 2734:301-317. [PMID: 38066377 DOI: 10.1007/978-1-0716-3523-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Production of infectious bacteriophage based on its genome is one of the necessary steps in the pipeline of editing phage genomes and creating synthetic bacteriophages. This process is called "rebooting" of the phage genome. In this chapter, we describe key steps required for successful genome "rebooting" using a native host or intermediate host. A detailed protocol is given for the "rebooting" of the genome of T7 bacteriophage specific to Escherichia coli and bacteriophage KP32_192 that infects Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Ivan Baykov
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.
| | - Olga Kurchenko
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Ekaterina Mikhaylova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Vera V Morozova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nina V Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
35
|
Fernbach J, Meile S, Kilcher S, Loessner MJ. Genetic Engineering and Rebooting of Bacteriophages in L-Form Bacteria. Methods Mol Biol 2024; 2734:247-259. [PMID: 38066374 DOI: 10.1007/978-1-0716-3523-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The rapid increase of circulating, antibiotic-resistant pathogens is a major ongoing global health crisis, and arguably, the end of the "golden age of antibiotics" is looming. This has led to a surge in research and development of alternative antimicrobials, including bacteriophages, to treat such infections (phage therapy). Isolating natural phage variants for the treatment of individual patients is an arduous and time-consuming task. Furthermore, the use of natural phages is frequently hampered by natural limitations, such as moderate in vivo activity, the rapid emergence of resistance, insufficient host range, or the presence of undesirable genetic elements within the phage genome. Targeted genetic editing of wild-type phages (phage engineering) has successfully been employed in the past to mitigate some of these pitfalls and to increase the therapeutic efficacy of the underlying phage variants. Clearly, there is a large potential for the development of novel, marker-less genome-editing methodologies to facilitate the engineering of therapeutic phages. Steady advances in synthetic biology have facilitated the in vitro assembly of modified phage genomes, which can be activated ("rebooted") upon transformation of a suitable host cell. However, this can prove challenging, especially in difficult-to-transform Gram-positive bacteria. In this chapter, we detail the production of cell wall-deficient L-form bacteria and their application to activate synthetic genomes of phages infecting Gram-positive host species.
Collapse
Affiliation(s)
- Jonas Fernbach
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Susanne Meile
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Samuel Kilcher
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
36
|
Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, Sadeghi RV, Naderifar M, Akbarizadeh MR, Soltaninejad S, Moghadam ZT, Moghadam MT, Mirzadeh F. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnol Bioeng 2024; 121:82-99. [PMID: 37881139 DOI: 10.1002/bit.28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Defending against antibiotic-resistant infections is similar to fighting a war with limited ammunition. As the new century unfolded, antibiotic resistance became a significant concern. In spite of the fact that phage treatment has been used as an effective means of fighting infections for more than a century, researchers have had to overcome many challenges of superbug bacteria by manipulating phages and producing engineered enzymes. New enzymes and phages with enhanced properties have a significant impact on the ability to fight antibiotic-resistant infections, which is considered a window of hope for the future. This review, therefore, illustrates not only the challenges caused by antibiotic resistance and superbug bacteria but also the engineered enzymes and phages that are being developed to solve these issues. Our study found that engineered phages, phage proteins, and enzymes can be effective in treating superbug bacteria and destroying the biofilm caused by them. Combining these engineered compounds with other antimicrobial substances can increase their effectiveness against antibiotic-resistant bacteria. Therefore, engineered phages, proteins, and enzymes can be used as a substitute for antibiotics or in combination with antibiotics to treat patients with superbug infections in the future.
Collapse
Affiliation(s)
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Malekian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Gharagheizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Zahra Taati Moghadam
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
37
|
Yao G, Le T, Korn AM, Peterson HN, Liu M, Gonzalez CF, Gill JJ. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J Virol 2023; 97:e0085023. [PMID: 37943040 PMCID: PMC10688314 DOI: 10.1128/jvi.00850-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.
Collapse
Affiliation(s)
- Guichun Yao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Tram Le
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Abby M. Korn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Hannah N. Peterson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Carlos F. Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
38
|
Smug BJ, Szczepaniak K, Rocha EPC, Dunin-Horkawicz S, Mostowy RJ. Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nat Commun 2023; 14:7460. [PMID: 38016962 PMCID: PMC10684548 DOI: 10.1038/s41467-023-43236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Biological modularity enhances evolutionary adaptability. This principle is vividly exemplified by bacterial viruses (phages), which display extensive genomic modularity. Phage genomes are composed of independent functional modules that evolve separately and recombine in various configurations. While genomic modularity in phages has been extensively studied, less attention has been paid to protein modularity-proteins consisting of distinct building blocks that can evolve and recombine, enhancing functional and genetic diversity. Here, we use a set of 133,574 representative phage proteins and highly sensitive homology detection to capture instances of domain mosaicism, defined as fragment sharing between two otherwise unrelated proteins, and to understand its relationship with functional diversity in phage genomes. We discover that unrelated proteins from diverse functional classes frequently share homologous domains. This phenomenon is particularly pronounced within receptor-binding proteins, endolysins, and DNA polymerases. We also identify multiple instances of recent diversification via domain shuffling in receptor-binding proteins, neck passage structures, endolysins and some members of the core replication machinery, often transcending distant taxonomic and ecological boundaries. Our findings suggest that ongoing diversification via domain shuffling is reflective of a co-evolutionary arms race, driven by the need to overcome various bacterial resistance mechanisms against phages.
Collapse
Affiliation(s)
- Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Stanislaw Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology & Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Rafał J Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
39
|
Gonzalez-Serrano R, Rosselli R, Roda-Garcia JJ, Martin-Cuadrado AB, Rodriguez-Valera F, Dunne M. Distantly related Alteromonas bacteriophages share tail fibers exhibiting properties of transient chaperone caps. Nat Commun 2023; 14:6517. [PMID: 37845226 PMCID: PMC10579305 DOI: 10.1038/s41467-023-42114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
The host recognition modules encoding the injection machinery and receptor binding proteins (RBPs) of bacteriophages are predisposed to mutation and recombination to maintain infectivity towards co-evolving bacterial hosts. In this study, we reveal how Alteromonas mediterranea schitovirus A5 shares its host recognition module, including tail fiber and cognate chaperone, with phages from distantly related families including Alteromonas myovirus V22. While the V22 chaperone is essential for producing active tail fibers, here we demonstrate production of functional A5 tail fibers regardless of chaperone co-expression. AlphaFold-generated models of tail fiber and chaperone pairs from phages A5, V22, and other Alteromonas phages reveal how amino acid insertions within both A5-like proteins results in a knob domain duplication in the tail fiber and a chaperone β-hairpin "tentacle" extension. These structural modifications are linked to differences in chaperone dependency between the A5 and V22 tail fibers. Structural similarity between the chaperones and intramolecular chaperone domains of other phage RBPs suggests an additional function of these chaperones as transient fiber "caps". Finally, our identification of homologous host recognition modules from morphologically distinct phages implies that horizontal gene transfer and recombination events between unrelated phages may be a more common process than previously thought among Caudoviricetes phages.
Collapse
Affiliation(s)
- Rafael Gonzalez-Serrano
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Biología Molecular Severo Ochoa, CBMSO-CSIC, Madrid, Spain
| | - Riccardo Rosselli
- Research & Development Department, LABAQUA S.A. Las Atalayas, Alicante, Spain
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | | | | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland.
| |
Collapse
|
40
|
Tasdurmazli S, Dokuz S, Erdogdu B, Var I, Chen JYS, Ozbek T. The evaluation of biotechnological potential of Gp144, the key molecule of natural predator bacteriophage K in Staphylococcus aureus hunting mechanism. Biotechnol J 2023; 18:e2300145. [PMID: 37300362 DOI: 10.1002/biot.202300145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Bacteriophages, which selectively infect bacteria, and phage-derived structures are considered promising agents for the diagnosis and treatment of bacterial infections due to the increasing antibiotic resistance. The binding of phages to their specific receptors on host bacteria is highly specific and irreversible, and therefore, the characterization of receptor-binding proteins(RBPs), which are key determinants of phage specificity, is crucial for the development of new diagnostic and therapeutic products. This study highlights the biotechnological potential of Gp144, an RBP located in the tail baseplate of bacteriophage K and responsible for adsorption of phageK to S. aureus. Once it was established that recombinant Gp144 (rGp144)is biocompatible and does not exhibit lytic effects on bacteria, its interaction with the host, the binding efficiency and performance were assessed in vitro using microscopic and serological methods. Results showed that rGp144 has a capture efficiency (CE) of over 87% and the best CE score is %96 which captured 9 CFU mL-1 out of 10 CFU mL-1 bacteria, indicating that very low number of bacteria could be detected. Additionally, it was shown for the first time in the literature that rGp144 binds to both S. aureus and methicillin-resistant S. aureus (MRSA) cells in vitro, while its affinity to different Gram-positive bacteria (E. faecalis and B. cereus) was not observed. The findings suggest that rGp144 can be effectively used for the diagnosis of S. aureus and MRSA, and that the use of RBPs in host-phage interaction can be a novel and effective strategy for imaging and diagnosing the site of infection.
Collapse
Affiliation(s)
- Semra Tasdurmazli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Senanur Dokuz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Berna Erdogdu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Isil Var
- Department of Food Engineering, Faculty of Agricultural, Cukurova University, Sarıcam-Adana, Turkey
| | - John Yu-Shen Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
41
|
Lv S, Wang Y, Jiang K, Guo X, Zhang J, Zhou F, Li Q, Jiang Y, Yang C, Teng T. Genetic Engineering and Biosynthesis Technology: Keys to Unlocking the Chains of Phage Therapy. Viruses 2023; 15:1736. [PMID: 37632078 PMCID: PMC10457950 DOI: 10.3390/v15081736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Phages possess the ability to selectively eliminate pathogenic bacteria by recognizing bacterial surface receptors. Since their discovery, phages have been recognized for their potent bactericidal properties, making them a promising alternative to antibiotics in the context of rising antibiotic resistance. However, the rapid emergence of phage-resistant strains (generally involving temperature phage) and the limited host range of most phage strains have hindered their antibacterial efficacy, impeding their full potential. In recent years, advancements in genetic engineering and biosynthesis technology have facilitated the precise engineering of phages, thereby unleashing their potential as a novel source of antibacterial agents. In this review, we present a comprehensive overview of the diverse strategies employed for phage genetic engineering, as well as discuss their benefits and drawbacks in terms of bactericidal effect.
Collapse
Affiliation(s)
- Sixuan Lv
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kaixin Jiang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinge Guo
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuan Jiang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changyong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
42
|
Esteves NC, Bigham DN, Scharf BE. Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi. PLoS Pathog 2023; 19:e1011537. [PMID: 37535496 PMCID: PMC10399903 DOI: 10.1371/journal.ppat.1011537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such as Salmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to the S. enterica flagellar filament as its primary receptor. The interactions between phage and flagellum are poorly understood, as are the reasons that χ only kills certain Salmonella serotypes while others entirely evade phage infection. In this study, we used molecular cloning, targeted mutagenesis, heterologous flagellin expression, and phage-host interaction assays to determine which domains within the flagellar filament protein flagellin mediate this complex interaction. We identified the antigenic N- and C-terminal D2 domains as essential for phage χ binding, with the hypervariable central D3 domain playing a less crucial role. Here, we report that the primary structure of the Salmonella flagellin D2 domains is the major determinant of χ adhesion. The phage susceptibility of a strain is directly tied to these domains. We additionally uncovered important information about flagellar function. The central and most variable domain, D3, is not required for motility in S. Typhimurium 14028s, as it can be deleted or its sequence composition can be significantly altered with minimal impacts on motility. Further knowledge about the complex interactions between flagellotropic phage χ and its primary bacterial receptor may allow genetic engineering of its host range for use as targeted antimicrobial therapy against motile pathogens of the χ-host genera Salmonella, Escherichia, or Serratia.
Collapse
Affiliation(s)
- Nathaniel C. Esteves
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Danielle N. Bigham
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Birgit E. Scharf
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
43
|
Meile S, Du J, Staubli S, Grossmann S, Koliwer-Brandl H, Piffaretti P, Leitner L, Matter CI, Baggenstos J, Hunold L, Milek S, Guebeli C, Kozomara-Hocke M, Neumeier V, Botteon A, Klumpp J, Marschall J, McCallin S, Zbinden R, Kessler TM, Loessner MJ, Dunne M, Kilcher S. Engineered reporter phages for detection of Escherichia coli, Enterococcus, and Klebsiella in urine. Nat Commun 2023; 14:4336. [PMID: 37474554 PMCID: PMC10359277 DOI: 10.1038/s41467-023-39863-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
The rapid detection and species-level differentiation of bacterial pathogens facilitates antibiotic stewardship and improves disease management. Here, we develop a rapid bacteriophage-based diagnostic assay to detect the most prevalent pathogens causing urinary tract infections: Escherichia coli, Enterococcus spp., and Klebsiella spp. For each uropathogen, two virulent phages were genetically engineered to express a nanoluciferase reporter gene upon host infection. Using 206 patient urine samples, reporter phage-induced bioluminescence was quantified to identify bacteriuria and the assay was benchmarked against conventional urinalysis. Overall, E. coli, Enterococcus spp., and Klebsiella spp. were each detected with high sensitivity (68%, 78%, 87%), specificity (99%, 99%, 99%), and accuracy (90%, 94%, 98%) at a resolution of ≥103 CFU/ml within 5 h. We further demonstrate how bioluminescence in urine can be used to predict phage antibacterial activity, demonstrating the future potential of reporter phages as companion diagnostics that guide patient-phage matching prior to therapeutic phage application.
Collapse
Affiliation(s)
- Susanne Meile
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jiemin Du
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Samuel Staubli
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | | | | | | | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | | - Laura Hunold
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | | - Vera Neumeier
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Angela Botteon
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jonas Marschall
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, US
| | - Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reinhard Zbinden
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland.
| | - Samuel Kilcher
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland.
| |
Collapse
|
44
|
Du J, Meile S, Baggenstos J, Jäggi T, Piffaretti P, Hunold L, Matter CI, Leitner L, Kessler TM, Loessner MJ, Kilcher S, Dunne M. Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors. Nat Commun 2023; 14:4337. [PMID: 37474516 PMCID: PMC10359290 DOI: 10.1038/s41467-023-39612-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Bacteriophages operate via pathogen-specific mechanisms of action distinct from conventional, broad-spectrum antibiotics and are emerging as promising alternative antimicrobials. However, phage-mediated killing is often limited by bacterial resistance development. Here, we engineer phages for target-specific effector gene delivery and host-dependent production of colicin-like bacteriocins and cell wall hydrolases. Using urinary tract infection (UTI) as a model, we show how heterologous effector phage therapeutics (HEPTs) suppress resistance and improve uropathogen killing by dual phage- and effector-mediated targeting. Moreover, we designed HEPTs to control polymicrobial uropathogen communities through production of effectors with cross-genus activity. Using phage-based companion diagnostics, we identified potential HEPT responder patients and treated their urine ex vivo. Compared to wildtype phage, a colicin E7-producing HEPT demonstrated superior control of patient E. coli bacteriuria. Arming phages with heterologous effectors paves the way for successful UTI treatment and represents a versatile tool to enhance and adapt phage-based precision antimicrobials.
Collapse
Affiliation(s)
- Jiemin Du
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Susanne Meile
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jasmin Baggenstos
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Tobias Jäggi
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pietro Piffaretti
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Laura Hunold
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Kilcher
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Lu S, Cai Y. Bacterial molecular syringe for drug delivery. Cell Host Microbe 2023; 31:917-919. [PMID: 37321174 DOI: 10.1016/j.chom.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Different protein-delivery tools are being actively developed for efficient drug delivery into host cells. A recent study by Kreitz et al. in Nature reported a syringe-like protein delivery vector engineered from natural endosymbiotic bacteria for potential human use.
Collapse
Affiliation(s)
- Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
46
|
Jia HJ, Jia PP, Yin S, Bu LK, Yang G, Pei DS. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Front Microbiol 2023; 14:1172635. [PMID: 37323893 PMCID: PMC10264812 DOI: 10.3389/fmicb.2023.1172635] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteriophages, the most abundant organisms on earth, have the potential to address the rise of multidrug-resistant bacteria resulting from the overuse of antibiotics. However, their high specificity and limited host range can hinder their effectiveness. Phage engineering, through the use of gene editing techniques, offers a means to enhance the host range of bacteria, improve phage efficacy, and facilitate efficient cell-free production of phage drugs. To engineer phages effectively, it is necessary to understand the interaction between phages and host bacteria. Understanding the interaction between the receptor recognition protein of bacteriophages and host receptors can serve as a valuable guide for modifying or replacing these proteins, thereby altering the receptor range of the bacteriophage. Research and development focused on the CRISPR-Cas bacterial immune system against bacteriophage nucleic acids can provide the necessary tools to promote recombination and counter-selection in engineered bacteriophage programs. Additionally, studying the transcription and assembly functions of bacteriophages in host bacteria can facilitate the engineered assembly of bacteriophage genomes in non-host environments. This review highlights a comprehensive summary of phage engineering methods, including in-host and out-of-host engineering, and the use of high-throughput methods to understand their role. The main aim of these techniques is to harness the intricate interactions between bacteriophages and hosts to inform and guide the engineering of bacteriophages, particularly in the context of studying and manipulating the host range of bacteriophages. By employing advanced high-throughput methods to identify specific bacteriophage receptor recognition genes, and subsequently introducing modifications or performing gene swapping through in-host recombination or out-of-host synthesis, it becomes possible to strategically alter the host range of bacteriophages. This capability holds immense significance for leveraging bacteriophages as a promising therapeutic approach against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Huang-Jie Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Hong B, Li Y, Wang W, Ma Y, Wang J. Separation and colorimetric detection of Escherichia coli by phage tail fiber protein combined with nano-magnetic beads. Mikrochim Acta 2023; 190:202. [PMID: 37145241 DOI: 10.1007/s00604-023-05784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
A colorimetric detection method for Escherichia coli (E. coli) in water was established based on a T7 phage tail fiber protein-magnetic separation. Firstly, the tail fiber protein (TFP) was expressed and purified to specifically recognize E. coli, which was verified by using fusion protein GFP-tagged TFP (GFP-TFP) and fluorescence microscopy. Then TFP conjugated with magnetic beads were applied to capture and separate E. coli. The TFP was covalently immobilized on the surface of magnetic beads and captured E. coli as verified by scanning electron microscopy (SEM). Finally, polymyxin B was used to lyse E. coli in solution and the released intracellular β-galactosidase (β-gal) could hydrolyze the colorimetric substrate chlorophenol red-β-D-galactopyranoside (CPRG), causing color change from yellow to purple. The high capture efficiencies of E. coli ranged from 88.70% to 95.65% and E. coli could be detected at a concentration of 102 CFU/mL by naked eyes. The specificity of the chromogenic substrate was evaluated using five different pathogen strains as competitors and tests with four kinds of real water samples showed recoveries of 86.00% to 92.25%. The colorimetric changes determined by visual inspection can be developed as an efficient platform for point-of-care detection of E. coli in resource-limited regions.
Collapse
Affiliation(s)
- Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
48
|
Arivarasan VK. Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:133-149. [PMID: 37770168 DOI: 10.1016/bs.pmbts.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
49
|
George NA, Hug LA. CRISPR-resolved virus-host interactions in a municipal landfill include non-specific viruses, hyper-targeted viral populations, and interviral conflicts. Sci Rep 2023; 13:5611. [PMID: 37019939 PMCID: PMC10076291 DOI: 10.1038/s41598-023-32078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Viruses are the most abundant microbial guild on the planet, impacting microbial community structure and ecosystem services. Viruses are specifically understudied in engineered environments, including examinations of their host interactions. We examined host-virus interactions via host CRISPR spacer to viral protospacer mapping in a municipal landfill across two years. Viruses comprised ~ 4% of both the unassembled reads and assembled basepairs. A total of 458 unique virus-host connections captured hyper-targeted viral populations and host CRISPR array adaptation over time. Four viruses were predicted to infect across multiple phyla, suggesting that some viruses are far less host-specific than is currently understood. We detected 161 viral elements that encode CRISPR arrays, including one with 187 spacers, the longest virally-encoded CRISPR array described to date. Virally-encoded CRISPR arrays targeted other viral elements in interviral conflicts. CRISPR-encoding proviruses integrated into host chromosomes were latent examples of CRISPR-immunity-based superinfection exclusion. The bulk of the observed virus-host interactions fit the one-virus-one-host paradigm, but with limited geographic specificity. Our networks highlight rare and previously undescribed complex interactions influencing the ecology of this dynamic engineered system. Our observations indicate landfills, as heterogeneous contaminated sites with unique selective pressures, are key locations for atypical virus-host dynamics.
Collapse
Affiliation(s)
- Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
50
|
Kreitz J, Friedrich MJ, Guru A, Lash B, Saito M, Macrae RK, Zhang F. Programmable protein delivery with a bacterial contractile injection system. Nature 2023; 616:357-364. [PMID: 36991127 PMCID: PMC10097599 DOI: 10.1038/s41586-023-05870-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
Endosymbiotic bacteria have evolved intricate delivery systems that enable these organisms to interface with host biology. One example, the extracellular contractile injection systems (eCISs), are syringe-like macromolecular complexes that inject protein payloads into eukaryotic cells by driving a spike through the cellular membrane. Recently, eCISs have been found to target mouse cells1-3, raising the possibility that these systems could be harnessed for therapeutic protein delivery. However, whether eCISs can function in human cells remains unknown, and the mechanism by which these systems recognize target cells is poorly understood. Here we show that target selection by the Photorhabdus virulence cassette (PVC)-an eCIS from the entomopathogenic bacterium Photorhabdus asymbiotica-is mediated by specific recognition of a target receptor by a distal binding element of the PVC tail fibre. Furthermore, using in silico structure-guided engineering of the tail fibre, we show that PVCs can be reprogrammed to target organisms not natively targeted by these systems-including human cells and mice-with efficiencies approaching 100%. Finally, we show that PVCs can load diverse protein payloads, including Cas9, base editors and toxins, and can functionally deliver them into human cells. Our results demonstrate that PVCs are programmable protein delivery devices with possible applications in gene therapy, cancer therapy and biocontrol.
Collapse
Affiliation(s)
- Joseph Kreitz
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirco J Friedrich
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akash Guru
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake Lash
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Makoto Saito
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|