1
|
Hsieh LL, Thompson EA, Jairam NP, Roznik K, Figueroa A, Aytenfisu T, Zhou W, Gour N, Chao KH, Milstone AM, Egbert E, D'Alessio F, Karakousis PC, Ordoñez A, Scully EP, Pekosz A, Karaba AH, Cox AL. SARS-CoV-2 induces neutrophil degranulation and differentiation into myeloid-derived suppressor cells associated with severe COVID-19. Sci Transl Med 2025; 17:eadn7527. [PMID: 40397714 DOI: 10.1126/scitranslmed.adn7527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/18/2024] [Accepted: 04/01/2025] [Indexed: 05/23/2025]
Abstract
Severe COVID-19 presents with a distinct immunological profile, characterized by elevated neutrophil and reduced lymphocyte counts, seen commonly in fungal and bacterial infections. This study demonstrates that patients hospitalized with COVID-19 show evidence of neutrophil degranulation and have increased expression of neutrophil surface lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a marker of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Both early LOX-1 and programmed death-ligand 1 (PD-L1) expression on neutrophils were associated with development of severe disease. To determine whether tissue damage or inflammation is required to induce PMN-MDSCs or whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly activates neutrophils to become PMN-MDSCs, we incubated healthy human neutrophils with SARS-CoV-2. SARS-CoV-2 rapidly induced LOX-1 surface expression in healthy neutrophils independent of productive infection. LOX-1 induction was dependent on granule exocytosis and promoted up-regulation of reactive oxygen species, CD63, and PD-L1, enabling LOX-1+ neutrophils to suppress autologous T cell proliferation in vitro. These results support a role for PMN-MDSCs in mediating severe COVID-19, and inhibition of PD-L1 represents a potential therapeutic strategy for enhancing the immune response in acute SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Leon L Hsieh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Elizabeth A Thompson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Nirvani P Jairam
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tihitina Aytenfisu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Naina Gour
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kuan-Hao Chao
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Aaron M Milstone
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Egbert
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Franco D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Alvaro Ordoñez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eileen P Scully
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Andrew H Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Shteinfer-Kuzmine A, Moyal MM, Karunanithi Nivedita A, Trishna S, Nadir A, Tripathi S, Shoshan-Barmatz V. Metformin-Induced Apoptosis Is Mediated Through Mitochondrial VDAC1. Pharmaceuticals (Basel) 2025; 18:757. [PMID: 40430574 PMCID: PMC12115184 DOI: 10.3390/ph18050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different modes of metformin action at the molecular level have been proposed. Methods: In this study, we present the mitochondria and the VDAC1 (voltage-dependent anion channel) as a potential target of metformin. Results: Metformin induces VDAC1 overexpression, its oligomerization, and subsequent apoptosis. Metformin analogs phenformin and buformin at much lower concentrations also induce VDAC1 overexpression, oligomerization, and cell death. We demonstrate the interaction of metformin with purified VDAC1, which inhibited its channel conduction in a voltage-dependent manner. Metformin bound to the synthetic VDAC1-N-terminal peptide and binding to this domain was also found by its molecular docking with VDAC1. Moreover, we demonstrated metformin binding to purified hexokinases (HK-I) with a 400-fold lower metformin concentration than that required for cell death induction. In cells, metformin induced HK-I detachment from the mitochondrial VDAC1. Lastly, metformin increased the expression of NLRP3 and ASC and induced their co-localization, suggesting inflammasome activation. Conclusions: The results suggest that VDAC1 is a target for metformin and its analogs, and this is associated with metformin's adverse effects on many diseases.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Meital M. Moyal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Aditya Karunanithi Nivedita
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Sweta Trishna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Almog Nadir
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| |
Collapse
|
3
|
Chen ZZ, Dufresne J, Bowden P, Marshall JG. Comparison of the Human Plasma Peptides from the Fit of Fragmentation Spectra versus Accurate Monoisotopic Precursor Mass. ACS OMEGA 2025; 10:10796-10811. [PMID: 40160755 PMCID: PMC11947786 DOI: 10.1021/acsomega.4c06211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
In nature, ionized peptides with heavy isotopes and hydrogen rearrangements show a broad mass distribution with signals at discrete delta mass values from -3 to +5 Da by mass spectrometry (MS). For many peptides, the intensity of the +1 or +2 Da isotope exceeds the signal from the monoisotopic mass. Therefore, there is a need for a method that improves peptide identification from heavy isotopes or hydrogen rearrangements based on the fit of tandem mass spectra. Peptides may be identified using an accurate monoisotopic precursor mass with ≤0.1 Da. However, many peptides with heavy isotopes and H-loss can be identified and enumerated based on the fit of their MS/MS spectra alone in the absence of an accurate precursor monoisotopic mass (i.e., ± 3 Da) using the X!TANDEM MS/MS fitting algorithm. In this study, human plasma samples were analyzed with a highly resolving axially harmonic orbital ion trap (OIT) and a sensitive linear quadrupole ion trap (LIT). The MS/MS fragmentation spectra from the OIT can be fit to peptides from the monoisotopic (±0.1 Da) as well as all other precursor masses with a wide mass tolerance (±3 Da). The resulting delta mass distribution can then be plotted and compared to the predicted distribution of heavy isotopes and hydrogen rearrangements to provide a direct biophysical prediction and test the validity of the fit determined by accepting the best-fit MS/MS spectra. The OIT instrument, which has greater resolution, was sampled at 30 nL per minute, while the more sensitive LIT was sampled at 200 nL per minute. The MS/MS spectra generated by each instrument were fit to peptides within a wide window (±3 Da) using the rigorous X!TANDEM algorithm. The OIT and LIT results were compared in an SQL Server database and corrected against analytical and statistical controls. The delta mass distribution of the peptides with hydrogen rearrangements and heavy isotopes was determined from the fit MS/MS spectra using the R statistical program. The OIT sampled MS and MS/MS spectra from the high-intensity precursor ions by focusing on E7 to E9 detector counts. In contrast, the LIT sampled a range of precursor ion intensities focused from E4 to E7 and thus reached lower ion intensity values. As expected, the precursor mass [M + H]+ obtained by the OIT exhibited sharp delta mass peaks at -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da due to naturally occurring heavy isotopes and hydrogen rearrangements. The collection of peptides and proteins identified by OIT and LIT was in qualitative and quantitative agreement with one another, with 99.9% overlap on 2726 protein gene symbols from human plasma and a highly significant relationship by regression analysis. The protein p-values, false discovery rate q-values, and comparisons to the noise MS/MS analytical control and random MS/MS statistical control confirmed the high-confidence MS/MS identifications from both instruments. MS/MS fragmentation spectra from the OIT were fit to peptides. The resulting precursor ion delta mass distribution showed a precise match to the predicted isotope distributions and hydrogen rearrangements of natural peptides. Thus, analysis of delta mass plots provided powerful biophysical evidence for the accuracy of plasma peptide identification from the fit of the MS/MS spectra alone. The high level of agreement on proteins and peptides and the proportional enumeration between proteins identified by the OIT and those identified independently using a LIT confirmed that plasma peptides and proteins may be identified and quantified from MS/MS spectra alone without the need for an accurate measure of the precursor mass. The greater sensitivity and low cost of searching MS/MS spectra in the absence of an accurate mass mean that it is possible to identify and quantify more proteins for the discovery of proteins in clinical populations.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
4
|
Jantz-Naeem N, Guvencli N, Böttcher-Loschinski R, Böttcher M, Mougiakakos D, Kahlfuss S. Metabolic T-cell phenotypes: from bioenergetics to function. Am J Physiol Cell Physiol 2025; 328:C1062-C1075. [PMID: 39946684 DOI: 10.1152/ajpcell.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nese Guvencli
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Böttcher
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
LaHue SC, Takegami N, Simmasalam R, Baqai A, Munoz E, Sikri A, de Courson TDB, Singhal NS, Eckalbar W, Langelier CR, Hendrickson CM, Calfee CS, Erle DJ, Krummel MF, Woodruff PG, Oskotsky T, Sirota M, Ferguson A, Douglas VC, Newman JC, Pleasure SJ, Wilson MR, COMET consortium, Singhal NS. Peripheral blood mononuclear cell transcriptomic trajectories reveal dynamic regulation of inflammatory actors in delirium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.14.25322163. [PMID: 40034792 PMCID: PMC11875240 DOI: 10.1101/2025.02.14.25322163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Delirium is a neurologic syndrome characterized by inattention and cognitive impairment frequently encountered in the medically ill. Peripheral inflammation is a key trigger of delirium, but the patient-specific immune responses associated with delirium development and resolution are unknown. This retrospective cohort study of prospectively collected biospecimens examines RNA sequencing from peripheral blood mononuclear cells of adults hospitalized for COVID-19 to better understand patient-specific factors associated with delirium (n = 64). Longitudinal transcriptomic analyses highlight persistent immune dysregulation in delirium, marked by increasing expression trajectories of genes linked to innate immune pathways, including complement activation, cytokine production, and monocyte/macrophage recruitment. Genes involved adaptive immunity showed a declining trajectory over time in patients with delirium. Although corticosteroid treatment suppressed some aspects of immune hyperactivation, aberrant responses contributing to delirium were exacerbated. Delirium resolution was characterized by normalization of key transcripts such as CCL2 and innate immune markers. Novel associations with delirium were found in genes related to stress granule assembly and DUSP2 and KLF10, which mediate T-cell responses. These findings provide insights into the peripheral immune responses accompanying delirium and their modulation by corticosteroids. Future trials targeting aberrant inflammatory responses may mitigate the severe outcomes associated with delirium due to COVID19.
Collapse
Affiliation(s)
- Sara C. LaHue
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
- Weill Institute for Neurosciences, UCSF
- Buck Institute for Research on Aging, Novato, USA
| | - Naoki Takegami
- Weill Institute for Neurosciences, UCSF
- Department of Neurological Surgery, UCSF
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, USA
| | - Rubinee Simmasalam
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
| | - Abiya Baqai
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
| | - Elena Munoz
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
| | - Anya Sikri
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
| | | | - Nilika S. Singhal
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
| | - Walter Eckalbar
- Department of Medicine, UCSF
- UCSF CoLabs, UCSF
- Division of Pulmonary and Critical Care Medicine, UCSF
| | | | - Carolyn M. Hendrickson
- Department of Medicine, UCSF
- Division of Pulmonary and Critical Care Medicine, UCSF
- Zuckerberg San Francisco General Hospital and Trauma Center, USA
| | - Carolyn S. Calfee
- Department of Medicine, UCSF
- Division of Pulmonary and Critical Care Medicine, UCSF
| | - David J. Erle
- Department of Medicine, UCSF
- UCSF CoLabs, UCSF
- Division of Pulmonary and Critical Care Medicine, UCSF
| | | | - Prescott G. Woodruff
- Department of Medicine, UCSF
- Division of Pulmonary and Critical Care Medicine, UCSF
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, UCSF
- Department of Pediatrics, UCSF
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF
- Department of Pediatrics, UCSF
| | - Adam Ferguson
- Weill Institute for Neurosciences, UCSF
- Department of Neurological Surgery, UCSF
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, USA
| | - Vanja C. Douglas
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
- Weill Institute for Neurosciences, UCSF
| | - John C. Newman
- Buck Institute for Research on Aging, Novato, USA
- Department of Medicine, UCSF
- San Francisco Veterans Affairs Medical Center, San Francisco, USA
- Division of Geriatrics, UCSF
| | - Samuel J. Pleasure
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
- Weill Institute for Neurosciences, UCSF
| | - Michael R. Wilson
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
- Weill Institute for Neurosciences, UCSF
| | | | - Neel S. Singhal
- Department of Neurology, School of Medicine, University of California-San Francisco (UCSF), USA
- San Francisco Veterans Affairs Medical Center, San Francisco, USA
| |
Collapse
|
6
|
Karaba AH, Xue J, Johnston TS, Traut CC, Dalrymple LS, Kossmann RJ, Blankson JN, Parikh CR, Ray SC. Longitudinal Characterization of SARS-CoV-2 Immunity in Hemodialysis Patients Post Omicron. Kidney Int Rep 2025; 10:406-415. [PMID: 39990910 PMCID: PMC11843127 DOI: 10.1016/j.ekir.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction Individuals receiving hemodialysis (HD) are at risk for severe COVID-19 and have attenuated responses to COVID-19 vaccines. Evolution of immunity and risk for subsequent infection with additional vaccinations and infections in this population is poorly understood. Methods An observational multicenter cohort of 55 patients receiving HD in community HD centers, majority (85%) with at least 2 doses of COVID-19 vaccine (56% female, age [median; interquartile range, IQR] of 67, [58.0-74.0] years), was followed-up with for 50 weeks between December, 2021 and April, 2023 and collected blood samples at enrollment, 8 weeks, and 24 weeks thereafter. Anti-SARS-CoV-2 IgG and ACE2 inhibition (surrogate neutralization) against ancestral, Delta, and Omicron subvariants was measured. T-cell responses to Spike and Mucleocapsid proteins were measured via enzyme-linked immunosorbent spot. Changes in antibody and T cell responses were assessed by paired Wilcoxon rank-sum testing and Fisher exact testing. Antibody responses were compared to thrice vaccinated healthy controls (HCs) as a benchmark for what optimal responses could have been in the early Omicron period. Results Neutralization did not increase over time, and HD participants had lower neutralization than HCs. Only 56% of HD participants had a positive T cell response to spike after the BA.1/2 wave. Antibody and cellular responses were concordant in only 34.5% at final visit. Antibody responses trended higher among those with prior COVID-19, but spike-specific T cell responses did not vary. Conclusions Original vaccine formulations and previous infection are insufficient to induce reliable SARS-CoV-2 responses in individuals on HD, suggesting that updated annual COVID-19 vaccines and transmission-based precautions remain critical in this population.
Collapse
Affiliation(s)
- Andrew H. Karaba
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiashu Xue
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trevor S. Johnston
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caroline C. Traut
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Robert J. Kossmann
- Global Medical Office, Fresenius Medical Care, Waltham, Massachusetts, USA
| | - Joel N. Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chirag R. Parikh
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stuart C. Ray
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Jackson C, Cherry C, Bom S, Dykema AG, Wang R, Thompson E, Zhang M, Li R, Ji Z, Hou W, Zhan W, Zhang H, Choi J, Vaghasia A, Hansen L, Wang W, Bergsneider B, Jones KM, Rodriguez F, Weingart J, Lucas CH, Powell J, Elisseeff J, Yegnasubramanian S, Lim M, Bettegowda C, Ji H, Pardoll D. Distinct myeloid-derived suppressor cell populations in human glioblastoma. Science 2025; 387:eabm5214. [PMID: 39818911 DOI: 10.1126/science.abm5214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
The role of glioma-associated myeloid cells in tumor growth and immune evasion remains poorly understood. We performed single-cell RNA sequencing of immune and tumor cells from 33 gliomas, identifying two distinct myeloid-derived suppressor cell (MDSC) populations in isocitrate dehydrogenase-wild-type (IDT-WT) glioblastoma: an early progenitor MDSC (E-MDSC) population with up-regulation of metabolic and hypoxia pathways and a monocytic MDSC (M-MDSC) population. Spatial transcriptomics demonstrated that E-MDSCs geographically colocalize with metabolic stem-like tumor cells in the pseudopalisading region. Ligand-receptor analysis revealed cross-talk between these cells, where glioma stem-like cells produce chemokines attracting E-MDSCs, which in turn produce growth factors for the tumor cells. This interaction is absent in IDH-mutant gliomas, associated with hypermethylation and repressed gene expression of MDSC-attracting chemokines. Our study elucidates specific MDSCs that may facilitate glioblastoma progression and mediate tumor immunosuppression.
Collapse
Affiliation(s)
- Christina Jackson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sadhana Bom
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Arbor G Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Rulin Wang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Thompson
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Ming Zhang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Runzhe Li
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhicheng Ji
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenpin Hou
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wentao Zhan
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Landon Hansen
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Brandon Bergsneider
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kate M Jones
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fausto Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chetan Bettegowda
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Drew Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
9
|
Dhakal S, Yin A, Escarra-Senmarti M, Demko ZO, Pisanic N, Johnston TS, Trejo-Zambrano MI, Kruczynski K, Lee JS, Hardick JP, Shea P, Shapiro JR, Park HS, Parish MA, Caputo C, Ganesan A, Mullapudi SK, Gould SJ, Betenbaugh MJ, Pekosz A, Heaney CD, Antar AAR, Manabe YC, Cox AL, Karaba AH, Andrade F, Zeger SL, Klein SL. Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes. COMMUNICATIONS MEDICINE 2024; 4:249. [PMID: 39592832 PMCID: PMC11599591 DOI: 10.1038/s43856-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Critically ill hospitalized patients with COVID-19 have greater antibody titers than those with mild to moderate illness, but their association with recovery or death from COVID-19 has not been characterized. METHODS In a cohort study of 178 COVID-19 patients, 73 non-hospitalized and 105 hospitalized patients, mucosal swabs and plasma samples were collected at hospital enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA, cytokines/chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody responses against SARS-CoV-2. The association of demographic variables and more than 20 serological antibody measures with intubation or death due to COVID-19 was determined using machine learning algorithms. RESULTS Predictive models reveal that IgG binding and ACE2 binding inhibition responses at 1 MPE are positively and anti-Spike antibody-mediated complement activation at enrollment is negatively associated with an increased probability of intubation or death from COVID-19 within 3 MPE. CONCLUSIONS At enrollment, serological antibody measures are more predictive than demographic variables of subsequent intubation or death among hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Anna Yin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Zoe O Demko
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Trevor S Johnston
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Kate Kruczynski
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John S Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Justin P Hardick
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Patrick Shea
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Janna R Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maclaine A Parish
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher Caputo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abhinaya Ganesan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarika K Mullapudi
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Advanced Mammalian Biomanufacturing Innovation Center, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yukari C Manabe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrea L Cox
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew H Karaba
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Koo H, Morrow CD. Shared and unique patterns of autonomous human endogenous retrovirus loci transcriptomes in CD14 + monocytes from individuals with physical trauma or infection with COVID-19. Retrovirology 2024; 21:17. [PMID: 39497142 PMCID: PMC11533341 DOI: 10.1186/s12977-024-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Since previous studies have suggested that the RNAs of human endogenous retrovirus (HERV) might be involved in regulating innate immunity, it is important to investigate the HERV transcriptome patterns in innate immune cell types such as CD14 + monocytes. Using single cell RNA-seq datasets from resting or stimulated PBMCs mapped to 3,220 known discrete autonomous proviral HERV loci, we found individual-specific variation in HERV transcriptomes between HERV loci in CD14 + monocytes. Analysis of paired datasets from the same individual that were cultured in vitro with LPS or without (i.e. control) revealed 36 HERV loci in CD14 + monocytes that were detected only after activation. To extend our analysis to in vivo activated CD14 + monocytes, we used two scRNA-seq datasets from studies that had demonstrated activation of circulating CD14 + monocytes in patients with physical trauma or patients hospitalized with COVID-19 infections. For direct comparison between the trauma and COVID-19 datasets, we first analyzed 1.625 billion sequence reads from a composite pangenome control of 21 normal individuals. Comparison of the sequence read depth of HERV loci in the trauma or COVID-19 samples to the pangenome control revealed that 39 loci in the COVID-19 and 11 HERV loci in the trauma samples were significantly different (Mann-Whitney U test), with 9 HERV loci shared between the COVID-19 and trauma datasets. The capacity to compare HERV loci transcriptome patterns in innate immune cells, like CD14 + monocytes, across different pathological conditions will lead to greater understanding of the physiological role of HERV expression in health and disease.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| |
Collapse
|
11
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
12
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Trypsin Digestion Conditions of Human Plasma for Observation of Peptides and Proteins from Tandem Mass Spectrometry. ACS OMEGA 2024; 9:41343-41354. [PMID: 39398168 PMCID: PMC11465567 DOI: 10.1021/acsomega.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Previous meta-analysis indicated that plasma or serum proteome groups using various experimental conditions detected different peptides from the same plasma proteins, which is strong evidence for the veracity of blood fluid LC-ESI-MS/MS but also evidences that the trypsin digestion step is a key source of variation in plasma proteomics. Agreement between different digestion conditions and MS/MS algorithms may serve as an independent confirmation of the validity of the LC-ESI-MS/MS analysis of plasma peptides. Plasma contains a high percentage of albumin held together by multiple disulfide bonds; hence, reduction and/or alkylation may greatly enhance the digestion efficiency of albumin. Plasma proteins were precipitated in 90% acetonitrile, collected over quaternary amine resin, and eluted in NaCl prior to digestion treatments. To determine the effect of trypsin digestion methods, the plasma proteins were digested in 600 mM urea and 5% acetonitrile with trypsin alone, or reduced with 2 mM DTT followed by trypsin, or DTT followed by 15 mM iodoacetamide and then trypsin. The resulting peptides were analyzed by LC-ESI-MS/MS with a linear quadrupole ion trap (LIT). The MS/MS spectra were directly fit to peptides by the X!TANDEM and SEQUEST algorithms. Blank noise injections served as the analytical control, and 30 million random MS/MS served as the statistical control. Digesting human plasma with DTT reduction, or reduction and alkylation, resulted in a dramatic increase in the number and observation frequency of albumin peptides. In contrast, digestion with trypsin alone suppressed the observation of albumin, and instead, many low abundance plasma and cellular proteins showed higher observation frequency. Digestion with trypsin alone increased the observation frequency of APOC1, ACAN, ATRN, CPB2, GP2, GPX3, HBA1, PAPD5, PKD1, and many cellular proteins. After correction against noise and random controls, SEQUEST showed good agreement with the true positive plasma proteins identified by X!TANDEM and resulted in an R-squared of 0.5238 with an F-statistic of 10,930 on 9,935 protein gene symbols with a p-value < 2.2e-16. Digestion of plasma with trypsin alone avoids the complete digestion of albumin and permits the enhanced detection of some other cellular proteins from plasma. Different digestion approaches were complimentary and together resulted in a more comprehensive plasma proteome. The protein FDR q-values, the modest effect of background and Monte Carlo correction, and the significant STRING analysis were all consistent with the high fidelity of the rigorous X!TANDEM algorithm. In contrast, SEQUEST required significant correction against noise and statistical controls and selection of high cross correlation (XCorr) scores to show good agreement with X!TANDEM. There was qualitative and quantitative agreement between plasma proteins digested without alkylation from the orbital ion trap (OIT) versus the LIT instrument that showed highly significant regression against the X!TANDEM OIT monoisotopic results, those from heavy isotopes and other masses from X!TANDEM, and with those from MaxQuant. There was significant qualitative and quantitative agreement between the complementary digestion conditions consistent with the good fidelity of plasma analysis by LC-ESI-MS/MS with a sensitive linear ion trap.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Ming Miao
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| |
Collapse
|
13
|
Shi Q, Zhang P, Hu Q, Zhang T, Hou R, Yin S, Zou Y, Chen F, Jiao S, Si L, Zheng B, Chen Y, Zhan T, Liu Y, Zhu W, Qi N. Role of TOMM34 on NF-κB activation-related hyperinflammation in severely ill patients with COVID-19 and influenza. EBioMedicine 2024; 108:105343. [PMID: 39276680 PMCID: PMC11418153 DOI: 10.1016/j.ebiom.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Highly pathogenic respiratory RNA viruses such as SARS-CoV-2 and its associated syndrome COVID-19 pose a tremendous threat to the global public health. Innate immune responses to SARS-CoV-2 depend mainly upon the NF-κB-mediated inflammation. Identifying unknown host factors driving the NF-κB activation and inflammation is crucial for the development of immune intervention strategies. METHODS Published single-cell RNA sequencing (scRNA-seq) data was used to analyze the differential transcriptome profiles of bronchoalveolar lavage (BAL) cells between healthy individuals (n = 27) and patients with severe COVID-19 (n = 21), as well as the differential transcriptome profiles of peripheral blood mononuclear cells (PBMCs) between healthy individuals (n = 22) and severely ill patients with COVID-19 (n = 45) or influenza (n = 16). Loss-of-function and gain-of-function assays were performed in diverse viruses-infected cells and male mice models to identify the role of TOMM34 in antiviral innate immunity. FINDINGS TOMM34, together with a list of genes encoding pro-inflammatory cytokines and antiviral immune proteins, was transcriptionally upregulated in circulating monocytes, lung epithelium and innate immune cells from individuals with severe COVID-19 or influenza. Deficiency of TOMM34/Tomm34 significantly impaired the type I interferon responses and NF-κB-mediated inflammation in various human/murine cell lines, murine bone marrow-derived macrophages (BMDMs) and in vivo. Mechanistically, TOMM34 recruits TRAF6 to facilitate the K63-linked polyubiquitination of NEMO upon viral infection, thus promoting the downstream NF-κB activation. INTERPRETATION In this study, viral induction of TOMM34 is positively correlated with the hyperinflammation in severely ill patients with COVID-19 and influenza. Our findings also highlight the physiological role of TOMM34 in the innate antiviral signallings. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengfei Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianxin Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Ruixia Hou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengxiang Yin
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yilin Zou
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuang Jiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Lanlan Si
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Bangjin Zheng
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yichao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongxiang Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Wenting Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| |
Collapse
|
14
|
Roznik K, Andargie TE, Johnston TS, Gordon O, Wang Y, Akindele NP, Persaud D, Antar AAR, Manabe YC, Zhou W, Ji H, Agbor-Enoh S, Karaba AH, Thompson EA, Cox AL. Emergency Myelopoiesis Distinguishes Multisystem Inflammatory Syndrome in Children From Pediatric Severe Coronavirus Disease 2019. J Infect Dis 2024; 230:e305-e317. [PMID: 38299308 PMCID: PMC11326850 DOI: 10.1093/infdis/jiae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent infection with severe acute respiratory syndrome coronavirus 2, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS We utilized high-dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute coronavirus disease 2019 (SAC). RESULTS Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen-presenting cells. Interleukin 27 (IL-27), a cytokine known to drive hematopoietic stem cells toward EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing toward MIS-C, offering potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Katerina Roznik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Temesgen E Andargie
- Genomic Research Alliance for Transplantation and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biology, Howard University, Washington, District of Columbia
| | - T Scott Johnston
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Israel
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Yi Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Nadine Peart Akindele
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Deborah Persaud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Annukka A R Antar
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Sean Agbor-Enoh
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
- Genomic Research Alliance for Transplantation and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew H Karaba
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Elizabeth A Thompson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Andrea L Cox
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
15
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
16
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Extraction of naturally occurring peptides versus the tryptic digestion of proteins from fetal versus adult bovine serum for LC-ESI-MS/MS. Anal Biochem 2024; 689:115497. [PMID: 38461948 DOI: 10.1016/j.ab.2024.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The naturally occurring peptides and digested proteins of fetal versus adult bovine serum were compared by LC-ESI-MS/MS after correction against noise from blank injections and random MS/MS spectra as statistical controls. Serum peptides were extracted by differential precipitation with mixtures of acetonitrile and water. Serum proteins were separated by partition chromatography over quaternary amine resin followed by tryptic digestion. The rigorous X!TANDEM goodness of fit algorithm that has a low error rate as demonstrated by low FDR q-values (q ≤ 0.01) showed qualitative and quantitative agreement with the SEQUEST cross correlation algorithm on 12,052 protein gene symbols. Tryptic digestion provided a quantitative identification of the serum proteins where observation frequency reflected known high abundance. In contrast, the naturally occurring peptides reflected the cleavage of common serum proteins such as C4A, C3, FGB, HPX, A2M but also proteins in lower concentration such as F13A1, IK, collagens and protocadherins. Proteins associated with cellular growth and development such as actins (ACT), ribosomal proteins like Ribosomal protein S6 (RPS6), synthetic enzymes and extracellular matrix factors were enriched in fetal calf serum. In contrast to the large literature from cord blood, IgG light chains were absent from fetal serum as observed by LC-ESI-MS/MS and confirmed by ELISA.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
17
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Belosludtsev KN, Ilzorkina AI, Matveeva LA, Chulkov AV, Semenova AA, Dubinin MV, Belosludtseva NV. Effect of VBIT-4 on the functional activity of isolated mitochondria and cell viability. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184329. [PMID: 38679309 DOI: 10.1016/j.bbamem.2024.184329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
VBIT-4 is a new inhibitor of the oligomerization of VDAC proteins of the outer mitochondrial membrane preventing the development of oxidative stress, mitochondrial dysfunction, and cell death in various pathologies. However, as a VDAC inhibitor, VBIT-4 may itself cause mitochondrial dysfunction in healthy cells. The article examines the effect of VBIT-4 on the functional activity of rat liver mitochondria and cell cultures. We have demonstrated that high concentrations of VBIT-4 (15-30 μM) suppressed mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. VBIT-4 induced depolarization of organelles fueled by substrates of complex I but not complex II of the respiratory chain. VBIT-4 has been found to inhibit the activity of complexes I, III, and IV of the respiratory chain. Molecular docking demonstrated that VBIT-4 interacts with the rotenone-binding site in complex I with similar affinity. 15-30 μM VBIT-4 caused an increase in H2O2 production in mitochondria, decreased the Ca2+ retention capacity, but increased the time of Ca2+-dependent mitochondrial swelling. We have found that the incubation of breast adenocarcinoma (MCF-7) with 30 μM VBIT-4 for 48 h led to the decrease of the mitochondrial membrane potential, an increase in ROS production and death of MCF-7 cells. The mechanism of action of VBIT-4 on mitochondria and cells is discussed.
Collapse
Affiliation(s)
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | | | | | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Natalia V Belosludtseva
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
19
|
Belosludtseva NV, Dubinin MV, Belosludtsev KN. Pore-Forming VDAC Proteins of the Outer Mitochondrial Membrane: Regulation and Pathophysiological Role. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1061-1078. [PMID: 38981701 DOI: 10.1134/s0006297924060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming β-barrel proteins that carry out controlled "filtration" of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.
Collapse
Affiliation(s)
- Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Mari State University, Yoshkar-Ola, Mari El, 424001, Russia
| | | | | |
Collapse
|
20
|
Woodruff MC, Faliti CE, Sanz I. Systems biology of B cells in COVID-19. Semin Immunol 2024; 72:101875. [PMID: 38489999 PMCID: PMC11988200 DOI: 10.1016/j.smim.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
The integration of multi-'omic datasets into complex systems-wide assessments has become a mainstay in immunologic investigation. This focus on high-dimensional data collection and analysis was on full display in the investigation of COVID-19, the respiratory illness resulting from infection by the novel coronavirus SARS-CoV-2. Particularly in the area of B cell biology, tremendous efforts in both cellular and serologic investigation have resulted in an increasingly detailed mapping of the coordinated effector, memory, and antibody secreting cell responses that underpin the development of humoral immunity in response to primary viral infection. Further, the rapid development and deployment of effective vaccines has allowed for the assessment of developing memory responses across a wide variety of immune contexts, including in patients with compromised immune function. The result has been a period of rapid gains in the understanding of B cell biology unrestricted to the study of COVID-19. Here, we outline the systems-level technologies that have been routinely implemented in these investigations throughout the pandemic, and discuss how their use has led to clear and applicable gains in pursuance of the amelioration of human infectious disease and beyond.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Naik N, Patel M, Sen R. Developmental Impacts of Epigenetics and Metabolism in COVID-19. J Dev Biol 2024; 12:9. [PMID: 38390960 PMCID: PMC10885083 DOI: 10.3390/jdb12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Developmental biology is intricately regulated by epigenetics and metabolism but the mechanisms are not completely understood. The situation becomes even more complicated during diseases where all three phenomena are dysregulated. A salient example is COVID-19, where the death toll exceeded 6.96 million in 4 years, while the virus continues to mutate into different variants and infect people. Early evidence during the pandemic showed that the host's immune and inflammatory responses to COVID-19 (like the cytokine storm) impacted the host's metabolism, causing damage to the host's organs and overall physiology. The involvement of angiotensin-converting enzyme 2 (ACE2), the pivotal host receptor for the SARS-CoV-2 virus, was identified and linked to epigenetic abnormalities along with other contributing factors. Recently, studies have revealed stronger connections between epigenetics and metabolism in COVID-19 that impact development and accelerate aging. Patients manifest systemic toxicity, immune dysfunction and multi-organ failure. Single-cell multiomics and other state-of-the-art high-throughput studies are only just beginning to demonstrate the extent of dysregulation and damage. As epigenetics and metabolism directly impact development, there is a crucial need for research implementing cutting-edge technology, next-generation sequencing, bioinformatics analysis, the identification of biomarkers and clinical trials to help with prevention and therapeutic interventions against similar threats in the future.
Collapse
Affiliation(s)
- Noopur Naik
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mansi Patel
- Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Rwik Sen
- Active Motif, Inc., Carlsbad, CA 92008, USA
| |
Collapse
|
22
|
Shoji M, Esumi T, Masuda T, Tanaka N, Okamoto R, Sato H, Watanabe M, Takahashi E, Kido H, Ohtsuki S, Kuzuhara T. Bakuchiol targets mitochondrial proteins, prohibitins and voltage-dependent anion channels: New insights into developing antiviral agents. J Biol Chem 2024; 300:105632. [PMID: 38199573 PMCID: PMC10862021 DOI: 10.1016/j.jbc.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Tomoyuki Esumi
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Narue Tanaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Risa Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hinako Sato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mihiro Watanabe
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
23
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
24
|
Paris D, Palomba L, Albertini MC, Tramice A, Motta L, Giammattei E, Ambrosino P, Maniscalco M, Motta A. The biomarkers' landscape of post-COVID-19 patients can suggest selective clinical interventions. Sci Rep 2023; 13:22496. [PMID: 38110483 PMCID: PMC10728085 DOI: 10.1038/s41598-023-49601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
In COVID-19 clinical symptoms can persist even after negativization also in individuals who have had mild or moderate disease. We here investigated the biomarkers that define the post-COVID-19 clinical state analyzing the exhaled breath condensate (EBC) of 38 post COVID-19 patients and 38 sex and age-matched healthy controls via nuclear magnetic resonance (NMR)-based metabolomics. Predicted gene-modulated microRNAs (miRNAs) related to COVID-19 were quantified from EBC of 10 patients and 10 controls. Finally, clinical parameters from all post-COVID-19 patients were correlated with metabolomic data. Post-COVID-19 patients and controls showed different metabolic phenotype ("metabotype"). From the metabolites, by using enrichment analysis we identified miRNAs that resulted up-regulated (hsa-miR146a-5p) and down-regulated (hsa-miR-126-3p and hsa-miR-223-3p) in post-COVID-19. Taken together, our multiomics data indicate that post-COVID-19 patients before rehabilitation are characterized by persistent inflammation, dysregulation of liver, endovascular thrombotic and pulmonary processes, and physical impairment, which should be the primary clinical targets to contrast the post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | | | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Lorenzo Motta
- Neuroradiology Unit, Ospedale Santa Maria Della Misericordia, 45100, Rovigo, Italy
- IRCCS Istituto Delle Scienze Neurologiche (Padiglione G), via Altura 3, 40139, Bologna, Italy
| | - Eleonora Giammattei
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | - Pasquale Ambrosino
- Directorate of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy.
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease, University of Naples Federico II, 80131, Naples, Italy.
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy.
| |
Collapse
|
25
|
Jiménez-Cortegana C, Salamanca E, Palazón-Carrión N, Sánchez-Jiménez F, Pérez-Pérez A, Vilariño-García T, Fuentes S, Martín S, Jiménez M, Galván R, Rodríguez-Chacón C, Sánchez-Mora C, Moreno-Mellado E, Gutiérrez-Gutiérrez B, Álvarez N, Sosa A, Garnacho-Montero J, de la Cruz-Merino L, Rodríguez-Baño J, Sánchez-Margalet V. Circulating myeloid-derived suppressor cells may be a useful biomarker in the follow-up of unvaccinated COVID-19 patients after hospitalization. Front Immunol 2023; 14:1266659. [PMID: 38035104 PMCID: PMC10685891 DOI: 10.3389/fimmu.2023.1266659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
SARS-CoV-2 infection is the cause of the disease named COVID-19, a major public health challenge worldwide. Differences in the severity, complications and outcomes of the COVID-19 are intriguing and, patients with similar baseline clinical conditions may have very different evolution. Myeloid-derived suppressor cells (MDSCs) have been previously found to be recruited by the SARS-CoV-2 infection and may be a marker of clinical evolution in these patients. We have studied 90 consecutive patients admitted in the hospital before the vaccination program started in the general population, to measure MDSCs and lymphocyte subpopulations at admission and one week after to assess the possible association with unfavorable outcomes (dead or Intensive Care Unit admission). We analyzed MDSCs and lymphocyte subpopulations by flow cytometry. In the 72 patients discharged from the hospital, there were significant decreases in the monocytic and total MDSC populations measured in peripheral blood after one week but, most importantly, the number of MDSCs (total and both monocytic and granulocytic subsets) were much higher in the 18 patients with unfavorable outcome. In conclusion, the number of circulating MDSCs may be a good marker of evolution in the follow-up of unvaccinated patients admitted in the hospital with the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Elena Salamanca
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Sandra Fuentes
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Salomón Martín
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Marta Jiménez
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Raquel Galván
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | | | - Catalina Sánchez-Mora
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Elisa Moreno-Mellado
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Gutiérrez-Gutiérrez
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerissa Álvarez
- Intensive Care Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Alberto Sosa
- Intensive Care Unit, Virgen Macarena University Hospital, Seville, Spain
| | | | - Luis de la Cruz-Merino
- Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
26
|
Klein S, Dhakal S, Yin A, Escarra-Senmarti M, Demko Z, Pisanic N, Johnston T, Trejo-Zambrano M, Kruczynski K, Lee J, Hardick J, Shea P, Shapiro J, Park HS, Parish M, Caputo C, Ganesan A, Mullapudi S, Gould S, Betenbaugh M, Pekosz A, Heaney CD, Antar A, Manabe Y, Cox A, Karaba A, Andrade F, Zeger S. Application of machine learning models to identify serological predictors of COVID-19 severity and outcomes. RESEARCH SQUARE 2023:rs.3.rs-3463155. [PMID: 38014049 PMCID: PMC10680931 DOI: 10.21203/rs.3.rs-3463155/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Critically ill people with COVID-19 have greater antibody titers than those with mild to moderate illness, but their association with recovery or death from COVID-19 has not been characterized. In 178 COVID-19 patients, 73 non-hospitalized and 105 hospitalized patients, mucosal swabs and plasma samples were collected at hospital enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA, cytokines/chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody responses against SARS-CoV-2. The association of demographic variables and >20 serological antibody measures with intubation or death due to COVID-19 was determined using machine learning algorithms. Predictive models revealed that IgG binding and ACE2 binding inhibition responses at 1 MPE were positively and C1q complement activity at enrollment was negatively associated with an increased probability of intubation or death from COVID-19 within 3 MPE. Serological antibody measures were more predictive than demographic variables of intubation or death among COVID-19 patients.
Collapse
Affiliation(s)
- Sabra Klein
- Johns Hopkins Bloomberg School of Public Health
| | | | - Anna Yin
- Johns Hopkins Bloomberg School of Public Health
| | | | | | | | | | | | | | - John Lee
- Johns Hopkins Bloomberg School of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yukari Manabe
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins School of Medicine
| | | | | | | | | |
Collapse
|
27
|
Singh AK, Wang R, Lombardo KA, Praharaj M, Bullen CK, Um P, Gupta M, Srikrishna G, Davis S, Komm O, Illei PB, Ordonez AA, Bahr M, Huang J, Gupta A, Psoter KJ, Creisher PS, Li M, Pekosz A, Klein SL, Jain SK, Bivalacqua TJ, Yegnasubramanian S, Bishai WR. Intravenous BCG vaccination reduces SARS-CoV-2 severity and promotes extensive reprogramming of lung immune cells. iScience 2023; 26:107733. [PMID: 37674985 PMCID: PMC10477068 DOI: 10.1016/j.isci.2023.107733] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/31/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) confers heterologous immune protection against viral infections and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here, we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model. BCG vaccination conferred a modest reduction on lung SCV2 viral load, bronchopneumonia scores, and weight loss, accompanied by a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. BCG uniquely recruited immunoglobulin-producing plasma cells to the lung suggesting accelerated local antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, with a transcriptional shift away from exhaustion markers and toward antigen presentation and repair. Similarly, BCG enhanced recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, that show reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.
Collapse
Affiliation(s)
- Alok K. Singh
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Rulin Wang
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - C. Korin Bullen
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Manish Gupta
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Stephanie Davis
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Oliver Komm
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter B. Illei
- Johns Hopkins University, School of Medicine, Department of Pathology, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Melissa Bahr
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Anuj Gupta
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kevin J. Psoter
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of General Pediatrics, Baltimore, MD, USA
| | - Patrick S. Creisher
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Maggie Li
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Andrew Pekosz
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sabra L. Klein
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sanjay K. Jain
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Trinity J. Bivalacqua
- Perelman School of Medicine at the University of Pennsylvania, Division of Urology, Department of Surgery, Philadelphia, PA, USA
| | | | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| |
Collapse
|
28
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
29
|
Mahalingam D, Chen S, Xie P, Loghmani H, Heineman T, Kalyan A, Kircher S, Helenowski IB, Mi X, Maurer V, Coffey M, Mulcahy M, Benson A, Zhang B. Combination of pembrolizumab and pelareorep promotes anti-tumour immunity in advanced pancreatic adenocarcinoma (PDAC). Br J Cancer 2023; 129:782-790. [PMID: 37443348 PMCID: PMC10449917 DOI: 10.1038/s41416-023-02344-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND We previously reported activity of pelareorep, pembrolizumab and chemotherapy. Patients developed new T-cell clones and increased peripheral T-cell clonality, leading to an inflamed tumour. To evaluate a chemotherapy-free regimen, this study assesses if pelareorep and pembrolizumab has efficacy by inducing anti-tumour immunological changes (NCT03723915). METHODS PDAC patients who progressed after first-line therapy, received iv pelareorep induction with pembrolizumab every 21-days. Primary objective is overall response rate. Secondary objectives included evaluation of immunological changes within tumour and blood. RESULTS Clinical benefit rate (CBR) was 42% amongst 12 patients. One patient achieved partial response (PR) and four stable disease (SD). Seven progressed, deemed non-responders (NR). VDAC1 expression in peripheral CD8+ T cells was higher at baseline in CBR than NR but decreased in CBR upon treatment. On-treatment peripheral CD4+ Treg levels decreased in CBR but not in NR. Analysis of tumour demonstrated PD-L1+ cells touching CD8+ T cells, and NK cells were more abundant post-treatment vs. baseline. A higher intensity of PD-L1 in tumour infiltrates at baseline, particularly in CBR vs. NR. Finally, higher levels of soluble (s)IDO, sLag3, sPD-1 observed at baseline among NR vs. CBR. CONCLUSION Pelareorep and pembrolizumab showed modest efficacy in unselected patients, although potential immune and metabolic biomarkers were identified to warrant further evaluation.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Siqi Chen
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ping Xie
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Aparna Kalyan
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheetal Kircher
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irene B Helenowski
- Quantitative Data Sciences Core, Department of Preventative Medicine, Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xinlei Mi
- Quantitative Data Sciences Core, Department of Preventative Medicine, Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Victoria Maurer
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Mary Mulcahy
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Al- Benson
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
30
|
Bandyopadhyay S, Rajan MV, Kaur P, Hariprasad G. Identification of potential biomarkers to predict organ morbidity in COVID-19: A repository based proteomics perspective. Biochem Biophys Rep 2023; 35:101493. [PMID: 37304132 PMCID: PMC10235674 DOI: 10.1016/j.bbrep.2023.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
SARS-CoV-2 causes substantial extrapulmonary manifestations in addition to pulmonary disease. Some of the major organs affected are cardiovascular, hematological and thrombotic, renal, neurological, and digestive systems. These types of muti-organ dysfunctions make it difficult and challenging for clinicians to manage and treat COVID-19 patients. The article focuses to identify potential protein biomarkers that can flag various organ systems affected in COVID-19. Publicly reposited high throughput proteomic data from human serum (HS), HEK293T/17 (HEK) and Vero E6 (VE) kidney cell culture were downloaded from ProteomeXchange consortium. The raw data was analyzed in Proteome Discoverer 2.4 to delineate the complete list of proteins in the three studies. These proteins were analyzed in Ingenuity Pathway Analysis (IPA) to associate them to various organ diseases. The shortlisted proteins were analyzed in MetaboAnalyst 5.0 to shortlist potential biomarker proteins. These were then assessed for disease-gene association in DisGeNET and validated by Protein-protein interactome (PPI) and functional enrichment studies (GO_BP, KEGG and Reactome pathways) in STRING. Protein profiling resulted in shortlisting 20 proteins in 7 organ systems. Of these 15 proteins showed at least 1.25-fold changes with a sensitivity and specificity of 70%. Association analysis further shortlisted 10 proteins with a potential association with 4 organ diseases. Validation studies established possible interacting networks and pathways affected, confirmingh the ability of 6 of these proteins to flag 4 different organ systems affected in COVID-19 disease. This study helps to establish a platform to seek protein signatures in different clinical phenotypes of COVID-19. The potential biomarker candidates that can flag organ systems involved are: (a) Vitamin K-dependent protein S and Antithrombin-III for hematological disorders; (b) Voltage-dependent anion-selective channel protein 1 for neurological disorders; (c) Filamin-A for cardiovascular disorder and, (d) Peptidyl-prolyl cis-trans isomerase A and Peptidyl-prolyl cis-trans isomerase FKBP1A for digestive disorders.
Collapse
Affiliation(s)
- Sabyasachi Bandyopadhyay
- Proteomics Sub-facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhan Vishal Rajan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
31
|
Shaw JA, Malherbe ST, Walzl G, du Plessis N. Suppressive myeloid cells in SARS-CoV-2 and Mycobacterium tuberculosis co-infection. Front Immunol 2023; 14:1222911. [PMID: 37545508 PMCID: PMC10399583 DOI: 10.3389/fimmu.2023.1222911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Epidemiologic data show that both current and previous tuberculosis (TB) increase the risk of in-hospital mortality from coronavirus disease-2019 (COVID-19), and there is a similar trend for poor outcomes from Mycobacterium tuberculosis (Mtb) infection after recent SARS-CoV-2. A shared dysregulation of immunity explains the dual risk posed by co-infection, but the specific mechanisms are being explored. While initial attention focused on T cell immunity, more comprehensive analyses revealed a dysfunctional innate immune response in COVID-19, characterized by reduced numbers of dendritic cells, NK cells and a redistribution of mononuclear phagocytes towards intermediate myeloid subsets. During hyper- or chronic inflammatory processes, activation signals from molecules such as growth factors and alarmins lead to the expansion of an immature population of myeloid cells called myeloid-deprived suppressor cells (MDSC). These cells enter a state of pathological activation, lose their ability to rapidly clear pathogens, and instead become broadly immunosuppressive. MDSC are enriched in the peripheral blood of patients with severe COVID-19; associated with mortality; and with higher levels of inflammatory cytokines. In TB, MDSC have been implicated in loss of control of Mtb in the granuloma and ineffective innate and T cell immunity to the pathogen. Considering that innate immune sensing serves as first line of both anti-bacterial and anti-viral defence mechanisms, we propose MDSC as a crucial mechanism for the adverse clinical trajectories of TB-COVID-19 coinfection.
Collapse
|
32
|
Luo H, Yan J, Zhang D, Zhou X. Identification of cuproptosis-related molecular subtypes and a novel predictive model of COVID-19 based on machine learning. Front Immunol 2023; 14:1152223. [PMID: 37533853 PMCID: PMC10393044 DOI: 10.3389/fimmu.2023.1152223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background To explicate the pathogenic mechanisms of cuproptosis, a newly observed copper induced cell death pattern, in Coronavirus disease 2019 (COVID-19). Methods Cuproptosis-related subtypes were distinguished in COVID-19 patients and associations between subtypes and immune microenvironment were probed. Three machine algorithms, including LASSO, random forest, and support vector machine, were employed to identify differentially expressed genes between subtypes, which were subsequently used for constructing cuproptosis-related risk score model in the GSE157103 cohort to predict the occurrence of COVID-19. The predictive values of the cuproptosis-related risk score were verified in the GSE163151 cohort, GSE152418 cohort and GSE171110 cohort. A nomogram was created to facilitate the clinical use of this risk score, and its validity was validated through a calibration plot. Finally, the model genes were validated using lung proteomics data from COVID-19 cases and single-cell data. Results Patients with COVID-19 had higher significantly cuproptosis level in blood leukocytes compared to patients without COVID-19. Two cuproptosis clusters were identified by unsupervised clustering approach and cuproptosis cluster A characterized by T cell receptor signaling pathway had a better prognosis than cuproptosis cluster B. We constructed a cuproptosis-related risk score, based on PDHA1, PDHB, MTF1 and CDKN2A, and a nomogram was created, which both showed excellent predictive values for COVID-19. And the results of proteomics showed that the expression levels of PDHA1 and PDHB were significantly increased in COVID-19 patient samples. Conclusion Our study constructed and validated an cuproptosis-associated risk model and the risk score can be used as a powerful biomarker for predicting the existence of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Dingyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
Chen ZZ, Johnson L, Trahtemberg U, Baker A, Huq S, Dufresne J, Bowden P, Miao M, Ho JA, Hsu CC, Dos Santos CC, Marshall JG. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clin Proteomics 2023; 20:17. [PMID: 37031181 PMCID: PMC10082440 DOI: 10.1186/s12014-023-09394-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/20/2023] [Indexed: 04/10/2023] Open
Abstract
INTRODUCTION Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes. METHODS Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage. Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human plasma (NHP) by LC-ESI-MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square (χ2) distribution. RESULTS PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by dot blotting on PVDF against a purified cytochrome c standard preparation for H2O2 dependent reaction with luminol as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS patients. DISCUSSION The results from PCR, LC-ESI-MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that mitochondrial components were present in the plasma, in agreement with the established central role of the mitochondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC-ESI-MS/MS. The release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity of cell damage and lung injury in COVID-19 infection and ICU-ARDS.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | - Lloyd Johnson
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | - Uriel Trahtemberg
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Andrew Baker
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Saaimatul Huq
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | | | | | | | - Ja-An Ho
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Claudia C Dos Santos
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada.
| | - John G Marshall
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada.
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, 6 R. Nicolas-Ernest Barblé, Luxembourg, Luxembourg.
| |
Collapse
|
34
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
35
|
Xia L, Yuan LZ, Hu YH, Liu JY, Hu GS, Qi RY, Zhang TY, Xiong HL, Zheng ZZ, Lin HW, Zhang JM, Yu C, Zhou M, Ma J, Cheng T, Chen RR, Guan Y, Xia NS, Liu W. A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19. Cell Mol Immunol 2023; 20:351-364. [PMID: 36864189 PMCID: PMC9979130 DOI: 10.1038/s41423-023-00985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Lun-Zhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ya-Hong Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruo-Yao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zao-Zao Zheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hong-Wei Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jia-Mo Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ri-Rong Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
36
|
Jackson C, Cherry C, Bom S, Dykema AG, Thompson E, Zheng M, Ji Z, Hou W, Li R, Zhang H, Choi J, Rodriguez F, Weingart J, Yegnasubramanian S, Lim M, Bettegowda C, Powell J, Eliesseff J, Ji H, Pardoll D. Distinct Myeloid Derived Suppressor Cell Populations Promote Tumor Aggression in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534192. [PMID: 37034584 PMCID: PMC10081225 DOI: 10.1101/2023.03.26.534192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The diversity of genetic programs and cellular plasticity of glioma-associated myeloid cells, and thus their contribution to tumor growth and immune evasion, is poorly understood. We performed single cell RNA-sequencing of immune and tumor cells from 33 glioma patients of varying tumor grades. We identified two populations characteristic of myeloid derived suppressor cells (MDSC), unique to glioblastoma (GBM) and absent in grades II and III tumors: i) an early progenitor population (E-MDSC) characterized by strong upregulation of multiple catabolic, anabolic, oxidative stress, and hypoxia pathways typically observed within tumor cells themselves, and ii) a monocytic MDSC (M-MDSC) population. The E-MDSCs geographically co-localize with a subset of highly metabolic glioma stem-like tumor cells with a mesenchymal program in the pseudopalisading region, a pathognomonic feature of GBMs associated with poor prognosis. Ligand-receptor interaction analysis revealed symbiotic cross-talk between the stemlike tumor cells and E-MDSCs in GBM, whereby glioma stem cells produce chemokines attracting E-MDSCs, which in turn produce growth and survival factors for the tumor cells. Our large-scale single-cell analysis elucidated unique MDSC populations as key facilitators of GBM progression and mediators of tumor immunosuppression, suggesting that targeting these specific myeloid compartments, including their metabolic programs, may be a promising therapeutic intervention in this deadly cancer. One-Sentence Summary Aggressive glioblastoma harbors two unique myeloid populations capable of promoting stem-like properties of tumor cells and suppressing T cell function in the tumor microenvironment.
Collapse
|
37
|
Universal selenium nanoadjuvant with immunopotentiating and redox-shaping activities inducing high-quality immunity for SARS-CoV-2 vaccine. Signal Transduct Target Ther 2023; 8:88. [PMID: 36849546 PMCID: PMC9969362 DOI: 10.1038/s41392-023-01371-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
|
38
|
Falck‐Jones S, Österberg B, Smed‐Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. J Intern Med 2023; 293:130-143. [PMID: 35996885 PMCID: PMC9538918 DOI: 10.1111/joim.13559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the beginning of the SARS-CoV-2 pandemic in 2020, researchers worldwide have made efforts to understand the mechanisms behind the varying range of COVID-19 disease severity. Since the respiratory tract is the site of infection, and immune cells differ depending on their anatomical location, studying blood is not sufficient to understand the full immunopathogenesis in patients with COVID-19. It is becoming increasingly clear that monocytes, dendritic cells (DCs), and monocytic myeloid-derived suppressor cells (M-MDSCs) are involved in the immunopathology of COVID-19 and may play important roles in determining disease severity. Patients with mild COVID-19 display an early antiviral (interferon) response in the nasopharynx, expansion of activated intermediate monocytes, and low levels of M-MDSCs in blood. In contrast, patients with severe COVID-19 seem to lack an early efficient induction of interferons, and skew towards a more suppressive response in blood. This is characterized by downregulation of activation markers and decreased functional capacity of blood monocytes and DCs, reduced circulating DCs, and increased levels of HLA-DRlo CD14+ M-MDSCs. These suppressive characteristics could potentially contribute to delayed T-cell responses in severe COVID-19 cases. In contrast, airways of patients with severe COVID-19 display hyperinflammation with elevated levels of inflammatory monocytes and monocyte-derived macrophages, and reduced levels of tissue-resident alveolar macrophages. These monocyte-derived cells contribute to excess inflammation by producing cytokines and chemokines. Here, we review the current knowledge on the role of monocytes, DCs, and M-MDSCs in COVID-19 and how alterations and the anatomical distribution of these cell populations may relate to disease severity.
Collapse
Affiliation(s)
- Sara Falck‐Jones
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
39
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
40
|
Verma A, Shteinfer-Kuzmine A, Kamenetsky N, Pittala S, Paul A, Nahon Crystal E, Ouro A, Chalifa-Caspi V, Pandey SK, Monsengo A, Vardi N, Knafo S, Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl Neurodegener 2022; 11:58. [PMID: 36578022 PMCID: PMC9795455 DOI: 10.1186/s40035-022-00329-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS In neuronal cultures, amyloid-beta (Aβ)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aβ plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aβ-plaque load. CONCLUSIONS The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.
Collapse
Affiliation(s)
- Ankit Verma
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nikita Kamenetsky
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Srinivas Pittala
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Avijit Paul
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Edna Nahon Crystal
- grid.443007.40000 0004 0604 7694Achva Academic College, 79804 Shikmim, Israel
| | - Alberto Ouro
- grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.488911.d0000 0004 0408 4897Present Address: NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Vered Chalifa-Caspi
- grid.7489.20000 0004 1937 0511Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Swaroop Kumar Pandey
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Alon Monsengo
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noga Vardi
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Shira Knafo
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|
41
|
Li Y, Li S, Gu M, Liu G, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. Application of network composite module analysis and verification to explore the bidirectional immunomodulatory effect of Zukamu granules on Th1 / Th2 cytokines in lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115674. [PMID: 36064149 DOI: 10.1016/j.jep.2022.115674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zukamu granules (ZKMG), as the preferred drug for the treatment of colds in Uygur medical theory, has been used for 1500 years. It is also widely used in China and included in the National Essential Drugs List (2018 edition). It has unique anti-inflammatory, antitussive and analgesic effects. AIM OF THE STUDY Aiming at the research of traditional Chinese medicine (TCM) with the characteristics of overall regulation of body diseases and the immune regulation mechanism with the concept of integrity, this paper put forward the integrated application of network composite module analysis and animal experiment verification to study the immune regulation mechanism of TCM. MATERIALS AND METHODS The active components and targets of ZKMG were predicted, and network module analysis was performed to explore their potential immunomodulatory mechanisms. Then acute lung injury (ALI) mice and idiopathic pulmonary fibrosis (IPF) rats were used as pathological models to observe the effects of ZKMG on the pathological conditions of infected ALI and IPF rats, determine the contents of Th1, Th2 characteristic cytokines and immunoglobulins, and study the intervention of GATA3/STAT6 signal pathway. RESULTS The results of network composite module analysis showed that ZKMG contained 173 pharmacodynamic components and 249 potential targets, and four key modules were obtained. The immunomodulatory effects of ZKMG were related to T cell receptor signaling pathway. The validation results of bioeffects that ZKMG could carry out bidirectional immune regulation on Th1/Th2 cytokines in the stage of ALI and IPF, so as to play the role of regulating immune homeostasis and organ protection. CONCLUSIONS The network composite module analysis and verification method is an exploration to study the immune regulation mechanism of TCM by combining the network module prediction analysis with animal experiments, which provides a reference for subsequent research.
Collapse
Affiliation(s)
- Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guoxiu Liu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Keao Li
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China.
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
42
|
Archer SL, Dasgupta A, Chen KH, Wu D, Baid K, Mamatis JE, Gonzalez V, Read A, Bentley RE, Martin AY, Mewburn JD, Dunham-Snary KJ, Evans GA, Levy G, Jones O, Al-Qazazi R, Ring B, Alizadeh E, Hindmarch CC, Rossi J, Lima PDA, Falzarano D, Banerjee A, Colpitts CC. SARS-CoV-2 mitochondriopathy in COVID-19 pneumonia exacerbates hypoxemia. Redox Biol 2022; 58:102508. [PMID: 36334378 PMCID: PMC9558649 DOI: 10.1016/j.redox.2022.102508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
RATIONALE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 pneumonia. We hypothesize that SARS-CoV-2 causes alveolar injury and hypoxemia by damaging mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC), triggering apoptosis and bioenergetic impairment, and impairing hypoxic pulmonary vasoconstriction (HPV), respectively. OBJECTIVES We examined the effects of: A) human betacoronaviruses, SARS-CoV-2 and HCoV-OC43, and individual SARS-CoV-2 proteins on apoptosis, mitochondrial fission, and bioenergetics in AEC; and B) SARS-CoV-2 proteins and mouse hepatitis virus (MHV-1) infection on HPV. METHODS We used transcriptomic data to identify temporal changes in mitochondrial-relevant gene ontology (GO) pathways post-SARS-CoV-2 infection. We also transduced AECs with SARS-CoV-2 proteins (M, Nsp7 or Nsp9) and determined effects on mitochondrial permeability transition pore (mPTP) activity, relative membrane potential, apoptosis, mitochondrial fission, and oxygen consumption rates (OCR). In human PASMC, we assessed the effects of SARS-CoV-2 proteins on hypoxic increases in cytosolic calcium, an HPV proxy. In MHV-1 pneumonia, we assessed HPV via cardiac catheterization and apoptosis using the TUNEL assay. RESULTS SARS-CoV-2 regulated mitochondrial apoptosis, mitochondrial membrane permeabilization and electron transport chain (ETC) GO pathways within 2 hours of infection. SARS-CoV-2 downregulated ETC Complex I and ATP synthase genes, and upregulated apoptosis-inducing genes. SARS-CoV-2 and HCoV-OC43 upregulated and activated dynamin-related protein 1 (Drp1) and increased mitochondrial fission. SARS-CoV-2 and transduced SARS-CoV-2 proteins increased apoptosis inducing factor (AIF) expression and activated caspase 7, resulting in apoptosis. Coronaviruses also reduced OCR, decreased ETC Complex I activity and lowered ATP levels in AEC. M protein transduction also increased mPTP opening. In human PASMC, M and Nsp9 proteins inhibited HPV. In MHV-1 pneumonia, infected AEC displayed apoptosis and HPV was suppressed. BAY K8644, a calcium channel agonist, increased HPV and improved SpO2. CONCLUSIONS Coronaviruses, including SARS-CoV-2, cause AEC apoptosis, mitochondrial fission, and bioenergetic impairment. SARS-CoV-2 also suppresses HPV by targeting mitochondria. This mitochondriopathy is replicated by transduction with SARS-CoV-2 proteins, indicating a mechanistic role for viral-host mitochondrial protein interactions. Mitochondriopathy is a conserved feature of coronaviral pneumonia that may exacerbate hypoxemia and constitutes a therapeutic target.
Collapse
Affiliation(s)
- Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada; Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada.
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, Canada
| | - Austin Read
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Ashley Y Martin
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Gerald A Evans
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Gary Levy
- University of Toronto, Toronto, ON, Canada
| | - Oliver Jones
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Brooke Ring
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | - Elahe Alizadeh
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | | | - Jenna Rossi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Patricia DA Lima
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Biology, University of Waterloo; Waterloo, ON, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
43
|
Enomoto N. Pathological Roles of Pulmonary Cells in Acute Lung Injury: Lessons from Clinical Practice. Int J Mol Sci 2022; 23:ijms232315027. [PMID: 36499351 PMCID: PMC9736972 DOI: 10.3390/ijms232315027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Interstitial lung diseases (ILD) are relatively rare and sometimes become life threatening. In particular, rapidly progressive ILD, which frequently presents as acute lung injury (ALI) on lung histopathology, shows poor prognosis if proper and immediate treatments are not initiated. These devastating conditions include acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), clinically amyopathic dermatomyositis (CADM), epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced lung injury, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection named coronavirus disease 2019 (COVID-19). In this review, clinical information, physical findings, laboratory examinations, and findings on lung high-resolution computed tomography and lung histopathology are presented, focusing on majorly damaged cells in each disease. Furthermore, treatments that should be immediately initiated in clinical practice for each disease are illustrated to save patients with these diseases.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; ; Tel.: +81-53-435-2263; Fax: +81-53-435-2354
- Health Administration Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
44
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
45
|
Zhao Q, Yu Z, Zhang S, Shen XR, Yang H, Xu Y, Liu Y, Yang L, Zhang Q, Chen J, Lu M, Luo F, Hu M, Gong Y, Xie C, Zhou P, Wang L, Su L, Zhang Z, Cheng L. Metabolic modeling of single bronchoalveolar macrophages reveals regulators of hyperinflammation in COVID-19. iScience 2022; 25:105319. [PMID: 36246577 PMCID: PMC9549388 DOI: 10.1016/j.isci.2022.105319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/31/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 infection induces imbalanced immune response such as hyperinflammation in patients with severe COVID-19. Here, we studied the immunometabolic regulatory mechanisms for the pathogenesis of COVID-19. We depicted the metabolic landscape of immune cells, especially macrophages, from bronchoalveolar lavage fluid of patients with COVID-19 at single-cell level. We found that most metabolic processes were upregulated in macrophages from lungs of patients with mild COVID-19 compared to cells from healthy controls, whereas macrophages from severe COVID-19 showed downregulation of most of the core metabolic pathways including glutamate metabolism, fatty acid oxidation, citrate cycle, and oxidative phosphorylation, and upregulation of a few pathways such as glycolysis. Rewiring cellular metabolism by amino acid supplementation, glycolysis inhibition, or PPARγ stimulation reduces inflammation in macrophages stimulated with SARS-CoV-2. Altogether, this study demonstrates that metabolic imbalance of bronchoalveolar macrophages may contribute to hyperinflammation in patients with severe COVID-19 and provides insights into treating COVID-19 by immunometabolic modulation.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- School of Life Science, Wuhan University, Wuhan 430071, China
| | - Zhenyang Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Shengyuan Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens and State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hao Yang
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yangyang Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lin Yang
- Department of General Surgery, Xuzhou Mine Hospital, Xuzhou 221000, China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221000, China
| | - Jiaqi Chen
- School of Computer Sciences, Wuhan University, Wuhan 430071, China
| | - Mengmeng Lu
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fei Luo
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mingming Hu
- Frontier Science Center for Immunology and Metabolism, Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Li Wang
- Frontier Science Center for Immunology and Metabolism, Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lishan Su
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology and Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Liang Cheng
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
46
|
Shibata M, Nanno K, Yoshimori D, Nakajima T, Takada M, Yazawa T, Mimura K, Inoue N, Watanabe T, Tachibana K, Muto S, Momma T, Suzuki Y, Kono K, Endo S, Takenoshita S. Myeloid-derived suppressor cells: Cancer, autoimmune diseases, and more. Oncotarget 2022; 13:1273-1285. [PMID: 36395389 PMCID: PMC9671473 DOI: 10.18632/oncotarget.28303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although cancer immunotherapy using immune checkpoint inhibitors (ICIs) has been recognized as one of the major treatment modalities for malignant diseases, the clinical outcome is not uniform in all cancer patients. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells that possess various strong immunosuppressive activities involving multiple immunocompetent cells that are significantly accumulated in patients who did not respond well to cancer immunotherapies. We reviewed the perspective of MDSCs with emerging evidence in this review. Many studies on MDSCs were performed in malignant diseases. Substantial studies on the participation of MDSCs on non-malignant diseases such as chronic infection and autoimmune diseases, and physiological roles in obesity, aging, pregnancy and neonates have yet to be reported. With the growing understanding of the roles of MDSCs, variable therapeutic strategies and agents targeting MDSCs are being investigated, some of which have been used in clinical trials. More studies are required in order to develop more effective strategies against MDSCs.
Collapse
Affiliation(s)
- Masahiko Shibata
- 1Department of Comprehensive Cancer Treatment and Research at Aizu, Fukushima Medical University, Fukushima, Japan,2Department of Surgery, Cancer Treatment Center, Aizu Chuo Hospital, Fukushima, Japan,3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan,4Aizu Oncology Consortium, Fukushima, Japan,Correspondence to:Masahiko Shibata, email:
| | - Kotaro Nanno
- 2Department of Surgery, Cancer Treatment Center, Aizu Chuo Hospital, Fukushima, Japan,5Department of Surgery, Nippon Medical School, Tokyo, Japan
| | - Daigo Yoshimori
- 2Department of Surgery, Cancer Treatment Center, Aizu Chuo Hospital, Fukushima, Japan,5Department of Surgery, Nippon Medical School, Tokyo, Japan
| | - Takahiro Nakajima
- 2Department of Surgery, Cancer Treatment Center, Aizu Chuo Hospital, Fukushima, Japan,3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | - Makoto Takada
- 4Aizu Oncology Consortium, Fukushima, Japan,6Department of Surgery, Bange Kousei General Hospital, Fukushima, Japan
| | - Takashi Yazawa
- 2Department of Surgery, Cancer Treatment Center, Aizu Chuo Hospital, Fukushima, Japan,3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan,4Aizu Oncology Consortium, Fukushima, Japan
| | - Kousaku Mimura
- 3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | - Norio Inoue
- 2Department of Surgery, Cancer Treatment Center, Aizu Chuo Hospital, Fukushima, Japan,3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan,4Aizu Oncology Consortium, Fukushima, Japan
| | - Takafumi Watanabe
- 7Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | | | - Satoshi Muto
- 9Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Tomoyuki Momma
- 3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan,4Aizu Oncology Consortium, Fukushima, Japan
| | - Yoshiyuki Suzuki
- 1Department of Comprehensive Cancer Treatment and Research at Aizu, Fukushima Medical University, Fukushima, Japan,4Aizu Oncology Consortium, Fukushima, Japan,10Department of Radiation Oncology, Fukushima Medical University, Fukushima, Japan
| | - Koji Kono
- 1Department of Comprehensive Cancer Treatment and Research at Aizu, Fukushima Medical University, Fukushima, Japan,3Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan,4Aizu Oncology Consortium, Fukushima, Japan
| | - Shungo Endo
- 11Department of Colorectoanal Surgery, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan
| | | |
Collapse
|
47
|
Linoleic acid binds to SARS-CoV-2 RdRp and represses replication of seasonal human coronavirus OC43. Sci Rep 2022; 12:19114. [PMID: 36352079 PMCID: PMC9645759 DOI: 10.1038/s41598-022-23880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Fatty acids belong to a group of compounds already acknowledged for their broad antiviral efficacy. However, little is yet known about their effect on replication of human coronaviruses. To shed light on this subject, we first screened 15 fatty acids, three lipid-soluble vitamins, and cholesterol, on SARS-CoV-2 RdRp, and identified the four fatty acids with the highest RdRp inhibitory potential. Among them, linoleic acid was found to have the greatest interaction with SARS-CoV-2 RdRp, with its direct binding to the cavity formed by the RNA double helix and protein. Linoleic acid forms hydrophobic interactions with multiple residues, and at the same time forms electrostatic interactions including the hydrogen bond with Lys593 and Asp865. In line with these results, a dose-dependent inhibition of HCoV-OC43 replication in vitro was observed, additionally strengthened by data from in vivo study, which also confirmed anti-inflammatory potential of linoleic acid. Based on these results, we concluded that our study provides a new understanding of the antiviral properties of fatty acids against human coronaviruses including the SARS-CoV-2 strain. Particularly, they lays down a new prospect for linoleic acid's RdRp-inhibitory activity, as a candidate for further studies, which are warranted to corroborate the results presented here.
Collapse
|
48
|
Choi D, Khan N, Montermini L, Tawil N, Meehan B, Kim D, Roth FP, Divangahi M, Rak J. Quantitative proteomics and biological activity of extracellular vesicles engineered to express SARS-CoV-2 spike protein. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e58. [PMID: 36710959 PMCID: PMC9874654 DOI: 10.1002/jex2.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/18/2023]
Abstract
SARS-CoV-2 viral infection led to the devastating COVID-19 pandemic, where illness stemmed from interactions between virions and recipient host cells resulting in multi-layered pathological consequences. The role of the infection portal is now understood to be the cellular angiotensin converting enzyme-2 (ACE2) receptor, which binds to viral spike (S) protein initiating virion internalisation process. Since SARS-CoV-2 virions bear some resemblance to endogenously produced small extracellular vesicles (sEVs) we reasoned that EVs engineered to express S protein (viral mimics) may interfere with viral infection. Here, we report generation of HEK293T cells producing sEVs enriched for transmembrane S-protein tagged with green fluorescent protein (S/GFP). Strikingly, S protein drove the GFP tag to the membrane of sEVs, while GFP alone was not efficiently included in the sEV cargo. High-throughput quantitative proteomics revealed that S/GFP sEVs contained over 1000 proteins including canonical components of the exosomal pathway such as ALIX, syntenin-1, and tetraspanins (CD81, CD9), but depleted for calnexin and cytochrome c. We found that 84 sEV proteins were significantly altered by the presence of S/GFP. S protein expressing EVs efficiently adhered to target cells in an ACE2-dependent manner, but they were poorly internalised. Importantly, prolonged administration of S/GFP EV to K18-hACE2 mice provided a significant protection against SARS-CoV-2 infection. Thus, the generation of sEV containing S protein can be considered as a novel therapeutic approach in reducing the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of BiochemistryCollege of MedicineSoonchunhyang UniversityCheonanChungcheongnamRepublic of Korea
| | - Nargis Khan
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecCanada
- Snyder institute of Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Laura Montermini
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecCanada
| | - Nadim Tawil
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecCanada
| | - Brian Meehan
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecCanada
| | - Dae‐Kyum Kim
- Department of Cancer Genetics and GenomicsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Frederick P. Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer ScienceUniversity of TorontoTorontoOntarioCanada
- Lunenfeld‐Tanenbaum Research InstituteSinai Health SystemTorontoOntarioCanada
| | - Maziar Divangahi
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecCanada
| | - Janusz Rak
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
49
|
Affiliation(s)
- Yan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
50
|
Chaisawangwong W, Wang H, Kouo T, Salathe SF, Isser A, Bieler JG, Zhang ML, Livingston NK, Li S, Horowitz JJ, Samet RE, Zyskind I, Rosenberg AZ, Schneck JP. Cross-reactivity of SARS-CoV-2- and influenza A-specific T cells in individuals exposed to SARS-CoV-2. JCI Insight 2022; 7:e158308. [PMID: 36134660 PMCID: PMC9675569 DOI: 10.1172/jci.insight.158308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158-66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158-66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hanzhi Wang
- Department of Biomedical Engineering, Whiting School of Engineering
| | - Theodore Kouo
- Department of Pediatrics, Division of Emergency Medicine
| | | | - Ariel Isser
- Department of Biomedical Engineering, School of Medicine, and
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Maya L. Zhang
- Department of Biomedical Engineering, Whiting School of Engineering
| | | | - Shuyi Li
- Department of Pathology, School of Medicine
| | | | - Ron E. Samet
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, New York, USA; Maimonides Medical Center, New York, New York, USA
| | | | - Jonathan P. Schneck
- Department of Pathology, School of Medicine
- Department of Biomedical Engineering, School of Medicine, and
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for Nanobiotechnology and
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|