1
|
Huan X, Zhan J, Gao H. Research progress of spike protein mutation of SARS-CoV-2 mutant strain and antibody development. Front Immunol 2024; 15:1407149. [PMID: 39624100 PMCID: PMC11609190 DOI: 10.3389/fimmu.2024.1407149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a respiratory disease with a very high infectious rate caused by the Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). Because SARS-CoV-2 is easy to mutate, the continuous emergence of SARS-CoV-2 variant strains not only enhances the infectivity of the SARS-CoV-2 but also brings great obstacles to the treatment of COVID-19. Neutralizing antibodies have achieved good results in the clinical application of the novel coronavirus pneumonia, which can be used for pre-infection protection and treatment of novel coronavirus patients. This review makes a detailed introduction to the mutation characteristics of SARS-CoV-2, focusing on the molecular mechanism of mutation affecting the infectivity of SARS-CoV-2, and the impact of mutation on monoclonal antibody therapy, providing scientific reference for the prevention of SARS-CoV-2 variant strains and the research and development of antibody drugs.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
2
|
Karim B, Barary M, Fereydouni Z, Sanjari E, Hosseinzadeh R, Salehi-Vaziri M, Maleki A. The nuts and bolts of recombination in the generation of SARS-CoV-2 variants; from XA to XBB. Lett Appl Microbiol 2024; 77:ovae074. [PMID: 39081071 DOI: 10.1093/lambio/ovae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 01/28/2025]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), new variants with enhanced transmissibility and pathogenicity have surfaced. The World Health Organization has designated five such variants-Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)-as variants of concern. Each variant exhibits distinct characteristics, with many displaying a combination of point mutations and insertions/deletions (indels). These genetic alterations, including mutations, recombinations, and rearrangements, contribute to the emergence of new strains that may exhibit modified phenotypes. However, identifying recombinant forms can be challenging due to their resemblance to other lineages. It is critical to monitor the evolution of new recombinant variants, particularly in light of the potential for vaccine-resistant strains and their accelerated propagation. Recombination has played a pivotal role in the development of certain SARS-CoV-2 variants, such as XA, XD, XF, XE, and XBB, among others. This report delves into the significance of recombination in the evolution of SARS-CoV-2 variants, especially Omicron sublineages, underscoring the necessity for continuous surveillance of the SARS-CoV-2 genome to identify newly emerged recombinant variants.
Collapse
Affiliation(s)
- Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Zahra Fereydouni
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| | - Elaheh Sanjari
- Student Research Committee, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol 678, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Pasteur Ave., Tehran 01316943551, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| |
Collapse
|
3
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
Valleriani F, Di Pancrazio C, Spedicato M, Di Teodoro G, Malatesta D, Petrova T, Profeta F, Colaianni ML, Berjaoui S, Puglia I, Caporale M, Rossi E, Marcacci M, Luciani M, Sacchini F, Portanti O, Bencivenga F, Decaro N, Bonfante F, Lorusso A. A cell-adapted SARS-CoV-2 mutant, showing a deletion in the spike protein spanning the furin cleavage site, has reduced virulence at the lung level in K18-hACE2 mice. Virology 2024; 592:109997. [PMID: 38324940 DOI: 10.1016/j.virol.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Here we investigated the virulence properties of a unique cell-adapted SARS-CoV-2 mutant showing a ten-amino acid deletion encompassing the furin cleavage site of the spike protein (Δ680SPRAARSVAS689; Δ680-689-B.1) in comparison to its parental strain (wt-B.1) and two Delta variants (AY.122 and AY.21) of concern. After intranasal inoculation, transgenic K18-hACE2 mice were monitored for 14 days for weight change, lethality, and clinical score; oral swabs were daily collected and tested for the presence of N protein subgenomic RNA. At 3 and 7 dpi mice were also sacrificed and organs collected for molecular, histopathological, and immune response profile investigations. The Δ680-689-B.1-infected mice exhibited reduced shedding, lower virulence at the lung level, and milder pulmonary lesions. In the lung, infection with Δ680-689-B.1 was associated with a significant lower expression of some cytokines at 3 dpi (IL-4, IL-27, and IL-28) and 7 dpi (IL-4, IL-27, IL-28, IFN-γ and IL-1α).
Collapse
Affiliation(s)
- Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Tetyana Petrova
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | | | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Marialuigia Caporale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano-Italy
| | - Francesco Bonfante
- IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy; Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro-Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy.
| |
Collapse
|
5
|
Zhang L, Kempf A, Nehlmeier I, Cossmann A, Richter A, Bdeir N, Graichen L, Moldenhauer AS, Dopfer-Jablonka A, Stankov MV, Simon-Loriere E, Schulz SR, Jäck HM, Čičin-Šain L, Behrens GMN, Drosten C, Hoffmann M, Pöhlmann S. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 2024; 187:596-608.e17. [PMID: 38194966 PMCID: PMC11317634 DOI: 10.1016/j.cell.2023.12.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Najat Bdeir
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | | | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, 75015 Paris, France; National Reference Center for Viruses of respiratory Infections, Institut Pasteur, 75015 Paris, France
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
6
|
He Y, Henley J, Sell P, Comai L. Differential Outcomes of Infection by Wild-Type SARS-CoV-2 and the B.1.617.2 and B.1.1.529 Variants of Concern in K18-hACE2 Transgenic Mice. Viruses 2023; 16:60. [PMID: 38257760 PMCID: PMC10820160 DOI: 10.3390/v16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND SARS-CoV-2 is a respiratory virus with neurological complications including the loss of smell and taste, headache, and confusion that can persist for months or longer. Severe neuronal cell damage has also been reported in some cases. The objective of this study was to compare the infectivity of the wild-type virus, Delta (B.1.617.2) and Omicron (B.1.1.529) variants in transgenic mice that express the human angiotensin-converting enzyme 2 (hACE2) receptor under the control of the keratin 18 promoter (K18) and characterize the progression of infection and inflammatory response in the lungs, brain, medulla oblongata, and olfactory bulbs of these animals. We hypothesized that wild type, Delta and Omicron differentially infect K18-hACE2 mice, thereby inducing distinct cellular responses. METHODS K18-hACE2 female mice were intranasally infected with wild-type, Delta, or Omicron variants and euthanized either at 3 days post-infection (dpi) or at the humane endpoint. None of the animals infected with the Omicron variant reached the humane endpoint and were euthanized at day 8 dpi. Virological and immunological analyses were performed in the lungs, brains, medulla oblongata and olfactory bulbs isolated from infected mice. RESULTS At 3 dpi, mice infected with wild type and Delta displayed significantly higher levels of viral RNA in the lungs than mice infected with Omicron, while in the brain, Delta and Omicron resulted in higher levels of viral RNA than with the wild type. Viral RNA was also detected in the medulla oblongata of mice infected by all these virus strains. At this time point, the mice infected with wild type and Delta displayed a marked upregulation of many inflammatory markers in the lungs. On the other hand, the upregulation of inflammatory markers was observed only in the brains of mice infected with Delta and Omicron. At the humane endpoint, we observed a significant increase in the levels of viral RNA in the lungs and brains of mice infected with wild type and Delta, which was accompanied by the elevated expression of many inflammatory markers. In contrast, mice which survived infection with the Omicron variant showed high levels of viral RNA and the upregulation of cytokine and chemokine expression only in the lungs at 8 dpi, suggesting that infection and inflammatory response by this variant is attenuated in the brain. Reduced RNA levels and the downregulation of inflammatory markers was also observed in the medulla oblongata and olfactory bulbs of mice infected with Omicron at 8 dpi as compared with mice infected with wild-type and Delta at the humane end point. Collectively, these data demonstrate that wild-type, Delta, and Omicron SARS-CoV-2 induce distinct levels of infection and inflammatory responses in K18-hACE2 mice. Notably, sustained brain infection accompanied by the upregulation of inflammatory markers is a critical outcome in mice infected with wild type and Delta but not Omicron.
Collapse
Affiliation(s)
- Yicheng He
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Jill Henley
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Philip Sell
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Plans-Rubió P. Effectiveness of Adapted COVID-19 Vaccines and Ability to Establish Herd Immunity against Omicron BA.1 and BA4-5 Variants of SARS-CoV-2. Vaccines (Basel) 2023; 11:1836. [PMID: 38140240 PMCID: PMC10747774 DOI: 10.3390/vaccines11121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of novel SARS-CoV-2 variants has raised concerns about the ability of COVID-19 vaccination programs to establish adequate herd immunity levels in the population. This study assessed the effectiveness of adapted vaccines in preventing SARS-CoV-2 infection and the ability of the adapted vaccines to establish herd immunity against emerging Omicron variants. A systematic literature review was conducted to estimate the absolute vaccine effectiveness (aVE) in preventing SARS-CoV-2 infection using adapted vaccines targeting Omicron variants. The ability of the adapted vaccines to establish herd immunity was assessed by taking into account the following factors: aVE, Ro values of SARS-CoV-2 and the use of non-pharmacological interventions (NPIs). This study found meta-analysis-based aVEs in preventing severe disease and SARS-CoV-2 infection of 56-60% and 36-39%, respectively. Adapted vaccines could not establish herd immunity against the Omicron BA.1 and BA.4-5 variants without using non-pharmacological interventions (NPIs). The adapted vaccines could establish herd immunity only by achieving >80% vaccination coverage, using NPIs with greater effectiveness and when 20-30% of individuals were already protected against SARS-CoV-2 in the population. New adapted COVID-19 vaccines with greater effectiveness in preventing SARS-CoV-2 infection must be developed to increase herd immunity levels against emerging SARS-CoV-2 variants in the population.
Collapse
Affiliation(s)
- Pedro Plans-Rubió
- Public Health Agency of Catalonia, Department of Health of Catalonia, 08005 Barcelona, Spain;
- Ciber of Epidemiology and Public Health (CIBERESP), 28028 Madrid, Spain
| |
Collapse
|
8
|
Khatri R, Lohiya B, Kaur G, Maithil V, Goswami A, Sarmadhikari D, Asthana S, Samal S. Understanding the role of conserved proline and serine residues in the SARS-CoV-2 spike cleavage sites in the virus entry, fusion, and infectivity. 3 Biotech 2023; 13:323. [PMID: 37663753 PMCID: PMC10469153 DOI: 10.1007/s13205-023-03749-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The spike (S) glycoprotein of the SARS-CoV-2 virus binds to the host cell receptor and promotes the virus's entry into the target host cell. This interaction is primed by host cell proteases like furin and TMPRSS2, which act at the S1/S2 and S2´ cleavage sites, respectively. Both cleavage sites have serine or proline residues flanking either the single or polybasic region and were found to be conserved in coronaviruses. Unravelling the effects of these conserved residues on the virus entry and infectivity might facilitate the development of novel therapeutics. Here, we have investigated the role of the conserved serine and proline residues in the SARS-CoV-2 spike mediated entry, fusogenicity, and viral infectivity by using the HIV-1/spike-based pseudovirus system. A conserved serine residue mutation to alanine (S2´S-A) at the S2´ cleavage site resulted in the complete loss of spike cleavage. Exogenous treatment with trypsin or overexpression of TMPRSS2 protease could not rescue the loss of spike cleavage and biological activity. The S2´S-A mutant showed no significant responses against E-64d, TMPRSS2 or other relevant inhibitors. Taken together, serine at the S2´ site in the spike protein was indispensable for spike protein cleavage and virus infectivity. Thus, novel interventions targeting the conserved serine at the S2´ cleavage site should be explored to reduce severe disease caused by SARS-CoV-2-and novel emerging variants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03749-y.
Collapse
Affiliation(s)
- Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Bharat Lohiya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Gurleen Kaur
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Vikas Maithil
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Abhishek Goswami
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Debapriyo Sarmadhikari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001 India
| |
Collapse
|
9
|
Jenkins GS, Freire SM, Ogunro T, Niang D, Andrade M, Drame MS, Huvi JB, Pires EES, Toure EN, Camara M. COVID-19 New Cases and Environmental Factors During Wet and Dry Seasons in West and Southern Africa. GEOHEALTH 2023; 7:e2022GH000765. [PMID: 37519911 PMCID: PMC10383768 DOI: 10.1029/2022gh000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Sub-Saharan Africa has been the last continent to experience a significant number of cases in the novel Coronavirus (COVID-19). Studies suggest that air pollution is related to COVID-19 mortality; poor air quality has been linked to cardiovascular, cerebrovascular, and respiratory diseases, which are considered co-morbidities linked to COVID-19 deaths. We examine potential connections between country-wide COVID-19 cases and environmental conditions in Senegal, Cabo Verde, Nigeria, Cote D'Ivorie, and Angola. We analyze PM2.5 concentrations, temperatures from cost-effective in situ measurements, aerosol optical depth (AOD), and fire count and NO2 column values from space-borne platforms from 1 January 2020 through 31 March 2021. Our results show that the first COVID-19 wave in West Africa began during the wet season of 2020, followed by a second during the dry season of 2020. In Angola, the first wave starts during the biomass burning season but does not peak until November of 2020. Overall PM2.5 concentrations are the highest in Ibadan, Nigeria, and coincided with the second wave of COVID-19 in late 2021 and early 2022. The COVID-19 waves in Cabo Verde are not in phase with those in Senegal, Nigeria, and Cote, lagging by several months in general. Overall, the highest correlations occurred between weekly new COVID-19 cases meteorological and air quality variables occurred in the dry season.
Collapse
Affiliation(s)
- G. S. Jenkins
- Alliance for Education, Science, Engineering and Design with Africa (AESEDA)Pennsylvania State UniversityUniversity ParkPAUSA
| | | | | | - D. Niang
- Cheikh Anta Diop UniversityDakarSenegal
| | | | | | - J. B. Huvi
- Instituto Superior de Ciências da Educação de Benguela ‐ AngolaBenguelaAngola
| | - E. E. S. Pires
- Centro de Estudos e Pesquisa do TundavalaEngineering DepartmentISPTundavalaLubangoAngola
| | - E. N. Toure
- University Felix Houphouet BiognyAbidjanCote D'Ivorie
| | - M. Camara
- University of Assane SeckZiguinchorSenegal
| |
Collapse
|
10
|
Kuzmina A, Korovin D, Cohen Lass I, Atari N, Ottolenghi A, Hu P, Mandelboim M, Rosental B, Rosenberg E, Diaz-Griffero F, Taube R. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 2023; 9:e16750. [PMID: 37292300 PMCID: PMC10238279 DOI: 10.1016/j.heliyon.2023.e16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
The rapid spread and dominance of the Omicron SARS-CoV-2 lineages have posed severe health challenges worldwide. While extensive research on the role of the Receptor Binding Domain (RBD) in promoting viral infectivity and vaccine sensitivity has been well documented, the functional significance of the 681PRRAR/SV687 polybasic motif of the viral spike is less clear. In this work, we monitored the infectivity levels and neutralization potential of the wild-type human coronavirus 2019 (hCoV-19), Delta, and Omicron SARS-CoV-2 pseudoviruses against sera samples drawn four months post administration of a third dose of the BNT162b2 mRNA vaccine. Our findings show that in comparison to hCoV-19 and Delta SARS-CoV-2, Omicron lineages BA.1 and BA.2 exhibit enhanced infectivity and a sharp decline in their sensitivity to vaccine-induced neutralizing antibodies. Interestingly, P681 mutations within the viral spike do not play a role in the neutralization potential or infectivity of SARS Cov-2 pseudoviruses carrying mutations in this position. The P681 residue however, dictates the ability of the spike protein to promote fusion and syncytia formation between infected cells. While spike from hCoV-19 (P681) and Omicron (H681) promote only modest cell fusion and formation of syncytia between cells that express the spike-protein, Delta spike (R681) displays enhanced fusogenic activity and promotes syncytia formation. Additional analysis shows that a single P681R mutation within the hCoV-19 spike, or H681R within the Omicron spike, restores fusion potential to similar levels observed for the Delta R681 spike. Conversely, R681P point mutation within the spike of Delta pseudovirus abolishes efficient fusion and syncytia formation. Our investigation also demonstrates that spike proteins from hCoV-19 and Delta SARS-CoV-2 are efficiently incorporated into viral particles relative to the spike of Omicron lineages. We conclude that the third dose of the Pfizer-BNT162b2 provides appreciable protection against the newly emerged Omicron sub-lineages. However, the neutralization sensitivity of these new variants is diminished relative to that of the hCoV-19 or Delta SARS-CoV-2. We further show that the P681 residue within spike dictates cell fusion and syncytia formation with no effects on the infectivity of the specific viral variant and on its sensitivity to vaccine-mediated neutralization.
Collapse
Affiliation(s)
- Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Dina Korovin
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ido Cohen Lass
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Israel
| | - Pan Hu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Israel
| | | | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
11
|
Ren W, Zhang Y, Rao J, Wang Z, Lan J, Liu K, Zhang X, Hu X, Yang C, Zhong G, Zhang R, Wang X, Shan C, Ding Q. Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant. mBio 2023; 14:e0041623. [PMID: 37010428 PMCID: PMC10127688 DOI: 10.1128/mbio.00416-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023] Open
Abstract
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.529 (Omicron) has rapidly become the dominant strain, with an unprecedented number of mutations within its spike gene. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies and entry inhibitors. In this study, we found that Omicron spike has evolved to escape neutralization by three-dose inactivated-vaccine-elicited immunity but remains sensitive to an angiotensin-converting enzyme 2 (ACE2) decoy receptor. Moreover, Omicron spike could use human ACE2 with a slightly increased efficiency while gaining a significantly increased binding affinity for a mouse ACE2 ortholog, which exhibits limited binding with wild-type (WT) spike. Furthermore, Omicron could infect wild-type C57BL/6 mice and cause histopathological changes in the lungs. Collectively, our results reveal that evasion of neutralization by vaccine-elicited antibodies and enhanced human and mouse ACE2 receptor engagement may contribute to the expanded host range and rapid spread of the Omicron variant. IMPORTANCE The recently emerged SARS-CoV-2 Omicron variant with numerous mutations in the spike protein has rapidly become the dominant strain, thereby raising concerns about the effectiveness of vaccines. Here, we found that the Omicron variant exhibits a reduced sensitivity to serum neutralizing activity induced by a three-dose inactivated vaccine but remains sensitive to entry inhibitors or an ACE2-Ig decoy receptor. Compared with the ancestor strain isolated in early 2020, the spike protein of Omicron utilizes the human ACE2 receptor with enhanced efficiency while gaining the ability to utilize mouse ACE2 for cell entry. Moreover, Omicron could infect wild-type mice and cause pathological changes in the lungs. These results reveal that antibody evasion, enhanced human ACE2 utilization, and an expanded host range may contribute to its rapid spread.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yu Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Juhong Rao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jun Lan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Guocai Zhong
- Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Xinquan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Shan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
13
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
14
|
Characterization of a Vesicular Stomatitis Virus-Vectored Recombinant Virus Bearing Spike Protein of SARS-CoV-2 Delta Variant. Microorganisms 2023; 11:microorganisms11020431. [PMID: 36838396 PMCID: PMC9960918 DOI: 10.3390/microorganisms11020431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The frequent emergence of SARS-CoV-2 variants thwarts the prophylactic and therapeutic countermeasures confronting COVID-19. Among them, the Delta variant attracts widespread attention due to its high pathogenicity and fatality rate compared with other variants. However, with the emergence of new variants, studies on Delta variants have been gradually weakened and ignored. In this study, a replication-competent recombinant virus carrying the S protein of the SARS-CoV-2 Delta variant was established based on the vesicular stomatitis virus (VSV), which presented a safe alternative model for studying the Delta variant. The recombinant virus showed a replication advantage in Vero E6 cells, and the viral titers reach 107.3 TCID50/mL at 36 h post-inoculation. In the VSV-vectored recombinant platform, the spike proteins of the Delta variant mediated higher fusion activity and syncytium formation than the wild-type strain. Notably, the recombinant virus was avirulent in BALB/c mice, Syrian hamsters, 3-day ICR suckling mice, and IFNAR/GR-/- mice. It induced protective neutralizing antibodies in rodents, and protected the Syrian hamsters against the SARS-CoV-2 Delta variant infection. Meanwhile, the eGFP reporter of recombinant virus enabled the visual assay of neutralizing antibodies. Therefore, the recombinant virus could be a safe and convenient surrogate tool for authentic SARS-CoV-2. This efficient and reliable model has significant potential for research on viral-host interactions, epidemiological investigation of serum-neutralizing antibodies, and vaccine development.
Collapse
|
15
|
O'Grady HM, Harrison R, Snedeker K, Trufen L, Yue P, Ward L, Fifen A, Jamieson P, Weiss A, Coulthard J, Lynch T, Croxen MA, Li V, Pabbaraju K, Wong A, Zhou HY, Dingle TC, Hellmer K, Berenger BM, Fonseca K, Lin YC, Evans D, Conly JM. A two-ward acute care hospital outbreak of SARS-CoV-2 delta variant including a point-source outbreak associated with the use of a mobile vital signs cart and sub-optimal doffing of personal protective equipment. J Hosp Infect 2023; 131:1-11. [PMID: 36195200 PMCID: PMC9527227 DOI: 10.1016/j.jhin.2022.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The arrival of the Delta variant of SARS-CoV-2 was associated with increased transmissibility and illness of greater severity. Reports of nosocomial outbreaks of Delta variant COVID-19 in acute care hospitals have been described but control measures varied widely. AIM Epidemiological investigation of a linked two-ward COVID-19 Delta variant outbreak was conducted to elucidate its source, risk factors, and control measures. METHODS Investigations included epidemiologic analysis, detailed case review serial SARS-CoV-2 reverse transcriptase-polymerase chain reaction (RT-PCR) testing of patients and healthcare workers (HCWs), viral culture, environmental swabbing, HCW-unaware personal protective equipment (PPE) audits, ventilation assessments, and the use of whole genome sequencing (WGS). FINDINGS This linked two-ward outbreak resulted in 17 patient and 12 HCW cases, despite an 83% vaccination rate. In this setting, suboptimal adherence and compliance to PPE protocols, suboptimal hand hygiene, multi-bedded rooms, and a contaminated vital signs cart with potential fomite or spread via the hands of HCWs were identified as significant risk factors for nosocomial COVID-19 infection. Sudden onset of symptoms, within 72 h, was observed in 79% of all Ward 2 patients, and 93% of all cases (patients and HCWs) on Ward 2 occurred within one incubation period, consistent with a point-source outbreak. RT-PCR assays showed low cycle threshold (CT) values, indicating high viral load from environmental swabs including the vital signs cart. WGS results with ≤3 SNP differences between specimens were observed. CONCLUSION Outbreaks on both wards settled rapidly, within 3 weeks, using a `back-to-basics' approach without extraordinary measures or changes to standard PPE requirements. Strict adherence to recommended PPE, hand hygiene, education, co-operation from HCWs, including testing and interviews, and additional measures such as limiting movement of patients and staff temporarily were all deemed to have contributed to prompt resolution of the outbreak.
Collapse
Affiliation(s)
- H M O'Grady
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - R Harrison
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Workplace Health and Safety, Alberta Health Services, Edmonton, Alberta, Canada
| | - K Snedeker
- Provincial Population and Public Health, Alberta Health Services, Calgary, Alberta, Canada
| | - L Trufen
- Workplace Health and Safety, Alberta Health Services, Edmonton, Alberta, Canada
| | - P Yue
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - L Ward
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - A Fifen
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - P Jamieson
- Department of Family Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - A Weiss
- Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - J Coulthard
- Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - T Lynch
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Genomics and Bioinformatics, Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M A Croxen
- Alberta Public Heath Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada; Department of Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - V Li
- Alberta Public Heath Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - K Pabbaraju
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - A Wong
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - H Y Zhou
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - T C Dingle
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - K Hellmer
- Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - B M Berenger
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - K Fonseca
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Y-C Lin
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D Evans
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - J M Conly
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada; Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; W21C Research and Innovation Centre, O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Xu C, Ma M, Yi Y, Yi C, Dai H. Clinical features and high-resolution chest computerized tomography findings of children infected by the B.1.617.2 variant of coronavirus disease 2019. Ann Med 2022; 54:2391-2401. [PMID: 36039499 PMCID: PMC9448437 DOI: 10.1080/07853890.2022.2114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To analyse the clinical symptoms, laboratory examinations and chest CT findings of children infected by the B.1.617.2 variant of COVID-19 and to compare the differences between clinical subtypes. METHODS Fifty-three children (28 males, 25 females; age ranging from 4 months to 17 years) were included with B.1.617.2 variant infection in Nanjing, China, from July 21 to August 12 2021. Clinical data from patients were collected and analysed in groups of mild and common types. Imaging data were divided into three stages for evaluation: early, intermediate and late stages. RESULTS In our study, fever (53%), cough (34%) and pharyngeal discomfort (28%) were the main symptoms. There were no differences in clinical symptoms between the mild and common type. The most common laboratory test items outside the normal range were decreased mean corpuscular volume (68%), lymphocyte percentage (64% elevated and 2% decreased) and decreased serum alkaline phosphatase concentration (66%). The differences in haemoglobin and monocyte percentages between the mild and common types were statistically significant (p = .037 and .033, respectively). No influencing factor was statistically significant in the regression analysis of both symptoms and clinical subtypes. The main CT findings were ground-glass opacity and consolidation located in the periphery and bilateral multilobed involvement. The mean CT score was 1.6. CT score correlated with packet cell volume, haemoglobin, mean erythrocyte volume, mean platelet volume and platelet distribution width. CONCLUSION The pathogenetic condition of children with B.1.617.2 variant infection is mild. Although there were intergroup differences in some blood cell analyses, T-lymphocyte counts, and comprehensive biochemical indicators, no factors had a significant effect on clinical typing and the presence or absence of symptoms. CT findings and CT scores reflect disease stage and pathological changes and correlate moderately with laboratory tests, making them of good value for disease diagnosis and monitoring.Key MessagesPaediatric patients infected with B.1.617.2 variant have a milder clinical and imaging presentation than adults and are similar to the prototype infection.CT findings and scores which reflect disease stages and pathological changes.There is a correlation between chest CT and laboratory tests, which can be useful for the diagnosis and follow-up of the disease.
Collapse
Affiliation(s)
- Chuanjun Xu
- Department of Radiology, The Second Hospital of Nanjing Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Mengya Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.,Institute of Medical Imaging, Soochow University, Suzhou, P.R. China
| | - Yongxiang Yi
- Nanjing Infectious Disease Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Changhua Yi
- Nanjing Infectious Diseases Clinical Medical Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.,Institute of Medical Imaging, Soochow University, Suzhou, P.R. China
| |
Collapse
|
17
|
Alexiev I, Giovanetti M, Cella E, Ivanov I, Stoikov I, Donchev D, Grigorova L, Gancheva A, Dimitrova R, Korsun N, Trifonova I, Philipova I, Dobrinov V, Grigorova I, Kantardjiev T, Christova I, Ciccozzi M. Initial introduction and spread of the SARS-CoV-2 AY.4.2.1 Delta variant in Bulgaria, a genomic insight. J Med Virol 2022; 94:6060-6064. [PMID: 35902787 PMCID: PMC9353378 DOI: 10.1002/jmv.28033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/06/2023]
Abstract
The evolution of the emerging SARS-CoV-2 variants carrying mutations in the spike protein raises concerns about the possibility of accelerated transmission in the ever-evolving COVID-19 pandemic worldwide. AY.4.2, a sublineage of the Delta variant, was considered a variant under investigation (VUI) and also gained the nickname "Delta Plus," due to its extra mutations, Y145H and A222V. In this study, using genomic epidemiology, we provide the first insights into the introduction of AY.4.2 in Bulgaria and the AY.4.2.1 sublineage that found larger dissemination only in Bulgaria and the United Kingdom.
Collapse
Affiliation(s)
- Ivailo Alexiev
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo CruzFundação Oswaldo CruzRio de JaneiroBrazil
- Department of Science and Technology for Humans and the EnvironmentUniversity of Campus Bio‐Medico di RomaRomeItaly
| | - Eleonora Cella
- Burnett School of Biomedical SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Ivan Ivanov
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Ivan Stoikov
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Deyan Donchev
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | | | - Anna Gancheva
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Reneta Dimitrova
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Nelly Korsun
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | | | - Ivva Philipova
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Veselin Dobrinov
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Iliana Grigorova
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | | | - Iva Christova
- National Center of Infectious and Parasitic DiseasesSofiaBulgaria
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular EpidemiologyUniversity Campus Bio‐Medico of RomeRomeItaly
| |
Collapse
|
18
|
Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C, Ip JD, Chan WM, Chu AWH, Chan KH, Jin DY, Chen H, Yuen KY, To KKW. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2022; 11:277-283. [PMID: 34951565 PMCID: PMC8774049 DOI: 10.1080/22221751.2021.2023329] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.
Collapse
Affiliation(s)
- Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zheng Peng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lin-Lei Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xinjin Meng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chuyuan Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jonathan Daniel Ip
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wan-Mui Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Allen Wing-Ho Chu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
19
|
Kwan BM, Sobczak C, Gorman C, Roberts S, Owen V, Wynia MK, Ginde AA, Pena-Jackson G, Ziegler O, Ross DeCamp L. "All of the things to everyone everywhere": A mixed methods analysis of community perspectives on equitable access to monoclonal antibody treatment for COVID-19. PLoS One 2022; 17:e0274043. [PMID: 36417457 PMCID: PMC9683597 DOI: 10.1371/journal.pone.0274043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neutralizing monoclonal antibody (mAb) treatment for COVID-19 prevents hospitalization and death but is underused, especially in racial/ethnic minority and rural populations. Reasons for underuse and inequity may include community member lack of awareness or healthcare access barriers, among others. This study assessed mAbs community awareness and opportunities for improving equitable mAb access. METHODS A concurrent mixed methods study including surveys and focus groups with adults with high-risk conditions or their proxy decision-makers. Surveys and focus group guides addressed diffusion of innovation theory factors. Descriptive statistics and Fisher's exact method was used to report and compare survey findings by race and ethnicity. Rapid qualitative methods were used for focus group analysis. RESULTS Surveys from 515 individuals (460 English, 54 Spanish, 1 Amharic), and 8 focus groups (6 English, 2 Spanish) with 69 participants, completed June 2021 to January 2022. Most survey respondents (75%) had heard little or nothing about mAbs, but 95% would consider getting mAb treatment. Hispanic/Latino and Non-Hispanic People of Color (POC) reported less awareness, greater concern about intravenous infusions, and less trust in mAb safety and effectiveness than White, Non-Hispanic respondents. Focus group themes included little awareness but high interest in mAb treatment and concerns about cost and access barriers such as lacking established sources of care and travel from rural communities. Focus groups revealed preferences for broad-reaching but tailored messaging strategies using multiple media and trusted community leaders. CONCLUSIONS Despite unfamiliarity with mAb treatment, most respondents were open to receiving mAbs or recommending mAbs to others. While mAb messaging should have broad reach "to everyone everywhere," racial and geographic disparities in awareness and trust about mAbs underscore need for tailored messaging to promote equitable access. Care processes should address patient-level barriers like transportation, insurance, or primary care access. COVID-19 treatment dissemination strategies should promote health equity.
Collapse
Affiliation(s)
- Bethany M Kwan
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Adult & Child Center for Outcomes Research & Delivery Science, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Chelsea Sobczak
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Carol Gorman
- Adult & Child Center for Outcomes Research & Delivery Science, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Samantha Roberts
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States of America
| | - Vanessa Owen
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Matthew K Wynia
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Center for Bioethics and Humanities, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Division of General Internal Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Colorado Clinical & Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Griselda Pena-Jackson
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- 2040 Partners for Health, Aurora, Colorado, United States of America
| | - Owen Ziegler
- Z Cultural Services, Denver, Colorado, United States of America
| | - Lisa Ross DeCamp
- Adult & Child Center for Outcomes Research & Delivery Science, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Latino Research and Policy Center, Colorado School of Public Health, Aurora, Colorado, United States of America
| |
Collapse
|
20
|
Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, Ariana A, Stewart CM, Prévost J, Beaudoin-Bussières G, Daniel R, Bo Y, El Ferri O, Yockell-Lelièvre J, Stanford WL, Giguère PM, Mubareka S, Finzi A, Dekaban GA, Dikeakos JD, Côté M. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. iScience 2022; 25:105316. [PMID: 36254158 PMCID: PMC9549715 DOI: 10.1016/j.isci.2022.105316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corby Fink
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rory P. Mulloy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julien Yockell-Lelièvre
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William L. Stanford
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory A. Dekaban
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
21
|
The SARS-CoV-2 Delta-Omicron Recombinant Lineage (XD) Exhibits Immune-Escape Properties Similar to the Omicron (BA.1) Variant. Int J Mol Sci 2022; 23:ijms232214057. [PMID: 36430535 PMCID: PMC9696394 DOI: 10.3390/ijms232214057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.
Collapse
|
22
|
Chan SW. Fusion assays for screening of fusion inhibitors targeting SARS-CoV-2 entry and syncytia formation. Front Pharmacol 2022; 13:1007527. [PMID: 36438831 PMCID: PMC9691968 DOI: 10.3389/fphar.2022.1007527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Virus fusion process is evolutionarily conserved and provides a promising pan-viral target. Cell-cell fusion leads to syncytial formation and has implications in pathogenesis, virus spread and immune evasion. Drugs that target these processes can be developed into anti-virals. Here, we have developed sensitive, rapid, adaptable fusion reporter gene assays as models for plasma membrane and alternative fusion pathways as well as syncytial fusion in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have confirmed their specificity using neutralizing antibodies and specific protease inhibitors. The fusion report gene assays are more sensitive and unbiased than morphological fusion assay. The fusion assays can differentiate between transmembrane serine protease 2 (TMPRSS2)-dependency in TMPRSS2(+) cells and trypsin-dependency in angiotensin-converting enzyme 2 (ACE2)(+)TMPRSS2(-) cells. Moreover, we have identified putative novel fusion processes that are triggered by an acidic pH with and without trypsin. Coupled with morphological fusion criteria, we have found that syncytia formation is enhanced by TMPRSS2 or trypsin. By testing against our top drug hits previously shown to inhibit SARS-CoV-2 pseudovirus infection, we have identified several fusion inhibitors including structurally related lopsided kite-shaped molecules. Our results have important implications in the development of universal blockers and synergistic therapeutics and the small molecule inhibitors can provide important tools in elucidating the fusion process.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Host Cell Entry and Neutralization Sensitivity of SARS-CoV-2 Lineages B.1.620 and R.1. Viruses 2022; 14:v14112475. [PMID: 36366573 PMCID: PMC9698971 DOI: 10.3390/v14112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitates viral entry into host cells and is the key target for neutralizing antibodies. The SARS-CoV-2 lineage B.1.620 carries fifteen mutations in the S protein and is spread in Africa, the US and Europe, while lineage R.1 harbors four mutations in S and infections were observed in several countries, particularly Japan and the US. However, the impact of the mutations in B.1.620 and R.1 S proteins on antibody-mediated neutralization and host cell entry are largely unknown. Here, we report that these mutations are compatible with robust ACE2 binding and entry into cell lines, and they markedly reduce neutralization by vaccine-induced antibodies. Our results reveal evasion of neutralizing antibodies by B.1.620 and R.1, which might have contributed to the spread of these lineages.
Collapse
|
24
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
25
|
Emergence and Spread of the SARS-CoV-2 Variant of Concern Delta across Different Brazilian Regions. Microbiol Spectr 2022; 10:e0264121. [PMID: 36000897 PMCID: PMC9604183 DOI: 10.1128/spectrum.02641-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The SARS-CoV-2 variant of concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the southern region, followed by more cases in different regions during the following months. By early September 2021, Delta was already the dominant variant in the southeastern (87%), southern (73%), and northeastern (52%) Brazilian regions. This study aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of maximum likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 VOC Delta complete genomes (482 from this study) recovered across 21 of the 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the southeastern, northeastern, northern, and central-western regions. The AY.101 lineage (n = 207) that arose in the Paraná state in late April 2021 and aggregated the largest fraction of sampled genomes from the southern region. Lastly, the AY.46.3 lineage emerged in Brazil in the São Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic. IMPORTANCE Amid the SARS-CoV-2 continuously changing epidemic profile, this study details the space-time dynamics of the emergence of the Delta lineage across Brazilian territories, pointing out its multiple introductions in the country and its most prevalent sublineages. Some of these sublineages have their emergence, alongside their genomic composition and geographic distribution, detailed here for the first time. A special focus is given to the emergence process of Delta outside the country's south and southeast regions, the most populated and subjects of most published SARS-CoV-2 studies in Brazil. In summary, the study allows a better comprehension of the evolution process of a SARS-CoV-2 lineage that would be associated with a significant recrudescence of the pandemic in Brazil.
Collapse
|
26
|
Karimian A, Behjati M, Karimian M. Molecular mechanisms involved in anosmia induced by SARS-CoV-2, with a focus on the transmembrane serine protease TMPRSS2. Arch Virol 2022; 167:1931-1946. [PMID: 35939103 PMCID: PMC9358639 DOI: 10.1007/s00705-022-05545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.
Collapse
Affiliation(s)
- Ali Karimian
- Department of Otorhinolaryngology, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
27
|
Arora P, Zhang L, Krüger N, Rocha C, Sidarovich A, Schulz S, Kempf A, Graichen L, Moldenhauer AS, Cossmann A, Dopfer-Jablonka A, Behrens GMN, Jäck HM, Pöhlmann S, Hoffmann M. SARS-CoV-2 Omicron sublineages show comparable cell entry but differential neutralization by therapeutic antibodies. Cell Host Microbe 2022; 30:1103-1111.e6. [PMID: 35588741 PMCID: PMC9072809 DOI: 10.1016/j.chom.2022.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022]
Abstract
The Omicron variant of SARS-CoV-2 evades antibody-mediated neutralization with unprecedented efficiency. At least three Omicron sublineages have been identified-BA.1, BA.2, and BA.3-and BA.2 exhibits increased transmissibility. However, it is currently unknown whether BA.2 differs from the other sublineages regarding cell entry and antibody-mediated inhibition. Here, we show that BA.1, BA.2, and BA.3 enter and fuse target cells with similar efficiency and in an ACE2-dependent manner. However, BA.2 was not efficiently neutralized by seven of eight antibodies used for COVID-19 therapy, including Sotrovimab, which robustly neutralized BA.1. In contrast, BA.2 and BA.3 (but not BA.1) were appreciably neutralized by Cilgavimab, which could constitute a treatment option. Finally, all sublineages were comparably and efficiently neutralized by antibodies induced by BNT162b2 booster vaccination after previous two-dose homologous or heterologous vaccination. Collectively, the Omicron sublineages show comparable cell entry and neutralization by vaccine-induced antibodies but differ in susceptibility to therapeutic antibodies.
Collapse
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Lu Zhang
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Anzhalika Sidarovich
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | | | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine (CiiM), Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine (CiiM), Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| |
Collapse
|
28
|
Characterization of SARS-CoV-2 Escape Mutants to a Pair of Neutralizing Antibodies Targeting the RBD and the NTD. Int J Mol Sci 2022; 23:ijms23158177. [PMID: 35897753 PMCID: PMC9332373 DOI: 10.3390/ijms23158177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the spike protein of SARS-CoV-2 can lead to evasion from neutralizing antibodies and affect the efficacy of passive and active immunization strategies. Immunization of mice harboring an entire set of human immunoglobulin variable region gene segments allowed to identify nine neutralizing monoclonal antibodies, which either belong to a cluster of clonally related RBD or NTD binding antibodies. To better understand the genetic barrier to emergence of SARS-CoV-2 variants resistant to these antibodies, escape mutants were selected in cell culture to one antibody from each cluster and a combination of the two antibodies. Three independently derived escape mutants to the RBD antibody harbored mutations in the RBD at the position T478 or S477. These mutations impaired the binding of the RBD antibodies to the spike protein and conferred resistance in a pseudotype neutralization assay. Although the binding of the NTD cluster antibodies were not affected by the RBD mutations, the RBD mutations also reduced the neutralization efficacy of the NTD cluster antibodies. The mutations found in the escape variants to the NTD antibody conferred resistance to the NTD, but not to the RBD cluster antibodies. A variant resistant to both antibodies was more difficult to select and only emerged after longer passages and higher inoculation volumes. VOC carrying the same mutations as the ones identified in the escape variants were also resistant to neutralization. This study further underlines the rapid emergence of escape mutants to neutralizing monoclonal antibodies in cell culture and indicates the need for thorough investigation of escape mutations to select the most potent combination of monoclonal antibodies for clinical use.
Collapse
|
29
|
Xiong D, Zhao X, Luo S, Cong Y, Zhang JZH, Duan L. Immune Escape Mechanisms of SARS-CoV-2 Delta and Omicron Variants against Two Monoclonal Antibodies That Received Emergency Use Authorization. J Phys Chem Lett 2022; 13:6064-6073. [PMID: 35758899 PMCID: PMC9260724 DOI: 10.1021/acs.jpclett.2c00912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 05/07/2023]
Abstract
Multiple-site mutated SARS-CoV-2 Delta and Omicron variants may trigger immune escape against existing monoclonal antibodies. Here, molecular dynamics simulations combined with the interaction entropy method reveal the escape mechanism of Delta/Omicron variants to Bamlanivimab/Etesevimab. The result shows the significantly reduced binding affinity of the Omicron variant for both antibodies, due to the introduction of positively charged residues that greatly weaken their electrostatic interactions. Meanwhile, significant structural deflection induces fewer atomic contacts and an unstable binding mode. As for the Delta variant, the reduced binding affinity for Bamlanivimab is owing to the alienation of the receptor-binding domain to the main part of this antibody, and the binding mode of the Delta variant to Etesevimab is similar to that of the wild type, suggesting that Etesevimab could still be effective against the Delta variant. We hope this work will provide timely theoretical insights into developing antibodies to prevalent and possible future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Danyang Xiong
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| | - Xiaoyu Zhao
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| | - Song Luo
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| | - Yalong Cong
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - John Z. H. Zhang
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Lili Duan
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| |
Collapse
|
30
|
Routhu NK, Gangadhara S, Lai L, Davis Gardner ME, Floyd K, Shiferaw A, Bartsch YC, Fischinger S, Khoury G, Rahman SA, Stampfer SD, Schaefer A, Jean SM, Wallace C, Stammen RL, Wood J, Cohen J, Nagy T, Parsons MS, Gralinski L, Kozlowski PA, Alter G, Suthar MS, Amara RR. A modified vaccinia Ankara vaccine expressing spike and nucleocapsid protects rhesus macaques against SARS-CoV-2 Delta infection. Sci Immunol 2022; 7:eabo0226. [PMID: 35357886 PMCID: PMC8995033 DOI: 10.1126/sciimmunol.abo0226] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. After vaccination of mice, the MVA/SdFCS vaccine induced eightfold higher neutralizing antibodies compared with MVA/S, which expressed spike without FCS inactivation, and protected against the Beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU), or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, and rectum) that neutralized the homologous (WA-1/2020) and heterologous VOCs, including Delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both spike- and nucleocapsid-specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared with IM vaccination. After challenge with the SARS-CoV-2 Delta variant, the IM route induced robust protection, the BU route induced moderate protection, and the SL route induced no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Sailaja Gangadhara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Lilin Lai
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Meredith Elizabeth Davis Gardner
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Katharine Floyd
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Ayalnesh Shiferaw
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Yannic C Bartsch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | | | - Georges Khoury
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Samuel David Stampfer
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Alexandra Schaefer
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sherrie M. Jean
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Chelsea Wallace
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Rachelle L. Stammen
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Jennifer Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Tamas Nagy
- College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Matthew S. Parsons
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa Gralinski
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27516, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Mehul S. Suthar
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
31
|
Mezger MC, Conzelmann C, Weil T, von Maltitz P, Albers DPJ, Münch J, Stamminger T, Schilling EM. Inhibitors of Activin Receptor-like Kinase 5 Interfere with SARS-CoV-2 S-Protein Processing and Spike-Mediated Cell Fusion via Attenuation of Furin Expression. Viruses 2022; 14:v14061308. [PMID: 35746781 PMCID: PMC9228453 DOI: 10.3390/v14061308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/18/2023] Open
Abstract
Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor β (TGF-β) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-β1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-β1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell-cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell-cell spread via downregulation of furin which is most pronounced upon TGF-β stimulation. Since a TGF-β dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.
Collapse
Affiliation(s)
- Maja C. Mezger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Dan P. J. Albers
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
- Correspondence: ; Tel.: +49-731-50065100
| | - Eva-Maria Schilling
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| |
Collapse
|
32
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
33
|
Schulz SR, Hoffmann M, Roth E, Pracht K, Burnett DL, Mazigi O, Schuh W, Manger B, Mielenz D, Goodnow CC, Christ D, Pöhlmann S, Jäck H. Augmented neutralization of SARS-CoV-2 Omicron variant by boost vaccination and monoclonal antibodies. Eur J Immunol 2022; 52:970-977. [PMID: 35253229 PMCID: PMC9087419 DOI: 10.1002/eji.202249841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS-CoV-2- antibodies. Here, we use flow cytometry-based binding and pseudotyped SARS-CoV-2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry-based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sebastian R. Schulz
- Division of Molecular ImmunologyDepartment of Internal Medicine 3Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Markus Hoffmann
- Infection Biology UnitGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- Faculty of Biology and PsychologyUniversity of GöttingenGöttingenGermany
| | - Edith Roth
- Division of Molecular ImmunologyDepartment of Internal Medicine 3Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Katharina Pracht
- Division of Molecular ImmunologyDepartment of Internal Medicine 3Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Deborah L. Burnett
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Faculty of Medicine, UNSWSt. Vincent's Clinical SchoolSydneyNew South WalesAustralia
| | - Ohan Mazigi
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Faculty of Medicine, UNSWSt. Vincent's Clinical SchoolSydneyNew South WalesAustralia
| | - Wolfgang Schuh
- Division of Molecular ImmunologyDepartment of Internal Medicine 3Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Bernhard Manger
- Department of Internal Medicine 3University Hospital ErlangenErlangenBavariaGermany
| | - Dirk Mielenz
- Division of Molecular ImmunologyDepartment of Internal Medicine 3Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Christopher C. Goodnow
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
- UNSWCellular Genomics Futures InstituteSydneyNew South WalesAustralia
| | - Daniel Christ
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Faculty of Medicine, UNSWSt. Vincent's Clinical SchoolSydneyNew South WalesAustralia
| | - Stefan Pöhlmann
- Infection Biology UnitGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- Faculty of Biology and PsychologyUniversity of GöttingenGöttingenGermany
| | - Hans‐Martin Jäck
- Division of Molecular ImmunologyDepartment of Internal Medicine 3Nikolaus‐Fiebiger‐ZentrumFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
34
|
Yang W, Shaman J. COVID-19 pandemic dynamics in India, the SARS-CoV-2 Delta variant and implications for vaccination. J R Soc Interface 2022; 19:20210900. [PMID: 35670221 PMCID: PMC9169547 DOI: 10.1098/rsif.2021.0900] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/20/2022] [Indexed: 12/11/2022] Open
Abstract
The Delta variant is a major SARS-CoV-2 variant of concern first identified in India. To better understand COVID-19 pandemic dynamics and Delta, we use multiple datasets and model-inference to reconstruct COVID-19 pandemic dynamics in India during March 2020-June 2021. We further use the large discrepancy in one- and two-dose vaccination coverage in India (53% versus 23% by end of October 2021) to examine the impact of vaccination and whether prior non-Delta infection can boost vaccine effectiveness (VE). We estimate that Delta escaped immunity in 34.6% (95% CI: 0-64.2%) of individuals with prior wild-type infection and was 57.0% (95% CI: 37.9-75.6%) more infectious than wild-type SARS-CoV-2. Models assuming higher VE among non-Delta infection recoverees, particularly after the first dose, generated more accurate predictions than those assuming no such increases (best-performing VE setting: 90/95% versus 30/67% baseline for the first/second dose). Counterfactual modelling indicates that high vaccination coverage for first vaccine dose in India combined with the boosting of VE among recoverees averted around 60% of infections during July-mid-October 2021. These findings provide support to prioritizing first-dose vaccination in regions with high underlying infection rates, given continued vaccine shortages and new variant emergence.
Collapse
Affiliation(s)
- Wan Yang
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Samara A, Khalil A, O’Brien P, Herlenius E. The effect of the delta SARS-CoV-2 variant on maternal infection and pregnancy. iScience 2022; 25:104295. [PMID: 35492217 PMCID: PMC9040522 DOI: 10.1016/j.isci.2022.104295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A greater proportion of pregnant women with COVID-19 have mild disease compared with their non-pregnant counterparts. Paradoxically, however, they are at higher risk of developing severe disease, requiring respiratory support and admission to intensive care. The delta SARS-Cov-2 variant is associated with increased risk of hospitalization and morbidity in unvaccinated pregnant populations. However, it is not known whether the worse pregnancy outcomes associated with the delta variant are due to a direct effect of the virus on the pregnancy, or whether this effect is mediated through more severe maternal infection. Here, we synthesize studies of COVID-19 pregnancies, focusing on the different routes of SARS-CoV-2 infection of lung and placenta, and the mechanisms of syncytial formation for each SARS-CoV-2 variant. To delineate COVID-19 complications in pregnant women, future studies should explore whether the delta variant causes greater placental infection compared to other variants and contributes to increased syncytial formation.
Collapse
Affiliation(s)
- Athina Samara
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Asma Khalil
- Fetal Medicine Unit, St George’s Hospital, St George’s University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
- Fetal Medicine Unit, Liverpool Women’s Hospital, University of Liverpool, Liverpool, UK
| | - Patrick O’Brien
- The Royal College of Obstetricians and Gynaecologists, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Huntington KE, Carlsen L, So EY, Piesche M, Liang O, El-Deiry WS. Integrin/TGF-β1 Inhibitor GLPG-0187 Blocks SARS-CoV-2 Delta and Omicron Pseudovirus Infection of Airway Epithelial Cells In Vitro, Which Could Attenuate Disease Severity. Pharmaceuticals (Basel) 2022; 15:618. [PMID: 35631444 PMCID: PMC9143518 DOI: 10.3390/ph15050618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
As COVID-19 continues to pose major risk for vulnerable populations, including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins, either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate transforming growth factor beta (TGF-β) signaling, we compared the plasma levels of active and total TGF-β in COVID-19+ patients. The plasma TGF-β1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels. Moreover, the inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity through decreased TGF-β1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (K.E.H.); (L.C.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (K.E.H.); (L.C.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Eui-Young So
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca 3466706, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca 3466706, Chile
| | - Olin Liang
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (K.E.H.); (L.C.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
37
|
Chiu CH, Chang YH, Chang FY, Hung YJ, Liao CL, Chiu KC, Tsai PL, Chang TW, Yen LC. Humoral, Cellular and Cytokine Immune Responses Against SARS-CoV-2 Variants in COVID-19 Convalescent and Confirmed Patients With Different Disease Severities. Front Cell Infect Microbiol 2022; 12:862656. [PMID: 35656028 PMCID: PMC9152113 DOI: 10.3389/fcimb.2022.862656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023] Open
Abstract
Objectives To assess humoral and cellular immune responses against SARS-CoV-2 variants in COVID-19 convalescent and confirmed patients, to explore the correlation between disease severity, humoral immunity, and cytokines/chemokines in confirmed patients, and to evaluate the ADE risk of SARS-CoV-2. Methods Anti-RBD IgG were quantified using an ELISA. Neutralization potency was measured using pseudovirus and real virus. Cellular immunity was measured using ELISpot. Cytokine/chemokine levels were detected using multiplex immunoassays. In vitro ADE assays were performed using Raji cells. Results One-month alpha convalescents exhibited spike-specific antibodies and T cells for alpha and delta variants. Notably, the RBD-specific IgG towards the delta variant decreased by 2.5-fold compared to the alpha variant. Besides, serum from individuals recently experienced COVID-19 showed suboptimal neutralizing activity against the delta and omicron variants. Humoral immune response, IL-6, IP-10 and MCP-1 levels were greater in patients with severe disease. Moreover, neither SARS-CoV-1 nor SARS-CoV-2 convalescent sera significantly enhanced SARS-CoV-2 pseudovirus infection. Conclusions Significant resistance of the delta and omicron variants to the humoral immune response generated by individuals who recently experienced COVID-19. Furthermore, there was a significant correlation among disease severity, humoral immune response, and specific cytokines/chemokine levels. No evident ADE was observed for SARS-CoV-2.
Collapse
Affiliation(s)
- Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Len Liao
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Chou Chiu
- Department of Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ling Tsai
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tien-Wei Chang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Li-Chen Yen,
| |
Collapse
|
38
|
SARS-CoV-2 variants C.1.2 and B.1.621 (Mu) partially evade neutralization by antibodies elicited upon infection or vaccination. Cell Rep 2022; 39:110754. [PMID: 35477025 PMCID: PMC9010234 DOI: 10.1016/j.celrep.2022.110754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
Rapid spread of SARS-CoV-2 variants C.1.2 and B.1.621 (Mu variant) in Africa and the Americas, respectively, as well as a high number of mutations in the viral spike proteins raised concerns that these variants might pose an elevated threat to human health. Here, we show that C.1.2 and B.1.621 spike proteins mediate increased entry into certain cell lines but do not exhibit increased ACE2 binding. Further, we demonstrate that C.1.2 and B.1.621 are resistant to neutralization by bamlanivimab but remain sensitive to inhibition by antibody cocktails used for COVID-19 therapy. Finally, we show that C.1.2 and B.1.621 partially escape neutralization by antibodies induced upon infection and vaccination, with escape of vaccine-induced antibodies being as potent as that measured for B.1.351 (Beta variant), which is known to be highly neutralization resistant. Collectively, C.1.2 and B.1.621 partially evade control by vaccine-induced antibodies, suggesting that close monitoring of these variants is warranted.
Collapse
|
39
|
Zhao X, Xiong D, Luo S, Duan L. Origin of the tight binding mode to ACE2 triggered by multi-point mutations in the omicron variant: a dynamic insight. Phys Chem Chem Phys 2022; 24:8724-8737. [PMID: 35373810 DOI: 10.1039/d2cp00449f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The continuous spread of the newly emerged SARS-CoV-2 Omicron variant (B.1.1.529) has become an important reason for the surge in COVID-19 infections. Its numerous mutated residues containing key sites on the receptor-binding domain (RBD) undoubtedly pose new challenges for epidemic control. Although the preventive measures are becoming more sophisticated, the effects of mutations on the binding of the virus to the receptor protein remain to be elucidated. Here, we used molecular dynamics (MD) simulations to investigate the differences in the binding mode between the Omicron variant and the angiotensin-converting enzyme 2 (ACE2) compared to the wild-type strain (WT). Multi-point mutations in the Omicron variant RBD could cause the conformation shift in the large Loop (where T478K and E484A are located), which makes it easier to wrap the N-terminal helix of ACE2 and form tighter contacts. The stronger electrostatic interaction was the main reason for its enhanced binding affinity as compared to WT. This was due to the large number of positively charged patches (N440K, T478K, Q493R, Q498R, and Y505H) formed by the substitution of neutral amino acids at multiple sites. The appearance of these highly polar hydrophilic amino acids may cause local perturbations and affect the electrostatic complementarity of RBD with the ACE2, and further mediate conformational changes. Thus, a more extensive interaction network was found in the mutation system and the complex interaction cluster was formed near E37@ACE2, which was essential for the stable binding of the two. In addition, we speculated that these mutations may affect the electrostatic complementarity with the four potential antibodies to reduce the sensitivity of the virus to antibodies. This study reveals the key details of the Omicron variant binding to ACE2 and provides important theoretical views for the enhanced infectivity of this variant. We hope that these observations can provide timely molecular insights for responding to the Omicron variant pandemic.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
40
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Anwer MK, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. There is nothing exempt from the peril of mutation - The Omicron spike. Biomed Pharmacother 2022; 148:112756. [PMID: 35228064 PMCID: PMC8872818 DOI: 10.1016/j.biopha.2022.112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
41
|
Yang Z, Zhang S, Tang YP, Zhang S, Xu DQ, Yue SJ, Liu QL. Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. Aging Dis 2022; 13:402-422. [PMID: 35371608 PMCID: PMC8947836 DOI: 10.14336/ad.2021.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Yang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shuo Zhang
- 3School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Tang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Sai Zhang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Ding-Qiao Xu
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shi-Jun Yue
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Qi-Ling Liu
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
van der Straten K, van Gils MJ, de Taeye SW, de Bree GJ. Optimization of Anti-SARS-CoV-2 Neutralizing Antibody Therapies: Roadmap to Improve Clinical Effectiveness and Implementation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:867982. [PMID: 35419561 PMCID: PMC8996231 DOI: 10.3389/fmedt.2022.867982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
One of the major breakthroughs to combat the current Coronavirus Disease 2019 (COVID-19) pandemic has been the development of highly effective vaccines against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Still, alternatives are needed for individuals who are at high risk of developing severe COVID-19 and are not protected by vaccination. Monoclonal antibodies against the spike protein of SARS-CoV-2 have been shown to be effective as prophylaxis and treatment against COVID-19. However, the emergence of variants of concern (VOCs) challenges the efficacy of antibody therapies. This review describes the neutralization resistance of the clinically-approved monoclonal antibody therapies against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1), Delta (B.1.617.2), and the Omicron (B.1.1.529) variants. To guide the development of monoclonal antibody therapies and to anticipate on the continuous evolution of SARS-CoV-2, we highlight different strategies to broaden the antibody activity by targeting more conserved epitopes and/or simultaneously targeting multiple sites of vulnerability of the virus. This review further describes the contribution of antibody Fc effector functions to optimize the antibody efficacy. In addition, the main route of SARS-CoV-2 antibody administration is currently intravenously and dictates a monthly injection when used as prophylactic. Therefore, we discusses the concept of long-acting antibodies (LAABs) and non-intravenously routes of antibody administration in order to broaden the clinical applicability of antibody therapies.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Samieefar N, Rashedi R, Akhlaghdoust M, Mashhadi M, Darzi P, Rezaei N. Delta Variant: The New Challenge of COVID-19 Pandemic, an Overview of Epidemiological, Clinical, and Immune Characteristics. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022179. [PMID: 35315394 PMCID: PMC8972886 DOI: 10.23750/abm.v93i1.12210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
The SARS-CoV-2 genome has undergone several mutations since the beginning of the pandemic in December 2019. A number of these mutants were associated with higher transmissibility, higher mortality, or hospitalization rates, which were named the variants of concern. B.1.617.2 or the Delta variant has made a lot of concern as it has been responsible for the most recent COVID-19 outbreaks throughout the world. Higher transmissibility, a 60 percent increase in hospitalization rates compared to the wild type, higher viral loads, and reduced response to available vaccines are among the key factors why this variant has become a variant of concern. 148 countries are currently fighting with this variant, hoping to better understand the epidemiological, immunological, and clinical characteristics of this disease in order to find the best way to overcome these new outbreaks. Although reduced efficiency of vaccines on this variant and its higher pre-symptomatic transmissibility have made it complicated to control the disease, higher vaccination coverage and following sanitation rules can help control the outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | - Nima Rezaei
- University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
No evidence for increased cell entry or antibody evasion by Delta sublineage AY.4.2. Cell Mol Immunol 2022; 19:449-452. [PMID: 34983951 PMCID: PMC8727238 DOI: 10.1038/s41423-021-00811-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/03/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.
Collapse
|
45
|
Lenz OC, Marques AD, Kelly BJ, Rodino KG, Cole SD, Perera RAPM, Weiss SR, Bushman FD, Lennon EM. SARS-CoV-2 Delta Variant (AY.3) in the Feces of a Domestic Cat. Viruses 2022; 14:421. [PMID: 35216014 PMCID: PMC8877841 DOI: 10.3390/v14020421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have spilled over from humans to companion and wild animals since the inception of the global COVID-19 pandemic. However, whole genome sequencing data of the viral genomes that infect non-human animal species have been scant. Here, we detected and sequenced a SARS-CoV-2 delta variant (AY.3) in fecal samples from an 11-year-old domestic house cat previously exposed to an owner who tested positive for SARS-CoV-2. Molecular testing of two fecal samples collected 7 days apart yielded relatively high levels of viral RNA. Sequencing of the feline-derived viral genomes showed the two to be identical, and differing by between 4 and 14 single nucleotide polymorphisms in pairwise comparisons to human-derived lineage AY.3 sequences collected in the same geographic area and time period. However, several mutations unique to the feline samples reveal their divergence from this cohort on phylogenetic analysis. These results demonstrate continued spillover infections of emerging SARS-CoV-2 variants that threaten human and animal health, as well as highlight the importance of collecting fecal samples when testing for SARS-CoV-2 in animals. To the authors' knowledge, this is the first published case of a SARS-CoV-2 delta variant in a domestic cat in the United States.
Collapse
Affiliation(s)
- Olivia C. Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA;
| | - Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA; (A.D.M.); (R.A.P.M.P.); (S.R.W.); (F.D.B.)
| | - Brendan J. Kelly
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stephen D. Cole
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA;
| | - Ranawaka A. P. M. Perera
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA; (A.D.M.); (R.A.P.M.P.); (S.R.W.); (F.D.B.)
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA; (A.D.M.); (R.A.P.M.P.); (S.R.W.); (F.D.B.)
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA; (A.D.M.); (R.A.P.M.P.); (S.R.W.); (F.D.B.)
| | - Elizabeth M. Lennon
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA;
| |
Collapse
|
46
|
The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022; 185:447-456.e11. [PMID: 35026151 PMCID: PMC8702401 DOI: 10.1016/j.cell.2021.12.032] [Citation(s) in RCA: 641] [Impact Index Per Article: 213.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or individuals vaccinated with the BioNTech-Pfizer vaccine (BNT162b2) with 12- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1 (Astra Zeneca-Oxford)/BNT162b2 vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.
Collapse
|
47
|
Lenz OC, Marques AD, Kelly BJ, Rodino KG, Cole SD, Perera RA, Weiss SR, Bushman FD, Lennon EM. Detection and Interspecies Comparison of SARS-CoV-2 Delta Variant (AY.3) in Feces from a Domestic Cat and Human Samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.31.478506. [PMID: 35132417 PMCID: PMC8820664 DOI: 10.1101/2022.01.31.478506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have spilled over from humans to companion and wild animals since the inception of the global COVID-19 pandemic. However, whole genome sequencing data of the viral genomes that infect non-human animal species has been scant. Here, we detected and sequenced a SARS-CoV-2 delta variant (AY.3) in fecal samples from an 11-year-old domestic house cat previously exposed to an owner who tested positive for SARS-CoV-2. Molecular testing of two fecal samples collected 7 days apart yielded relatively high levels of viral RNA. Sequencing of the feline-derived viral genomes showed the two to be identical, and differing by between 4 and 14 single nucleotide polymorphisms in pairwise comparisons to human-derived lineage AY.3 sequences collected in the same geographic area and time period. However, several mutations unique to the feline samples reveal their divergence from this cohort on phylogenetic analysis. These results demonstrate continued spillover infections of emerging SARS-CoV-2 variants that threaten human and animal health, as well as highlight the importance of collecting fecal samples when testing for SARS-CoV-2 in animals. To the authors' knowledge, this is the first published case of a SARS-CoV-2 delta variant in a domestic cat in the United States.
Collapse
Affiliation(s)
- Olivia C. Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, USA
| | - Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104
| | - Brendan J. Kelly
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, 731 Blockley Hall Philadelphia, PA 19104
| | - Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen D. Cole
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, USA
| | - Ranawaka A.P.M. Perera
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104
| | - Elizabeth M. Lennon
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, USA
| |
Collapse
|
48
|
Kocher J, Arwood L, Roberts RC, Henson I, Annas A, Emerson D, Stasko N, Fulcher ML, Brotton M, Randell SH, Cockrell AS. Visible blue light inactivates SARS-CoV-2 variants and inhibits Delta replication in differentiated human airway epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.25.477616. [PMID: 35132416 PMCID: PMC8820663 DOI: 10.1101/2022.01.25.477616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The emergence of SARS-CoV-2 variants that evade host immune responses has prolonged the COVID-19 pandemic. Thus, the development of an efficacious, variant-agnostic therapeutic for the treatment of early SARS-CoV-2 infection would help reduce global health and economic burdens. Visible light therapy has the potential to fill these gaps. In this study, visible blue light centered around 425 nm efficiently inactivated SARS-CoV-2 variants in cell-free suspensions and in a translationally relevant well-differentiated tissue model of the human large airway. Specifically, 425 nm light inactivated cell-free SARS-CoV-2 variants Alpha, Beta, Delta, Gamma, Lambda, and Omicron by up to 99.99% in a dose-dependent manner, while the monoclonal antibody bamlanivimab did not neutralize the Beta, Delta, and Gamma variants. Further, we observed that 425 nm light reduced virus binding to host ACE-2 receptor and limited viral entry to host cells in vitro . Further, the twice daily administration of 32 J/cm 2 of 425 nm light for three days reduced infectious SARS-CoV-2 Beta and Delta variants by >99.99% in human airway models when dosing began during the early stages of infection. In more established infections, logarithmic reductions of infectious Beta and Delta titers were observed using the same dosing regimen. Finally, we demonstrated that the 425 nm dosing regimen was well-tolerated by the large airway tissue model. Our results indicate that blue light therapy has the potential to lead to a well-tolerated and variant-agnostic countermeasure against COVID-19.
Collapse
|
49
|
Modeling the Transmission of the SARS-CoV-2 Delta Variant in a Partially Vaccinated Population. Viruses 2022; 14:v14010158. [PMID: 35062363 PMCID: PMC8781299 DOI: 10.3390/v14010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
In a population with ongoing vaccination, the trajectory of a pandemic is determined by how the virus spreads in unvaccinated and vaccinated individuals that exhibit distinct transmission dynamics based on different levels of natural and vaccine-induced immunity. We developed a mathematical model that considers both subpopulations and immunity parameters, including vaccination rates, vaccine effectiveness, and a gradual loss of protection. The model forecasted the spread of the SARS-CoV-2 delta variant in the US under varied transmission and vaccination rates. We further obtained the control reproduction number and conducted sensitivity analyses to determine how each parameter may affect virus transmission. Although our model has several limitations, the number of infected individuals was shown to be a magnitude greater (~10×) in the unvaccinated subpopulation compared to the vaccinated subpopulation. Our results show that a combination of strengthening vaccine-induced immunity and preventative behavioral measures like face mask-wearing and contact tracing will likely be required to deaccelerate the spread of infectious SARS-CoV-2 variants.
Collapse
|
50
|
Huntington KE, Carlsen L, So EY, Piesche M, Liang O, El-Deiry WS. Integrin/TGF-β1 inhibitor GLPG-0187 blocks SARS-CoV-2 Delta and Omicron pseudovirus infection of airway epithelial cells which could attenuate disease severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.02.22268641. [PMID: 35018385 PMCID: PMC8750711 DOI: 10.1101/2022.01.02.22268641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As COVID-19 continues to pose major risk for vulnerable populations including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced inhibition of pseudovirus infection by GLPG-0187. Because integrins activate TGF-β signaling, we compared plasma levels of active and total TGF-β in COVID-19+ patients. Plasma TGF-β1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels. In our preclinical studies, Omicron infects lower airway lung cells less efficiently than other COVID-19 variants. Moreover, inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and may mitigate COVID-19 severity through decreased TGF-β1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eui-Young So
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Olin Liang
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| |
Collapse
|