1
|
Carpena NT, Chang SY, Mun S, Kim KW, Yoon HC, Chung PS, Mo JH, Ahn JC, Park JO, Han K, Choi JE, Jung JY, Lee MY. Shh agonist enhances maturation in homotypic Lgr5-positive inner ear organoids. Theranostics 2025; 15:5543-5565. [PMID: 40365278 PMCID: PMC12068299 DOI: 10.7150/thno.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The regeneration of functional hair cells (HCs) remains a critical challenge in addressing sensorineural hearing loss. This study aimed to investigate the molecular and functional mechanisms driving stereocilia maturation within inner ear organoids (IEO) derived from homogenic Lgr5-positive progenitor cells (LPCs) and to compare outcomes with traditional heterotypic cultures. Methods: Mouse cochlear LPCs were isolated via magnetic-activated cell sorting (MACS) to establish homotypic cultures, ensuring purity and eliminating the heterotypic influences present in traditional manual isolation (MI) methods. Differentiation into HCs was induced through Wnt and Notch signaling modulation. Transcriptomic profiling using bulk and single-cell RNA sequencing (scRNA-seq) identified gene expression changes linked to stereocilia development. A Sonic Hedgehog (Shh) agonist was applied to enhance structural maturation of HCs. Functional assessment included electron microscopy, FM1-43 uptake assays, and microelectrode array recordings in assembloids of IEO with primary spiral ganglion neurons (SGN) co-cultures. Results: While homotypic LPC-derived IEOs successfully differentiated into HC-like cells, initial morphological assessment revealed immature stereocilia structures. Bulk RNA-seq analysis highlighted a downregulation of morphogenesis-related genes in these organoids. The application of a Shh agonist, acting as a key morphogen, promoted stereocilia development, as evidenced by enhanced ultrastructural features and increased expression of cuticular plate-associated genes (Pls1, Lmo7 and Lrba). Single-cell RNA sequencing (scRNA-seq) further identified distinct cell clusters, which exhibited robust expression of stereocilia-related genes (Espn, Lhfpl5, Loxhd1 and Tmc1), indicative of advanced HC maturation. Electrophysiological assessments of IEO-SGN assembloids using microelectrode arrays confirmed functional mechanoelectrical transduction between cells. Conclusion: This integrated approach elucidates critical pathways and cellular dynamics underpinning stereocilia maturation and functional HC development in EIOs. These findings provide new insights into the molecular regulation of HC maturation and support the utility of Shh-modulated IEOs as a promising platform for inner ear regeneration and therapeutic development for inner ear regenerative therapies.
Collapse
Affiliation(s)
- Nathaniel T Carpena
- Department of Medical Laser, Graduate School of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
| | - Seyoung Mun
- Department of Cosmedical & Materials, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, Cheonan, 31116, Korea
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon, 443749, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Ji-Hun Mo
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Chul Ahn
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Ji On Park
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Ji Eun Choi
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae Yun Jung
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Wang X, Bao M, Wang H, Sun R, Dai W, Sun K, Zhu Y, Pu Y, Chu Y, Li X, Wang T, Zhang M, Lin A, Li J, Feng J. Cochlear Cell Atlas of Two Laryngeal Echolocating Bats-New Evidence for the Adaptive Nervous Physiology in Constant Frequency Bat. Mol Ecol Resour 2025:e14101. [PMID: 40109271 DOI: 10.1111/1755-0998.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Bats have evolved highly adapted auditory mechanisms associated with ecological specialisation. However, there is scattered knowledge about the neurophysiological and cellular basis underlying high-frequency hearing in echolocating bats. Herein, the total cochlear cell atlas of Rhinolophus ferrumequinum (constant frequency (CF) bat) and Myotis pilosus (frequency modulated (FM) bat) was conducted using the 10x Genomics single-nucleus RNA sequencing method. Differences in the proportion of cochlear cell types, especially for the neural cells, were detected between these two bat species. Previously, genes upregulated in the cochlea of CF compared with FM bats, were found to be mostly related to nervous activities. After mapping to the cochlear cell atlas, we found that the upregulated genes were from neural cells, lateral wall cells and neurosensory epithelium cells. A class of specific neurons and associated functions was detected in the cochlea of R. ferrumequinum, revealed by cross-species single-cell transcriptomic analyses. Furthermore, molecular evidence for the differentiation from glial cells to neuronal cells was also uncovered in the cochlea of R. ferrumequinum. Overall, this study identified specific cellular molecular properties that constitute the neuroanatomical evolutionary dynamics underlying distinct echolocating types of bats and provided new molecular evidence for high-frequency hearing of echolocating bats, promoting related studies about ecological adaptation and evolution.
Collapse
Affiliation(s)
- Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingting Pu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Tianhui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Minjie Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
Li XJ, Morgan C, Li L, Zhang WY, Chrysostomou E, Doetzlhofer A. The Notch ligand Jagged1 plays a dual role in cochlear hair cell regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.640998. [PMID: 40093047 PMCID: PMC11908178 DOI: 10.1101/2025.03.02.640998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Hair cells (HCs) within the inner ear cochlea are specialized mechanoreceptors required for hearing. Cochlear HCs are not regenerated in mammals, and their loss is a leading cause of deafness in humans. Cochlear supporting cells (SCs) in newborn mice have the capacity to regenerate HCs, but persistent Notch signaling, presumably activated by SC-specific Notch ligand Jagged1 (JAG1), prevents SCs from converting into HCs. Here, employing an organoid platform, we show that while JAG1 participates in HC-fate repression, JAG1's primary function is to preserve the "progenitor-like characteristics" of cochlear SCs. Transcriptomic and mechanistic studies reveal that JAG1/Notch signaling maintains the expression of progenitor and metabolic genes in cochlear SCs and sustains pro-growth pathways, including PI3K-Akt-mTOR signaling, a function that is mediated by Notch1 and Notch2. Finally, we show that JAG1/Notch signaling stimulation with JAG1-Fc peptide enhances the HC-forming capacity of cochlear SCs undergoing maturation in cochlear explants and in vivo .
Collapse
|
4
|
Wang H, Zhang X, Gui F, Sun X, Chen R, Yin G, Hong Y, Huang J, Yang L. In vitro effects of recombinant human Neuritin on hair cell recovery post-gentamicin injury in SC lineage-tracing models: Involvement of notch and FGFR signaling. Neurochem Int 2025; 183:105935. [PMID: 39827939 DOI: 10.1016/j.neuint.2025.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Hair cell (HC) loss, frequently induced by ototoxic agents such as gentamicin, leads to irreversible hearing loss. Because of the restricted regenerative capabilities of the mammalian inner ear, the exploration of therapeutic strategies to restore damaged HCs is critically needed. Recombinant human Neuritin (rhNeuritin), a neurotrophic factor with established roles in promoting cell survival and regeneration across various systems, presents itself as a promising therapeutic candidate for HC repair. In this study, we elucidate the protective effects of rhNeuritin on injured HCs and its capacity to facilitate HC regeneration post-damage. Through the use of cochlear Supporting Cell (SC) lineage-tracing models in neonatal mice, we demonstrate that SC trans-differentiation serves as the origin of HC regeneration following damage. Simultaneously, we uncover that rhNeuritin potentiates the proliferation of SC precursor cells. Mechanistic insights reveal that rhNeuritin-induced cochleae exhibit downregulation of the critical Notch pathway mediator, Hes1, and upregulation of the essential FGFR pathway component Erm, which together may underpin HC regeneration and the proliferation of SC precursors. Notably, rhNeuritin demonstrates significant preservation of HC structural integrity. These findings collectively highlight the therapeutic potential of rhNeuritin in addressing hearing loss resulting from HC damage, thereby opening a new avenue for the restoration of auditory function.
Collapse
Affiliation(s)
- Haiyan Wang
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xue Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fei Gui
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaopin Sun
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Guanwu Yin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, District 32, Shihezi, 832002, PR China.
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
5
|
Qin X, Fu L, Li C, Tan X, Yin X. Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2803-1. [PMID: 39862345 DOI: 10.1007/s11427-024-2803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols. This approach efficiently generates hair cells and supporting cells that recapitulate the molecular, cellular, and structural characteristics of the inner ear. Single-cell RNA sequencing revealed the diversity and fidelity of cell populations within the organoids. Utilizing this platform, we validated the protective effects of candidate compounds against hair cell damage, highlighting its potential as a powerful tool for drug discovery and mechanistic studies of hair cell protection.
Collapse
Affiliation(s)
- Xuanhe Qin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liping Fu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chunying Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xilin Tan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaolei Yin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Sun Q, Tan F, Wang X, Gu X, Chen X, Lu Y, Li N, Qian X, Zhou Y, Zhang Z, Wang M, Zhang L, Tong B, Qi J, Chai R. AAV-regulated Serpine2 overexpression promotes hair cell regeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102396. [PMID: 39687341 PMCID: PMC11648234 DOI: 10.1016/j.omtn.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. Serpine2, a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In this study, we overexpressed Serpine2 in inner ear SCs cultured in two- and three-dimensional systems using the adeno-associated virus-inner ear (AAV-ie) vector, which promoted organoid expansion and HC differentiation. Overexpression of Serpine2 in the mouse cochlea through the round window membrane (RWM) injection promoted SC proliferation and HC regeneration, and the regenerated HCs were found to be derived from Lgr5+ SCs. Regenerated HCs have electrophysiological properties that are similar to those of native HCs. Notably, Serpine2 overexpression promoted HC survival and restored hearing of neomycin-damaged mice. In conclusion, our findings indicate that Serpine2 overexpression promotes HC regeneration and suggests that the utilization of inner ear progenitor cells in combination with AAVs might be a promising therapeutic target for hearing restoration.
Collapse
Affiliation(s)
- Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xingliang Gu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xin Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoyun Qian
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing 210008, China
| | - Yinyi Zhou
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Man Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Busheng Tong
- Department of Otolaryngology, Head and Neck Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen 518063, China
| |
Collapse
|
7
|
Diensthuber M, Stöver T. Organoids-the key to novel therapies for the inner ear? HNO 2024; 72:83-88. [PMID: 38775829 DOI: 10.1007/s00106-023-01367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 12/05/2024]
Abstract
The sensitivity and the complexity of the human inner ear in conjunction with the lack of regenerative capacity are the main reasons for hearing loss and tinnitus. Progress in the development of protective and regenerative therapies for the inner ear often failed in the past not least due to the fact that no suitable model systems for cell biological and pharmacological in vitro studies were available. A novel technology for creating "mini-organs", so-called organoids, could solve this problem and has now also reached inner ear research. It makes it possible to produce inner ear organoids from cochlear stem/progenitor cells, embryonic and induced pluripotent stem cells that mimic the structural characteristics and functional properties of the natural inner ear. This review focuses on the biological basis of these inner ear organoids, the current state of research and the promising prospects that are now opening up for basic and translational inner ear research.
Collapse
Affiliation(s)
- Marc Diensthuber
- University Hospital, Department of Otorhinolaryngology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany.
| | - Timo Stöver
- University Hospital, Department of Otorhinolaryngology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany
| |
Collapse
|
8
|
Liu Y, Qin T, Weng X, Leung B, So KKH, Wang B, Feng W, Marsolais A, Josselyn S, Huang P, Fritzsch B, Hui CC, Sham MH. Irx3/5 define the cochlear sensory domain and regulate vestibular and cochlear sensory patterning in the mammalian inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620152. [PMID: 39484413 PMCID: PMC11527188 DOI: 10.1101/2024.10.24.620152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mammalian inner ear houses the vestibular and cochlear sensory organs dedicated to sensing balance and sound, respectively. These distinct sensory organs arise from a common prosensory region, but the mechanisms underlying their divergence remain elusive. Here, we showed that two evolutionarily conserved homeobox genes, Irx3 and Irx5, are required for the patterning and segregation of the saccular and cochlear sensory domains, as well as for the formation of auditory sensory cells. Irx3/5 were highly expressed in the cochlea, their deletion resulted in a significantly shortened cochlea with a loss of the ductus reuniens that bridged the vestibule and cochlea. Remarkably, ectopic vestibular hair cells replaced the cochlear non-sensory structure, the Greater Epithelial Ridge. Moreover, most auditory sensory cells in the cochlea were transformed into hair cells of vestibular identity, with only a residual organ of Corti remaining in the mid-apical region of Irx3/5 double knockout mice. Conditional temporal knockouts further revealed that Irx3/5 are essential for controlling cochlear sensory domain formation before embryonic day 14. Our findings demonstrate that Irx3/5 regulate the patterning of vestibular and cochlear sensory cells, providing insights into the separation of vestibular and cochlear sensory organs during mammalian inner ear development.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tianli Qin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Weng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bernice Leung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karl Kam Hei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Boshi Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wanying Feng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Alexander Marsolais
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Sheena Josselyn
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mai Har Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
9
|
Liu Q, Zhang L, Chen Z, He Y, Huang Y, Qiu C, Zhu C, Zhou D, Gan Z, Gao X, Wan G. Metabolic Profiling of Cochlear Organoids Identifies α-Ketoglutarate and NAD + as Limiting Factors for Hair Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308032. [PMID: 38993037 PMCID: PMC11425867 DOI: 10.1002/advs.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Indexed: 07/13/2024]
Abstract
Cochlear hair cells are the sensory cells responsible for transduction of acoustic signals. In mammals, damaged hair cells do not regenerate, resulting in permanent hearing loss. Reprogramming of the surrounding supporting cells to functional hair cells represent a novel strategy to hearing restoration. However, cellular processes governing the efficient and functional hair cell reprogramming are not completely understood. Employing the mouse cochlear organoid system, detailed metabolomic characterizations of the expanding and differentiating organoids are performed. It is found that hair cell differentiation is associated with increased mitochondrial electron transport chain (ETC) activity and reactive oxidative species generation. Transcriptome and metabolome analyses indicate reduced expression of oxidoreductases and tricyclic acid (TCA) cycle metabolites. The metabolic decoupling between ETC and TCA cycle limits the availability of the key metabolic cofactors, α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide (NAD+). Reduced expression of NAD+ in cochlear supporting cells by PGC1α deficiency further impairs hair cell reprogramming, while supplementation of α-KG and NAD+ promotes hair cell reprogramming both in vitro and in vivo. These findings reveal metabolic rewiring as a central cellular process during hair cell differentiation, and highlight the insufficiency of key metabolites as a metabolic barrier for efficient hair cell reprogramming.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhen Chen
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yihan He
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| |
Collapse
|
10
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Kagoshima H, Ohnishi H, Yamamoto R, Yasumoto A, Tona Y, Nakagawa T, Omori K, Yamamoto N. EBF1 Limits the Numbers of Cochlear Hair and Supporting Cells and Forms the Scala Tympani and Spiral Limbus during Inner Ear Development. J Neurosci 2024; 44:e1060232023. [PMID: 38176908 PMCID: PMC10869149 DOI: 10.1523/jneurosci.1060-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.
Collapse
Affiliation(s)
- Hiroki Kagoshima
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Yamamoto
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Akiyoshi Yasumoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yosuke Tona
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan
| |
Collapse
|
12
|
Qi J, Zhang L, Wang X, Chen X, Li Y, Wang T, Wu P, Chai R. Modeling, applications and challenges of inner ear organoid. SMART MEDICINE 2024; 3:e20230028. [PMID: 39188517 PMCID: PMC11235738 DOI: 10.1002/smmd.20230028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 08/28/2024]
Abstract
More than 6% of the world's population is suffering from hearing loss and balance disorders. The inner ear is the organ that senses sound and balance. Although inner ear disorders are common, there are limited ways to intervene and restore its sensory and balance functions. The development and establishment of biologically therapeutic interventions for auditory disorders require clarification of the basics of signaling pathways that control inner ear development and the establishment of endogenous or exogenous cell-based therapeutic methods. In vitro models of the inner ear, such as organoid systems, can help identify new protective or regenerative drugs, develop new gene therapies, and be considered as potential tools for future clinical applications. Advances in stem cell technology and organoid culture offer unique opportunities for modeling inner ear diseases and developing personalized therapies for hearing loss. Here, we review and discuss the mechanisms for the establishment and the potential applications of inner ear organoids.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xin Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yiyuan Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Peina Wu
- School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
13
|
Choi SW, Abitbol JM, Cheng AG. Hair Cell Regeneration: From Animals to Humans. Clin Exp Otorhinolaryngol 2024; 17:1-14. [PMID: 38271988 PMCID: PMC10933805 DOI: 10.21053/ceo.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cochlear hair cells convert sound into electrical signals that are relayed via the spiral ganglion neurons to the central auditory pathway. Hair cells are vulnerable to damage caused by excessive noise, aging, and ototoxic agents. Non-mammals can regenerate lost hair cells by mitotic regeneration and direct transdifferentiation of surrounding supporting cells. However, in mature mammals, damaged hair cells are not replaced, resulting in permanent hearing loss. Recent studies have uncovered mechanisms by which sensory organs in non-mammals and the neonatal mammalian cochlea regenerate hair cells, and outlined possible mechanisms why this ability declines rapidly with age in mammals. Here, we review similarities and differences between avian, zebrafish, and mammalian hair cell regeneration. Moreover, we discuss advances and limitations of hair cell regeneration in the mature cochlea and their potential applications to human hearing loss.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Qi J, Huang W, Lu Y, Yang X, Zhou Y, Chen T, Wang X, Yu Y, Sun JQ, Chai R. Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear. Neurosci Bull 2024; 40:113-126. [PMID: 37787875 PMCID: PMC10774470 DOI: 10.1007/s12264-023-01130-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023] Open
Abstract
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wenjuan Huang
- Hospital of Southeast University, Nanjing, 210096, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Tian Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
15
|
Kalra G, Lenz D, Abdul-Aziz D, Hanna C, Basu M, Herb BR, Colantuoni C, Milon B, Saxena M, Shetty AC, Hertzano R, Shivdasani RA, Ament SA, Edge ASB. Cochlear organoids reveal transcriptional programs of postnatal hair cell differentiation from supporting cells. Cell Rep 2023; 42:113421. [PMID: 37952154 PMCID: PMC11007545 DOI: 10.1016/j.celrep.2023.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
We explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells. We validate these networks, demonstrating dynamic changes both in expression and predicted binding sites of transcription factors (TFs) during organoid differentiation. We identify known regulators of hair cell development, Atoh1, Pou4f3, and Gfi1, and the analysis predicts the regulatory factors Tcf4, an E-protein and heterodimerization partner of Atoh1, and Ddit3, a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt-signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for hair cell (HC) regeneration, which is limited in the adult.
Collapse
Affiliation(s)
- Gurmannat Kalra
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Danielle Lenz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | - Dunia Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | - Craig Hanna
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | - Mahashweta Basu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madhurima Saxena
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ronna Hertzano
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ramesh A Shivdasani
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Diensthuber M, Stöver T. [Organoids-the key to novel therapies for the inner ear? German version]. HNO 2023; 71:702-707. [PMID: 37845538 DOI: 10.1007/s00106-023-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/18/2023]
Abstract
The sensitivity and the complexity of the human inner ear in conjunction with the lack of regenerative capacity are the main reasons for hearing loss and tinnitus. Progress in the development of protective and regenerative therapies for the inner ear often failed in the past not least due to the fact that no suitable model systems for cell biological and pharmacological in vitro studies were available. A novel technology for creating "mini-organs", so-called organoids, could solve this problem and has now also reached inner ear research. It makes it possible to produce inner ear organoids from cochlear stem/progenitor cells, embryonic and induced pluripotent stem cells that mimic the structural characteristics and functional properties of the natural inner ear. This review focuses on the biological basis of these inner ear organoids, the current state of research and the promising prospects that are now opening up for basic and translational inner ear research.
Collapse
Affiliation(s)
- Marc Diensthuber
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland.
| | - Timo Stöver
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland
| |
Collapse
|
17
|
Aaron KA, Pekrun K, Atkinson PJ, Billings SE, Abitbol JM, Lee IA, Eltawil Y, Chen YS, Dong W, Nelson RF, Kay MA, Cheng AG. Selection of viral capsids and promoters affects the efficacy of rescue of Tmprss3-deficient cochlea. Mol Ther Methods Clin Dev 2023; 30:413-428. [PMID: 37663645 PMCID: PMC10471831 DOI: 10.1016/j.omtm.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Adeno-associated virus (AAV)-mediated gene transfer has shown promise in rescuing mouse models of genetic hearing loss, but how viral capsid and promoter selection affects efficacy is poorly characterized. Here, we tested combinations of AAVs and promoters to deliver Tmprss3, mutations in which are associated with hearing loss in humans. Tmprss3tm1/tm1 mice display severe cochlear hair cell degeneration, loss of auditory brainstem responses, and delayed loss of spiral ganglion neurons. Under the ubiquitous CAG promoter and AAV-KP1 capsid, Tmprss3 overexpression caused striking cytotoxicity in vitro and in vivo and failed to rescue degeneration or dysfunction of the Tmprss3tm1/tm1 cochlea. Reducing the dosage or using AAV-DJ-CAG-Tmprss3 diminished cytotoxicity without rescue of the Tmprss3tm1/tm1 cochlea. Finally, the combination of AAV-KP1 capsid and the EF1α promoter prevented cytotoxicity and reduced hair cell degeneration, loss of spiral ganglion neurons, and improved hearing thresholds in Tmprss3tm1/tm1 mice. Together, our study illustrates toxicity of exogenous genes and factors governing rescue efficiency, and suggests that cochlear gene therapy likely requires precisely targeted transgene expression.
Collapse
Affiliation(s)
- Ksenia A. Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Katja Pekrun
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sara E. Billings
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ina A. Lee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Siao Chen
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wuxing Dong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rick F. Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark A. Kay
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Li X, Morgan C, Nadar‐Ponniah PT, Kolanus W, Doetzlhofer A. TRIM71 reactivation enhances the mitotic and hair cell-forming potential of cochlear supporting cells. EMBO Rep 2023; 24:e56562. [PMID: 37492931 PMCID: PMC10481673 DOI: 10.15252/embr.202256562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
Affiliation(s)
- Xiao‐Jun Li
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Charles Morgan
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Prathamesh T Nadar‐Ponniah
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Otolaryngology and Center for Hearing and BalanceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
19
|
Sun Y, Liu Z. Recent advances in molecular studies on cochlear development and regeneration. Curr Opin Neurobiol 2023; 81:102745. [PMID: 37356371 DOI: 10.1016/j.conb.2023.102745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/06/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023]
Abstract
The auditory organ cochlea harbors two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs), which are innervated by spiral (auditory) ganglion neurons (SGNs). Recent transcriptomic, epigenetic, and genetic studies have started to reveal various aspects of cochlear development, including how prosensory progenitors are specified and diversified into IHCs or OHCs, as well as the heterogeneity among SGNs and how SGN subtypes are formed. Here, we primarily review advances in this line of research over the past five years and discuss a few key studies (from the past two years) to elucidate (1) how prosensory progenitors are specified; (2) the cis-regulatory control of Atoh1 expression and the synergistic interaction between Atoh1 and Pou4f3; and (3) the essential roles of Insm1 and Ikzf2 in OHC development and Tbx2 in IHC development. Moreover, we highlight the contribution of recent molecular studies on cochlear development toward the goal of regenerating IHCs and OHCs, which holds considerable potential for application in treating human deafness. Lastly, we briefly summarize the most recent progress on uncovering when and how SGN diversity is generated.
Collapse
Affiliation(s)
- Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
20
|
Matern MS, Durruthy-Durruthy R, Birol O, Darmanis S, Scheibinger M, Groves AK, Heller S. Transcriptional dynamics of delaminating neuroblasts in the mouse otic vesicle. Cell Rep 2023; 42:112545. [PMID: 37227818 PMCID: PMC10592509 DOI: 10.1016/j.celrep.2023.112545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
An abundance of research has recently highlighted the susceptibility of cochleovestibular ganglion (CVG) neurons to noise damage and aging in the adult cochlea, resulting in hearing deficits. Furthering our understanding of the transcriptional cascades that contribute to CVG development may provide insight into how these cells can be regenerated to treat inner ear dysfunction. Here we perform a high-depth single-cell RNA sequencing analysis of the E10.5 otic vesicle and its surrounding tissues, including CVG precursor neuroblasts and emerging CVG neurons. Clustering and trajectory analysis of otic-lineage cells reveals otic markers and the changes in gene expression that occur from neuroblast delamination toward the development of the CVG. This dataset provides a valuable resource for further identifying the mechanisms associated with CVG development from neurosensory competent cells within the otic vesicle.
Collapse
Affiliation(s)
- Maggie S Matern
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Durruthy-Durruthy
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Onur Birol
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mirko Scheibinger
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stefan Heller
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Erickson T, Biggers WP, Williams K, Butland SE, Venuto A. Regionalized Protein Localization Domains in the Zebrafish Hair Cell Kinocilium. J Dev Biol 2023; 11:28. [PMID: 37367482 DOI: 10.3390/jdb11020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Sensory hair cells are the receptors for auditory, vestibular, and lateral line sensory organs in vertebrates. These cells are distinguished by "hair"-like projections from their apical surface collectively known as the hair bundle. Along with the staircase arrangement of the actin-filled stereocilia, the hair bundle features a single, non-motile, true cilium called the kinocilium. The kinocilium plays an important role in bundle development and the mechanics of sensory detection. To understand more about kinocilial development and structure, we performed a transcriptomic analysis of zebrafish hair cells to identify cilia-associated genes that have yet to be characterized in hair cells. In this study, we focused on three such genes-ankef1a, odf3l2a, and saxo2-because human or mouse orthologs are either associated with sensorineural hearing loss or are located near uncharacterized deafness loci. We made transgenic fish that express fluorescently tagged versions of their proteins, demonstrating their localization to the kinocilia of zebrafish hair cells. Furthermore, we found that Ankef1a, Odf3l2a, and Saxo2 exhibit distinct localization patterns along the length of the kinocilium and within the cell body. Lastly, we have reported a novel overexpression phenotype of Saxo2. Overall, these results suggest that the hair cell kinocilium in zebrafish is regionalized along its proximal-distal axis and set the groundwork to understand more about the roles of these kinocilial proteins in hair cells.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | | | - Kevin Williams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Shyanne E Butland
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
22
|
Kersbergen CJ, Babola TA, Kanold PO, Bergles DE. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice. PLoS Biol 2023; 21:e3002160. [PMID: 37368868 PMCID: PMC10298803 DOI: 10.1371/journal.pbio.3002160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Intrinsically generated neural activity propagates through the developing auditory system to promote maturation and refinement of sound processing circuits prior to hearing onset. This early patterned activity is induced by non-sensory supporting cells in the organ of Corti, which are highly interconnected through gap junctions containing connexin 26 (Gjb2). Although loss of function mutations in Gjb2 impair cochlear development and are the most common cause of congenital deafness, it is not known if these variants disrupt spontaneous activity and the developmental trajectory of sound processing circuits in the brain. Here, we show in a new mouse model of Gjb2-mediated congenital deafness that cochlear supporting cells adjacent to inner hair cells (IHCs) unexpectedly retain intercellular coupling and the capacity to generate spontaneous activity, exhibiting only modest deficits prior to hearing onset. Supporting cells lacking Gjb2 elicited coordinated activation of IHCs, leading to coincident bursts of activity in central auditory neurons that will later process similar frequencies of sound. Despite alterations in the structure of the sensory epithelium, hair cells within the cochlea of Gjb2-deficient mice were intact and central auditory neurons could be activated within appropriate tonotopic domains by loud sounds at hearing onset, indicating that early maturation and refinement of auditory circuits was preserved. Only after cessation of spontaneous activity following hearing onset did progressive hair cell degeneration and enhanced auditory neuron excitability manifest. This preservation of cochlear spontaneous neural activity in the absence of connexin 26 may increase the effectiveness of early therapeutic interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J. Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Travis A. Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Sun G, Zheng Y, Fu X, Zhang W, Ren J, Ma S, Sun S, He X, Wang Q, Ji Z, Cheng F, Yan K, Liu Z, Belmonte JCI, Qu J, Wang S, Chai R, Liu GH. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell 2023; 14:180-201. [PMID: 36933008 PMCID: PMC10098046 DOI: 10.1093/procel/pwac058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.
Collapse
Affiliation(s)
- Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fang Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ziyi Liu
- Shandong Provincial Hospital and School of Laboratory Animal Science, Shandong First Medical University, Jinan 250000, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
24
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
25
|
Li XJ, Morgan C, Nadar-Ponniah PT, Kolanus W, Doetzlhofer A. Reactivation of the progenitor gene Trim71 enhances the mitotic and hair cell-forming potential of cochlear supporting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523802. [PMID: 36711735 PMCID: PMC9882147 DOI: 10.1101/2023.01.12.523802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming, however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 reactivation increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71’s RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
|
26
|
Piekna-Przybylska D, Na D, Zhang J, Baker C, Ashton JM, White PM. Single cell RNA sequencing analysis of mouse cochlear supporting cell transcriptomes with activated ERBB2 receptor indicates a cell-specific response that promotes CD44 activation. Front Cell Neurosci 2023; 16:1096872. [PMID: 36687526 PMCID: PMC9853549 DOI: 10.3389/fncel.2022.1096872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Hearing loss caused by the death of cochlear hair cells (HCs) might be restored through regeneration from supporting cells (SCs) via dedifferentiation and proliferation, as observed in birds. In a previous report, ERBB2 activation in a subset of cochlear SCs promoted widespread down-regulation of SOX2 in neighboring cells, proliferation, and the differentiation of HC-like cells. Here we analyze single cell transcriptomes from neonatal mouse cochlear SCs with activated ERBB2, with the goal of identifying potential secreted effectors. ERBB2 induction in vivo generated a new population of cells with de novo expression of a gene network. Called small integrin-binding ligand n-linked glycoproteins (SIBLINGs), these ligands and their regulators can alter NOTCH signaling and promote cell survival, proliferation, and differentiation in other systems. We validated mRNA expression of network members, and then extended our analysis to older stages. ERBB2 signaling in young adult SCs also promoted protein expression of gene network members. Furthermore, we found proliferating cochlear cell aggregates in the organ of Corti. Our results suggest that ectopic activation of ERBB2 signaling in cochlear SCs can alter the microenvironment, promoting proliferation and cell rearrangements. Together these results suggest a novel mechanism for inducing stem cell-like activity in the adult mammalian cochlea.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Daxiang Na
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jingyuan Zhang
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Cameron Baker
- Genomic Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - John M. Ashton
- Genomic Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Patricia M. White
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
27
|
Generation of innervated cochlear organoid recapitulates early development of auditory unit. Stem Cell Reports 2022; 18:319-336. [PMID: 36584686 PMCID: PMC9860115 DOI: 10.1016/j.stemcr.2022.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Functional cochlear hair cells (HCs) innervated by spiral ganglion neurons (SGNs) are essential for hearing, whereas robust models that recapitulate the peripheral auditory circuity are still lacking. Here, we developed cochlear organoids with functional peripheral auditory circuity in a staging three-dimensional (3D) co-culture system by initially reprogramming cochlear progenitor cells (CPCs) with increased proliferative potency that could be long-term expanded, then stepwise inducing the differentiation of cochlear HCs, as well as the outgrowth of neurites from SGNs. The function of HCs and synapses within organoids was confirmed by a series of morphological and electrophysiological evaluations. Single-cell mRNA sequencing revealed the differentiation trajectories of CPCs toward the major cochlear cell types and the dynamic gene expression during organoid HC development, which resembled the pattern of native HCs. We established the cochlear organoids with functional synapses for the first time, which provides a platform for deciphering the mechanisms of sensorineural hearing loss.
Collapse
|
28
|
Chen YS, Cabrera E, Tucker BJ, Shin TJ, Moawad JV, Totten DJ, Booth KT, Nelson RF. TMPRSS3 expression is limited in spiral ganglion neurons: implication for successful cochlear implantation. J Med Genet 2022; 59:1219-1226. [PMID: 35961784 DOI: 10.1136/jmg-2022-108654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND It is well established that biallelic mutations in transmembrane protease, serine 3 (TMPRSS3) cause hearing loss. Currently, there is controversy regarding the audiological outcomes after cochlear implantation (CI) for TMPRSS3-associated hearing loss. This controversy creates confusion among healthcare providers regarding the best treatment options for individuals with TMPRSS3-related hearing loss. METHODS A literature review was performed to identify all published cases of patients with TMPRSS3-associated hearing loss who received a CI. CI outcomes of this cohort were compared with published adult CI cohorts using postoperative consonant-nucleus-consonant (CNC) word performance. TMPRSS3 expression in mouse cochlea and human auditory nerves (HAN) was determined by using hybridisation chain reaction and single-cell RNA-sequencing analysis. RESULTS In aggregate, 27 patients (30 total CI ears) with TMPRSS3-associated hearing loss treated with CI, and 85% of patients reported favourable outcomes. Postoperative CNC word scores in patients with TMPRSS3-associated hearing loss were not significantly different than those seen in adult CI cohorts (8 studies). Robust Tmprss3 expression occurs throughout the mouse organ of Corti, the spindle and root cells of the lateral wall and faint staining within <5% of the HAN, representing type II spiral ganglion neurons. Adult HAN express negligible levels of TMPRSS3. CONCLUSION The clinical features after CI and physiological expression of TMPRSS3 suggest against a major role of TMPRSS3 in auditory neurons.
Collapse
Affiliation(s)
- Yuan-Siao Chen
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ernesto Cabrera
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brady J Tucker
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy J Shin
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jasmine V Moawad
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Douglas J Totten
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin T Booth
- Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Connolly K, Gonzalez-Cordero A. Modelling inner ear development and disease using pluripotent stem cells - a pathway to new therapeutic strategies. Dis Model Mech 2022; 15:dmm049593. [PMID: 36331565 PMCID: PMC10621662 DOI: 10.1242/dmm.049593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The sensory epithelia of the mammalian inner ear enable sound and movement to be perceived. Damage to these epithelia can cause irreversible sensorineural hearing loss and vestibular dysfunction because they lack regenerative capacity. The human inner ear cannot be biopsied without causing permanent damage, significantly limiting the tissue samples available for research. Investigating disease pathology and therapeutic developments have therefore traditionally relied on animal models, which often cannot completely recapitulate the human otic systems. These challenges are now being partly addressed using induced pluripotent stem cell-derived cultures, which generate the sensory epithelial-like tissues of the inner ear. Here, we review how pluripotent stem cells have been used to produce two-dimensional and three-dimensional otic cultures, the strengths and limitations of these new approaches, and how they have been employed to investigate genetic and acquired forms of audiovestibular dysfunction. This Review provides an overview of the progress in pluripotent stem cell-derived otic cultures thus far, focusing on their applications in disease modelling and therapeutic trials. We survey their current limitations and future directions, highlighting their prospective utility for high-throughput drug screening and developing personalised medicine approaches.
Collapse
Affiliation(s)
- Keeva Connolly
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| |
Collapse
|
30
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
31
|
Nist-Lund C, Kim J, Koehler KR. Advancements in inner ear development, regeneration, and repair through otic organoids. Curr Opin Genet Dev 2022; 76:101954. [PMID: 35853286 PMCID: PMC10425989 DOI: 10.1016/j.gde.2022.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate inner ear contains a diversity of unique cell types arranged in a particularly complex 3D cytoarchitecture. Both of these features are integral to the proper development, function, and maintenance of hearing and balance. Since the elucidation of the timing and delivery of signaling molecules to produce inner ear sensory cells, supporting cells, and neurons from human induced pluripotent stem cells, we have entered a revolution using organ-like 'otic organoid' cultures to explore inner ear specific genetic programs, developmental rules, and potential therapeutics. This review aims to highlight a selection of reviews and primary research papers from the past two years of particular merit that use otic organoids to investigate the broadly defined topics of cell reprogramming, regeneration, and repair.
Collapse
Affiliation(s)
- Carl Nist-Lund
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
| | - Jin Kim
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
32
|
Ontogeny of cellular organization and LGR5 expression in porcine cochlea revealed using tissue clearing and 3D imaging. iScience 2022; 25:104695. [PMID: 35865132 PMCID: PMC9294204 DOI: 10.1016/j.isci.2022.104695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Over 11% of the world's population experience hearing loss. Although there are promising studies to restore hearing in rodent models, the size, ontogeny, genetics, and frequency range of hearing of most rodents' cochlea do not match that of humans. The porcine cochlea can bridge this gap as it shares many anatomical, physiological, and genetic similarities with its human counterpart. Here, we provide a detailed methodology to process and image the porcine cochlea in 3D using tissue clearing and light-sheet microscopy. The resulting 3D images can be employed to compare cochleae across different ages and conditions, investigate the ontogeny of cochlear cytoarchitecture, and produce quantitative expression maps of LGR5, a marker of cochlear progenitors in mice. These data reveal that hair cell organization, inner ear morphology, cellular cartography in the organ of Corti, and spatiotemporal expression of LGR5 are dynamic over developmental stages in a pattern not previously documented.
Collapse
|
33
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
34
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
35
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
37
|
Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Jin Y, Sun L, Yang J. Pseudo-Temporal Analysis of Single-Cell RNA Sequencing Reveals Trans-Differentiation Potential of Greater Epithelial Ridge Cells Into Hair Cells During Postnatal Development of Cochlea in Rats. Front Mol Neurosci 2022; 15:832813. [PMID: 35370544 PMCID: PMC8966675 DOI: 10.3389/fnmol.2022.832813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
The hair cells of the cochlea play a decisive role in the process of hearing damage and recovery, yet knowledge of their regeneration process is still limited. Greater epithelial ridge (GER) cells, a type of cell present during cochlear development that has the characteristics of a precursor sensory cell, disappear at the time of maturation of hearing development. Its development and evolution remain mysterious for many years. Here, we performed single-cell RNA sequencing to profile the gene expression landscapes of rats’ cochlear basal membrane from P1, P7, and P14 and identified eight major subtypes of GER cells. Furthermore, single-cell trajectory analysis for GER cells and hair cells indicated that among the different subtypes of GER, four subtypes had transient cell proliferation after birth and could transdifferentiate into inner and outer hair cells, and two of them mainly transdifferentiated into inner hair cells. The other two subtypes eventually transdifferentiate into outer hair cells. Our study lays the groundwork for elucidating the mechanisms of the key regulatory genes and signaling pathways in the trans-differentiation of GER cell subtypes into hair cells and provides potential clues to understand hair cell regeneration.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Shuna Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Fan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Xiayu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Yulian Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Yulian Jin,
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- Lianhua Sun,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- Jun Yang,
| |
Collapse
|
38
|
Langlie J, Finberg A, Bencie NB, Mittal J, Omidian H, Omidi Y, Mittal R, Eshraghi AA. Recent advancements in cell-based models for auditory disorders. BIOIMPACTS 2022; 12:155-169. [PMID: 35411298 PMCID: PMC8905588 DOI: 10.34172/bi.2022.23900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Cell-based models play an important role in understanding the pathophysiology and etiology of auditory disorders. For the auditory system, models have primarily focused on restoring inner and outer hair cells. However, they have largely underrepresented the surrounding structures and cells that support the function of the hair cells.
Methods: In this article, we will review recent advancements in the evolution of cell-based models of auditory disorders in their progression towards three dimensional (3D) models and organoids that more closely mimic the pathophysiology in vivo.
Results: With the elucidation of the molecular targets and transcription factors required to generate diverse cell lines of the components of inner ear, research is starting to progress from two dimensional (2D) models to a greater 3D approach. Of note, the 3D models of the inner ear, including organoids, are relatively new and emerging in the field. As 3D models of the inner ear continue to evolve in complexity, their role in modeling disease will grow as they bridge the gap between cell culture and in vivo models.
Conclusion: Using 3D cell models to understand the etiology and molecular mechanisms underlying auditory disorders holds great potential for developing more targeted and effective novel therapeutics.
Collapse
Affiliation(s)
- Jake Langlie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ariel Finberg
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nathalie B. Bencie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
39
|
Yap ZY, Efthymiou S, Seiffert S, Vargas Parra K, Lee S, Nasca A, Maroofian R, Schrauwen I, Pendziwiat M, Jung S, Bhoj E, Striano P, Mankad K, Vona B, Cuddapah S, Wagner A, Alvi JR, Davoudi-Dehaghani E, Fallah MS, Gannavarapu S, Lamperti C, Legati A, Murtaza BN, Nadeem MS, Rehman MU, Saeidi K, Salpietro V, von Spiczak S, Sandoval A, Zeinali S, Zeviani M, Reich A, Jang C, Helbig I, Barakat TS, Ghezzi D, Leal SM, Weber Y, Houlden H, Yoon WH, Houlden H, Yoon WH. Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. Am J Hum Genet 2021; 108:2368-2384. [PMID: 34800363 DOI: 10.1016/j.ajhg.2021.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
40
|
Xu Z, Rai V, Zuo J. TUB and ZNF532 Promote the Atoh1-Mediated Hair Cell Regeneration in Mouse Cochleae. Front Cell Neurosci 2021; 15:759223. [PMID: 34819838 PMCID: PMC8606527 DOI: 10.3389/fncel.2021.759223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/31/2022] Open
Abstract
Hair cell (HC) regeneration is a promising therapy for permanent sensorineural hearing loss caused by HC loss in mammals. Atoh1 has been shown to convert supporting cells (SCs) to HCs in neonatal cochleae; its combinations with other factors can improve the efficiency of HC regeneration. To identify additional transcription factors for efficient Atoh1-mediated HC regeneration, here we optimized the electroporation procedure for explant culture of neonatal mouse organs of Corti and tested multiple transcription factors, Six2, Ikzf2, Lbh, Arid3b, Hmg20 a, Tub, Sall1, and Znf532, for their potential to promote Atoh1-mediated conversion of SCs to HCs. These transcription factors are expressed highly in HCs but differentially compared to the converted HCs based on previous studies, and are also potential co-reprograming factors for Atoh1-mediated SC-to-HC conversion by literature review. P0.5 cochlear explants were electroporated with these transcription factors alone or jointly with Atoh1. We found that Sox2+ progenitors concentrated within the lateral greater epithelial ridge (GER) can be electroporated efficiently with minimal HC damage. Atoh1 ectopic expression promoted HC regeneration in Sox2+ lateral GER cells. Transcription factors Tub and Znf532, but not the other six tested, promoted the HC regeneration mediated by Atoh1, consistent with previous studies that Isl1 promotes Atoh1-mediated HC conversionex vivo and in vivo and that both Tub and Znf532 are downstream targets of Isl1. Thus, our studies revealed an optimized electroporation method that can transfect the Sox2+ lateral GER cells efficiently with minimal damage to the endogenous HCs. Our results also demonstrate the importance of the Isl1/Tub/Znf532 pathway in promoting Atoh1-mediated HC regeneration.
Collapse
Affiliation(s)
- Zhenhang Xu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Vikrant Rai
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
41
|
Rousset F, Schmidbauer D, Fink S, Adel Y, Obexer B, Müller M, Glueckert R, Löwenheim H, Senn P. Phoenix auditory neurons as 3R cell model for high throughput screening of neurogenic compounds. Hear Res 2021; 414:108391. [PMID: 34844170 DOI: 10.1016/j.heares.2021.108391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022]
Abstract
Auditory neurons connect the sensory hair cells from the inner ear to the brainstem. These bipolar neurons are relevant targets for pharmacological intervention aiming at protecting or improving the hearing function in various forms of sensorineural hearing loss. In the research laboratory, neurotrophic compounds are commonly used to improve survival and to promote regeneration of auditory neurons. One important roadblock delaying eventual clinical applications of these strategies in humans is the lack of powerful in vitro models allowing high throughput screening of otoprotective and regenerative compounds. The recently discovered auditory neuroprogenitors (ANPGs) derived from the A/J mouse with an unprecedented capacity to self-renew and to provide mature auditory neurons offer the possibility to overcome this bottleneck. In the present study, we further characterized the new phoenix ANPGs model and compared it to the current gold-standard spiral ganglion organotypic explant (SGE) model to assay neurite outgrowth, neurite length and glutamate-induced Ca2+ response in response to neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF) treatment. Whereas both, SGEs and phoenix ANPGs exhibited a robust and sensitive response to neurotrophins, the phoenix ANPGs offer a considerable range of advantages including high throughput suitability, lower experimental variability, single cell resolution and an important reduction of animal numbers. The phoenix ANPGs in vitro model therefore provides a robust high-throughput platform to screen for otoprotective and regenerative neurotrophic compounds in line with 3R principles and is of interest for the field of auditory neuroscience.
Collapse
Affiliation(s)
- Francis Rousset
- The Inner Ear & Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| | - Dominik Schmidbauer
- Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria
| | - Stefan Fink
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Benjamin Obexer
- Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Rudolf Glueckert
- Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria.
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, Germany
| | - Pascal Senn
- The Inner Ear & Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Switzerland
| |
Collapse
|
42
|
Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y, Sperber M, Huarcaya Najarro E, Scheibinger M, Elkon R, Hertzano R, Cheng AG. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLoS Biol 2021; 19:e3001445. [PMID: 34758021 PMCID: PMC8608324 DOI: 10.1371/journal.pbio.3001445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/22/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.
Collapse
Affiliation(s)
- Tomokatsu Udagawa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Mammano F, Sun L, Yang J, Zheng G. Single-Cell RNA Sequencing Analysis Reveals Greater Epithelial Ridge Cells Degeneration During Postnatal Development of Cochlea in Rats. Front Cell Dev Biol 2021; 9:719491. [PMID: 34540839 PMCID: PMC8446670 DOI: 10.3389/fcell.2021.719491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Greater epithelial ridge cells, a transient neonatal cell group in the cochlear duct, which plays a crucial role in the functional maturation of hair cell, structural development of tectorial membrane, and refinement of audio localization before hearing. Greater epithelial ridge cells are methodologically homogeneous, while whether different cell subtypes are existence in this intriguing region and the degeneration mechanism during postnatal cochlear development are poorly understood. In the present study, single-cell RNA sequencing was performed on the cochlear duct of postnatal rats at day 1 (P1) and day 7 (P7) to identify subsets of greater epithelial ridge cell and progression. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to examine genes enriched biological processes in these clusters. We identified a total of 26 clusters at P1 and P7 rats and found that the cell number of five cell clusters decreased significantly, while four clusters had similar gene expression patterns and biological properties. The genes of these four cell populations were mainly enriched in Ribosome and P13K-Akt signal pathway. Among them, Rps16, Rpsa, Col4a2, Col6a2, Ctsk, and Jun are particularly interesting as their expression might contribute to the greater epithelial ridge cells degeneration. In conclusion, our study provides an important reference resource of greater epithelial ridge cells landscape and mechanism insights for further understanding greater epithelial ridge cells degeneration during postnatal rat cochlear development.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuna Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiayu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.,Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Lianhua Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guiliang Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
44
|
Kubota M, Heller S. Murine cochlear cell sorting and cell-type-specific organoid culture. STAR Protoc 2021; 2:100645. [PMID: 34278332 PMCID: PMC8271165 DOI: 10.1016/j.xpro.2021.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal mouse cochlear duct cells can proliferate and grow in vitro into inner ear organoids. Distinctive cochlear duct cell types have different organoid formation capacities. Here, we provide a flow cytometric cell-sorting method that allows the subsequent culture of individual cochlear cell populations. For the efficient culture of the sorted cells, we provide protocols for growing free-floating inner ear organoids, the adherence of organoids to a substrate, and the expansion of organoid-derived inner ear colonies. For complete details on the use and execution of this protocol, please refer to Kubota et al. (2021). Flow cytometric sorting of mouse cochlear cells Culture of sorted cochlear cell populations and growth of inner ear organoids Adherent growth of inner ear organoid-derived colonies
Collapse
Affiliation(s)
- Marie Kubota
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S. Cell-type identity of the avian cochlea. Cell Rep 2021; 34:108900. [PMID: 33761346 DOI: 10.1016/j.celrep.2021.108900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells. We identify markers for the supporting cells associated with tall hair cells, which represent the facultative stem cells of the avian inner ear. Likewise, we present markers for supporting cells that are located below the short cochlear hair cells. We further infer spatial expression gradients of hair cell genes along the tonotopic axis of the cochlea. This resource advances neurobiology, comparative biology, and regenerative medicine by providing a basis for comparative studies with non-regenerating mammalian cochleae and for longitudinal studies of the regenerating avian cochlea.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sakin Kirti
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen, Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|