1
|
Lin Y, Quan M, Wang X, Miao W, Xu H, He B, Liu B, Zhang Y, Chen Y, Zhou B, Xu M, Dong L, Jin X, Lou Z, Zhang JS, Chen C. Parkin deficiency exacerbates particulate matter-induced injury by enhancing airway epithelial necroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175922. [PMID: 39218088 DOI: 10.1016/j.scitotenv.2024.175922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Exposure to fine particulate matter (PM) disrupts the function of airway epithelial barriers causing cellular stress and damage. However, the precise mechanisms underlying PM-induced cellular injury and the associated molecular pathways remain incompletely understood. In this study, we used intratracheal instillation of PM in C57BL6 mice and PM treatment of the BEAS-2B cell line as in vivo and in vitro models, respectively, to simulate PM-induced cellular damage and inflammation. We collected lung tissues and bronchoalveolar lavage fluids to assess histopathological changes, necroptosis, and airway inflammation. Our findings reveal that PM exposure induces necroptosis in mouse airway epithelial cells. Importantly, concurrent administration of a receptor interacting protein kinases 3 (RIPK3) inhibitor or the deletion of the necroptosis effector mixed-lineage kinase domain-like protein (MLKL) effectively attenuated PM-induced airway inflammation. PM exposure dose-dependently induces the expression of Parkin, an E3 ligase we recently reported to play a pivotal role in necroptosis through regulating necrosome formation. Significantly, deletion of endogenous Parkin exacerbates inflammation by enhancing epithelial necroptosis. These results indicate that PM-induced Parkin expression plays a crucial role in suppressing epithelial necroptosis, thereby reducing airway inflammation. Overall, these findings offer valuable mechanistic insights into PM-induced airway injury and identify a potential target for clinical intervention.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meiyu Quan
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xibin Wang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wanqi Miao
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haibo Xu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Baiqi He
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bin Liu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanxia Zhang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yijing Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Binqian Zhou
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mengying Xu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Dong
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
2
|
Corona C, Man K, Newton CA, Nguyen KT, Yang Y. In Vitro Modeling of Idiopathic Pulmonary Fibrosis: Lung-on-a-Chip Systems and Other 3D Cultures. Int J Mol Sci 2024; 25:11751. [PMID: 39519302 PMCID: PMC11546860 DOI: 10.3390/ijms252111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disorder characterized by relentless progression of lung fibrosis that causes respiratory failure and early death. Currently, no curative treatments are available, and existing therapies include a limited selection of antifibrotic agents that only slow disease progression. The development of novel therapeutics has been hindered by a limited understanding of the disease's etiology and pathogenesis. A significant challenge in developing new treatments and understanding IPF is the lack of in vitro models that accurately replicate crucial microenvironments. In response, three-dimensional (3D) in vitro models have emerged as powerful tools for replicating organ-level microenvironments seen in vivo. This review summarizes the state of the art in advanced 3D lung models that mimic many physiological and pathological processes observed in IPF. We begin with a brief overview of conventional models, such as 2D cell cultures and animal models, and then explore more advanced 3D models, focusing on lung-on-a-chip systems. We discuss the current challenges and future research opportunities in this field, aiming to advance the understanding of the disease and the development of novel devices to assess the effectiveness of new IPF treatments.
Collapse
Affiliation(s)
- Christopher Corona
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA;
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA;
| | - Chad A. Newton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA;
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA;
| |
Collapse
|
3
|
Song L, Li K, Chen H, Xie L. Cell Cross-Talk in Alveolar Microenvironment: From Lung Injury to Fibrosis. Am J Respir Cell Mol Biol 2024; 71:30-42. [PMID: 38579159 PMCID: PMC11225874 DOI: 10.1165/rcmb.2023-0426tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024] Open
Abstract
Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Licheng Song
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| | - Kuan Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
4
|
Zabihi M, Khadim A, Schäfer TM, Alexopoulos I, Bartkuhn M, El Agha E, Vazquez-Armendariz AI, Herold S. An Optimized Protocol for the Generation of Alveolospheres from Wild-Type Mice. Cells 2024; 13:922. [PMID: 38891054 PMCID: PMC11171706 DOI: 10.3390/cells13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Organoid models have become an integral part of the research methodology in the lung field. These systems allow for the study of progenitor and stem cell self-renewal, self-organization, and differentiation. Distinct models of lung organoids mimicking various anatomical regions of mature lungs have emerged in parallel to the increased gain of knowledge regarding epithelial stem and progenitor cell populations and the corresponding mesenchymal cells that populate the in vivo niche. In the distal lung, type 2 alveolar epithelial cells (AEC2s) represent a stem cell population that is engaged in regenerative mechanisms in response to various insults. These cells self-renew and give rise to AEC1s that carry out gas exchange. Multiple experimental protocols allowing the generation of alveolar organoids, or alveolospheres, from murine lungs have been described. Among the drawbacks have been the requirement of transgenic mice allowing the isolation of AEC2s with high viability and purity, and the occasional emergence of bronchiolar and bronchioalveolar organoids. Here, we provide a refined gating strategy and an optimized protocol for the generation of alveolospheres from wild-type mice. Our approach not only overcomes the need for transgenic mice to generate such organoids, but also yields a pure culture of alveolospheres that is devoid of bronchiolar and bronchioalveolar organoids. Our protocol contributes to the standardization of this important research tool.
Collapse
Affiliation(s)
- Mahsa Zabihi
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ali Khadim
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Theresa M. Schäfer
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany;
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ana I. Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| |
Collapse
|
5
|
Justeau G, Toigo M, Castro de Freitas T, Ribeiro Baptista B, Zana-Taieb E, Boyer L. [Pulmonary lipofibroblasts in adults and alveolar regeneration in emphysema]. Rev Mal Respir 2024; 41:299-302. [PMID: 38461092 DOI: 10.1016/j.rmr.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Lipofibroblasts form a sub-population of fibroblasts located in the mesenchymal alveolar stem cell niche. They show close proximity with alveolar epithelial type 2 cells and play a key role in alveolar development and lung homeostasis. Their role in various diseases such as acute respiratory distress syndrome, pulmonary fibrosis and emphysema is progressively better understood. Through the activation of signaling pathways such as PPARg lipofibroblasts may help to induce endogenous alveolar regeneration.
Collapse
Affiliation(s)
| | | | | | - B Ribeiro Baptista
- IMRB U955, Créteil, France; Service de pneumologie, CHRU de Nancy, Nancy, France
| | | | - L Boyer
- IMRB U955, Créteil, France; Service de physiologie, hôpital Henri-Mondor AP-HP, Créteil, France
| |
Collapse
|
6
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
7
|
Hadzic S, Wu CY, Gredic M, Pak O, Loku E, Kraut S, Kojonazarov B, Wilhelm J, Brosien M, Bednorz M, Seimetz M, Günther A, Kosanovic D, Sommer N, Warburton D, Li X, Grimminger F, Ghofrani HA, Schermuly RT, Seeger W, El Agha E, Bellusci S, Weissmann N. Fibroblast growth factor 10 reverses cigarette smoke- and elastase-induced emphysema and pulmonary hypertension in mice. Eur Respir J 2023; 62:2201606. [PMID: 37884305 PMCID: PMC10632559 DOI: 10.1183/13993003.01606-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/28/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Marija Gredic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Edma Loku
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - David Warburton
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, P.R. China
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Saverio Bellusci
- Oujiang Laboratory (Zheijiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Laboratory of Extracellular Matrix Remodelling, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- S. Bellusci and N. Weissmann contributed equally to this article as lead authors and supervised the work
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- S. Bellusci and N. Weissmann contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
8
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
9
|
Zhang Y, Black KE, Phung TKN, Thundivalappil SR, Lin T, Wang W, Xu J, Zhang C, Hariri LP, Lapey A, Li H, Lerou PH, Ai X, Que J, Park JA, Hurley BP, Mou H. Human Airway Basal Cells Undergo Reversible Squamous Differentiation and Reshape Innate Immunity. Am J Respir Cell Mol Biol 2023; 68:664-678. [PMID: 36753317 PMCID: PMC10257070 DOI: 10.1165/rcmb.2022-0299oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Histological and lineage immunofluorescence examination revealed that healthy conducting airways of humans and animals harbor sporadic poorly differentiated epithelial patches mostly in the dorsal noncartilage regions that remarkably manifest squamous differentiation. In vitro analysis demonstrated that this squamous phenotype is not due to intrinsic functional change in underlying airway basal cells. Rather, it is a reversible physiological response to persistent Wnt signaling stimulation during de novo differentiation. Squamous epithelial cells have elevated gene signatures of glucose uptake and cellular glycolysis. Inhibition of glycolysis or a decrease in glucose availability suppresses Wnt-induced squamous epithelial differentiation. Compared with pseudostratified airway epithelial cells, a cascade of mucosal protective functions is impaired in squamous epithelial cells, featuring increased epithelial permeability, spontaneous epithelial unjamming, and enhanced inflammatory responses. Our study raises the possibility that the squamous differentiation naturally occurring in healthy airways identified herein may represent "vulnerable spots" within the airway mucosa that are sensitive to damage and inflammation when confronted by infection or injury. Squamous metaplasia and hyperplasia are hallmarks of many airway diseases, thereby expanding these areas of vulnerability with potential pathological consequences. Thus, investigation of physiological and reversible squamous differentiation from healthy airway basal cells may provide critical knowledge to understand pathogenic squamous remodeling, which is often nonreversible, progressive, and hyperinflammatory.
Collapse
Affiliation(s)
- Yihan Zhang
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | | | - Thien-Khoi N. Phung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Tian Lin
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allen Lapey
- Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Paul Hubert Lerou
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jianwen Que
- Columbia Center for Human Development
- Division of Digestive and Liver Disease, Department of Medicine, and
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bryan P. Hurley
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| |
Collapse
|
10
|
Snitow ME, Chaudhry FN, Zepp JA. Engineering and Modeling the Lung Mesenchyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:139-154. [PMID: 37195530 DOI: 10.1007/978-3-031-26625-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The structure of the mammalian lung controls the flow of air through the airways and into the distal alveolar region where gas exchange occurs. Specialized cells in the lung mesenchyme produce the extracellular matrix (ECM) and growth factors required for lung structure. Historically, characterizing the mesenchymal cell subtypes was challenging due to their ambiguous morphology, overlapping expression of protein markers, and limited cell-surface molecules needed for isolation. The recent development of single-cell RNA sequencing (scRNA-seq) complemented with genetic mouse models demonstrated that the lung mesenchyme comprises transcriptionally and functionally heterogeneous cell-types. Bioengineering approaches that model tissue structure clarify the function and regulation of mesenchymal cell types. These experimental approaches demonstrate the unique abilities of fibroblasts in mechanosignaling, mechanical force generation, ECM production, and tissue regeneration. This chapter will review the cell biology of the lung mesenchyme and experimental approaches to study their function.
Collapse
Affiliation(s)
- Melinda E Snitow
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fatima N Chaudhry
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Hernandez BJ, Cain MP, Lynch AM, Flores JR, Tuvim MJ, Dickey BF, Chen J. Intermediary Role of Lung Alveolar Type 1 Cells in Epithelial Repair upon Sendai Virus Infection. Am J Respir Cell Mol Biol 2022; 67:389-401. [PMID: 35679221 PMCID: PMC9447132 DOI: 10.1165/rcmb.2021-0421oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lung epithelium forms the first barrier against respiratory pathogens and noxious chemicals; however, little is known about how more than 90% of this barrier, made of AT1 (alveolar type 1) cells, responds to injury. Using the Sendai virus to model natural infection in mice, we find evidence that AT1 cells have an intermediary role by persisting in areas depleted of AT2 cells, upregulating IFN responsive genes, and receding from invading airway cells. Sendai virus infection mobilizes airway cells to form alveolar SOX2+ (Sry-box 2+) clusters without differentiating into AT1 or AT2 cells. Large AT2 cell-depleted areas remain covered by AT1 cells, which we name "AT2-less regions", and are replaced by SOX2+ clusters spreading both basally and luminally. AT2 cell proliferation and differentiation are largely confined to topologically distal regions and form de novo alveolar surface, with limited contribution to in situ repairs of AT2-less regions. Time-course single-cell RNA sequencing profiling and RNAscope validation suggest enhanced immune responses and altered growth signals in AT1 cells. Our comprehensive spatiotemporal and genomewide study highlights the hitherto unappreciated role of AT1 cells in lung injury-repair.
Collapse
Affiliation(s)
- Belinda J. Hernandez
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and
| | - Margo P. Cain
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and
| | - Anne M. Lynch
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Jose R. Flores
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and
| | - Burton F. Dickey
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas and
| |
Collapse
|
13
|
Jiao Q, Zou F, Li S, Wang J, Xiao Y, Guan Z, Dong L, Tian J, Li S, Wang R, Zhang J, Li H. Dexlansoprazole prevents pulmonary artery hypertension by inhibiting pulmonary artery smooth muscle cell to fibroblast transition. Am J Transl Res 2022; 14:5466-5479. [PMID: 36105026 PMCID: PMC9452313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To validate that dexlansoprazole, an anti-acid drug, can prevent pulmonary artery hypertension (PAH) in preclinical animal models and find the possible mechanism of action of dexlansoprazole for this new indication. METHODS The efficacy of dexlansoprazole to attenuate PAH in vivo was evaluated in PAH animal models. Plasma guanosine 3', 5'-cyclic phosphate (cGMP) in PAH rats was measured by enzyme linked immunosorbent assay (ELISA). To investigate the anti-PAH effect of dexlansoprazole in vitro, proliferation and migration assays of primary cultured pulmonary artery smooth muscle cells (PASMCs) were performed. Furthermore, dexlansoprazole's function on fibroblast transition of vascular smooth muscle cells (VSMC) was explored by single cell ribonucleic acid (RNA) sequencing and RNAscope. RESULTS Dexlansoprazole could attenuate the pathologic process in monocrotaline (MCT)-, hypoxia-induced PAH rats and SU5416/hypoxia (SuHy)-induced PAH mice. The intervention with dexlansoprazole significantly inhibited elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular wall thickness. Furthermore, plasma cGMP in MCT-induced PAH rats was restored after receiving dexlansoprazole. In vitro, dexlansoprazole could inhibit PASMCs' proliferation and migration stimulated by platelet derived growth factor-BB (PDGF-BB). Moreover, dexlansoprazole significantly ameliorated pulmonary vascular remodeling by inhibiting VSMC phenotypic transition to fibroblast-like cells in a VSMC-specific multispectral lineage-tracing mouse. CONCLUSIONS Dexlansoprazole can prevent PAH through promoting cGMP generation and inhibiting pulmonary vascular remodeling through restraining PASMCs' proliferation, migration, and phenotypic transition to fibroblast-like cells. Consequently, PAH might be a new indication for dexlansoprazole.
Collapse
Affiliation(s)
- Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Fangdi Zou
- School of Basic Medical Sciences, Tianjin Medical UniversityTianjin 200000, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jiawen Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Yunping Xiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Zhihua Guan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan UniversityShanghai 200000, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital, Key Laboratory of Myocardial Ischemia, Harbin Medical UniversityHarbin 200000, Heilongjiang, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan UniversityShanghai 200000, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
- School of Basic Medical Sciences, Tianjin Medical UniversityTianjin 200000, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| |
Collapse
|
14
|
Cao C, Zhang L, Shen J. Phosgene-Induced acute lung injury: Approaches for mechanism-based treatment strategies. Front Immunol 2022; 13:917395. [PMID: 35983054 PMCID: PMC9378823 DOI: 10.3389/fimmu.2022.917395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phosgene (COCl2) gas is a chemical intermediate of high-volume production with numerous industrial applications worldwide. Due to its high toxicity, accidental exposure to phosgene leads to various chemical injuries, primarily resulting in chemical-induced lung injury due to inhalation. Initially, the illness is mild and presents as coughing, chest tightness, and wheezing; however, within a few hours, symptoms progress to chronic respiratory depression, refractory pulmonary edema, dyspnea, and hypoxemia, which may contribute to acute respiratory distress syndrome or even death in severe cases. Despite rapid advances in medicine, effective treatments for phosgene-inhaled poisoning are lacking. Elucidating the pathophysiology and pathogenesis of acute inhalation toxicity caused by phosgene is necessary for the development of appropriate therapeutics. In this review, we discuss extant literature on relevant mechanisms and therapeutic strategies to highlight novel ideas for the treatment of phosgene-induced acute lung injury.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Zhang
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
15
|
Shirai T, Sekai M, Kozawa K, Sato N, Tanimura N, Kon S, Matsumoto T, Murakami T, Ito S, Tilston-Lunel A, Varelas X, Fujita Y. Basal extrusion of single-oncogenic mutant cells induces dome-like structures with altered microenvironments. Cancer Sci 2022; 113:3710-3721. [PMID: 35816400 PMCID: PMC9633292 DOI: 10.1111/cas.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
At the initial stage of carcinogenesis, oncogenic transformation occurs in single cells within epithelial layers. However, the behavior and fate of the newly emerging transformed cells remain enigmatic. Here, using originally established mouse models, we investigate the fate of RasV12‐transformed cells that appear in a mosaic manner within epithelial tissues. In the lung bronchial epithelium, most majority of RasV12‐transformed cells are apically extruded, whereas noneliminated RasV12 cells are often basally delaminated leading to various noncell‐autonomous changes in surrounding environments; macrophages and activated fibroblasts are accumulated, and normal epithelial cells overlying RasV12 cells overproliferate and form a convex multilayer, which is termed a ‘dome‐like structure’. In addition, basally extruded RasV12 cells acquire certain features of epithelial–mesenchymal transition (EMT). Furthermore, the expression of COX‐2 is profoundly elevated in RasV12 cells in dome‐like structures, and treatment with the COX inhibitor ibuprofen suppresses the recruitment of activated fibroblasts and moderately diminishes the formation of dome‐like structures. Therefore, basal extrusion of single‐oncogenic mutant cells can induce a tumor microenvironment and EMT and generate characteristic precancerous lesions, providing molecular insights into the earlier steps of cancer development.
Collapse
Affiliation(s)
- Takanobu Shirai
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| | - Miho Sekai
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,KAN Research Institute, Inc., Kobe, Japan
| | - Kei Kozawa
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nanami Sato
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Tanimura
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| | - Tomohiro Matsumoto
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| | - Takeru Murakami
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoko Ito
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,KAN Research Institute, Inc., Kobe, Japan
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| |
Collapse
|
16
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
17
|
Ahmadvand N, Lingampally A, Khosravi F, Vazquez-Armendariz AI, Rivetti S, Jones MR, Wilhelm J, Herold S, Barreto G, Koepke J, Samakovlis C, Carraro G, Zhang JS, Al Alam D, Bellusci S. Fgfr2b signaling is essential for the maintenance of the alveolar epithelial type 2 lineage during lung homeostasis in mice. Cell Mol Life Sci 2022; 79:302. [PMID: 35587837 PMCID: PMC9120111 DOI: 10.1007/s00018-022-04327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor receptor 2b (Fgfr2b) signaling is essential throughout lung development to form the alveolar epithelial lineage. However, its role in alveolar epithelial type 2 cells (AT2s) homeostasis was recently considered dispensable. SftpcCreERT2; Fgfr2bflox/flox; tdTomatoflox/flox mice were used to delete Fgfr2b expression in cells belonging to the AT2 lineage, which contains mature AT2s and a novel SftpcLow lineage-traced population called "injury activated alveolar progenitors" or IAAPs. Upon continuous tamoxifen exposure for either 1 or 2 weeks to delete Fgfr2b, a shrinking of the AT2 population is observed. Mature AT2s exit the cell cycle, undergo apoptosis and fail to form alveolospheres in vitro. However, the lung morphometry appears normal, suggesting the involvement of compensatory mechanisms. In mutant lungs, IAAPs which escaped Fgfr2b deletion expand, display enhanced alveolosphere formation in vitro and increase drastically their AT2 signature, suggesting differentiation towards mature AT2s. Interestingly, a significant increase in AT2s and decrease in IAPPs occurs after a 1-week tamoxifen exposure followed by an 8-week chase period. Although mature AT2s partially recover their alveolosphere formation capabilities, the IAAPs no longer display this property. Single-cell RNA seq analysis confirms that AT2s and IAAPs represent stable and distinct cell populations and recapitulate some of their characteristics observed in vivo. Our results underscore the essential role played by Fgfr2b signaling in the maintenance of the AT2 lineage in the adult lung during homeostasis and suggest that the IAAPs could represent a new population of AT2 progenitors.
Collapse
Affiliation(s)
- Negah Ahmadvand
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Stefano Rivetti
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Matthew R Jones
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Susanne Herold
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Guillermo Barreto
- Laboratoire IMoPA, UMR 7365 CNRS, Biopole de l'Universite de Lorraine, 54505, Vandoeuvre-les-Nancy, France
| | - Janine Koepke
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, 90027, USA
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, USA
| | - Saverio Bellusci
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
- Laboratory of Extracellular Lung Matrix Remodelling, Department of Internal Medicine, Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
18
|
Vazquez-Armendariz AI, Barroso MM, El Agha E, Herold S. 3D In Vitro Models: Novel Insights into Idiopathic Pulmonary Fibrosis Pathophysiology and Drug Screening. Cells 2022; 11:1526. [PMID: 35563831 PMCID: PMC9099957 DOI: 10.3390/cells11091526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often lethal interstitial lung disease of unknown aetiology. IPF is characterised by myofibroblast activation, tissue stiffening, and alveolar epithelium injury. As current IPF treatments fail to halt disease progression or induce regeneration, there is a pressing need for the development of novel therapeutic targets. In this regard, tri-dimensional (3D) models have rapidly emerged as powerful platforms for disease modelling, drug screening and discovery. In this review, we will touch on how 3D in vitro models such as hydrogels, precision-cut lung slices, and, more recently, lung organoids and lung-on-chip devices have been generated and/or modified to reveal distinct cellular and molecular signalling pathways activated during fibrotic processes. Markedly, we will address how these platforms could provide a better understanding of fibrosis pathophysiology and uncover effective treatment strategies for IPF patients.
Collapse
Affiliation(s)
- Ana Ivonne Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Hessen, Germany; (M.M.B.); (E.E.A.); (S.H.)
| | | | | | | |
Collapse
|
19
|
Narvaez Del Pilar O, Gacha Garay MJ, Chen J. Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts. Development 2022; 149:274755. [PMID: 35302583 PMCID: PMC8977099 DOI: 10.1242/dev.200081] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.
Collapse
Affiliation(s)
- Odemaris Narvaez Del Pilar
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA.,University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico 00927
| | - Maria Jose Gacha Garay
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
20
|
Taghizadeh S, Chao CM, Guenther S, Glaser L, Gersmann L, Michel G, Kraut S, Goth K, Koepke J, Heiner M, Vazquez-Armendariz AI, Herold S, Samakovlis C, Weissmann N, Ricci F, Aquila G, Boyer L, Ehrhardt H, Minoo P, Bellusci S, Rivetti S. OUP accepted manuscript. Stem Cells 2022; 40:605-617. [PMID: 35437594 PMCID: PMC9216486 DOI: 10.1093/stmcls/sxac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 11/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally. We carried out morphometry analysis, and IF on day 45. Alveolospheres assays were performed co-culturing AT2s from normoxia (NOX) with FACS-isolated Sca1Pos resident mesenchymal cells (rMC) from animals exposed to NOX, HYX-PBS, or HYX-FGF10. scRNAseq between rMC-Sca1Pos isolated from NOX and HYX-PBS was also carried out. Transgenic overexpression of Fgf10 and rFGF10 administration rescued the alveologenesis defects following HYX. Alveolosphere assays indicate that the activity of rMC-Sca1Pos is negatively impacted by HYX and partially rescued by rFGF10 treatment. Analysis by IF demonstrates a significant impact of rFGF10 on the activity of resident mesenchymal cells. scRNAseq results identified clusters expressing Fgf10, Fgf7, Pdgfra, and Axin2, which could represent the rMC niche cells for the AT2 stem cells. In conclusion, we demonstrate that rFGF10 administration is able to induce de novo alveologenesis in a BPD mouse model and identified subpopulations of rMC-Sca1Pos niche cells potentially representing its cellular target.
Collapse
Affiliation(s)
| | | | | | - Lea Glaser
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Luisa Gersmann
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Gabriela Michel
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Kerstin Goth
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Janine Koepke
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Monika Heiner
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Christos Samakovlis
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Francesca Ricci
- Neonatology and Pulmonary Rare Disease Unit, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Giorgio Aquila
- Neonatology and Pulmonary Rare Disease Unit, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Laurent Boyer
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Harald Ehrhardt
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Parviz Minoo
- University of Southern California, Los Angeles, CA, USA
| | - Saverio Bellusci
- Corresponding author: Saverio Bellusci, ; or, Stefano Rivetti, Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany;
| | - Stefano Rivetti
- Corresponding author: Saverio Bellusci, ; or, Stefano Rivetti, Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany;
| |
Collapse
|
21
|
GLI1+ cells are a source of repair-supportive mesenchymal cells (RSMCs) during airway epithelial regeneration. Cell Mol Life Sci 2022; 79:581. [PMID: 36333491 PMCID: PMC9636301 DOI: 10.1007/s00018-022-04599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly
between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre−ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.
Collapse
|
22
|
Evidence for Multiple Origins of De Novo Formed Vascular Smooth Muscle Cells in Pulmonary Hypertension: Challenging the Dominant Model of Pre-Existing Smooth Muscle Expansion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168584. [PMID: 34444333 PMCID: PMC8391896 DOI: 10.3390/ijerph18168584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Vascular remodeling is a prominent feature of pulmonary hypertension. This process involves increased muscularization of already muscularized vessels as well as neo-muscularization of non-muscularized vessels. The cell-of-origin of the newly formed vascular smooth muscle cells has been a subject of intense debate in recent years. Identifying these cells may have important clinical implications since it opens the door for attempts to therapeutically target the progenitor cells and/or reverse the differentiation of their progeny. In this context, the dominant model is that these cells derive from pre-existing smooth muscle cells that are activated in response to injury. In this mini review, we present the evidence that is in favor of this model and, at the same time, highlight other studies indicating that there are alternative cellular sources of vascular smooth muscle cells in pulmonary vascular remodeling.
Collapse
|
23
|
Vazquez-Armendariz AI, Seeger W, Herold S, El Agha E. Protocol for the generation of murine bronchiolospheres. STAR Protoc 2021; 2:100594. [PMID: 34169288 PMCID: PMC8209683 DOI: 10.1016/j.xpro.2021.100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Organoid models have been shown to be valuable tools for studying epithelial-mesenchymal crosstalk during biological and pathological settings. Our data identified ACTA2+ PDGFRα+ repair-supportive mesenchymal cells as an important component of the conducting airway niche. Here, we provide a detailed protocol for culturing airway organoids, or bronchiolospheres, which provide an assessment of the ability of mesenchymal cells to support club-cell growth. For complete details on the use and execution of this protocol, please refer to Moiseenko et al. (2020). Bronchiolospheres are a useful tool to model epithelial-mesenchymal interactions Different types of mesenchymal cells can be used to support club cell growth Cell differentiation within bronchiolospheres can be assessed after 16 days of culture Bronchiolospheres can be passaged multiple times
Collapse
Affiliation(s)
- Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Hessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Hessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Hessen, Germany
| | - Elie El Agha
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Hessen, Germany
| |
Collapse
|
24
|
Taghizadeh S, Heiner M, Vazquez-Armendariz AI, Wilhelm J, Herold S, Chen C, Zhang JS, Bellusci S. Characterization in mice of the resident mesenchymal niche maintaining AT2 stem cell proliferation in homeostasis and disease. STEM CELLS (DAYTON, OHIO) 2021; 39:1382-1394. [PMID: 34048616 DOI: 10.1002/stem.3423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/08/2021] [Indexed: 11/06/2022]
Abstract
Resident mesenchymal cells (rMCs defined as Cd31Neg Cd45Neg EpcamNeg ) control the proliferation and differentiation of alveolar epithelial type 2 (AT2) stem cells in vitro. The identity of these rMCs is still elusive. Among them, Axin2Pos mesenchymal alveolar niche cells (MANCs), which are expressing Fgf7, have been previously described. We propose that an additional population of rMCs, expressing Fgf10 (called rMC-Sca1Pos Fgf10Pos ) are equally important to maintain AT2 stem cell proliferation. The alveolosphere model, based on the AT2-rMC co-culture in growth factor-reduced Matrigel, was used to test the efficiency of different rMC subpopulations isolated by FACS from adult murine lung to sustain the proliferation and differentiation of AT2 stem cells. We demonstrate that rMC-Sca1Pos Fgf10Pos cells are efficient to promote the proliferation and differentiation of AT2 stem cells. Co-staining of adult lung for Fgf10 mRNA and Sftpc protein respectively, indicate that 28% of Fgf10Pos cells are located close to AT2 cells. Co-ISH for Fgf7 and Fgf10 indicate that these two populations do not significantly overlap. Gene arrays comparing rMC-Sca1Pos Axin2Pos and rMC-Sca1Pos Fgf10Pos support that these two cell subsets express differential markers. In addition, rMC function is decreased in obese ob/ob mutant compared to WT mice with a much stronger loss of function in males compared to females. In conclusion, rMC-Sca1Pos Fgf10Pos cells play important role in supporting AT2 stem cells proliferation and differentiation. This result sheds a new light on the subpopulations of rMCs contributing to the AT2 stem cell niche in homeostasis and in the context of pre-existing metabolic diseases.
Collapse
Affiliation(s)
- Sara Taghizadeh
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou.,Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | - Monika Heiner
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | | | - Jochen Wilhelm
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany.,Institute for Lung Health (ILH), Germany
| | - Susanne Herold
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Jin San Zhang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou.,Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| |
Collapse
|
25
|
Chu X, Taghizadeh S, Vazquez-Armendariz AI, Herold S, Chong L, Chen C, Zhang JS, El Agha E, Bellusci S. Validation of a Novel Fgf10 Cre-ERT2 Knock-in Mouse Line Targeting FGF10 Pos Cells Postnatally. Front Cell Dev Biol 2021; 9:671841. [PMID: 34055804 PMCID: PMC8155496 DOI: 10.3389/fcell.2021.671841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 01/14/2023] Open
Abstract
Fgf10 is a key gene during development, homeostasis and repair after injury. We previously reported a knock-in Fgf10 Cre-ERT2 line (with the Cre-ERT2 cassette inserted in frame with the start codon of exon 1), called thereafter Fgf10 Ki-v1, to target FGF10Pos cells. While this line allowed fairly efficient and specific labeling of FGF10Pos cells during the embryonic stage, it failed to target these cells after birth, particularly in the postnatal lung, which has been the focus of our research. We report here the generation and validation of a new knock-in Fgf10 Cre-ERT2 line (called thereafter Fgf10 Ki-v2) with the insertion of the expression cassette in frame with the stop codon of exon 3. Fgf10 Ki-v2/+ heterozygous mice exhibited comparable Fgf10 expression levels to wild type animals. However, a mismatch between Fgf10 and Cre expression levels was observed in Fgf10 Ki-v2/+ lungs. In addition, lung and limb agenesis were observed in homozygous embryos suggesting a loss of Fgf10 functional allele in Fgf10 Ki-v2 mice. Bioinformatic analysis shows that the 3'UTR, where the Cre-ERT2 cassette is inserted, contains numerous putative transcription factor binding sites. By crossing this line with tdTomato reporter line, we demonstrated that tdTomato expression faithfully recapitulated Fgf10 expression during development. Importantly, Fgf10 Ki-v2 mouse is capable of significantly targeting FGF10Pos cells in the adult lung. Therefore, despite the aforementioned limitations, this new Fgf10 Ki-v2 line opens the way for future mechanistic experiments involving the postnatal lung.
Collapse
Affiliation(s)
- Xuran Chu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Sara Taghizadeh
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Elie El Agha
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Saverio Bellusci
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|