1
|
Shafiq S, Hamashima K, Guest LA, Al-Anbaki AH, Amaral FMR, Wiseman DH, Kouskoff V, Lacaud G, Loh YH, Batta K. Competing dynamic gene regulatory networks involved in fibroblast reprogramming to hematopoietic progenitor cells. Stem Cell Reports 2025; 20:102473. [PMID: 40185089 DOI: 10.1016/j.stemcr.2025.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025] Open
Abstract
Direct reprogramming of somatic cells offers a potentially safer therapeutic approach to generate patient-specific hematopoietic cells. However, this strategy is limited by stochasticity of reprogramming. Investigating the gene regulatory networks involved during reprogramming would help generate functional cells in adequate numbers. To address this, we developed an inducible system to reprogram fibroblasts to hematopoietic progenitor cells by ectopically expressing the two transcription factors SCL and LMO2. Transcriptome and epigenome analysis at different stages of reprogramming revealed uniform silencing of fibroblast genes and upregulation of the hemogenic endothelial program. Integrated analysis suggested that the transcription factors FLI1, GATA1/2, and KLF14 are direct targets of SCL/LMO2, which subsequently induce the hematopoietic program. Single-cell RNA sequencing revealed conflicting and competing fate decisions at intermediate stages of reprogramming. Inhibiting signaling pathways associated with competing neuronal fate enhanced reprogramming efficiency. In conclusion, this study identifies early/intermediate reprogramming events and associated pathways that could be targeted to improve reprogramming efficiency.
Collapse
Affiliation(s)
- Samiyah Shafiq
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK; Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Republic of Singapore
| | - Laura A Guest
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Ali H Al-Anbaki
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Developmental Haematopoiesis Group, Division of Developmental Biology and Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Republic of Singapore
| | - Kiran Batta
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Randolph LN, Castiglioni C, Tavian M, Sturgeon CM, Ditadi A. Bloodhounds chasing the origin of blood cells. Trends Cell Biol 2025:S0962-8924(25)00067-4. [PMID: 40221343 DOI: 10.1016/j.tcb.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The generation of blood cells during embryonic development involves a process resembling lineage reprogramming, where specialized cells within the vasculature become blood forming, or hemogenic. These hemogenic cells undergo rapid transcriptional and morphological changes as they appear to switch from an endothelial to blood identity. What controls this process and the exact nature of the hemogenic cells remains debated, with evidence supporting several hypotheses. In this opinion, we synthesize current knowledge and propose a model reconciling conflicting observations, integrating evolutionary and mechanistic insights into blood cell emergence.
Collapse
Affiliation(s)
- Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Castiglioni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Tavian
- University of Strasbourg, INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Cox G, Kobayashi M, Rudd BD, Yoshimoto M. Regulation of HSC development and function by Lin28b. Front Cell Dev Biol 2025; 13:1555877. [PMID: 40143971 PMCID: PMC11936975 DOI: 10.3389/fcell.2025.1555877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Hematopoietic stem cells (HSCs) provide all kinds of blood cells for life while maintaining self-renewal ability. During development, HSCs are first produced in the mouse embryo around embryonic day (E) 11. At this time, only one or two transplantable HSCs can be detected per embryo. Then, HSCs migrate to the fetal liver, where the number of HSCs rapidly increases, showing enhanced self-renewal ability. After birth, a transition occurs from the rapidly proliferating fetal HSCs to the more slowly dividing adult HSCs, which ends by 3-4 weeks of age. It is known that fetal HSCs express distinct surface markers and transcriptomes and produce a variety of distinct immune cells that are not made by adult HSCs. Accumulating evidence indicates that the ontogeny of the hematopoietic system is driven by a highly conserved and developmentally regulated RNA binding protein known as Lin28b. Lin28b is predominantly expressed in the fetal hematopoietic stem and progenitor cells (HSPCs) and regulates the developmental switch from fetal to adult HSCs. In this review, we will provide an overview of how Lin28b regulates the expansion and differentiation of HSCs in early life. These insights can be taken into consideration when developing ex vivo HSC expansion utilizing such physiological characteristics of HSCs.
Collapse
Affiliation(s)
- Grant Cox
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Michihiro Kobayashi
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Momoko Yoshimoto
- Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
4
|
Sturgeon CM, Wagenblast E, Izzo F, Papapetrou EP. The Crossroads of Clonal Evolution, Differentiation Hierarchy, and Ontogeny in Leukemia Development. Blood Cancer Discov 2025; 6:94-109. [PMID: 39652739 PMCID: PMC11876951 DOI: 10.1158/2643-3230.bcd-24-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE In recent years, remarkable technological advances have illuminated aspects of the pathogenesis of myeloid malignancies-yet outcomes for patients with these devastating diseases have not significantly improved. We posit that a synthesized view of the three dimensions through which hematopoietic cells transit during their healthy and diseased life-clonal evolution, stem cell hierarchy, and ontogeny-promises high yields in new insights into disease pathogenesis and new therapeutic avenues.
Collapse
Affiliation(s)
- Christopher M. Sturgeon
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elvin Wagenblast
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Franco Izzo
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Liang G, Liu S, Zhou C, Liu M, Zhang Y, Ma D, Wang L, Han JDJ, Liu F. Conversion of placental hemogenic endothelial cells to hematopoietic stem and progenitor cells. Cell Discov 2025; 11:9. [PMID: 39875377 PMCID: PMC11775181 DOI: 10.1038/s41421-024-00760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are critical for the treatment of blood diseases in clinic. However, the limited source of HSPCs severely hinders their clinical application. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelial (HE) cells lining the major arteries in vivo. In this work, by engineering vascular niche endothelial cells (VN-ECs), we generated functional HSPCs in vitro from ECs at various sites, including the aorta-gonad-mesonephros (AGM) region and the placenta. Firstly, we converted mouse embryonic HE cells from the AGM region (aHE) into induced HSPCs (iHSPCs), which have the abilities for multilineage differentiation and self-renewal. Mechanistically, we found that VN-ECs can promote the generation of iHSPCs via secretion of CX3CL1 and IL1A. Next, through VN-EC co-culture, we showed that placental HE (pHE) cells, a type of extra-embryonic HE cells, were successfully converted into iHSPCs (pHE-iHSPCs), which have multilineage differentiation capacity, but exhibit limited self-renewal ability. Furthermore, comparative transcriptome analysis of aHE-iHSPCs and pHE-iHSPCs showed that aHE-iHSPCs highly expressed HSC-specific and self-renewal-related genes. Moreover, experimental validation showed that retinoic acid (RA) treatment promoted the transformation of pHE cells into iHSPCs that have self-renewal ability. Collectively, our results suggested that pHE cells possess the potential to transform into self-renewing iHSPCs through RA treatment, which will facilitate the clinical application of placental endothelial cells in hematopoietic cell generation.
Collapse
Affiliation(s)
- Guixian Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shicheng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yifan Zhang
- School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Dongyuan Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
| | - Feng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2025; 26:32-50. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
7
|
Shalaby C, Garifallou J, Thom CS. Integrated Local and Systemic Communication Factors Regulate Nascent Hematopoietic Progenitor Escape During Developmental Hematopoiesis. Int J Mol Sci 2024; 26:301. [PMID: 39796157 PMCID: PMC11720630 DOI: 10.3390/ijms26010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs. We used single cell RNA sequencing analysis from human embryonic cells to identify relevant signaling pathways that support nascent HSC release. In addition to intercellular and secreted signaling modalities that have been previously functionally validated to support EHT and/or developmental hematopoiesis in model systems, we identify several novel modalities with plausible mechanisms to support EHT and HSC release. Our findings paint a portrait of the complex inter-regulated signals from the local niche, circulating hematopoietic/inflammatory cells, and distal fetal liver that support hematopoiesis.
Collapse
Affiliation(s)
- Carson Shalaby
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Garifallou
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher S. Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Tsuruda M, Morino-Koga S, Zhao X, Usuki S, Yasunaga KI, Yokomizo T, Nishinakamura R, Suda T, Ogawa M. Bone morphogenetic protein 4 induces hematopoietic stem cell development from murine hemogenic endothelial cells in culture. Stem Cell Reports 2024; 19:1677-1689. [PMID: 39547225 PMCID: PMC11751802 DOI: 10.1016/j.stemcr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) during mouse embryogenesis. Understanding the signaling molecules required for HSC development is crucial for the in vitro derivation of HSCs. We previously induced HSCs from embryonic HECs, isolated at embryonic day 10.5 (E10.5), in serum-free culture conditions with stem cell factor, thrombopoietin, and an endothelial feeder layer. Here, we aimed to elucidate signal requirements for inducing HSCs from earlier-stage HECs. Single-cell RNA sequencing (RNA-seq) analysis detected bone morphogenetic protein (BMP) signaling activation in E9.5 HECs. Adding BMP4 to the culture conditions led to the induction of HSCs from E9.5 HECs. Furthermore, isolating BMP4 receptor-expressing HECs from E9.5 embryos enriched progenitors with HSC-forming ability. This study identified BMP4 as an essential factor promoting the differentiation of early HECs into HSCs, opening up new possibilities for the in vitro derivation of HSCs.
Collapse
Affiliation(s)
- Mariko Tsuruda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Xueyu Zhao
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
9
|
Morino-Koga S, Yokomizo T. Deciphering hematopoietic stem cell development: key signaling pathways and mechanisms. Front Cell Dev Biol 2024; 12:1510198. [PMID: 39717844 PMCID: PMC11663937 DOI: 10.3389/fcell.2024.1510198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs. Reports indicate transcription factors and external signals are involved in these processes. In this review, we discuss the timing and role of these transcription factors and summarize the external signals that have demonstrated efficacy in an in vitro culture. A precise understanding of the signals at each step is expected to advance the development of methods for inducing HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
10
|
Wellington R, Cheng X, Campbell CA, Trapnell C, Espin-Palazon R, Hadland B, Doulatov S. Developmental regulation of endothelial-to-hematopoietic transition from induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.612755. [PMID: 39386462 PMCID: PMC11463665 DOI: 10.1101/2024.09.24.612755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematopoietic stem cells (HSCs) arise in embryogenesis from a specialized hemogenic endothelium (HE). In this process, HE cells undergo a unique fate change termed endothelial-to-hematopoietic transition, or EHT. While induced pluripotent stem cells (iPSCs) give rise to HE with robust hemogenic potential, the generation of bona fide HSCs from iPSCs remains a challenge. Here, we map single cell dynamics of EHT during embryoid body differentiation from iPSCs and integrate it with human embryo datasets to identify key transcriptional differences between in vitro and in vivo cell states. We further map ligand-receptor interactions associated with differential expression of developmental programs in the iPSC system. We found that the expression of endothelial genes was incompletely repressed during iPSC EHT. Elevated FGF signaling by FGF23, an endothelial pathway ligand, was associated with differential gene expression between in vitro and in vivo EHT. Chemical inhibition of FGF signaling during EHT increased HSPC generation in the zebrafish, while an FGF agonist had the opposite effect. Consistently, chemical inhibition of FGF signaling increased hematopoietic output from iPSCs. In summary, we map the dynamics of EHT from iPSCs at single cell resolution and identify ligand-receptor interactions that can be modulated to improve iPSC differentiation protocols. We show, as proof of principle, that chemical inhibition of FGF signaling during EHT improves hematopoietic output in zebrafish and the iPSC system.
Collapse
Affiliation(s)
- Rachel Wellington
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Clyde A. Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Brandon Hadland
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Hematology Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Chen K, Wu J, Zhang Y, Liu W, Chen X, Zhang W, Huang Z. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. Open Biol 2024; 14:240215. [PMID: 39500381 PMCID: PMC11537755 DOI: 10.1098/rsob.240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish cebpa mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that cebpa expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in cebpa N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Collapse
Affiliation(s)
- Kemin Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Jieyi Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Yuxian Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Xiaohui Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, People’s Republic of China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| |
Collapse
|
12
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Luff SA, Fernandez NA, Sturgeon CM, Ditadi A. Generation of functionally distinct hemogenic endothelial cell populations from pluripotent stem cells. Exp Hematol 2024; 138:104587. [PMID: 39074529 DOI: 10.1016/j.exphem.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
A diverse array of protocols have been established for the directed differentiation of human pluripotent stem cells (hPSCs) into a variety of cell types, including blood cells, for modeling development and disease, and for the development of cell-based therapeutics. These protocols recapitulate various signaling requirements essential for the establishment of the hematopoietic systems during embryonic development. However, in many instances, the functional properties of those progenitors, and their relevance to human development, remains unclear. The human embryo, much like other vertebrate model organisms, generates hematopoietic cells via successive anatomical location- and time-specific waves, each yielding cells with distinct functional and molecular characteristics. Each of these progenitor "waves" is characterized at the time of emergence of the direct hematopoietic progenitor in the vasculature, the hemogenic endothelial cell (HEC). Critically, despite decades of study in model organisms, the origins of each of these HEC populations remain unclear. Fortunately, through the directed differentiation of hPSCs, recent insights have been made into the earliest origins of each HEC population, revealing that each arises from transcriptionally and phenotypically distinct subsets of nascent mesoderm. Here, we outline the protocols to generate each mesodermal and HEC population via the formation of embryoid bodies and subsequent stage-specific signal manipulation. Through implementation of these discrete signal manipulations, it is possible to obtain human HEC populations that are exclusively extraembryonic-like or exclusively intraembryonic-like, enabling comparative developmental biology studies or specific translational applications.
Collapse
Affiliation(s)
- Stephanie A Luff
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nestor A Fernandez
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher M Sturgeon
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
14
|
Wilken MB, Fonar G, Qiu R, Bennett L, Tober J, Nations C, Pavani G, Tsao V, Garifallou J, Petit C, Maguire JA, Gagne A, Okoli N, Gadue P, Chou ST, French DL, Speck NA, Thom CS. Tropomyosin 1 deficiency facilitates cell state transitions and enhances hemogenic endothelial cell specification during hematopoiesis. Stem Cell Reports 2024; 19:1264-1276. [PMID: 39214082 PMCID: PMC11411305 DOI: 10.1016/j.stemcr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Tropomyosins coat actin filaments to impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. TPM1 has been shown to regulate blood cell formation in vitro, but it remains unclear how or when TPM1 affects hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, we found that TPM1 knockout augmented developmental cell state transitions and key signaling pathways, including tumor necrosis factor alpha (TNF-α) signaling, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses revealed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced HE formation during embryogenesis, without increasing the number of hematopoietic stem cells. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.
Collapse
Affiliation(s)
- Madison B Wilken
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gennadiy Fonar
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rong Qiu
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catriana Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Victor Tsao
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - James Garifallou
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chayanne Petit
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nkemdilim Okoli
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Sun S, Motazedian A, Li JY, Wijanarko K, Zhu JJ, Tharmarajah K, Strumila KA, Shkaruta A, Nigos LR, Schiesser JV, Yu Y, Neeson PJ, Ng ES, Elefanty AG, Stanley EG. Efficient generation of human NOTCH ligand-expressing haemogenic endothelial cells as infrastructure for in vitro haematopoiesis and lymphopoiesis. Nat Commun 2024; 15:7698. [PMID: 39227582 PMCID: PMC11371830 DOI: 10.1038/s41467-024-51974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Arterial endothelial cells (AECs) are the founder cells for intraembryonic haematopoiesis. Here, we report a method for the efficient generation of human haemogenic DLL4+ AECs from pluripotent stem cells (PSC). Time-series single-cell RNA-sequencing reveals the dynamic evolution of haematopoiesis and lymphopoiesis, generating cell types with counterparts present in early human embryos, including stages marked by the pre-haematopoietic stem cell genes MECOM/EVI1, MLLT3 and SPINK2. DLL4+ AECs robustly support lymphoid differentiation, without the requirement for exogenous NOTCH ligands. Using this system, we find IL7 acts as a morphogenic factor determining the fate choice between the T and innate lymphoid lineages and also plays a role in regulating the relative expression level of RAG1. Moreover, we document a developmental pathway by which human RAG1+ lymphoid precursors give rise to the natural killer cell lineage. Our study describes an efficient method for producing lymphoid progenitors, providing insights into their endothelial and haematopoietic ontogeny, and establishing a platform to investigate the development of the human blood system.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Changping Laboratory, Beijing, China.
| | - Ali Motazedian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kevin Wijanarko
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kothila Tharmarajah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kathleen A Strumila
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Anton Shkaruta
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - L Rayburn Nigos
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jacqueline V Schiesser
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Yi Yu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
16
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
17
|
Yokomizo T. Hematopoietic cluster formation: an essential prelude to blood cell genesis. Exp Hematol 2024; 136:104284. [PMID: 39032856 DOI: 10.1016/j.exphem.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Adult blood cells are produced in the bone marrow by hematopoietic stem cells (HSCs), the origin of which can be traced back to fetal developmental stages. Indeed, during mouse development, at days 10-11 of gestation, the aorta-gonad-mesonephros (AGM) region is a primary site of HSC production, with characteristic cell clusters related to stem cell genesis observed in the dorsal aorta. Similar clusters linked with hematopoiesis are also observed in the other sites such as the yolk sac and placenta. In this review, I outline the formation and function of these clusters, focusing on the well-characterized intra-aortic hematopoietic clusters (IAHCs).
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
18
|
Clements WK, Khoury H. The molecular and cellular hematopoietic stem cell specification niche. Exp Hematol 2024; 136:104280. [PMID: 39009276 PMCID: PMC11338702 DOI: 10.1016/j.exphem.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the "specification niche"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Hanane Khoury
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
19
|
Morino-Koga S, Tsuruda M, Zhao X, Oshiro S, Yokomizo T, Yamane M, Tanigawa S, Miike K, Usuki S, Yasunaga KI, Nishinakamura R, Suda T, Ogawa M. Transition of signal requirement in hematopoietic stem cell development from hemogenic endothelial cells. Proc Natl Acad Sci U S A 2024; 121:e2404193121. [PMID: 39042698 PMCID: PMC11294991 DOI: 10.1073/pnas.2404193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) in vivo during mouse embryogenesis. When cultured in vitro, cells from the embryo phenotypically defined as pre-HSC-I and pre-HSC-II have the potential to differentiate into HSCs. However, minimal factors required for HSC induction from HECs have not yet been determined. In this study, we demonstrated that stem cell factor (SCF) and thrombopoietin (TPO) induced engrafting HSCs from embryonic day (E) 11.5 pre-HSC-I in a serum-free and feeder-free culture condition. In contrast, E10.5 pre-HSC-I and HECs required an endothelial cell layer in addition to SCF and TPO to differentiate into HSCs. A single-cell RNA sequencing analysis of E10.5 to 11.5 dorsal aortae with surrounding tissues and fetal livers detected TPO expression confined in hepatoblasts, while SCF was expressed in various tissues, including endothelial cells and hepatoblasts. Our results suggest a transition of signal requirement during HSC development from HECs. The differentiation of E10.5 HECs to E11.5 pre-HSC-I in the aorta-gonad-mesonephros region depends on SCF and endothelial cell-derived factors. Subsequently, SCF and TPO drive the differentiation of E11.5 pre-HSC-I to pre-HSC-II/HSCs in the fetal liver. The culture system established in this study provides a beneficial tool for exploring the molecular mechanisms underlying the development of HSCs from HECs.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Mariko Tsuruda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Xueyu Zhao
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Shogo Oshiro
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto860-0811, Japan
- Department of Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo162-8666, Japan
| | - Mariko Yamane
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
- Department of Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo113-8510, Japan
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Koichiro Miike
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Kei-ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto860-0811, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| |
Collapse
|
20
|
Mandrycky C, Ishida T, Rayner SG, Heck AM, Hadland B, Zheng Y. Under pressure: integrated endothelial cell response to hydrostatic and shear stresses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596749. [PMID: 38854073 PMCID: PMC11160699 DOI: 10.1101/2024.05.30.596749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Blood flow within the vasculature is a critical determinant of endothelial cell (EC) identity and functionality, yet the intricate interplay of various hemodynamic forces and their collective impact on endothelial and vascular responses are not fully understood. Specifically, the role of hydrostatic pressure in the EC flow response is understudied, despite its known significance in vascular development and disease. To address this gap, we developed in vitro models to investigate how pressure influences EC responses to flow. Our study demonstrates that elevated pressure conditions significantly modify shear-induced flow alignment and increase endothelial cell density. Bulk and single-cell RNA sequencing analyses revealed that, while shear stress remains the primary driver of flow-induced transcriptional changes, pressure modulates shear-induced signaling in a dose-dependent manner. These pressure-responsive transcriptional signatures identified in human ECs were conserved during the onset of circulation in early mouse embryonic vascular development, where pressure was notably associated with transcriptional programs essential to arterial and hemogenic EC fates. Our findings suggest that pressure plays a synergistic role with shear stress on ECs and emphasizes the need for an integrative approach to endothelial cell mechanotransduction, one that encompasses the effects induced by pressure alongside other hemodynamic forces.
Collapse
|
21
|
Thambyrajah R, Maqueda M, Fadlullah MZ, Proffitt M, Neo WH, Guillén Y, Casado-Pelaez M, Herrero-Molinero P, Brujas C, Castelluccio N, González J, Iglesias A, Marruecos L, Ruiz-Herguido C, Esteller M, Mereu E, Lacaud G, Espinosa L, Bigas A. IκBα controls dormancy in hematopoietic stem cells via retinoic acid during embryonic development. Nat Commun 2024; 15:4673. [PMID: 38824124 PMCID: PMC11144194 DOI: 10.1038/s41467-024-48854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.
Collapse
Grants
- PID2022-137945OB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- PID2019-104695RB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- 2021SGR00039 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2016(00021) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2018(00034) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- CA22/00011 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
| | - Maria Maqueda
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Muhammad Zaki Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Martin Proffitt
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Wen Hao Neo
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Yolanda Guillén
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | | | - Carla Brujas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Noemi Castelluccio
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Ghent University Hospital, Ghent, Belgium
| | - Jessica González
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Arnau Iglesias
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Laura Marruecos
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | | | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lluis Espinosa
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
22
|
Torcq L, Majello S, Vivier C, Schmidt AA. Tuning apicobasal polarity and junctional recycling in the hemogenic endothelium orchestrates the morphodynamic complexity of emerging pre-hematopoietic stem cells. eLife 2024; 12:RP91429. [PMID: 38809590 PMCID: PMC11136496 DOI: 10.7554/elife.91429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.
Collapse
Affiliation(s)
- Léa Torcq
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
- Sorbonne UniversitéParisFrance
| | - Sara Majello
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| | - Catherine Vivier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| | - Anne A Schmidt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| |
Collapse
|
23
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Scarfò R, Randolph LN, Abou Alezz M, El Khoury M, Gersch A, Li ZY, Luff SA, Tavosanis A, Ferrari Ramondo G, Valsoni S, Cascione S, Didelon E, Passerini L, Amodio G, Brandas C, Villa A, Gregori S, Merelli I, Freund JN, Sturgeon CM, Tavian M, Ditadi A. CD32 captures committed haemogenic endothelial cells during human embryonic development. Nat Cell Biol 2024; 26:719-730. [PMID: 38594587 PMCID: PMC11098737 DOI: 10.1038/s41556-024-01403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.
Collapse
Affiliation(s)
- Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mahassen El Khoury
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Amélie Gersch
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Zhong-Yin Li
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Tavosanis
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Ferrari Ramondo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cascione
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Didelon
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
- INSERM U1256-NGERE, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
25
|
Zhang Y, Kang Z, Liu M, Wang L, Liu F. Single-cell omics identifies inflammatory signaling as a trans-differentiation trigger in mouse embryos. Dev Cell 2024; 59:961-978.e7. [PMID: 38508181 DOI: 10.1016/j.devcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhixin Kang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Gonzalez Galofre ZN, Kilpatrick AM, Marques M, Sá da Bandeira D, Ventura T, Gomez Salazar M, Bouilleau L, Marc Y, Barbosa AB, Rossi F, Beltran M, van de Werken HJG, van IJcken WFJ, Henderson NC, Forbes SJ, Crisan M. Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo. Nat Commun 2024; 15:1653. [PMID: 38395882 PMCID: PMC10891074 DOI: 10.1038/s41467-024-44913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.
Collapse
Affiliation(s)
- Zaniah N Gonzalez Galofre
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Diana Sá da Bandeira
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Léa Bouilleau
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yvan Marc
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Ana B Barbosa
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 GE, Rotterdam, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Thambyrajah R, Maqueda M, Neo WH, Imbach K, Guillén Y, Grases D, Fadlullah Z, Gambera S, Matteini F, Wang X, Calero-Nieto FJ, Esteller M, Florian MC, Porta E, Benedito R, Göttgens B, Lacaud G, Espinosa L, Bigas A. Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate. Nat Commun 2024; 15:1604. [PMID: 38383534 PMCID: PMC10882055 DOI: 10.1038/s41467-024-45716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain.
| | - Maria Maqueda
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Wen Hao Neo
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Kathleen Imbach
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Yolanda Guillén
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Daniela Grases
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Zaki Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Stefano Gambera
- Molecular Genetics of Angiogenesis Group. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), Barcelona, Spain
| | - Xiaonan Wang
- Department of Haematology, Wellcome - MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fernando J Calero-Nieto
- Department of Haematology, Wellcome - MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Maria Carolina Florian
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), Barcelona, Spain
| | - Eduard Porta
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Berthold Göttgens
- Department of Haematology, Wellcome - MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lluis Espinosa
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain.
| |
Collapse
|
28
|
Yokomizo T, Suda T. Development of the hematopoietic system: expanding the concept of hematopoietic stem cell-independent hematopoiesis. Trends Cell Biol 2024; 34:161-172. [PMID: 37481335 DOI: 10.1016/j.tcb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to nearly all blood cell types and play a central role in blood cell production in adulthood. For many years it was assumed that these roles were similarly responsible for driving the formation of the hematopoietic system during the embryonic period. However, detailed analysis of embryonic hematopoiesis has revealed the presence of hematopoietic cells that develop independently of HSCs both before and after HSC generation. Furthermore, it is becoming increasingly clear that HSCs are less involved in the production of functioning blood cells during the embryonic period when there is a much higher contribution from HSC-independent hematopoietic processes. We outline the current understanding and arguments for HSC-dependent and -independent hematopoiesis, mainly focusing on mouse ontogeny.
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
29
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
30
|
Zhang Y, Liu F. The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro. J Genet Genomics 2024; 51:3-15. [PMID: 37734711 DOI: 10.1016/j.jgg.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Vink CS, Popravko A, Dzierzak E. De novo hematopoietic (stem) cell generation - A differentiation or stochastic process? Curr Opin Cell Biol 2023; 85:102255. [PMID: 37806296 DOI: 10.1016/j.ceb.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
The hematopoietic system is one of the earliest tissues to develop. De novo generation of hematopoietic progenitor and stem cells occurs through a transdifferentiation of (hemogenic) endothelial cells to hematopoietic identity, resulting in the formation of intra-aortic hematopoietic cluster (IAHC) cells. Heterogeneity of IAHC cell phenotypes and functions has stymied the field in its search for the transcriptional program of emerging hematopoietic stem cells (HSCs), given that an individual IAHC cannot be simultaneously examined for function and transcriptome. Several models could account for this heterogeneity, including a novel model suggesting that the transcriptomes of individual emerging IAHC cells are in an unstable/metastable state, with pivotal hematopoietic transcription factors expressed dynamically due to transcriptional pulsing and combinatorial activities. The question remains - how is functional hematopoietic cell fate established - is the process stochastic? This article touches upon these important issues, which may be relevant to the field's inability to make HSCs ex vivo.
Collapse
Affiliation(s)
- Chris S Vink
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, EH16 4UU, UK
| | - Anna Popravko
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, EH16 4UU, UK
| | - Elaine Dzierzak
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, EH16 4UU, UK.
| |
Collapse
|
32
|
Yeung AK, Villacorta-Martin C, Lindstrom-Vautrin J, Belkina AC, Vanuytsel K, Dowrey TW, Ysasi AB, Bawa P, Wang F, Vrbanac V, Mostoslavsky G, Balazs AB, Murphy GJ. De novo hematopoiesis from the fetal lung. Blood Adv 2023; 7:6898-6912. [PMID: 37729429 PMCID: PMC10685174 DOI: 10.1182/bloodadvances.2022008347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023] Open
Abstract
Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFβ/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.
Collapse
Affiliation(s)
- Anthony K. Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | | | | | - Anna C. Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Kim Vanuytsel
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Todd W. Dowrey
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Alexandra B. Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | | | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | | | - George J. Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
33
|
Peixoto MM, Soares-da-Silva F, Bonnet V, Ronteix G, Santos RF, Mailhe MP, Feng X, Pereira JP, Azzoni E, Anselmi G, de Bruijn M, Baroud CN, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of cytokines expression dictate fetal liver hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554612. [PMID: 37662317 PMCID: PMC10473721 DOI: 10.1101/2023.08.24.554612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.
Collapse
|
34
|
Calvanese V, Mikkola HKA. The genesis of human hematopoietic stem cells. Blood 2023; 142:519-532. [PMID: 37339578 PMCID: PMC10447622 DOI: 10.1182/blood.2022017934] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 06/22/2023] Open
Abstract
Developmental hematopoiesis consists of multiple, partially overlapping hematopoietic waves that generate the differentiated blood cells required for embryonic development while establishing a pool of undifferentiated hematopoietic stem cells (HSCs) for postnatal life. This multilayered design in which active hematopoiesis migrates through diverse extra and intraembryonic tissues has made it difficult to define a roadmap for generating HSCs vs non-self-renewing progenitors, especially in humans. Recent single-cell studies have helped in identifying the rare human HSCs at stages when functional assays are unsuitable for distinguishing them from progenitors. This approach has made it possible to track the origin of human HSCs to the unique type of arterial endothelium in the aorta-gonad-mesonephros region and document novel benchmarks for HSC migration and maturation in the conceptus. These studies have delivered new insights into the intricate process of HSC generation and provided tools to inform the in vitro efforts to replicate the physiological developmental journey from pluripotent stem cells via distinct mesodermal and endothelial intermediates to HSCs.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
| | - Hanna K. A. Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
35
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
36
|
Ghersi JJ, Baldissera G, Hintzen J, Luff SA, Cheng S, Xia IF, Sturgeon CM, Nicoli S. Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium. Nat Cell Biol 2023; 25:1135-1145. [PMID: 37460694 PMCID: PMC10415179 DOI: 10.1038/s41556-023-01187-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/09/2023] [Indexed: 08/12/2023]
Abstract
Definitive haematopoietic stem and progenitor cells (HSPCs) generate erythroid, lymphoid and myeloid lineages. HSPCs are produced in the embryo via transdifferentiation of haemogenic endothelial cells in the aorta-gonad-mesonephros (AGM). HSPCs in the AGM are heterogeneous in differentiation and proliferative output, but how these intrinsic differences are acquired remains unanswered. Here we discovered that loss of microRNA (miR)-128 in zebrafish leads to an expansion of HSPCs in the AGM with different cell cycle states and a skew towards erythroid and lymphoid progenitors. Manipulating miR-128 in differentiating haemogenic endothelial cells, before their transition to HSPCs, recapitulated the lineage skewing in both zebrafish and human pluripotent stem cells. miR-128 promotes Wnt and Notch signalling in the AGM via post-transcriptional repression of the Wnt inhibitor csnk1a1 and the Notch ligand jag1b. De-repression of cskn1a1 resulted in replicative and erythroid-biased HSPCs, whereas de-repression of jag1b resulted in G2/M and lymphoid-biased HSPCs with long-term consequence on the respective blood lineages. We propose that HSPC heterogeneity arises in the AGM endothelium and is programmed in part by Wnt and Notch signalling.
Collapse
Affiliation(s)
- Joey J Ghersi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyuan Cheng
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan Fan Xia
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
37
|
Ishida T, Heck AM, Varnum-Finney B, Dozono S, Nourigat-McKay C, Kraskouskas K, Wellington R, Waltner O, Root, Jackson DL, Delaney C, Rafii S, Bernstein ID, Trapnell, Hadland B. Differentiation latency and dormancy signatures define fetal liver HSCs at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543314. [PMID: 37333272 PMCID: PMC10274697 DOI: 10.1101/2023.06.01.543314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Decoding the gene regulatory mechanisms mediating self-renewal of hematopoietic stem cells (HSCs) during their amplification in the fetal liver (FL) is relevant for advancing therapeutic applications aiming to expand transplantable HSCs, a long-standing challenge. Here, to explore intrinsic and extrinsic regulation of self-renewal in FL-HSCs at the single cell level, we engineered a culture platform designed to recapitulate the FL endothelial niche, which supports the amplification of serially engraftable HSCs ex vivo. Leveraging this platform in combination with single cell index flow cytometry, serial transplantation assays, and single cell RNA-sequencing, we elucidated previously unrecognized heterogeneity in immunophenotypically defined FL-HSCs and demonstrated that differentiation latency and transcriptional signatures of biosynthetic dormancy are distinguishing properties of self-renewing FL-HSCs with capacity for serial, long-term multilineage hematopoietic reconstitution. Altogether, our findings provide key insights into HSC expansion and generate a novel resource for future exploration of the intrinsic and niche-derived signaling pathways that support FL-HSC self-renewal.
Collapse
Affiliation(s)
- Takashi Ishida
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam M. Heck
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Barbara Varnum-Finney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stacey Dozono
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cynthia Nourigat-McKay
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katie Kraskouskas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachel Wellington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology, School of Medicine, University of Washington, Seattle, WA
| | - Olivia Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Root
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Colleen Delaney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Deverra Therapeutics, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Irwin D. Bernstein
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA, USA
| | - Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brandon Hadland
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Xia J, Liu M, Zhu C, Liu S, Ai L, Ma D, Zhu P, Wang L, Liu F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res 2023; 33:448-463. [PMID: 37016019 PMCID: PMC10235423 DOI: 10.1038/s41422-023-00797-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are considered as a heterogeneous population, but precisely when, where and how HSPC heterogeneity arises remain largely unclear. Here, using a combination of single-cell multi-omics, lineage tracing and functional assays, we show that embryonic HSPCs originate from heterogeneous hemogenic endothelial cells (HECs) during zebrafish embryogenesis. Integrated single-cell transcriptome and chromatin accessibility analysis demonstrates transcriptional heterogeneity and regulatory programs that prime lymphoid/myeloid fates at the HEC level. Importantly, spi2+ HECs give rise to lymphoid/myeloid-primed HSPCs (L/M-HSPCs) and display a stress-responsive function under acute inflammation. Moreover, we uncover that Spi2 is required for the formation of L/M-HSPCs through tightly controlling the endothelial-to-hematopoietic transition program. Finally, single-cell transcriptional comparison of zebrafish and human HECs and human induced pluripotent stem cell-based hematopoietic differentiation results support the evolutionary conservation of L/M-HECs and a conserved role of SPI1 (spi2 homolog in mammals) in humans. These results unveil the lineage origin, biological function and molecular determinant of HSPC heterogeneity and lay the foundation for new strategies for induction of transplantable lineage-primed HSPCs in vitro.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
39
|
Lemerle E, Trompouki E. Hematopoietic heterogeneity starts at the hemogenic endothelium. Cell Res 2023; 33:413-414. [PMID: 37055594 PMCID: PMC10235036 DOI: 10.1038/s41422-023-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Affiliation(s)
- Eline Lemerle
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
40
|
Nasiri K, Mohammadzadehsaliani S, Kheradjoo H, Shabestari AM, Eshaghizadeh P, Pakmehr A, Alsaffar MF, Al-Naqeeb BZT, Yasamineh S, Gholizadeh O. Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Commun Signal 2023; 21:103. [PMID: 37158893 PMCID: PMC10165295 DOI: 10.1186/s12964-023-01122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their significant capability to reconstitute and preserve a functional hematopoietic system in long-term periods after transplantation into conditioned hosts. HSCs are thus crucial cellular targets for the continual repair of inherited hematologic, metabolic, and immunologic disorders. In addition, HSCs can undergo various fates, such as apoptosis, quiescence, migration, differentiation, and self-renewal. Viruses continuously pose a remarkable health risk and request an appropriate, balanced reaction from our immune system, which as well as affects the bone marrow (BM). Therefore, disruption of the hematopoietic system due to viral infection is essential. In addition, patients for whom the risk-to-benefit ratio of HSC transplantation (HSCT) is acceptable have seen an increase in the use of HSCT in recent years. Hematopoietic suppression, BM failure, and HSC exhaustion are all linked to chronic viral infections. Virus infections continue to be a leading cause of morbidity and mortality in HSCT recipients, despite recent advancements in the field. Furthermore, whereas COVID-19 manifests initially as an infection of the respiratory tract, it is now understood to be a systemic illness that significantly impacts the hematological system. Patients with advanced COVID-19 often have thrombocytopenia and blood hypercoagulability. In the era of COVID-19, Hematological manifestations of COVID-19 (i.e., thrombocytopenia and lymphopenia), the immune response, and HSCT may all be affected by the SARS-CoV-2 virus in various ways. Therefore, it is important to determine whether exposure to viral infections may affect HSCs used for HSCT, as this, in turn, may affect engraftment efficiency. In this article, we reviewed the features of HSCs, and the effects of viral infections on HSCs and HSCT, such as SARS-CoV-2, HIV, cytomegalovirus, Epstein-Barr virus, HIV, etc. Video Abstract.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | | | | | - Parisa Eshaghizadeh
- Department of Dental Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Medical Doctor, Tehran University of Medical Science, Tehran, Iran
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department / AL-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | | | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
42
|
Kobayashi M, Yoshimoto M. Multiple waves of fetal-derived immune cells constitute adult immune system. Immunol Rev 2023; 315:11-30. [PMID: 36929134 PMCID: PMC10754384 DOI: 10.1111/imr.13192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
It has been over three decades since Drs. Herzenberg and Herzenberg proposed the layered immune system hypothesis, suggesting that different types of stem cells with distinct hematopoietic potential produce specific immune cells. This layering of immune system development is now supported by recent studies showing the presence of fetal-derived immune cells that function in adults. It has been shown that various immune cells arise at different embryonic ages via multiple waves of hematopoiesis from special endothelial cells (ECs), referred to as hemogenic ECs. However, it remains unknown whether these fetal-derived immune cells are produced by hematopoietic stem cells (HSCs) during the fetal to neonatal period. To address this question, many advanced tools have been used, including lineage-tracing mouse models, cellular barcoding techniques, clonal assays, and transplantation assays at the single-cell level. In this review, we will review the history of the search for the origins of HSCs, B-1a progenitors, and mast cells in the mouse embryo. HSCs can produce both B-1a and mast cells within a very limited time window, and this ability declines after embryonic day (E) 14.5. Furthermore, the latest data have revealed that HSC-independent adaptive immune cells exist in adult mice, which implies more complicated developmental pathways of immune cells. We propose revised road maps of immune cell development.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
43
|
Michaels YS, Durland LJ, Zandstra PW. Engineering T Cell Development for the Next Generation of Stem Cell-Derived Immunotherapies. GEN BIOTECHNOLOGY 2023; 2:106-119. [PMID: 37928777 PMCID: PMC10624212 DOI: 10.1089/genbio.2023.0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 11/07/2023]
Abstract
Engineered T cells are at the leading edge of clinical cell therapy. T cell therapies have had a remarkable impact on patient care for a subset of hematological malignancies. This foundation has motivated the development of off-the-shelf engineered cell therapies for a broad range of devastating indications. Achieving this vision will require cost-effective manufacturing of precision cell products capable of addressing multiple process and clinical-design challenges. Pluripotent stem cell (PSC)-derived engineered T cells are emerging as a solution of choice. To unleash the full potential of PSC-derived T cell therapies, the field will require technologies capable of robustly orchestrating the complex series of time- and dose-dependent signaling events needed to recreate functional T cell development in the laboratory. In this article, we review the current state of allogenic T cell therapies, focusing on strategies to generate engineered lymphoid cells from PSCs. We highlight exciting recent progress in this field and outline timely opportunities for advancement with an emphasis on niche engineering and synthetic biology.
Collapse
Affiliation(s)
- Yale S. Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; University of British Columbia, Vancouver, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Canada; and University of British Columbia, Vancouver, Canada
| | - Lauren J. Durland
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Kobayashi M, Wei H, Yamanashi T, Azevedo Portilho N, Cornelius S, Valiente N, Nishida C, Cheng H, Latorre A, Zheng WJ, Kang J, Seita J, Shih DJ, Wu JQ, Yoshimoto M. HSC-independent definitive hematopoiesis persists into adult life. Cell Rep 2023; 42:112239. [PMID: 36906851 PMCID: PMC10122268 DOI: 10.1016/j.celrep.2023.112239] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023] Open
Abstract
It is widely believed that hematopoiesis after birth is established by hematopoietic stem cells (HSCs) in the bone marrow and that HSC-independent hematopoiesis is limited only to primitive erythro-myeloid cells and tissue-resident innate immune cells arising in the embryo. Here, surprisingly, we find that significant percentages of lymphocytes are not derived from HSCs, even in 1-year-old mice. Instead, multiple waves of hematopoiesis occur from embryonic day 7.5 (E7.5) to E11.5 endothelial cells, which simultaneously produce HSCs and lymphoid progenitors that constitute many layers of adaptive T and B lymphocytes in adult mice. Additionally, HSC lineage tracing reveals that the contribution of fetal liver HSCs to peritoneal B-1a cells is minimal and that the majority of B-1a cells are HSC independent. Our discovery of extensive HSC-independent lymphocytes in adult mice attests to the complex blood developmental dynamics spanning the embryo-to-adult transition and challenges the paradigm of HSCs exclusively underpinning the postnatal immune system.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Takashi Yamanashi
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo 103-0027, Japan; Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Nathalia Azevedo Portilho
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samuel Cornelius
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Noemi Valiente
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chika Nishida
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haizi Cheng
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Augusto Latorre
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jun Seita
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo 103-0027, Japan; Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - David J Shih
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jia Qian Wu
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Brown Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Vink CS, Dzierzak E. The (intra-aortic) hematopoietic cluster cocktail: what is in the mix? Exp Hematol 2023; 118:1-11. [PMID: 36529317 DOI: 10.1016/j.exphem.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The adult-definitive hematopoietic hierarchy and hematopoietic stem cells (HSCs) residing in the bone marrow are established during embryonic development. In mouse, human, and many other mammals, it is the sudden formation of so-called intra-aortic/arterial hematopoietic clusters (IAHCs) that best signifies and visualizes this de novo generation of HSCs and hematopoietic progenitor cells (HPCs). Cluster cells arise through an endothelial-to-hematopoietic transition and, for some time, express markers/genes of both tissue types, whilst acquiring more hematopoietic features and losing endothelial ones. Among several hundreds of IAHC cells, the midgestation mouse embryo contains only very few bona fide adult-repopulating HSCs, suggestive of a challenging cell fate to achieve. Most others are HPCs of various types, some of which have the potential to mature into HSCs in vitro. Based on the number of cells that reveal hematopoietic function, a fraction of IAHC cells is uncharacterized. This review aims to explore the current state of knowledge on IAHC cells. We will describe markers useful for isolation and characterization of these fleetingly produced, yet vitally important, cells and for the refined enrichment of the HSCs they contain, and speculate on the role of some IAHC cells that are as-yet functionally uncharacterized.
Collapse
Affiliation(s)
- Chris S Vink
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, UK
| | - Elaine Dzierzak
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, UK.
| |
Collapse
|
46
|
Hou S, Liu C, Yao Y, Bai Z, Gong Y, Wang C, He J, You G, Zhang G, Liu B, Lan Y. Hematopoietic Stem Cell Development in Mammalian Embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:1-16. [PMID: 38228955 DOI: 10.1007/978-981-99-7471-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.
Collapse
Affiliation(s)
- Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhijie Bai
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jian He
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoju You
- State Key Laboratory of Primate Biomedical Research, State Key Laboratory of Experimental Hematology, School of Medicine, Tsinghua University, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Ditadi A, Sturgeon CM. Back to the future: lessons from development drive innovation of human pluripotent stem cell therapies. Exp Hematol 2023; 117:9-14. [PMID: 36400313 DOI: 10.1016/j.exphem.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Christopher M Sturgeon
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
48
|
Abstract
Traditional models of lymphopoiesis present B and T cell development as a linear process that initiates in the fetus and continues after birth in the bone marrow and thymus, respectively. However, this view of lymphocyte development is not in accord with reports, dating back several decades, indicating that the types of lymphocytes generated before and after birth differ. In this regard, selected γδ T cells, and those that utilize the Vγ3 receptor in particular, and innate-like B-1 B cells preferentially arise during fetal blood cell development. This review synthesizes data from multiple laboratories, with an emphasis on our own work using mouse models, demonstrating that innate and conventional B and T cells emerge in hematopoietic stem cell independent and dependent waves of development that are differentially regulated. This layering of lymphocyte development has implications for understanding the composition of the adult immune system and may provide insights into the origin of various lymphocytic leukemias.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
49
|
Azzoni E, Fantin A. Fetal liver hematopoiesis revisited: a precast hierarchy. NATURE CARDIOVASCULAR RESEARCH 2022; 1:872-873. [PMID: 36605232 PMCID: PMC7614020 DOI: 10.1038/s44161-022-00142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Late fetal liver hematopoiesis was thought to primarily rely on hematopoietic stem cells (HSCs). Using new genetic-tracing tools, a study shows that EVI1-positive HSCs mainly undergo expansion in the fetal liver, while differentiated blood cell production depends on HSC-independent intermediate hematopoietic progenitors.
Collapse
Affiliation(s)
- Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | | |
Collapse
|
50
|
Yokomizo T, Ideue T, Morino-Koga S, Tham CY, Sato T, Takeda N, Kubota Y, Kurokawa M, Komatsu N, Ogawa M, Araki K, Osato M, Suda T. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 2022; 609:779-784. [DOI: 10.1038/s41586-022-05203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
|