1
|
Corvigno S, Yao J, Asare A, Zhao L, Celestino J, Hajek RA, Goette EAA, Rogers RT, Montoya RN, Song P, Zhang QC, Song X, Mohammad MM, Shaw KR, Zhang J, Lu KH, Jazaeri AA, Westin SN, Sood AK, Lee S. Longitudinal genomic profiling of chemotherapy-related CHIP variants in patients with ovarian cancer. Front Oncol 2025; 15:1538446. [PMID: 40365343 PMCID: PMC12069037 DOI: 10.3389/fonc.2025.1538446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/14/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Clonal hematopoiesis (CH) is characterized by the presence of hematopoietic stem cells (HSCs) with the potential of clonally expanding and giving rise to hematological malignancies. Clonal hematopoiesis of indeterminate potential (CHIP) is the outgrowth of a single HSC clone with an acquired somatic mutation in the absence of hematological abnormalities. CHIP variants occur with a variant allele frequency (VAF) of at least 2% in peripheral blood. This definition does not account for less frequent mutations that give rise to hematopoietic clones. Previous studies indicate an association between CH and secondary hematologic malignancies in cancer patients who receive chemotherapy. Methods To discover novel candidate CHIP mutations, including those with extremely low VAFs, we performed an in-depth characterization of low-frequency CHIP variants in a highly selected group of patients with high-grade serous ovarian cancer (HGSC) before and after neoadjuvant chemotherapy (NACT). We performed comprehensive ultra-high-depth whole-exome sequencing of circulating free DNA (cfDNA) and matched white blood cell (WBC) DNA from pre- (n=9) and post-NACT (n=9) samples from HGSC patients who had excellent response (ER; n=4) or poor response (PR; n=5) to NACT. Results Variants present in both the WBC DNA and cfDNA from a patient were considered candidate CHIP variants. We identified 93,088 candidate CHIP variants in 13,780 genes. Compared with pre-NACT samples, post-NACT samples tended to have fewer CHIP mutations with VAFs of less than 5%, which may reflect the negative selective pressure of chemotherapy on rare hematopoietic clones. Finally, we identified CHIP variants in tumor samples matched to the liquid biopsies. Discussion Our innovative sequencing approach enabled the discovery of a large number of novel low-frequency candidate CHIP mutations, whose frequency and composition are affected by chemotherapy, in the cfDNA of patients with HGSC. The CHIP variants that were enriched after chemotherapy, if validated, might become essential predictive markers for therapy-related myeloid neoplasia.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun Yao
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amma Asare
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard A. Hajek
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ency A. Arboleda Goette
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ridge T. Rogers
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Raymond N. Montoya
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ping Song
- Institute for Personalized Cancer Therapy (IPCT) Genomic Laboratory (IPCT Lab), Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingxiu C. Zhang
- Institute for Personalized Cancer Therapy (IPCT) Genomic Laboratory (IPCT Lab), Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mohammad M. Mohammad
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kenna R. Shaw
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Stur E, Peng F, Teng PN, Bayraktar E, Hu M, Corvigno S, Brown DJ, Lee S, Moore KN, Bateman NW, Darcy KM, Maxwell GL, P Conrads T, Sahni N, Vázquez-García I, Shah SP, Celestino J, D Fleming N, Navin NE, Wang L, Sood AK. The dynamic immune behavior of primary and metastatic ovarian carcinoma. NPJ Precis Oncol 2025; 9:120. [PMID: 40281242 PMCID: PMC12032089 DOI: 10.1038/s41698-025-00818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/17/2025] [Indexed: 04/29/2025] Open
Abstract
Patients with high-grade serous ovarian carcinoma (HGSC) are usually diagnosed with advanced-stage disease, and the tumors often have immunosuppressive characteristics. Together, these factors are important for disease progression, drug resistance, and mortality. In this study, we used a combination of single-cell sequencing and spatial transcriptomics to identify the molecular mechanisms that lead to immunosuppression in HGSC. Primary tumors consistently showed a more active immune microenvironment than did omental tumors. In addition, we found that untreated primary tumors were mostly populated by dysfunctional CD4 and CD8 T cells in later stages of differentiation; this, in turn, was correlated with expression changes in the interferon α and γ pathways in epithelial cells, showing that cross-communication between the epithelial and immune compartments is important for immune suppression in HGSC. These findings could have implications for the design of clinical trials with immune-modulating drugs.
Collapse
Affiliation(s)
- Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Hu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J Brown
- Obstetrics and Gynecology, Stephenson Cancer Center, Stephenson Cancer Center at the University of Oklahoma Health Sciences Center/Sarah Cannon Research Institute, Oklahoma City, OK, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen N Moore
- Obstetrics and Gynecology, Stephenson Cancer Center, Stephenson Cancer Center at the University of Oklahoma Health Sciences Center/Sarah Cannon Research Institute, Oklahoma City, OK, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - George L Maxwell
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Thomas P Conrads
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, Boston, MA, USA
- Irving Institute for Cancer Dynamics, Columbia University, Cambridge, MA, 10027, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas E Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, MA, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Institute for Data Science in Oncology (IDSO), The University of Texas MD, Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Hunt AL, Barakat W, Makohon-Moore SC, Hood BL, Conrads KA, Wilson KN, Abulez T, Ogata J, Pienta KJ, Lotan TL, Mani H, Trump DL, Bateman NW, Conrads TP. Histology-resolved proteomics reveals distinct tumor and stromal profiles in low- and high-grade prostate cancer. Clin Proteomics 2025; 22:14. [PMID: 40254573 PMCID: PMC12009531 DOI: 10.1186/s12014-025-09534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Prostate cancer is one of the most frequently diagnosed cancers in men. Prostate tumor staging and disease aggressiveness are evaluated based on the Gleason scoring system, which is further used to direct clinical intervention. The Gleason scoring system provides an estimate of tumor aggressiveness through quantitation of the serum level of prostate specific antigen (PSA) and histologic assessment of Grade Group, determined by the Gleason Grade of the tumor specimen. METHODS To improve our understanding of the proteomic characteristics differentiating low- versus high-grade prostate cancer tumors, we performed a deep proteomic characterization of laser microdissected epithelial and stromal subpopulations from surgically resected tissue specimens from patients with Gleason 6 (n = 23 specimens from n = 15 patients) and Gleason 9 (n = 15 specimens from n = 15 patients) prostate cancer via quantitative high-resolution liquid chromatography-tandem mass spectrometry analysis. RESULTS In total, 789 and 295 grade-specific significantly altered proteins were quantified in the tumor epithelium and tumor-involved stroma, respectively. Benign epithelial and stromal populations were not inherently different between Gleason 6 versus Gleason 9 specimens. Notably, 598 proteins were exclusively significantly altered between Gleason 9 (but not Gleason 6) tumor-involved stroma and benign stroma, including several proteins involved in cholesterol biosynthesis and nucleotide metabolism. CONCLUSIONS Proteomic alterations between Gleason 6 versus Gleason 9 were exclusive to the disease microenvironment, observed in both the tumor epithelium and tumor-involved stroma. Further, the molecular alterations measured in the tumor-involved stroma from Gleason 9 cases relative to the benign stroma have unique significance in disease aggressiveness, development, and/or progression. Our data provide supportive evidence of a need for further investigations into targeting stromal reservoirs of cholesterol and/or deoxynucleoside triphosphates in PCa tumors and further highlight the necessity for independent examination of the TME epithelial and stromal compartments.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22003, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Jonathan Ogata
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haresh Mani
- Department of Pathology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, 8081 Innovation Park Dr, Fairfax, VA, 22031, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22003, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
4
|
Schei-Andersen AJ, Witjes VM, Vos JR, Mensenkamp AR, van Altena A, Schieving J, Simons M, Schuurs-Hoeijmakers JHM, Hoogerbrugge N. Non-serous ovarian cancer in PTEN Hamartoma Tumor Syndrome: additional evidence for increased risk. Fam Cancer 2025; 24:28. [PMID: 40100464 PMCID: PMC11920364 DOI: 10.1007/s10689-025-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Increased hereditary cancer risk is one of the hallmarks of PTEN Hamartoma Tumor Syndrome (PHTS) which is caused by a pathogenic germline variant in PTEN. Case reports and some cohort studies have described ovarian cancer (OC) in PHTS patients. Previously, we observed an enrichment of non-serous OC in PHTS compared to sporadic cases (3% vs 1%). However, ovarian cancer is currently not considered a PHTS-related cancer. The aim of this study was to describe five PHTS patients with a pathogenic germline variant in PTEN with non-serous OC. Three of the non-serous OCs were mucinous carcinomas (49, 51 and 52 years) and two were malignant germ cell tumors (8 and 15 years) and all were diagnosed before genetic testing and PHTS diagnosis. In addition to OC, the described patients developed other PHTS-related benign and malignant lesions. We provide further evidence that non-serous ovarian cancer, especially mucinous, endometrioid and malignant germ cell tumors should be further investigated as potential PHTS-related cancers.
Collapse
Affiliation(s)
- Ane J Schei-Andersen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera M Witjes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janet R Vos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne van Altena
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolanda Schieving
- Department of Pediatric Neurology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Michiel Simons
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Institute of Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
- European Reference Network Genetic Tumor Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Dini A, Barker H, Piki E, Sharma S, Raivola J, Murumägi A, Ungureanu D. A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery. Nat Chem Biol 2025; 21:432-442. [PMID: 39482470 PMCID: PMC11867973 DOI: 10.1038/s41589-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
The gene-regulatory dynamics governing drug responses in cancer are yet to be fully understood. Here, we report a pipeline capable of producing high-throughput pharmacotranscriptomic profiling through live-cell barcoding using antibody-oligonucleotide conjugates. This pipeline combines drug screening with 96-plex single-cell RNA sequencing. We show the potential of this approach by exploring the heterogeneous transcriptional landscape of primary high-grade serous ovarian cancer (HGSOC) cells after treatment with 45 drugs, with 13 distinct classes of mechanisms of action. A subset of phosphatidylinositol 3-OH kinase (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) inhibitors induced the activation of receptor tyrosine kinases, such as the epithelial growth factor receptor (EGFR), and this was mediated by the upregulation of caveolin 1 (CAV1). This drug resistance feedback loop could be mitigated by the synergistic action of agents targeting PI3K-AKT-mTOR and EGFR for HGSOC with CAV1 and EGFR expression. Using this workflow could enable the personalized testing of patient-derived tumor samples at single-cell resolution.
Collapse
Affiliation(s)
- Alice Dini
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Harlan Barker
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emilia Piki
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Subodh Sharma
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Juuli Raivola
- Applied Tumor Genomics, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Daniela Ungureanu
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
- Applied Tumor Genomics, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Guo S, Liu X, Cheng X, Jiang Y, Ji S, Liang Q, Koval A, Li Y, Owen LA, Kim IK, Aparicio A, Lee S, Sood AK, Kopetz S, Shen JP, Weinstein JN, DeAngelis MM, Chen R, Wang W. A deconvolution framework that uses single-cell sequencing plus a small benchmark data set for accurate analysis of cell type ratios in complex tissue samples. Genome Res 2025; 35:147-161. [PMID: 39586714 PMCID: PMC11789644 DOI: 10.1101/gr.278822.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we utilize an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and then develop a deconvolution framework called DeMixSC using this well-matched, that is, benchmark, data. Built upon a novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrepancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our results using two benchmark data sets of healthy retinas and ovarian cancer tissues suggest much-improved deconvolution accuracy. Leveraging tissue-specific benchmark data sets, we applied DeMixSC to a large cohort of 453 age-related macular degeneration patients and a cohort of 30 ovarian cancer patients with various responses to neoadjuvant chemotherapy. Only DeMixSC successfully unveiled biologically meaningful differences across patient groups, demonstrating its broad applicability in diverse real-world clinical scenarios. Our findings reveal the impact of technological discrepancy on deconvolution performance and underscore the importance of a well-matched data set to resolve this challenge. The developed DeMixSC framework is generally applicable for accurately deconvolving large cohorts of disease tissues, including cancers, when a well-matched benchmark data set is available.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaoqian Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Statistics, Rice University, Houston, Texas 77005, USA
| | - Shuangxi Ji
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Qingnan Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andrew Koval
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Statistics, Rice University, Houston, Texas 77005, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Leah A Owen
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY University at Buffalo, Buffalo, New York 14209, USA
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Ivana K Kim
- USA Retina Service, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY University at Buffalo, Buffalo, New York 14209, USA
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
- VA Western New York Healthcare System, Buffalo, New York 14215, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
7
|
Tomas EJ, Valdes YR, Davis J, Kolendowski B, Buensuceso A, DiMattia GE, Shepherd TG. Exploiting Cancer Dormancy Signaling Mechanisms in Epithelial Ovarian Cancer Through Spheroid and Organoid Analysis. Cells 2025; 14:133. [PMID: 39851561 PMCID: PMC11764263 DOI: 10.3390/cells14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between tumour and spheroid states during cancer dormancy, although the specific mechanisms underlying this transition remain unknown. Here, we present novel findings from direct comparisons between cultured EOC spheroids and organoids. Our results indicated that AMP-activated protein kinase (AMPK) activity was significantly upregulated and protein kinase B (Akt) was downregulated in EOC spheroids compared to organoids, suggesting a clear differential phenotype. Through RNA sequencing analysis, we further supported these phenotypic differences and highlighted the significance of cell cycle regulation in organoids. By inhibiting the G2/M checkpoint via kinase inhibitors, we confirmed that this pathway is essential for organoids. Interestingly, our results suggest that specifically targeting aurora kinase A (AURKA) may represent a promising therapeutic strategy since our cells were equally sensitive to Alisertib treatment as both spheroids and organoids. Our findings emphasize the importance of studying cellular adaptations of EOC cells, as there may be different therapeutic targets depending on the step of EOC disease progression.
Collapse
Affiliation(s)
- Emily J. Tomas
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5C1, Canada
| | - Yudith Ramos Valdes
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
| | - Jennifer Davis
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
| | - Bart Kolendowski
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
| | - Adrian Buensuceso
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
| | - Gabriel E. DiMattia
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 5C1, Canada
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
| | - Trevor G. Shepherd
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, Western University, London, ON N6A 5C1, Canada
- Department of Obstetrics & Gynaecology, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
How JA, Dang M, Lee S, Fellman B, Westin SN, Sood AK, Fleming ND, Shafer A, Yuan Y, Liu J, Zhao L, Celestino J, Hajek R, Morgan MB, Parra ER, Laberiano Fernandez CD, Arrechedera CA, Solis Soto LM, Schmeler KM, Nick A, Lu KH, Coleman R, Wang L, Jazaeri AA. Pembrolizumab plus chemotherapy in frontline treatment of advanced ovarian cancer: Clinical and translational results from a phase 2 trial. MED 2025; 6:100494. [PMID: 39151421 PMCID: PMC11725453 DOI: 10.1016/j.medj.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The efficacy and feasibility of pembrolizumab combined with chemotherapy in frontline management of advanced high-grade epithelial ovarian cancer (EOC) is unknown. Additionally, modification of the tumor microenvironment following neoadjuvant therapy is not well understood. METHODS In this single-arm phase 2 trial (this study was registered at ClinicalTrials.gov: NCT02520154), eligible patients received up to 4 cycles of neoadjuvant chemotherapy followed by interval cytoreduction, 3 cycles of adjuvant intravenous carboplatin/weekly paclitaxel/pembrolizumab, and finally maintenance pembrolizumab until progression or toxicity (maximum 20 cycles). The primary endpoint was progression-free survival (PFS). Secondary endpoints included feasibility, toxicity, and overall survival (OS). PD-L1 staining, multiplex immunofluorescence staining, RNA sequencing, reverse-phase protein array analyses were performed on pre- and post-chemotherapy samples. FINDINGS Thirty-one eligible patients were enrolled. Median PFS and OS was 14.88 (95% CI 12.39-23.00) and 57.43 months (95% CI 30.88-not reached), respectively. Among those with PD-L1 combined positive score (CPS) ≥10, the median PFS and OS were not reached compared to those with CPS <10 (10.50 and 30.90 months, respectively). Feasibility was met, with all patients completing their planned adjuvant cycles. Treatment discontinuation due to immune-related toxicity occurred in 6 patients (20%). Chemotherapy resulted in an infiltration of anti-tumor immune cells in the tumor microenvironment. Samples of patients with the best PFS demonstrated increased expression of NF-κB, TGF-β, and β-catenin signaling. CONCLUSIONS Pembrolizumab with chemotherapy was feasible and resulted in PFS within the historical range for this EOC population. Patients with CPS ≥10 may benefit more from this regimen, and future studies should investigate this potential biomarker. FUNDING This investigator-initiated trial was funded by Merck.
Collapse
MESH Headings
- Humans
- Female
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Middle Aged
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/mortality
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Aged
- Paclitaxel/administration & dosage
- Carboplatin/administration & dosage
- Adult
- Carcinoma, Ovarian Epithelial/drug therapy
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/mortality
- Tumor Microenvironment/drug effects
- Neoadjuvant Therapy/methods
- Progression-Free Survival
- Cytoreduction Surgical Procedures
- B7-H1 Antigen
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
- Jeffrey A How
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aaron Shafer
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Hajek
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margaret B Morgan
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caddie D Laberiano Fernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio A Arrechedera
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Maren Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Huang DH, Li YZ, Xu HL, Liu FH, Li XY, Xiao Q, Chen X, Liu KX, Wang DD, Men YX, Cao YN, Gao S, Zhao YH, Gong TT, Wu QJ. Proteomics for Biomarker Discovery in Gynecological Cancers: A Systematic Review. J Proteome Res 2025; 24:1-12. [PMID: 39698999 DOI: 10.1021/acs.jproteome.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The present study aims to summarize the current biomarker landscape in gynecological cancers (GCs) and incorporate bioinformatics analysis to highlight specific biological processes. The literature was retrieved from PubMed, Web of Science, Embase, Scopus, Ovid Medline, and Cochrane Library. The final search was conducted on December 7, 2022. Prospective registration was completed with the PROSPERO with registration number CRD42023477145. This systematic review covered proteomic research on biomarkers for cervical, endometrial, and ovarian cancers. The PANTHER classification system was used to classify the shortlisted candidate biomarkers (CBs), and the STRING database was utilized to visualize protein-protein interaction networks. A total of 23 articles were included in this systematic review. Consistently regulated CBs in the GCs include collagen alpha-2(I) chain, collagen alpha-1(III) chain, collagen alpha-2(V) chain, calreticulin, protein disulfide-isomerase A3, heat shock protein family A (Hsp70) member 5, prolyl 4-hydroxylase, beta polypeptide, fibrinogen alpha chain, fibrinogen gamma chain, apolipoprotein B-100, apolipoprotein C-IV, and apolipoprotein M. In conclusion, collagens, fibrinogens, chaperones, and apolipoproteins were revealed to be replicated in GCs and to be regulated consistently. These CBs contribute to GC etiology and physiology by participating in collagen fibril organization, blood coagulation, protein folding in endoplasmic reticulum, and lipid transporter activity.
Collapse
Affiliation(s)
- Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Qian Xiao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xing Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Ke-Xin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Yi-Xuan Men
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yi-Ning Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang 110022, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Benxi 117004, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang 110022, China
| |
Collapse
|
10
|
Tan R, Wen M, Yang W, Zhan D, Zheng N, Liu M, Zhu F, Chen X, Wang M, Yang S, Xie B, He Q, Yuan K, Sun L, Wang Y, Qin J, Zhang Y. Integrated proteomics and scRNA-seq analyses of ovarian cancer reveal molecular subtype-associated cell landscapes and immunotherapy targets. Br J Cancer 2025; 132:111-125. [PMID: 39548315 PMCID: PMC11723995 DOI: 10.1038/s41416-024-02894-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) represents the most lethal gynaecological malignancy, yet understanding the connections between its molecular subtypes and their therapeutic implications remains incomplete. METHODS We conducted mass spectrometry-based proteomics analyses of 154 EOC tumour samples and 29 normal fallopian tubes, and single-cell RNA sequencing (scRNA-seq) analyses of an additional eight EOC tumours to classify proteomic subtypes and assess their cellular ecosystems and clinical significance. The efficacy of identified therapeutic targets was evaluated in patient-derived xenograft (PDX) and orthotopic mouse models. RESULTS We identified four proteomic subtypes with distinct clinical relevance: malignant proliferative (C1), immune infiltrating (C2), Fallopian-like (C3) and differentiated (C4) subtypes. C2 subtype was characterized by lymphocyte infiltration, notably an increased presence of GZMK CD8+ T cells and phagocytosis-like MRC+ macrophages. Additionally, we identified CD40 as a specific prognostic factor for C2 subtype. The interaction between CD40+ phagocytosis-like macrophages and CD40RL+ IL17R CD4+ T cells was correlated with a favourable prognosis. Finally, we established a druggable landscape for non-immune EOC patients and verified a TYMP inhibitor as a promising therapeutic strategy. CONCLUSIONS Our study refines the current immune subtype for EOC, highlighting CD40 agonists as promising therapies for C2 subtype patients and targeting TYMP for non-immune patients.
Collapse
Affiliation(s)
- Rong Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ming Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Beijing Pineal Diagnostics Co., Ltd., Beijing, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Xiaodan Chen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
11
|
Desai P, Takahashi N, Kumar R, Nichols S, Malin J, Hunt A, Schultz C, Cao Y, Tillo D, Nousome D, Chauhan L, Sciuto L, Jordan K, Rajapakse V, Tandon M, Lissa D, Zhang Y, Kumar S, Pongor L, Singh A, Schroder B, Sharma AK, Chang T, Vilimas R, Pinkiert D, Graham C, Butcher D, Warner A, Sebastian R, Mahon M, Baker K, Cheng J, Berger A, Lake R, Abel M, Krishnamurthy M, Chrisafis G, Fitzgerald P, Nirula M, Goyal S, Atkinson D, Bateman NW, Abulez T, Nair G, Apolo A, Guha U, Karim B, El Meskini R, Ohler ZW, Jolly MK, Schaffer A, Ruppin E, Kleiner D, Miettinen M, Brown GT, Hewitt S, Conrads T, Thomas A. Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep Med 2024; 5:101610. [PMID: 38897168 PMCID: PMC11228806 DOI: 10.1016/j.xcrm.2024.101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.
Collapse
Affiliation(s)
- Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, Fox Chase Cancer Center, Temple University Hospital and Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Hunt
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Christopher Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Desiree Tillo
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darryl Nousome
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lakshya Chauhan
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mayank Tandon
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorinc Pongor
- HCEMM Cancer Genomics and Epigenetics Research Group, Szeged, Hungary
| | - Abhay Singh
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brett Schroder
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Pinkiert
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mimi Mahon
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Karen Baker
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jennifer Cheng
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ann Berger
- Pain and Palliative care services, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Abel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Chrisafis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Fitzgerald
- CCR Collaborative Bioinformatics, Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Micheal Nirula
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shubhank Goyal
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Nicholas W Bateman
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Tamara Abulez
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mohit Kumar Jolly
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Alejandro Schaffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tom Brown
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Conrads
- Women's Health Integrated Research Center, Inova Health System, Falls Church, VA, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Wang X, Wang J, Peng H, Zuo L, Wang H. Role of immune cell interactions in alcohol-associated liver diseases. LIVER RESEARCH 2024; 8:72-82. [DOI: 10.1016/j.livres.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Hunt AL, Khan I, Wu AML, Makohon-Moore SC, Hood BL, Conrads KA, Abulez T, Ogata J, Mitchell D, Gist G, Oliver J, Wei D, Chung MA, Rahman S, Bateman NW, Zhang W, Conrads TP, Steeg PS. The murine metastatic microenvironment of experimental brain metastases of breast cancer differs by host age in vivo: a proteomic study. Clin Exp Metastasis 2024; 41:229-249. [PMID: 37917186 DOI: 10.1007/s10585-023-10233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Alex M L Wu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Zymeworks Inc, Vancouver, BC, V5T 1G4, Canada
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jonathan Ogata
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Debbie Wei
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Monika A Chung
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Samiur Rahman
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Wei Zhang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Teng PN, Schaaf JP, Abulez T, Hood BL, Wilson KN, Litzi TJ, Mitchell D, Conrads KA, Hunt AL, Olowu V, Oliver J, Park FS, Edwards M, Chiang A, Wilkerson MD, Raj-Kumar PK, Tarney CM, Darcy KM, Phippen NT, Maxwell GL, Conrads TP, Bateman NW. ProteoMixture: A cell type deconvolution tool for bulk tissue proteomic data. iScience 2024; 27:109198. [PMID: 38439970 PMCID: PMC10910246 DOI: 10.1016/j.isci.2024.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/04/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Numerous multi-omic investigations of cancer tissue have documented varying and poor pairwise transcript:protein quantitative correlations, and most deconvolution tools aiming to predict cell type proportions (cell admixture) have been developed and credentialed using transcript-level data alone. To estimate cell admixture using protein abundance data, we analyzed proteome and transcriptome data generated from contrived admixtures of tumor, stroma, and immune cell models or those selectively harvested from the tissue microenvironment by laser microdissection from high grade serous ovarian cancer (HGSOC) tumors. Co-quantified transcripts and proteins performed similarly to estimate stroma and immune cell admixture (r ≥ 0.63) in two commonly used deconvolution algorithms, ESTIMATE or ConsensusTME. We further developed and optimized protein-based signatures estimating cell admixture proportions and benchmarked these using bulk tumor proteomic data from over 150 patients with HGSOC. The optimized protein signatures supporting cell type proportion estimates from bulk tissue proteomic data are available at https://lmdomics.org/ProteoMixture/.
Collapse
Affiliation(s)
- Pang-ning Teng
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Joshua P. Schaaf
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Katlin N. Wilson
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Tracy J. Litzi
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - David Mitchell
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Allison L. Hunt
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Falls Church, VA 22042, USA
| | - Victoria Olowu
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Fred S. Park
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Marshé Edwards
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - AiChun Chiang
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Matthew D. Wilkerson
- Center for Military Precision Health, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Christopher M. Tarney
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Neil T. Phippen
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - G. Larry Maxwell
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Falls Church, VA 22042, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Thomas P. Conrads
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Falls Church, VA 22042, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence and the Women’s Health Integrated Research Center, Annandale, VA 22003, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| |
Collapse
|
15
|
Bateman NW, Abulez T, Soltis AR, McPherson A, Choi S, Garsed DW, Pandey A, Tian C, Hood BL, Conrads KA, Teng PN, Oliver J, Gist G, Mitchell D, Litzi TJ, Tarney CM, Crothers BA, Mhawech-Fauceglia P, Dalgard CL, Wilkerson MD, Pierobon M, Petricoin EF, Yan C, Meerzaman D, Bodelon C, Wentzensen N, Lee JSH, Huntsman DG, Shah S, Shriver CD, Phippen NT, Darcy KM, Bowtell DDL, Conrads TP, Maxwell GL. Proteogenomic analysis of enriched HGSOC tumor epithelium identifies prognostic signatures and therapeutic vulnerabilities. NPJ Precis Oncol 2024; 8:68. [PMID: 38480868 PMCID: PMC10937683 DOI: 10.1038/s41698-024-00519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Anthony R Soltis
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew McPherson
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA
| | - Seongmin Choi
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Victoria, Australia
| | - Chunqiao Tian
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Christopher M Tarney
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Barbara A Crothers
- The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, MD, USA
| | - Paulette Mhawech-Fauceglia
- Department of Anatomic Pathology, Division of Gynecologic Pathology, University of Southern California, Los Angeles, CA, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Chunhua Yan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, USA
| | - Clara Bodelon
- Division of Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics National Cancer Institute, Rockville, MD, USA
| | - Jerry S H Lee
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohrab Shah
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA
| | - Craig D Shriver
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| |
Collapse
|
16
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore SC, Abulez T, Driscoll JA, Schaaf JP, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Wilson KN, Litzi TJ, Teng PN, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Darcy KM, Rao UNM, Petricoin EF, Phippen NT, Maxwell GL, Conrads TP. Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling. Clin Proteomics 2024; 21:4. [PMID: 38254014 PMCID: PMC10804562 DOI: 10.1186/s12014-024-09451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.
Collapse
Grants
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jordan A Driscoll
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Joshua P Schaaf
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Uma N M Rao
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
17
|
Gao Y, Zhou N, Liu J. Ovarian Cancer Diagnosis and Prognosis Based on Cell-Free DNA Methylation. Cancer Control 2024; 31:10732748241255548. [PMID: 38764160 PMCID: PMC11104031 DOI: 10.1177/10732748241255548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Background: Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. The advancement of molecular biology is essential for accurate diagnosis and treatment of ovarian cancer. Methods: A review of several randomized clinical trials, focusing on the ovarian cancer, was undertaken. The advancement of molecular biology and diagnostic methods related to accurate diagnosis and treatment of ovarian cancer were examined. Results: Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. It holds promise as a biomarker, enabling early screening, recurrence monitoring, and prognostic evaluation of cancer. Conclusions: This review evaluates recent advancements and challenges associated with cell-free DNA methylation analysis for the diagnosis, prognosis monitoring, and assessment of therapeutic responses in the management of ovarian cancers, aiming to offer guidance for precise diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Nanyang Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Jie Liu
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
18
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|
19
|
Corvigno S, Badal S, Spradlin ML, Keating M, Pereira I, Stur E, Bayraktar E, Foster KI, Bateman NW, Barakat W, Darcy KM, Conrads TP, Maxwell GL, Lorenzi PL, Lutgendorf SK, Wen Y, Zhao L, Thaker PH, Goodheart MJ, Liu J, Fleming N, Lee S, Eberlin LS, Sood AK. In situ profiling reveals metabolic alterations in the tumor microenvironment of ovarian cancer after chemotherapy. NPJ Precis Oncol 2023; 7:115. [PMID: 37923835 PMCID: PMC10624842 DOI: 10.1038/s41698-023-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/26/2023] [Indexed: 11/06/2023] Open
Abstract
In this study, we investigated the metabolic alterations associated with clinical response to chemotherapy in patients with ovarian cancer. Pre- and post-neoadjuvant chemotherapy (NACT) tissues from patients with high-grade serous ovarian cancer (HGSC) who had poor response (PR) or excellent response (ER) to NACT were examined. Desorption electrospray ionization mass spectrometry (DESI-MS) was performed on sections of HGSC tissues collected according to a rigorous laparoscopic triage algorithm. Quantitative MS-based proteomics and phosphoproteomics were performed on a subgroup of pre-NACT samples. Highly abundant metabolites in the pre-NACT PR tumors were related to pyrimidine metabolism in the epithelial regions and oxygen-dependent proline hydroxylation of hypoxia-inducible factor alpha in the stromal regions. Metabolites more abundant in the epithelial regions of post-NACT PR tumors were involved in the metabolism of nucleotides, and metabolites more abundant in the stromal regions of post-NACT PR tumors were related to aspartate and asparagine metabolism, phenylalanine and tyrosine metabolism, nucleotide biosynthesis, and the urea cycle. A predictive model built on ions with differential abundances allowed the classification of patients' tumor responses as ER or PR with 75% accuracy (10-fold cross-validation ridge regression model). These findings offer new insights related to differential responses to chemotherapy and could lead to novel actionable targets.
Collapse
Grants
- P50 CA217685 NCI NIH HHS
- R01 CA193249 NCI NIH HHS
- R35 CA209904 NCI NIH HHS
- This work was supported, in part, by the MD Anderson Ovarian Cancer Moon Shot, CPRIT (RP180381), SPORE in ovarian cancer (CA217685), CA193249, CA209904, and CA193249-S1 from the National Institutes of Health, the Ovarian Cancer Research Alliance, the American Cancer Society, the Dunwoody Fund, and the Frank McGraw Memorial Chair in Cancer Research, the Foundation for Women’s cancer, Amy Krouse Rosenthal Foundation and Judy’s Mission to End Ovarian Cancer Foundation Research Grant for Early Detection of Ovarian Cancer. We acknowledge the Research Medical Library at MD Anderson Cancer Center for editing the text. For the GYN-COE collection, the collection and banking of these specimens and data were funded by awards HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027 from the Uniformed Services University of the Health Sciences from the Defense Health Program to the Henry M Jackson Foundation (HJF) for the Advancement of Military Medicine Inc. Gynecologic Cancer Center of Excellence Program (PI: Yovanni Casablanca, Co-PI: G. Larry Maxwell
- the Foundation for Women’s cancer, Amy Krouse Rosenthal Foundation and Judy’s Mission to End Ovarian Cancer Foundation Research Grant for Early Detection of Ovarian Cancer
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Badal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | | | - Michael Keating
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Igor Pereira
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine I Foster
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan K Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City, IA, USA
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Premal H Thaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa, Iowa City, IA, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Nguyen NT, Raetz A, Montoya D, Schilling V, Tong C, Brooks RA, Leiserowitz G, Chien J. Targeting RAS-ERK pathway alterations with MEK inhibitors to improve chemosensitivity in high grade serous ovarian cancers. Gynecol Oncol 2023; 178:69-79. [PMID: 37806229 DOI: 10.1016/j.ygyno.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Assess if MEK inhibitor blockade of RAS-ERK pathway adaptive response in high grade serous ovarian cancers (HGSOC) improves platinum sensitivity. METHODS Three HGSOC cell lines and three patient derived organoid (PDOs) samples from ascites of platinum resistant HGSOC patients were collected. Cell lines and PDOs were exposed to carboplatin and MEK inhibitors cobimetinib or trametinib. Cytotoxic effects of MEK inhibitors alone or combined with carboplatin were established. Western blots demonstrated RAS-ERK pathway blockage after MEK inhibitor treatment. RNA sequencing assessed gene expression after MEK inhibitor treatment. Cell line NF1 gene knockdown was performed with corresponding chemosensitivity levels. RESULTS High carboplatin IC50 levels indicated platinum resistance in cell lines and PDOs. Cobimetinib induced cytotoxicity in cell lines and PDOs, while trametinib was less effective. Western blot confirmed MEK-ERK pathway blockage at minimal concentrations of MEK inhibitors in cell lines and PDOs. Phosphorylated-ERK levels of untreated cells indicated higher levels of RAS-ERK pathway activation in OVSAHO and OVCAR7 compared to OVCAR3. OVSAHO harbors a NF1 mutation and had highest levels of RAS-ERK activation. Cotreatment with carboplatin and MEK inhibitors showed varying synergistic cytotoxic effects at different combinations. Synergistic effect was most prominent in the OVSAHO carboplatin and cobimetinib combination. RNA sequencing identified downregulation of c-MYC and FOXM1 gene expression after MEK inhibitor treatment. NF1 gene knockdown showed an acquired increased IC50 compared to parental cells. CONCLUSION MEK inhibitors block RAS-ERK pathways in platinum resistant HGSOC cells and PDOs. MEK inhibitors with carboplatin have select synergistic effects which may indicate a strategy to improve platinum sensitivity.
Collapse
Affiliation(s)
- Nancy T Nguyen
- University of California Davis, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, USA.
| | - Alan Raetz
- University of California Davis, Department of Biochemistry and Molecular Medicine, USA
| | - Dennis Montoya
- University of California Davis, Department of Biochemistry and Molecular Medicine, USA
| | - Vincent Schilling
- University of California Davis, Department of Biochemistry and Molecular Medicine, USA
| | - Caili Tong
- University of California Davis, Department of Biochemistry and Molecular Medicine, USA
| | - Rebecca A Brooks
- University of California Davis, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, USA
| | - Gary Leiserowitz
- University of California Davis, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, USA
| | - Jeremy Chien
- University of California Davis, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, USA; University of California Davis, Department of Biochemistry and Molecular Medicine, USA
| |
Collapse
|
21
|
Teng PN, Barakat W, Tran SM, Tran ZM, Bateman NW, Conrads KA, Wilson KN, Oliver J, Gist G, Hood BL, Zhou M, Maxwell GL, Leggio L, Conrads TP, Lee MR. Brain proteomic atlas of alcohol use disorder in adult males. Transl Psychiatry 2023; 13:318. [PMID: 37833300 PMCID: PMC10575941 DOI: 10.1038/s41398-023-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Alcohol use disorder (AUD) affects transcriptomic, epigenetic and proteomic expression in several organs, including the brain. There has not been a comprehensive analysis of altered protein abundance focusing on the multiple brain regions that undergo neuroadaptations occurring in AUD. We performed a quantitative proteomic analysis using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of human postmortem tissue from brain regions that play key roles in the development and maintenance of AUD, the amygdala (AMG), hippocampus (HIPP), hypothalamus (HYP), nucleus accumbens (NAc), prefrontal cortex (PFC) and ventral tegmental area (VTA). Brain tissues were from adult males with AUD (n = 11) and matched controls (n = 16). Across the two groups, there were >6000 proteins quantified with differential protein abundance in AUD compared to controls in each of the six brain regions. The region with the greatest number of differentially expressed proteins was the AMG, followed by the HYP. Pathways associated with differentially expressed proteins between groups (fold change > 1.5 and LIMMA p < 0.01) were analyzed by Ingenuity Pathway Analysis (IPA). In the AMG, adrenergic, opioid, oxytocin, GABA receptor and cytokine pathways were among the most enriched. In the HYP, dopaminergic signaling pathways were the most enriched. Proteins with differential abundance in AUD highlight potential therapeutic targets such as oxytocin, CSNK1D (PF-670462), GABAB receptor and opioid receptors and may lead to the identification of other potential targets. These results improve our understanding of the molecular alterations of AUD across brain regions that are associated with the development and maintenance of AUD. Proteomic data from this study is publicly available at www.lmdomics.org/AUDBrainProteomeAtlas/ .
Collapse
Affiliation(s)
- Pang-Ning Teng
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Waleed Barakat
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Sophie M Tran
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Zoe M Tran
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Nicholas W Bateman
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kelly A Conrads
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katlin N Wilson
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Julie Oliver
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Glenn Gist
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Brian L Hood
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| | - Mary R Lee
- Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
22
|
Mukherjee S, Nag S, Mukerjee N, Maitra S, Muthusamy R, Fuloria NK, Fuloria S, Adhikari MD, Anand K, Thorat N, Subramaniyan V, Gorai S. Unlocking Exosome-Based Theragnostic Signatures: Deciphering Secrets of Ovarian Cancer Metastasis. ACS OMEGA 2023; 8:36614-36627. [PMID: 37841156 PMCID: PMC10568589 DOI: 10.1021/acsomega.3c02837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, West Bengal 700126, Kolkata, India
- Department
of Health Sciences, Novel Global Community
Educational Foundation, New South
Wales, Australia
| | - Swastika Maitra
- Department
of Microbiology, Adamas University, West Bengal 700126, Kolkata, India
| | - Raman Muthusamy
- Department
of Microbiology, Centre for Infectious Diseases, Saveetha Dental College, Chennai, Tamil Nadu 600077, India
| | - Neeraj Kumar Fuloria
- Faculty
of Pharmacy, & Centre of Excellence for Biomaterials Engineering, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty
of Pharmacy, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy Co. Limerick, Limerick V94T9PX, Ireland
| | - Vetriselvan Subramaniyan
- Jeffrey
Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Saveetha
Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 West Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
23
|
Ao W, Kim HI, Tommarello D, Conrads KA, Hood BL, Litzi T, Abulez T, Teng PN, Dalgard CL, Zhang X, Wilkerson MD, Darcy KM, Tarney CM, Phippen NT, Bakkenist CJ, Maxwell GL, Conrads TP, Risinger JI, Bateman NW. Metronomic dosing of ovarian cancer cells with the ATR inhibitor AZD6738 leads to loss of CDC25A expression and resistance to ATRi treatment. Gynecol Oncol 2023; 177:60-71. [PMID: 37639904 DOI: 10.1016/j.ygyno.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE ATR kinase inhibitors promote cell killing by inducing replication stress and through potentiation of genotoxic agents in gynecologic cancer cells. To explore mechanisms of acquired resistance to ATRi in ovarian cancer, we characterized ATRi-resistant ovarian cancer cells generated by metronomic dosing with the clinical ATR inhibitor AZD6738. METHODS ATRi-resistant ovarian cancer cells (OVCAR3 and OV90) were generated by dosing with AZD6738 and assessed for sensitivity to Chk1i (LY2603618), PARPi (Olaparib) and combination with cisplatin or a CDK4/6 inhibitor (Palbociclib). Models were characterized by diverse methods including silencing CDC25A in OV90 cells and assessing impact on ATRi response. Serum proteomic analysis of ATRi-resistant OV90 xenografts was performed to identify circulating biomarker candidates of ATRi-resistance. RESULTS AZD6738-resistant cell lines are refractory to LY2603618, but not to Olaparib or combinations with cisplatin. Cell cycle analyses showed ATRi-resistant cells exhibit G1/S arrest following AZD6738 treatment. Accordingly, combination with Palbociclib confers resistance to AZD6738. AZD6738-resistant cells exhibit altered abundances of G1/S phase regulatory proteins, including loss of CDC25A in AZD6738-resistant OV90 cells. Silencing of CDC25A in OV90 cells confers resistance to AZD6738. Serum proteomics from AZD6738-resistant OV90 xenografts identified Vitamin D-Binding Protein (GC), Apolipoprotein E (APOE) and A1 (APOA1) as significantly elevated in AZD6738-resistant backgrounds. CONCLUSIONS We show that metronomic dosing of ovarian cancer cells with AZD6738 results in resistance to ATR/ Chk1 inhibitors, that loss of CDC25A expression represents a mechanism of resistance to ATRi treatment in ovarian cancer cells and identify several circulating biomarker candidates of CDC25A low, AZD6738-resistant ovarian cancer cells.
Collapse
Affiliation(s)
- Wei Ao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| | - Domenic Tommarello
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Tracy Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA
| | - Clifton L Dalgard
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xijun Zhang
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Matthew D Wilkerson
- The American Genome Center, Department of Anatomy Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Christopher M Tarney
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA
| | - Christopher J Bakkenist
- Departments of Radiation Biology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Rd. Falls Church, VA 22042, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Rd. Falls Church, VA 22042, USA
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, MD 20817, USA; The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD, USA.
| |
Collapse
|
24
|
Chen H, Ding Q, Khazai L, Zhao L, Damodaran S, Litton JK, Rauch GM, Yam C, Chang JT, Seth S, Lim B, Thompson AM, Mittendorf EA, Adrada B, Virani K, White JB, Ravenberg E, Song X, Candelaria R, Arun B, Ueno NT, Santiago L, Saleem S, Abouharb S, Murthy RK, Ibrahim N, Routbort MJ, Sahin A, Valero V, Symmans WF, Tripathy D, Wang WL, Moulder S, Huo L. PTEN in triple-negative breast carcinoma: protein expression and genomic alteration in pretreatment and posttreatment specimens. Ther Adv Med Oncol 2023; 15:17588359231189422. [PMID: 37547448 PMCID: PMC10399250 DOI: 10.1177/17588359231189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Background Recent advances have been made in targeting the phosphoinositide 3-kinase pathway in breast cancer. Phosphatase and tensin homolog (PTEN) is a key component of that pathway. Objective To understand the changes in PTEN expression over the course of the disease in patients with triple-negative breast cancer (TNBC) and whether PTEN copy number variation (CNV) by next-generation sequencing (NGS) can serve as an alternative to immunohistochemistry (IHC) to identify PTEN loss. Methods We compared PTEN expression by IHC between pretreatment tumors and residual tumors in the breast and lymph nodes after neoadjuvant chemotherapy in 96 patients enrolled in a TNBC clinical trial. A correlative analysis between PTEN protein expression and PTEN CNV by NGS was also performed. Results With a stringent cutoff for PTEN IHC scoring, PTEN expression was discordant between pretreatment and posttreatment primary tumors in 5% of patients (n = 96) and between posttreatment primary tumors and lymph node metastases in 9% (n = 33). A less stringent cutoff yielded similar discordance rates. Intratumoral heterogeneity for PTEN loss was observed in 7% of the patients. Among pretreatment tumors, PTEN copy numbers by whole exome sequencing (n = 72) were significantly higher in the PTEN-positive tumors by IHC compared with the IHC PTEN-loss tumors (p < 0.0001). However, PTEN-positive and PTEN-loss tumors by IHC overlapped in copy numbers: 14 of 60 PTEN-positive samples showed decreased copy numbers in the range of those of the PTEN-loss tumors. Conclusion Testing various specimens by IHC may generate different PTEN results in a small proportion of patients with TNBC; therefore, the decision of testing one versus multiple specimens in a clinical trial should be defined in the patient inclusion criteria. Although a distinct cutoff by which CNV differentiated PTEN-positive tumors from those with PTEN loss was not identified, higher copy number of PTEN may confer positive PTEN, whereas lower copy number of PTEN would necessitate additional testing by IHC to assess PTEN loss. Trial registration NCT02276443.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laila Khazai
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M. Rauch
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sahil Seth
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Lim
- Department of Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Alastair M. Thompson
- Division of Surgical Oncology, Section of Breast Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Beatriz Adrada
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Virani
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind Candelaria
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lumarie Santiago
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sadia Saleem
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sausan Abouharb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi K. Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nuhad Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
25
|
Adamson AW, Ding YC, Steele L, Leong LA, Morgan R, Wakabayashi MT, Han ES, Dellinger TH, Lin PS, Hakim AA, Wilczynski S, Warden CD, Tao S, Bedell V, Cristea MC, Neuhausen SL. Genomic analyses of germline and somatic variation in high-grade serous ovarian cancer. J Ovarian Res 2023; 16:141. [PMID: 37460928 PMCID: PMC10351177 DOI: 10.1186/s13048-023-01234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancers (HGSCs) display a high degree of complex genetic alterations. In this study, we identified germline and somatic genetic alterations in HGSC and their association with relapse-free and overall survival. Using a targeted capture of 557 genes involved in DNA damage response and PI3K/AKT/mTOR pathways, we conducted next-generation sequencing of DNA from matched blood and tumor tissue from 71 HGSC participants. In addition, we performed the OncoScan assay on tumor DNA from 61 participants to examine somatic copy number alterations (SCNA). RESULTS Approximately one-third of tumors had loss-of-function (LOF) germline (18/71, 25.4%) or somatic (7/71, 9.9%) variants in the DNA homologous recombination repair pathway genes BRCA1, BRCA2, CHEK2, MRE11A, BLM, and PALB2. LOF germline variants also were identified in other Fanconi anemia genes and in MAPK and PI3K/AKT/mTOR pathway genes. Most tumors harbored somatic TP53 variants (65/71, 91.5%). Using the OncoScan assay on tumor DNA from 61 participants, we identified focal homozygous deletions in BRCA1, BRCA2, MAP2K4, PTEN, RB1, SLX4, STK11, CREBBP, and NF1. In total, 38% (27/71) of HGSC patients harbored pathogenic variants in DNA homologous recombination repair genes. For patients with multiple tissues from the primary debulking or from multiple surgeries, the somatic mutations were maintained with few newly acquired point mutations suggesting that tumor evolution was not through somatic mutations. There was a significant association of LOF variants in homologous recombination repair pathway genes and high-amplitude somatic copy number alterations. Using GISTIC analysis, we identified NOTCH3, ZNF536, and PIK3R2 in these regions that were significantly associated with an increase in cancer recurrence and a reduction in overall survival. CONCLUSIONS From 71 patients with HGCS, we performed targeted germline and tumor sequencing and provided a comprehensive analysis of these 557 genes. We identified germline and somatic genetic alterations including somatic copy number alterations and analyzed their associations with relapse-free and overall survival. This single-site long-term follow-up study provides additional information on genetic alterations related to occurrence and outcome of HGSC. Our findings suggest that targeted treatments based on both variant and SCNA profile potentially could improve relapse-free and overall survival.
Collapse
Affiliation(s)
- A W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - Y C Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - L Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - L A Leong
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - R Morgan
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - M T Wakabayashi
- Currently at Regeneron Pharmaceuticals Inc, Formerly City of Hope National Medical Center, Duarte, CA, USA
- Formerly, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - E S Han
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - T H Dellinger
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - P S Lin
- Formerly, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - A A Hakim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - S Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - C D Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - S Tao
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - V Bedell
- Cytogenetics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - M C Cristea
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
- Currently at Regeneron Pharmaceuticals Inc, Formerly City of Hope National Medical Center, Duarte, CA, USA
| | - S L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA.
| |
Collapse
|
26
|
Quesada S, Thomas QD, Colombo PE, Fiteni F. Optimal First-Line Medico-Surgical Strategy in Ovarian Cancers: Are We There Yet? Cancers (Basel) 2023; 15:3556. [PMID: 37509219 PMCID: PMC10377152 DOI: 10.3390/cancers15143556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In spite of tremendous advances in advanced ovarian cancer management through the past decade, notably owing to surgical expertise and novel combination molecules (including bevacizumab and PARP inhibitors), the optimal initial sequential strategy remains a major concern. Indeed, following seminal clinical trials, primary cytoreductive surgery (PCS) followed by adjuvant systemic therapy and interval cytoreductive surgery (ICS) following neoadjuvant chemotherapy (NACT) have been positioned as validated alternatives with distinct pros and cons, although a definite response is still unassessed. In clinical practice, decisions between PCS and ICS rely on multilayer parameters: the tumor itself, the patient, and the health structure. In this state-of-the-art review, we will discuss the current evidence based on clinical trials and real-world data and highlight the remaining questions, including the fittest positioning of PCS vs. ICS and the optimal number of NACT cycles; subsequently, we will discuss current axes of research such as dedicated clinical trials and more global perspectives. These ongoing strategies and perspectives could contribute to improving the patient journey through personalized medicine.
Collapse
Affiliation(s)
- Stanislas Quesada
- Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | | | | | - Frederic Fiteni
- Medical Oncology Department, University Hospital of Nîmes, 30900 Nîmes, France
| |
Collapse
|
27
|
Kotnik EN, Mullen MM, Spies NC, Li T, Inkman M, Zhang J, Martins-Rodrigues F, Hagemann IS, McCourt CK, Thaker PH, Hagemann AR, Powell MA, Mutch DG, Khabele D, Longmore GD, Mardis ER, Maher CA, Miller CA, Fuh KC. Genetic characterization of primary and metastatic high-grade serous ovarian cancer tumors reveals distinct features associated with survival. Commun Biol 2023; 6:688. [PMID: 37400526 DOI: 10.1038/s42003-023-05026-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) is the most lethal histotype of ovarian cancer and the majority of cases present with metastasis and late-stage disease. Over the last few decades, the overall survival for patients has not significantly improved, and there are limited targeted treatment options. We aimed to better characterize the distinctions between primary and metastatic tumors based on short- or long-term survival. We characterized 39 matched primary and metastatic tumors by whole exome and RNA sequencing. Of these, 23 were short-term (ST) survivors (overall survival (OS) < 3.5 years) and 16 were long-term (LT) survivors (OS > 5 years). We compared somatic mutations, copy number alterations, mutational burden, differential gene expression, immune cell infiltration, and gene fusion predictions between the primary and metastatic tumors and between ST and LT survivor cohorts. There were few differences in RNA expression between paired primary and metastatic tumors, but significant differences between the transcriptomes of LT and ST survivors in both their primary and metastatic tumors. These findings will improve the understanding of the genetic variation in HGSC that exist between patients with different prognoses and better inform treatments by identifying new targets for drug development.
Collapse
Affiliation(s)
- Emilee N Kotnik
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Mary M Mullen
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Nicholas C Spies
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8118, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8103, St. Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8224, St. Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8224, St. Louis, MO, USA
| | - Fernanda Martins-Rodrigues
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
| | - Ian S Hagemann
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8118, St. Louis, MO, USA
| | - Carolyn K McCourt
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Premal H Thaker
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Matthew A Powell
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - David G Mutch
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Dineo Khabele
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Gregory D Longmore
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
- ICCE Institute, Washington University in St. Louis, 660 S. Euclid Ave CB, 8225, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Childrens Crossroad, Columbus, OH, USA
| | - Christopher A Maher
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, 4444 Forest Park Avenue, CB 8501, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, 660 S. Euclid Ave, MSC 8066-22-6602, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, McKelvey School of Engineering, 1 Brookings Drive, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
| | - Katherine C Fuh
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Cunnea P, Curry EW, Christie EL, Nixon K, Kwok CH, Pandey A, Wulandari R, Thol K, Ploski J, Morera-Albert C, McQuaid S, Lozano-Kuehne J, Clark JJ, Krell J, Stronach EA, McNeish IA, Bowtell DDL, Fotopoulou C. Spatial and temporal intra-tumoral heterogeneity in advanced HGSOC: Implications for surgical and clinical outcomes. Cell Rep Med 2023:101055. [PMID: 37220750 DOI: 10.1016/j.xcrm.2023.101055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Limited evidence exists on the impact of spatial and temporal heterogeneity of high-grade serous ovarian cancer (HGSOC) on tumor evolution, clinical outcomes, and surgical operability. We perform systematic multi-site tumor mapping at presentation and matched relapse from 49 high-tumor-burden patients, operated up front. From SNP array-derived copy-number data, we categorize dendrograms representing tumor clonal evolution as sympodial or dichotomous, noting most chemo-resistant patients favor simpler sympodial evolution. Three distinct tumor evolutionary patterns from primary to relapse are identified, demonstrating recurrent disease may emerge from pre-existing or newly detected clones. Crucially, we identify spatial heterogeneity for clinically actionable homologous recombination deficiency scores and for poor prognosis biomarkers CCNE1 and MYC. Copy-number signature, phenotypic, proteomic, and proliferative-index heterogeneity further highlight HGSOC complexity. This study explores HGSOC evolution and dissemination across space and time, its impact on optimal surgical cytoreductive effort and clinical outcomes, and its consequences for clinical decision-making.
Collapse
Affiliation(s)
- Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.
| | - Edward W Curry
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Nixon
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Chun Hei Kwok
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ratri Wulandari
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Kerstin Thol
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jennifer Ploski
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Cristina Morera-Albert
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | | - Jingky Lozano-Kuehne
- Experimental Cancer Medicine Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - James J Clark
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Euan A Stronach
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Iain A McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; West London Gynaecological Cancer Centre, Imperial College NHS Trust, London W12 0HS, UK.
| |
Collapse
|
29
|
Lahtinen A, Lavikka K, Virtanen A, Li Y, Jamalzadeh S, Skorda A, Lauridsen AR, Zhang K, Marchi G, Isoviita VM, Ariotta V, Lehtonen O, Muranen TA, Huhtinen K, Carpén O, Hietanen S, Senkowski W, Kallunki T, Häkkinen A, Hynninen J, Oikkonen J, Hautaniemi S. Evolutionary states and trajectories characterized by distinct pathways stratify patients with ovarian high grade serous carcinoma. Cancer Cell 2023:S1535-6108(23)00143-5. [PMID: 37207655 DOI: 10.1016/j.ccell.2023.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) is typically diagnosed at an advanced stage, with multiple genetically heterogeneous clones existing in the tumors long before therapeutic intervention. Herein we integrate clonal composition and topology using whole-genome sequencing data from 510 samples of 148 patients with HGSC in the prospective, longitudinal, multiregion DECIDER study. Our results reveal three evolutionary states, which have distinct features in genomics, pathways, and morphological phenotypes, and significant association with treatment response. Nested pathway analysis suggests two evolutionary trajectories between the states. Experiments with five tumor organoids and three PI3K inhibitors support targeting tumors with enriched PI3K/AKT pathway with alpelisib. Heterogeneity analysis of samples from multiple anatomical sites shows that site-of-origin samples have 70% more unique clones than metastatic tumors or ascites. In conclusion, these analysis and visualization methods enable integrative tumor evolution analysis to identify patient subtypes using data from longitudinal, multiregion cohorts.
Collapse
Affiliation(s)
- Alexandra Lahtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Lavikka
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sanaz Jamalzadeh
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Aikaterini Skorda
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Anna Røssberg Lauridsen
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanni Marchi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Veli-Matti Isoviita
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Valeria Ariotta
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Oskari Lehtonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Taru A Muranen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Cancer Research Unit, Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20014 Turku, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, 200521 Turku, Finland
| | - Wojciech Senkowski
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tuula Kallunki
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Antti Häkkinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, 200521 Turku, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
30
|
Targeting receptor tyrosine kinases in ovarian cancer: Genomic dysregulation, clinical evaluation of inhibitors, and potential for combinatorial therapies. Mol Ther Oncolytics 2023; 28:293-306. [PMID: 36911068 PMCID: PMC9999170 DOI: 10.1016/j.omto.2023.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among women worldwide. Receptor tyrosine kinases (RTKs) have long been sought as therapeutic targets for EOC, as they are frequently hyperactivated in primary tumors and drive disease relapse, progression, and metastasis. More recently, these oncogenic drivers have been implicated in EOC response to poly(ADP-ribose) polymerase (PARP) inhibitors and epigenome-interfering agents. This evidence revives RTKs as promising targets for therapeutic intervention of EOC. This review summarizes recent studies on the role of RTKs in EOC malignancy and the use of their inhibitors for clinical treatment. Our focus is on the ERBB family, c-Met, and VEGFR, as they are linked to drug resistance and targetable using commercially available drugs. The importance of these RTKs and their inhibitors is highlighted by their impact on signal transduction and intratumoral heterogeneity in EOC and successful use as maintenance therapy in the clinic through suppression of the VEGF/VEGFR axis. Finally, the therapeutic potential of RTK inhibitors is discussed in the context of combinatorial targeting via co-inhibiting proliferative and anti-apoptotic pathways, epigenomic/transcriptional programs, and harnessing the efficacy of PARP inhibitors and programmed cell death 1/ligand 1 immune checkpoint therapies.
Collapse
|
31
|
Qian L, Zhu J, Xue Z, Gong T, Xiang N, Yue L, Cai X, Gong W, Wang J, Sun R, Jiang W, Ge W, Wang H, Zheng Z, Wu Q, Zhu Y, Guo T. Resistance prediction in high-grade serous ovarian carcinoma with neoadjuvant chemotherapy using data-independent acquisition proteomics and an ovary-specific spectral library. Mol Oncol 2023. [PMID: 36855266 PMCID: PMC10399723 DOI: 10.1002/1878-0261.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/25/2022] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most common subtype of ovarian cancer with 5-year survival rates below 40%. Neoadjuvant chemotherapy (NACT) followed by interval debulking surgery (IDS) is recommended for patients with advanced-stage HGSOC unsuitable for primary debulking surgery (PDS). However, about 40% of patients receiving this treatment exhibited chemoresistance of uncertain molecular mechanisms and predictability. Here, we built a high-quality ovary-specific spectral library containing 130 735 peptides and 10 696 proteins on Orbitrap instruments. Compared to a published DIA pan-human spectral library (DPHL), this spectral library provides 10% more ovary-specific and 3% more ovary-enriched proteins. This library was then applied to analyze data-independent acquisition (DIA) data of tissue samples from an HGSOC cohort treated with NACT, leading to 10 070 quantified proteins, which is 9.73% more than that with DPHL. We further established a six-protein classifier by parallel reaction monitoring (PRM) to effectively predict the resistance to additional chemotherapy after IDS (Log-rank test, P = 0.002). The classifier was validated with 57 patients from an independent clinical center (P = 0.014). Thus, we have developed an ovary-specific spectral library for targeted proteome analysis, and propose a six-protein classifier that could potentially predict chemoresistance in HGSOC patients after NACT-IDS treatment.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jianqing Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhangzhi Xue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Xiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Liang Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xue Cai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wangang Gong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junjian Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wenhao Jiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., China
| | - He Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhiguo Zheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tiannan Guo
- School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
32
|
Adamson AW, Ding YC, Steele L, Leong LA, Morgan R, Wakabayashi MT, Han ES, Dellinger TH, Lin PS, Hakim AA, Wilczynski S, Warden CD, Tao S, Bedell V, Cristea MC, Neuhausen SL. Genomic Analyses of Germline and Somatic Variation in High-Grade Serous Ovarian Cancer. RESEARCH SQUARE 2023:rs.3.rs-2592107. [PMID: 36865331 PMCID: PMC9980206 DOI: 10.21203/rs.3.rs-2592107/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background High-grade serous ovarian cancers (HGSCs) display a high degree of complex genetic alterations. In this study, we identified germline and somatic genetic alterations in HGSC and their association with relapse-free and overall survival. Using a targeted capture of 577 genes involved in DNA damage response and PI3K/AKT/mTOR pathways, we conducted next-generation sequencing of DNA from matched blood and tumor tissue from 71 HGSC participants. In addition, we performed the OncoScan assay on tumor DNA from 61 participants to examine somatic copy number alterations. Results Approximately one-third of tumors had loss-of-function germline (18/71, 25.4%) or somatic (7/71, 9.9%) variants in the DNA homologous recombination repair pathway genes BRCA1, BRCA2, CHEK2, MRE11A, BLM , and PALB2 . Loss-of-function germline variants also were identified in other Fanconi anemia genes and in MAPK and PI3K/AKT/mTOR pathway genes. Most tumors harbored somatic TP53 variants (65/71, 91.5%). Using the OncoScan assay on tumor DNA from 61 participants, we identified focal homozygous deletions in BRCA1, BRCA2, MAP2K4, PTEN, RB1, SLX4, STK11, CREBBP , and NF1 . In total, 38% (27/71) of HGSC patients harbored pathogenic variants in DNA homologous recombination repair genes. For patients with multiple tissues from the primary debulking or from multiple surgeries, the somatic mutations were maintained with few newly acquired point mutations suggesting that tumor evolution was not through somatic mutations. There was a significant association of loss-of-function variants in homologous recombination repair pathway genes and high-amplitude somatic copy number alterations. Using GISTIC analysis, we identified NOTCH3, ZNF536 , and PIK3R2 in these regions that were significantly associated with an increase in cancer recurrence and a reduction in overall survival. Conclusions From 71 patients with HGCS, we performed targeted germline and tumor sequencing and provided a comprehensive analysis of these 577 genes. We identified germline and somatic genetic alterations including somatic copy number alterations and analyzed their associations with relapse-free and overall survival. This single-site long-term follow-up study provides additional information on genetic alterations related to occurrence and outcome of HGSC. Our findings suggest that targeted treatments based on both variant and SCNA profile potentially could improve relapse-free and overall survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shu Tao
- City Of Hope National Medical Center
| | | | | | | |
Collapse
|
33
|
Wong KK, Bateman NW, Ng CW, Tsang YTM, Sun CS, Celestino J, Nguyen TV, Malpica A, Hillman RT, Zhang J, Futreal PA, Rojas C, Conrads KA, Hood BL, Dalgard CL, Wilkerson MD, Phippen NT, Conrads TP, Maxwell GL, Sood AK, Gershenson DM. Integrated multi-omic analysis of low-grade ovarian serous carcinoma collected from short and long-term survivors. J Transl Med 2022; 20:606. [PMID: 36528667 PMCID: PMC9758924 DOI: 10.1186/s12967-022-03820-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors. METHODS Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed. RESULTS We identified single-nucleotide variants (SNVs) (range: 5688-14,833 per sample), insertion and deletion variants (indels) (range: 880-1065), and regions with copy number variants (CNVs) (range: 62-335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets. CONCLUSIONS This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC.
Collapse
Affiliation(s)
- Kwong-Kwok Wong
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Nicholas W. Bateman
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Chun Wai Ng
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Yvonne T. M. Tsang
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Charlotte S. Sun
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Joseph Celestino
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Tri V. Nguyen
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Anais Malpica
- grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - R. Tyler Hillman
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - P. Andrew Futreal
- grid.240145.60000 0001 2291 4776Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Christine Rojas
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Kelly A. Conrads
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Brian L. Hood
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Clifton L. Dalgard
- grid.265436.00000 0001 0421 5525Department of Anatomy, Physiology and Genetics and Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Matthew D. Wilkerson
- grid.265436.00000 0001 0421 5525Department of Anatomy, Physiology and Genetics and Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Neil T. Phippen
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Thomas P. Conrads
- grid.414629.c0000 0004 0401 0871Women’s Health Integrated Research Center at Inova Health System, Women’s Service Line, Inova Fairfax Medical Campus, Falls Church, VA USA ,grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - George L. Maxwell
- grid.414629.c0000 0004 0401 0871Women’s Health Integrated Research Center at Inova Health System, Women’s Service Line, Inova Fairfax Medical Campus, Falls Church, VA USA ,grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Anil K. Sood
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - David M. Gershenson
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| |
Collapse
|
34
|
Lutgendorf SK, Thaker PH, Goodheart MJ, Arevalo JM, Chowdhury MA, Noble AE, Dahmoush L, Slavich GM, Penedo FJ, Sood AK, Cole SW. Biobehavioral factors predict an exosome biomarker of ovarian carcinoma disease progression. Cancer 2022; 128:4157-4165. [PMID: 36251340 PMCID: PMC9744596 DOI: 10.1002/cncr.34496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Biobehavioral factors such as social isolation and depression have been associated with disease progression in ovarian and other cancers. Here, the authors developed a noninvasive, exosomal RNA profile for predicting ovarian cancer disease progression and subsequently tested whether it increased in association with biobehavioral risk factors. METHODS Exosomes were isolated from plasma samples from 100 women taken before primary surgical resection or neoadjuvant (NACT) treatment of ovarian carcinoma and 6 and 12 months later. Biobehavioral measures were sampled at all time points. Plasma from 76 patients was allocated to discovery analyses in which morning presurgical/NACT exosomal RNA profiles were analyzed by elastic net machine learning to identify a biomarker predicting rapid (≤6 months) versus more extended disease-free intervals following initial treatment. Samples from a second subgroup of 24 patients were analyzed by mixed-effects linear models to determine whether the progression-predictive biomarker varied longitudinally as a function of biobehavioral risk factors (social isolation and depressive symptoms). RESULTS An RNA-based molecular signature was identified that discriminated between individuals who had disease progression in ≤6 months versus >6 months, independent of clinical variables (age, disease stage, and grade). In a second group of patients analyzed longitudinally, social isolation and depressive symptoms were associated with upregulated expression of the disease progression propensity biomarker, adjusting for covariates. CONCLUSION These data identified a novel exosome-derived biomarker indicating propensity of ovarian cancer progression that is sensitive to biobehavioral variables. This derived biomarker may be potentially useful for risk assessment, intervention targeting, and treatment monitoring.
Collapse
Affiliation(s)
- Susan K. Lutgendorf
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Goodheart
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA
| | - Jesusa M.G. Arevalo
- Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Mamur A. Chowdhury
- Departments of Gynecologic Oncology, Cancer Biology and Center for RNA Interference and Noncoding RNA, University of Texas M.D. Anderson Cancer Center, Houston TX
| | - Alyssa E. Noble
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA
| | - Laila Dahmoush
- Department of Pathology, University of Iowa, Iowa City, IA
| | - George M. Slavich
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Frank J. Penedo
- Department of Psychology and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Anil K. Sood
- Departments of Gynecologic Oncology, Cancer Biology and Center for RNA Interference and Noncoding RNA, University of Texas M.D. Anderson Cancer Center, Houston TX
| | - Steven W. Cole
- Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| |
Collapse
|
35
|
Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep Med 2022; 3:100819. [PMID: 36384096 PMCID: PMC9729884 DOI: 10.1016/j.xcrm.2022.100819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
We present a deep proteogenomic profiling study of 87 lung adenocarcinoma (LUAD) tumors from the United States, integrating whole-genome sequencing, transcriptome sequencing, proteomics and phosphoproteomics by mass spectrometry, and reverse-phase protein arrays. We identify three subtypes from somatic genome signature analysis, including a transition-high subtype enriched with never smokers, a transversion-high subtype enriched with current smokers, and a structurally altered subtype enriched with former smokers, TP53 alterations, and genome-wide structural alterations. We show that within-tumor correlations of RNA and protein expression associate with tumor purity and immune cell profiles. We detect and independently validate expression signatures of RNA and protein that predict patient survival. Additionally, among co-measured genes, we found that protein expression is more often associated with patient survival than RNA. Finally, integrative analysis characterizes three expression subtypes with divergent mutations, proteomic regulatory networks, and therapeutic vulnerabilities. This proteogenomic characterization provides a foundation for molecularly informed medicine in LUAD.
Collapse
|
36
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
37
|
Handley KF, Sims TT, Bateman NW, Glassman D, Foster KI, Lee S, Yao J, Yao H, Fellman BM, Liu J, Lu Z, Conrads KA, Hood BL, Barakat W, Zhao L, Zhang J, Westin SN, Celestino J, Rangel KM, Badal S, Pereira I, Ram PT, Maxwell GL, Eberlin LS, Futreal PA, Bast RC, Fleming ND, Conrads TP, Sood AK. Classification of High-Grade Serous Ovarian Cancer Using Tumor Morphologic Characteristics. JAMA Netw Open 2022; 5:e2236626. [PMID: 36239936 PMCID: PMC9568802 DOI: 10.1001/jamanetworkopen.2022.36626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Despite similar histologic appearance among high-grade serous ovarian cancers (HGSOCs), clinical observations suggest vast differences in gross appearance. There is currently no systematic framework by which to classify HGSOCs according to their gross morphologic characteristics. OBJECTIVE To develop and characterize a gross morphologic classification system for HGSOC. DESIGN, SETTING, AND PARTICIPANTS This cohort study included patients with suspected advanced-stage ovarian cancer who presented between April 1, 2013, and August 5, 2016, to the University of Texas MD Anderson Cancer Center, a large referral center. Patients underwent laparoscopic assessment of disease burden before treatment and received a histopathologic diagnosis of HGSOC. Researchers assigning morphologic subtype and performing molecular analyses were blinded to clinical outcomes. Data analysis was performed between April 2020 and November 2021. EXPOSURES Gross tumor morphologic characteristics. MAIN OUTCOMES AND MEASURES Clinical outcomes and multiomic profiles of representative tumor samples of type I or type II morphologic subtypes were compared. RESULTS Of 112 women (mean [SD] age 62.7 [9.7] years) included in the study, most patients (84% [94]) exhibited a predominant morphologic subtype and many (63% [71]) had a uniform morphologic subtype at all involved sites. Compared with those with uniform type I morphologic subtype, patients with uniform type II morphologic subtype were more likely to have a favorable Fagotti score (83% [19 of 23] vs 46% [22 of 48]; P = .004) and thus to be triaged to primary tumor reductive surgery. Similarly, patients with uniform type II morphologic subtype also had significantly higher mean (SD) estimated blood loss (639 [559; 95% CI, 391-887] mL vs 415 [527; 95% CI, 253-577] mL; P = .006) and longer mean (SD) operative time (408 [130; 95% CI, 350-466] minutes vs 333 [113; 95% CI, 298-367] minutes; P = .03) during tumor reductive surgery. Type I tumors had enrichment of epithelial-mesenchymal transition (false discovery rate [FDR] q-value, 3.10 × 10-24), hypoxia (FDR q-value, 1.52 × 10-5), and angiogenesis pathways (FDR q-value, 2.11 × 10-2), whereas type II tumors had enrichment of pathways related to MYC signaling (FDR q-value, 2.04 × 10-9) and cell cycle progression (FDR q-value, 1.10 × 10-5) by integrated proteomic and transcriptomic analysis. Abundances of metabolites and lipids also differed between the 2 morphologic subtypes. CONCLUSIONS AND RELEVANCE This study identified 2 novel, gross morphologic subtypes of HGSOC, each with unique clinical features and molecular signatures. The findings may have implications for triaging patients to surgery or chemotherapy, identifying outcomes, and developing tailored therapeutic strategies.
Collapse
Affiliation(s)
- Katelyn F. Handley
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Travis T. Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Nicholas W. Bateman
- Women’s Health Integrated Research Center at Inova Health System, Women's Service Line, Inova Health System, Falls Church, Virginia
- Gynecologic Cancer Center of Excellence, Henry M. Jackson Foundation, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Katherine I. Foster
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Bryan M. Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Kelly A. Conrads
- Women’s Health Integrated Research Center at Inova Health System, Women's Service Line, Inova Health System, Falls Church, Virginia
- Gynecologic Cancer Center of Excellence, Henry M. Jackson Foundation, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Brian L. Hood
- Women’s Health Integrated Research Center at Inova Health System, Women's Service Line, Inova Health System, Falls Church, Virginia
- Gynecologic Cancer Center of Excellence, Henry M. Jackson Foundation, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Waleed Barakat
- Women’s Health Integrated Research Center at Inova Health System, Women's Service Line, Inova Health System, Falls Church, Virginia
- Gynecologic Cancer Center of Excellence, Henry M. Jackson Foundation, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Kelly M. Rangel
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sunil Badal
- Department of Chemistry, The University of Texas at Austin, Austin
| | - Igor Pereira
- Department of Chemistry, The University of Texas at Austin, Austin
| | - Prahlad T. Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - George L. Maxwell
- Women’s Health Integrated Research Center at Inova Health System, Women's Service Line, Inova Health System, Falls Church, Virginia
- Gynecologic Cancer Center of Excellence, Henry M. Jackson Foundation, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Livia S. Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Nicole D. Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Thomas P. Conrads
- Women’s Health Integrated Research Center at Inova Health System, Women's Service Line, Inova Health System, Falls Church, Virginia
- Gynecologic Cancer Center of Excellence, Henry M. Jackson Foundation, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
38
|
Identification and validation of a gene-based signature reveals SLC25A10 as a novel prognostic indicator for patients with ovarian cancer. J Ovarian Res 2022; 15:106. [PMID: 36114504 PMCID: PMC9482156 DOI: 10.1186/s13048-022-01039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer is a common gynecological cancer with poor prognosis and poses a serious threat to woman life and health. In this study, we aimed to establish a prognostic signature for the risk assessment of ovarian cancer. Methods The Cancer Genome Atlas (TCGA) dataset was used as the training set and the International Cancer Genome Consortium (ICGC) dataset was set as an independent external validation. A multi-stage screening strategy was used to determine the prognostic features of ovarian cancer with R software. The relationship between the prognosis of ovarian cancer and the expression level of SLC25A10 was selected for further analysis. Results A total of 16 prognosis-associated genes were screened to construct the risk score signature. Survival analysis showed that patients in the high-risk score group had a poor prognosis compared to the low-risk group. Accuracy of this prognostic signature was confirmed by the receiver operating characteristic (ROC) curve and decision curve analysis (DCA), and validated with ICGC cohort. This signature was identified as an independent factor for predicting overall survival (OS). Nomogram constructed by multiple clinical parameters showed excellent performance for OS prediction. Finally, it’s found that patients with low expression of SLC25A10 generally had poor survival and higher resistance to most chemotherapeutic drugs. Conclusions In sum, we developed a 16-gene prognostic signature, which could serve as a promising tool for the prognostic prediction of ovarian cancer, and the expression level of SLC25A10 was tightly associated with OS of the patients.
Collapse
|
39
|
High-throughput proteomic sample preparation using pressure cycling technology. Nat Protoc 2022; 17:2307-2325. [PMID: 35931778 PMCID: PMC9362583 DOI: 10.1038/s41596-022-00727-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
High-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. Here we describe a detailed protocol of pressure cycling technology (PCT)-assisted sample preparation for proteomic analysis of biopsy tissues. A piece of fresh frozen or formalin-fixed paraffin-embedded tissue weighing ~0.1–2 mg is placed in a 150 μL pressure-resistant tube called a PCT-MicroTube with proper lysis buffer. After closing with a PCT-MicroPestle, a batch of 16 PCT-MicroTubes are placed in a Barocycler, which imposes oscillating pressure to the samples from one atmosphere to up to ~3,000 times atmospheric pressure. The pressure cycling schemes are optimized for tissue lysis and protein digestion, and can be programmed in the Barocycler to allow reproducible, robust and efficient protein extraction and proteolysis digestion for mass spectrometry-based proteomics. This method allows effective preparation of not only fresh frozen and formalin-fixed paraffin-embedded tissue, but also cells, feces and tear strips. It takes ~3 h to process 16 samples in one batch. The resulting peptides can be analyzed by various mass spectrometry-based proteomics methods. We demonstrate the applications of this protocol with mouse kidney tissue and eight types of human tumors. High-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. This protocol describes pressure cycling technology (PCT)-assisted sample preparation of biopsy tissues.
Collapse
|
40
|
Zhao L, Corvigno S, Ma S, Celestino J, Fleming ND, Hajek RA, Lankenau Ahumada A, Jennings NB, Thompson EJ, Tang H, Westin SN, Jazaeri AA, Zhang J, Futreal PA, Sood AK, Lee S. Molecular Profiles of Serum-Derived Extracellular Vesicles in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14153589. [PMID: 35892848 PMCID: PMC9330879 DOI: 10.3390/cancers14153589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with high-grade serous ovarian cancer (HGSC) who have no visible residual disease (R0) after primary surgery have the best clinical outcomes, followed by patients who undergo neoadjuvant chemotherapy (NACT) and have a response enabling interval cytoreductive surgery. Clinically useful biomarkers for predicting these outcomes are still lacking. Extracellular vesicles (EVs) have been recognized as liquid biopsy-based biomarkers for early cancer detection and disease surveillance in other disease settings. In this study, we performed extensive molecular characterization of serum-derived EVs and correlated the findings with therapeutic outcomes in patients with HGSC. Using EV-DNA whole-genome sequencing and EV-RNA sequencing, we identified distinct somatic EV-DNA alterations in cancer-hallmark genes and in ovarian cancer genes, as well as significantly altered oncogenic pathways between the R0 group and NACT groups. We also found significantly altered EV-RNA transcriptomic variations and enriched pathways between the groups. Taken together, our data suggest that the molecular characteristics of EVs could enable prediction of patients with HGSC who could undergo R0 surgery or respond to chemotherapy.
Collapse
Affiliation(s)
- Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.Z.); (J.Z.); (P.A.F.)
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Nicole D. Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Richard A. Hajek
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Adrian Lankenau Ahumada
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Nicholas B. Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Erika J. Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.J.T.); (H.T.)
| | - Hongli Tang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.J.T.); (H.T.)
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.Z.); (J.Z.); (P.A.F.)
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.Z.); (J.Z.); (P.A.F.)
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
- Correspondence: (A.K.S.); (S.L.)
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (S.M.); (J.C.); (N.D.F.); (R.A.H.); (A.L.A.); (N.B.J.); (S.N.W.); (A.A.J.)
- Correspondence: (A.K.S.); (S.L.)
| |
Collapse
|
41
|
Sa JK, Kim J, Kang S, Kim SW, Song T, Shim SH, Choi MC, No JH, Song JY, Kim D, Kim YM, Kim JH, Lee JW. Somatic genomic landscape of East Asian epithelial ovarian carcinoma and its clinical implications from prospective clinical sequencing; A Korean Gynecologic Oncology Group study (KGOG 3047). Int J Cancer 2022; 151:1086-1097. [PMID: 35666535 DOI: 10.1002/ijc.34150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022]
Abstract
Through the wide adaptation of next-generation sequencing (NGS) technology within clinical practice, molecular profiling of the tumor has been the principal component of personalized treatment. In this study, we have generated a large collection of cancer genomes on East Asian epithelial ovarian carcinoma (EOC) patients and demonstrate the feasibility and utility of NGS platforms to explore the dynamic interrelations of major cancer driver alterations and their impacts on clinical prognosis and management. A total of 652 EOC patients have undergone clinical NGS panels to determine the prevalence of germline and somatic mutations. Notably, TP53 was the most frequently altered event (73%), followed by both BRCA1 and BRCA2 (22% each) and MYC (19%) through pan-EOC analysis. When analyzed based on individual histopathological levels, TP53 mutation was highly dominant in high-grade serous and mucinous histology, whereas mutations in PIK3CA and ARID1A were mostly observed in clear cell carcinoma, and KRAS, BRAF, and CDKN2A mutations were enriched in endometrioid, low-grade serous, and mucinous tumors, respectively. The network-based probabilistic model showed significant co-occurrences of TP53 with BRCA1 and ALK with BRCA2, NOTCH1, and ROS1, whereas mutual exclusivity of TP53 with KRAS and PIK3CA was evident. Furthermore, we utilized machine-learning algorithms to identify molecular correlates that conferred increased sensitivity to platinum and olaparib treatments including somatic mutations in BRCA1, ATM, and MYC. Conversely, patients with ALK mutation were considerably resistant to both treatment modalities. Collectively, our results demonstrate the clinical feasibility of prospective genetic sequencing to facilitate personalized treatment opportunities for patients with EOC.
Collapse
Affiliation(s)
- Jason K Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- Departments of Obstetrics and Gynecology, Chung-ang University Gwang-myeong Hospital, Gwang-myeong, Republic of Korea
| | - Sokbom Kang
- Gynecologic Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Women's Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Taejong Song
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung-Hyuk Shim
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Min Chul Choi
- Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae-Yun Song
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Song X, Chang S, Seminario-Vidal L, de Mingo Pulido A, Tordesillas L, Song X, Reed RA, Harkins A, Whiddon S, Nguyen JV, Segura CM, Zhang C, Yoder S, Sayegh Z, Zhao Y, Messina JL, Harro CM, Zhang X, Conejo-Garcia JR, Berglund A, Sokol L, Zhang J, Rodriguez PC, Mulé JJ, Futreal AP, Tsai KY, Chen PL. Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma. Cancer Discov 2022; 12:1294-1313. [PMID: 35247891 PMCID: PMC9148441 DOI: 10.1158/2159-8290.cd-21-1207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74. SIGNIFICANCE Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Lucia Seminario-Vidal
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alvaro de Mingo Pulido
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Rhianna A. Reed
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andrea Harkins
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Shannen Whiddon
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chaomei Zhang
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zena Sayegh
- Tissue Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Zhao
- Department of Biopharma Services, Admera Health, Holmdel, NJ, USA
| | - Jane L. Messina
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - James J. Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andrew P. Futreal
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Y. Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pei-Ling Chen
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
43
|
Xiao Y, Bi M, Guo H, Li M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. EBioMedicine 2022; 79:104001. [PMID: 35439677 PMCID: PMC9035645 DOI: 10.1016/j.ebiom.2022.104001] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease with the highest mortality rate and the poorest prognosis among gynecological malignancies. Because of the absence of specific early symptoms, most OC patients are often diagnosed at late stages. Thus, improved biomarkers of OC for use in research and clinical practice are urgently needed. The last decade has seen increasingly rapid advances in sequencing and biotechnological methodologies. Consequently, multiple omics technologies, including genomic/transcriptomic sequencings and proteomic/metabolomic mass spectra, have been widely applied to analyze tissue- and liquid-derived samples from OC patients. The integration of multi-omics data has increased our knowledge of the disease and identified valuable OC biomarkers. In this review, we summarize the recent advances and perspectives in the use of multi-omics technologies in OC research and highlight potential applications of multi-omics for identifying novel biomarkers and improving clinical assessments.
Collapse
Affiliation(s)
- Yinan Xiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 10091, China
| | - Meiyu Bi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 10091, China
| | - Hongyan Guo
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 10091, China.
| |
Collapse
|
44
|
The Long Non-Coding RNA SNHG12 as a Mediator of Carboplatin Resistance in Ovarian Cancer via Epigenetic Mechanisms. Cancers (Basel) 2022; 14:cancers14071664. [PMID: 35406435 PMCID: PMC8996842 DOI: 10.3390/cancers14071664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer is a lethal malignancy in which recurrence and therapy resistance are the major causes of death. We investigated the transcriptome and DNA methylation profile of ovarian cancer cell lines sensitive and resistant to carboplatin, aiming to identify genes associated with therapy resistance. We focused on long non-coding RNAs (lncRNAs), known as epigenetic regulators of several cellular and biological processes. We found 11 lncRNAs associated with carboplatin resistance, including SNHG12 (small nucleolar RNA host gene 12), also confirmed in an external dataset (The Cancer Genome Atlas). SNHG12 gene silencing increased the sensitivity to carboplatin, giving evidence that this lncRNA contributes to resistance to carboplatin in ovarian cancer cell lines. We also demonstrated that SNHG12 could control the expression of nearby genes probably by altering epigenetic markers and modifying the transcript levels. Abstract Genetic and epigenetic changes contribute to intratumor heterogeneity and chemotherapy resistance in several tumor types. LncRNAs have been implicated, directly or indirectly, in the epigenetic regulation of gene expression. We investigated lncRNAs that potentially mediate carboplatin-resistance of cell subpopulations, influencing the progression of ovarian cancer (OC). Four carboplatin-sensitive OC cell lines (IGROV1, OVCAR3, OVCAR4, and OVCAR5), their derivative resistant cells, and two inherently carboplatin-resistant cell lines (OVCAR8 and Ovc316) were subjected to RNA sequencing and global DNA methylation analysis. Integrative and cross-validation analyses were performed using external (The Cancer Genome Atlas, TCGA dataset, n = 111 OC samples) and internal datasets (n = 39 OC samples) to identify lncRNA candidates. A total of 4255 differentially expressed genes (DEGs) and 14529 differentially methylated CpG positions (DMPs) were identified comparing sensitive and resistant OC cell lines. The comparison of DEGs between OC cell lines and TCGA-OC dataset revealed 570 genes, including 50 lncRNAs, associated with carboplatin resistance. Eleven lncRNAs showed DMPs, including the SNHG12. Knockdown of SNHG12 in Ovc316 and OVCAR8 cells increased their sensitivity to carboplatin. The results suggest that the lncRNA SNHG12 contributes to carboplatin resistance in OC and is a potential therapeutic target. We demonstrated that SNHG12 is functionally related to epigenetic mechanisms.
Collapse
|
45
|
Stur E, Corvigno S, Xu M, Chen K, Tan Y, Lee S, Liu J, Ricco E, Kraushaar D, Castro P, Zhang J, Sood AK. Spatially resolved transcriptomics of high-grade serous ovarian carcinoma. iScience 2022; 25:103923. [PMID: 35252817 PMCID: PMC8891954 DOI: 10.1016/j.isci.2022.103923] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023] Open
Abstract
Bulk and single-cell RNA sequencing do not provide full characterization of tissue spatial diversity in cancer samples, and currently available in situ techniques (multiplex immunohistochemistry and imaging mass cytometry) allow for only limited analysis of a small number of targets. The current study represents the first comprehensive approach to spatial transcriptomics of high-grade serous ovarian carcinoma using intact tumor tissue. We selected a small cohort of patients with highly annotated high-grade serous ovarian carcinoma, categorized them by response to neoadjuvant chemotherapy (poor or excellent), and analyzed pre-treatment tumor tissue specimens. Our study uncovered extensive differences in tumor composition between the poor responders and excellent responders to chemotherapy, related to cell cluster organization and localization. This in-depth characterization of high-grade serous ovarian carcinoma tumor tissue from poor and excellent responders showed that spatial interactions between cell clusters may influence chemo-responsiveness more than cluster composition alone.
Collapse
Affiliation(s)
- Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
| | - Mingchu Xu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emily Ricco
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Castro
- Pathology and Histology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77054, USA
| |
Collapse
|
46
|
Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14061496. [PMID: 35326647 PMCID: PMC8946269 DOI: 10.3390/cancers14061496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The incidence of venous thromboembolism (VTE) in patients with ovarian cancer is higher than most solid tumors, ranging between 10-30%, and a diagnosis of VTE in this patient population is associated with worse oncologic outcomes. The tumor-specific molecular factors that may lead to the development of VTE are not well understood. OBJECTIVES The aim of this study was to identify molecular features present in ovarian tumors of patients with VTE compared to those without. METHODS We performed a multiplatform omics analysis incorporating RNA and DNA sequencing, quantitative proteomics, as well as immune cell profiling of high-grade serous ovarian carcinoma (HGSC) samples from a cohort of 32 patients with or without VTE. RESULTS Pathway analyses revealed upregulation of both inflammatory and coagulation pathways in the VTE group. While DNA whole-exome sequencing failed to identify significant coding alterations between the groups, the results of an integrated proteomic and RNA sequencing analysis indicated that there is a relationship between VTE and the expression of platelet-derived growth factor subunit B (PDGFB) and extracellular proteins in tumor cells, namely collagens, that are correlated with the formation of thrombosis. CONCLUSIONS In this comprehensive analysis of HGSC tumor tissues from patients with and without VTE, we identified markers unique to the VTE group that could contribute to development of thrombosis. Our findings provide additional insights into the molecular alterations underlying the development of VTE in ovarian cancer patients and invite further investigation into potential predictive biomarkers of VTE in ovarian cancer.
Collapse
|
47
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
48
|
Natural Killer Cells: the Missing Link in Effective Treatment for High-Grade Serous Ovarian Carcinoma. Curr Treat Options Oncol 2022; 23:210-226. [PMID: 35192139 DOI: 10.1007/s11864-021-00929-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
OPINION STATEMENT Ovarian cancer (OC), especially high-grade serous cancer (HGSC), is a highly heterogeneous malignancy with limited options for curative treatment and a high frequency of relapse. Interactions between OC and the immune system may permit immunoediting and immune escape, and current standard of care therapies can influence immune cell infiltration and function within the tumor microenvironment. Natural killer (NK) cells are involved in cancer immunosurveillance and immunoediting and can be activated by therapy, but deliberate approaches to maximize NK cell reactivity for treatment of HGSC are in their infancy. NK cells may be the ideal target for immunotherapy of HGSC. The diverse functions of NK cells, and their established roles in immunosurveillance, make them attractive candidates for more precise and effective HGSC treatment. NK cells' functional capabilities differ because of variation in receptor expression and genetics, with meaningful impacts on their anticancer activity. Studying HGSC:NK cell interactions will define the features that predict the best outcomes for patients with the disease, but the highly diverse nature of HGSC will likely require combination therapies or approaches to simultaneously target multiple, co-existing features of the tumor to avoid tumor escape and relapse. We expect that the ideal therapy will enable NK cell infiltration and activity, reverse immunosuppression within the tumor microenvironment, and enable effector functions against the diverse subpopulations that comprise HGSC.
Collapse
|
49
|
Liu H, Zhang Z, Chen L, Pang J, Wu H, Liang Z. Next-Generation Sequencing Reveals a Very Low Prevalence of Deleterious Mutations of Homologous Recombination Repair Genes and Homologous Recombination Deficiency in Ovarian Clear Cell Carcinoma. Front Oncol 2022; 11:798173. [PMID: 35096598 PMCID: PMC8791260 DOI: 10.3389/fonc.2021.798173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is aggressive and drug-resistant. The prevalence of homologous recombination repair (HRR) gene mutations and homologous recombination deficiency (HRD) remains largely unknown. It is also not clear whether the commonly used molecular-based classification for endometrial carcinoma (EC) is potentially applicable in OCCC. In this study, surgically resected samples were collected from 44 patients with OCCC. Genomic alterations were determined using next-generation sequencing. HRD was estimated by genomic instability. Of 44 patients with OCCC, two (4.5%) harbored likely pathogenic mutations in HRR genes. Notably, no pathogenic or likely pathogenic mutations were found in BRCA1/2. A total of 24 variants of uncertain significance (VUS) in HRR-related genes occurred in 18 (40.9%) patients. HRD was observed in only one case (2.3%). In addition, TP53 mutation and microsatellite instability-high (MSI-H) were identified in three patients (6.8%) and in one patient (2.3%), respectively. TP53 mutation was significantly associated with disease-free survival and overall survival. No POLE mutations were found. In conclusion, our results revealed a very low prevalence of HRR gene mutations and HRD in OCCC. Moreover, TP53 mutations and MSI-H are uncommon, while POLE mutations are extremely rare in OCCC. Our findings indicate that the evaluation of HRR gene mutations, HRD status, POLE mutations, and MSI-H may have limited clinical significance for OCCC treatment and prognostic stratification.
Collapse
Affiliation(s)
- Hangqi Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Longyun Chen
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Bateman NW, Tarney CM, Abulez TS, Hood BL, Conrads KA, Zhou M, Soltis AR, Teng PN, Jackson A, Tian C, Dalgard CL, Wilkerson MD, Kessler MD, Goecker Z, Loffredo J, Shriver CD, Hu H, Cote M, Parker GJ, Segars J, Al-Hendy A, Risinger JI, Phippen NT, Casablanca Y, Darcy KM, Maxwell GL, Conrads TP, O'Connor TD. Peptide ancestry informative markers in uterine neoplasms from women of European, African, and Asian ancestry. iScience 2021; 25:103665. [PMID: 35036865 PMCID: PMC8753123 DOI: 10.1016/j.isci.2021.103665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Characterization of ancestry-linked peptide variants in disease-relevant patient tissues represents a foundational step to connect patient ancestry with disease pathogenesis. Nonsynonymous single-nucleotide polymorphisms encoding missense substitutions within tryptic peptides exhibiting high allele frequencies in European, African, and East Asian populations, termed peptide ancestry informative markers (pAIMs), were prioritized from 1000 genomes. In silico analysis identified that as few as 20 pAIMs can determine ancestry proportions similarly to >260K SNPs (R2 = 0.99). Multiplexed proteomic analysis of >100 human endometrial cancer cell lines and uterine leiomyoma tissues combined resulted in the quantitation of 62 pAIMs that correlate with patient race and genotype-confirmed ancestry. Candidates include a D451E substitution in GC vitamin D-binding protein previously associated with altered vitamin D levels in African and European populations. pAIMs will support generalized proteoancestry assessment as well as efforts investigating the impact of ancestry on the human proteome and how this relates to the pathogenesis of uterine neoplasms.
Collapse
Affiliation(s)
- Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA,Corresponding author 3289 Woodburn Rd, Suite 375, Annandale, VA 22003;
| | - Christopher M. Tarney
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Tamara S. Abulez
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Ming Zhou
- Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Anthony R. Soltis
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA,The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Amanda Jackson
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Chunqiao Tian
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Clifton L. Dalgard
- The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA,Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Matthew D. Wilkerson
- The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA,The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA,Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Michael D. Kessler
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zachary Goecker
- University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Craig D. Shriver
- The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Hai Hu
- The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963, USA
| | | | - Glendon J. Parker
- University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - James Segars
- Johns Hopkins University Medical Center, Baltimore, MD 21218, USA
| | - Ayman Al-Hendy
- The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - John I. Risinger
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI 48824, USA
| | - Neil T. Phippen
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - G. Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Thomas P. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Timothy D. O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Program in Personalize and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Marlene and Stewart Greenebaum Comprehensive Cancer, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|