1
|
Li J, Dang SM, Sengupta S, Schurmann P, Dost AFM, Moye AL, Trovero MF, Ahmed S, Paschini M, Bhetariya PJ, Bronson R, Ho Sui SJ, Kim CF. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. EMBO J 2025; 44:1804-1828. [PMID: 39930268 PMCID: PMC11914084 DOI: 10.1038/s44318-025-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
Cancers display cellular, genetic and epigenetic heterogeneity, complicating disease modeling. Multiple cell states defined by gene expression have been described in lung adenocarcinoma (LUAD). However, the functional contributions of cell state and the regulatory programs that control chromatin and gene expression in the early stages of tumor initiation are not well understood. Using single-cell RNA and ATAC sequencing in Kras/p53-driven tumor organoids, we identified two major cellular states: one more closely resembling alveolar type 2 (AT2) cells (SPC-high), and the other with epithelial-mesenchymal-transition (EMT)-associated gene expression (Hmga2-high). Each state exhibited distinct transcription factor networks, with SPC-high cells associated with TFs regulating AT2 fate and Hmga2-high cells enriched in Wnt- and NFκB-related TFs. CD44 was identified as a marker for the Hmga2-high state, enabling functional comparison of the two populations. Organoid assays and orthotopic transplantation revealed that SPC-high, CD44-negative cells exhibited higher tumorigenic potential within the lung microenvironment. These findings highlight the utility of organoids in understanding chromatin regulation in early tumorigenesis and identifying novel early-stage therapeutic targets in Kras-driven LUAD.
Collapse
Affiliation(s)
- Jingyun Li
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Susanna M Dang
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shreoshi Sengupta
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Schurmann
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Antonella F M Dost
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Aaron L Moye
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria F Trovero
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sidrah Ahmed
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Margherita Paschini
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Preetida J Bhetariya
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Carla F Kim
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
2
|
Ma L, Thapa BR, Le Suer JA, Tilston-Lünel A, Herriges MJ, Wang F, Bawa PS, Varelas X, Hawkins FJ, Kotton DN. Life-long functional regeneration of in vivo airway epithelium by the engraftment of airway basal stem cells. Nat Protoc 2025; 20:810-842. [PMID: 39501108 DOI: 10.1038/s41596-024-01067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 12/11/2024]
Abstract
Durable and functional regeneration of the airway epithelium in vivo with transplanted stem cells has the potential to reconstitute healthy tissue in diseased airways, such as in cystic fibrosis or primary ciliary dyskinesia. Here, we present detailed protocols for the preparation and culture expansion of murine primary and induced pluripotent stem cell-derived airway basal stem cells (iBCs) and methods for their intra-airway transplantation into polidocanol-conditioned murine recipients to achieve durable in vivo airway regeneration. Reconstitution of the airway tissue resident epithelial stem cell compartment of immunocompetent mice with syngeneic donor cells leverages the extensive self-renewal and multipotent differentiation properties of basal stem cells (BCs) to durably generate a broad diversity of mature airway epithelial lineages in vivo. Engrafted donor-derived cells re-establish planar cell polarity as well as functional ciliary transport. By using this same approach, human primary BCs or iBCs transplanted into NOD-SCID gamma recipient mice similarly display engraftment and multilineage airway epithelial differentiation in vivo. The time to generate mouse or human iBCs takes ~60 d, which can be reduced to ~20 d if previously differentiated cells are thawed from cryopreserved iBC archives. The tracheal conditioning regimen and cell transplantation procedure is completed in 1 d. A competent graduate student or postdoctoral trainee should be able to perform the procedures listed in this protocol.
Collapse
Grants
- R21 HD094012 NICHD NIH HHS
- R21HD094012 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- P01HL170952 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HAWKIN20XX2 Cystic Fibrosis Foundation (CF Foundation)
- U01HL134766 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL139799 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL095993 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139799 NHLBI NIH HHS
- R01HL124392 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL124392 NHLBI NIH HHS
- NO1: 75N92020C00005 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- PCTC Jumpstart Award U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01HL148692 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lünel
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Zhao Y, Zhou Y, Zhang W, Liu M, Duan J, Zhang X, Ma Q, Wang Y, Zhang Y, Guo Z, Zhang T, Zuo W. Cloned airway basal progenitor cells to repair fibrotic lung through re-epithelialization. Nat Commun 2025; 16:1303. [PMID: 39900892 PMCID: PMC11790844 DOI: 10.1038/s41467-025-56501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Irreversible damage of the lung epithelium in idiopathic pulmonary fibrosis (IPF) patients causes high mortality worldwide, with no lung repair approaches available currently. Here we show that in murine and monkey models, the KRT5+ P63+ progenitor cells in airway basal layer can enter the alveolar area post fibrotic injury. Aided with an automated culture system, we clone and characterize airway basal progenitor cells from 44 donors with various lung conditions. Transplantation of human progenitor cells into the mouse lung efficiently re-epithelializes the injured alveolar area, forms new respiratory tract and saccule-like structures, which ameliorates fibrotic lesions and improves survival of mice. Mechanistically, the engrafted human progenitor cells do not function by differentiating into mature alveolar cells in mouse lung; instead, they differentiate into saccular cells expressing multiple tight junction proteins such as CLDN4, which help the lung to re-establish epithelial barriers. Furthermore, by cloning P63+ airway basal progenitors from larger mammals and birds, we construct multiple lung-chimerism animals and uncover the evolutionarily conserved roles of these progenitor cells in lung repair. Overall, our data highlight the fate of airway basal progenitor cells in fibrotic lung and provide a potential therapeutic strategy for pulmonary diseases that lack inherent recovery mechanisms.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Yueqing Zhou
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China
| | - Weipan Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Mingzhe Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Jun Duan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiaopeng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China
| | | | - Yujia Wang
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China
- Kiangnan Institute of Stem Cell, Hangzhou, China
| | - Yuzhen Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongliang Guo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ting Zhang
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China.
- Kiangnan Institute of Stem Cell, Hangzhou, China.
| | - Wei Zuo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Tongji Stem Cell Center, School of Medicine, Tongji University, Shanghai, China.
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China.
- Kiangnan Institute of Stem Cell, Hangzhou, China.
| |
Collapse
|
4
|
Ma Y, Qian J, Xu X, Wei C, Wang M, Zhang P, Chen S, Zhang L, Zhang Y, Wang Y, Xu W, Liu M, Lin X. Engraftment of self-renewing endometrial epithelial organoids promotes endometrial regeneration by differentiating into functional glands in rats. Front Bioeng Biotechnol 2024; 12:1449955. [PMID: 39723128 PMCID: PMC11668608 DOI: 10.3389/fbioe.2024.1449955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Extensive trauma frequently disrupts endometrial regeneration by diminishing endometrial stem cells/progenitor cells, affecting female fertility. While bone marrow mesenchymal stem cell (BMSC) transplantation has been suggested as an approach to address endometrial injury, it comes with certain limitations. Recent advancements in endometrial epithelial organoids (EEOs) have displayed encouraging potential for endometrial regeneration. Therefore, this study aims to explore whether EEOs surpass BMSCs in their ability to repair injured endometrium and to examine whether the restoration process involves the integration of EEOs into the endometrial tissue of the recipient. Methods We developed rat EEOs (rEEOs) mimicking the features of the rat endometrium. Subsequently, we created a rat model of endometrial injury to compare the effects of rEEOs and rat BMSCs (rBMSCs) on endometrial regeneration and reproductive recovery. Bulk RNA-sequencing analysis was conducted to further investigate the capacity of rEEOs for endometrial regeneration and to identify discrepancies between rEEOs and rBMSCs. Additionally, to track the fate of the transplanted cells in vivo, we transplanted green fluorescent protein (GFP) -labelled rEEOs or red fluorescent protein (RFP) -labelled rBMSCs. Results In a rat model of endometrial injury, we observed that fertility recovery in rats transplanted with rEEOs was more comparable to that of normal rats than in those treated with rBMSC. rEEOs possess a high concentration of endometrial epithelial stem/progenitor cells and secrete vascular endothelial growth factor (VEGF)-A to promote endometrial neovascularization. Significantly, we observed that cells from GFP-labelled rEEOs could integrate and differentiate into functional glands within the injured endometrium of recipient rats. Discussion EEOs offer a transformative approach to address the challenges of endometrial trauma. Their remarkable regenerative potential holds promise for the restoration of damaged endometrium. As we venture into the future, the concept of utilizing patient-specific EEOs for transplantation emerges as a tantalizing prospect. However, the EEOs in our experiments were mainly cultured in Matrigel, which has barriers to clinical translation as a biomaterial, a new biomaterial to be explored. Secondly, our experiments have been successful only in rat models, and more efforts need to be made before clinical translation.
Collapse
Affiliation(s)
- Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Jingjing Qian
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Yuyao People’s Hospital of Zhejiang Province, Ningbo, China
| | - Xin Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Minyuan Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gynecology, Wenling First People’s Hospital of Zhejiang Province, Taizhou, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Tiantai People’s Hospital of Zhejiang Province, Taizhou, China
| | - Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Lingyan Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yanpeng Wang
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengying Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
5
|
Mizuno K, Ohnishi H, Kishimoto Y, Okuyama H, Kawai Y, Kitano M, Hayashi Y, Omori K. Transplantation of Human Induced Pluripotent Stem Cell-Derived Airway Epithelia at Different Induction Stages into Nude Rat. Cell Reprogram 2024; 26:156-163. [PMID: 39602198 DOI: 10.1089/cell.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Tracheal reconstruction is necessary in patients with large tracheal defects. Previously, artificial tracheae made of polypropylene and collagen sponge have been used clinically by our group. As a basic research aimed at promoting epithelialization for infection defense, we transplanted cell sheets of human induced pluripotent stem cell (hiPSC)-derived airway epithelial cells (iAECs) with artificial tracheae into tracheal defects of rats and confirmed their engraftment. In this study, we examined the difference in the cell engraftment between hiPSC-derived airway epithelial progenitor cells (iAEPCs) and iAECs. Cell sheets were collected on days 38, 45, and 56 of induction into iAECs, then transplanted into nude rats with tracheal defects along with the artificial trachea. Two weeks after transplantation, surviving human nuclear antigen (HNA)-positive epithelial cells were observed none of six rats in the 38-day group, two out of six in 45-day group, and five out of six in the 56-day group. The proportion of surviving HNA+ cells among the epithelial cells of 56-day group was significantly higher those of 38-day group. Differentiated iAECs are more suitable for the transplantation of hiPSCs into tracheal defects. Our findings propose the use of differentiated cells for improvement of engraftment efficiency.
Collapse
Affiliation(s)
- Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Okuyama
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Kim SK, Sung E, Lim K. Recent advances and applications of human lung alveolar organoids. Mol Cells 2024; 47:100140. [PMID: 39490990 PMCID: PMC11629183 DOI: 10.1016/j.mocell.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The human lung alveolus is a well-structured and coordinated pulmonary unit, allowing them to perform diverse functions. While there has been significant progress in understanding the molecular and cellular mechanisms behind human alveolar development and pulmonary diseases, the underlying mechanisms of alveolar differentiation and disease development are still unclear, mainly due to the limited availability of human tissues and a lack of proper in vitro lung model systems mimicking human lung physiology. In this review, we summarize recent advances in creating human lung organoid models that mimic alveolar epithelial cell types. Moreover, we discuss how lung alveolar organoid systems are being applied to recent cutting-edge research on lung development, regeneration, and diseases.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Eunho Sung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyungtae Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Predella C, Lapsley L, Ni K, Murray JW, Liu HY, Motelow JE, Snoeck HW, Glasser SW, Saqi A, Dorrello NV. Engraftment of wild-type alveolar type II epithelial cells in surfactant protein C deficient mice. RESEARCH SQUARE 2024:rs.3.rs-4673915. [PMID: 39315275 PMCID: PMC11419168 DOI: 10.21203/rs.3.rs-4673915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Childhood interstitial lung disease (chILD) secondary to pulmonary surfactant deficiency is a devastating chronic lung disease in children. Clinical presentation includes mild to severe respiratory failure and fibrosis. There is no specific treatment, except lung transplantation, which is hampered by a severe shortage of donor organs, especially for young patients. Repair of lungs with chILD represents a longstanding therapeutic challenge but cell therapy is a promising strategy. As surfactant is produced by alveolar type II epithelial (ATII) cells, engraftment with normal or gene-corrected ATII cells might provide an avenue to cure. Here we used a chILD disease-like model, Sftpc -/- mice, to provide proof-of-principle for this approach. Sftpc -/- mice developed chronic interstitial lung disease with age and were hypersensitive to bleomycin. We could engraft wild-type ATII cells after low dose bleomycin conditioning. Transplanted ATII cells produced mature SPC and attenuated bleomycin-induced lung injury up to two months post-transplant. This study demonstrates that partial replacement of mutant ATII cells can promote lung repair in a mouse model of chILD-like disease.
Collapse
Affiliation(s)
- Camilla Predella
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico of Milan, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico of Milan, Milan, Italy
| | - Lauren Lapsley
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Keyue Ni
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John W. Murray
- Columbia Center for Human Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua E. Motelow
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephan W. Glasser
- Medical Sciences Program, Department of Medical Education, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian, New York, NY, USA
| | - N. Valerio Dorrello
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| |
Collapse
|
9
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Thangam T, Parthasarathy K, Supraja K, Haribalaji V, Sounderrajan V, Rao SS, Jayaraj S. Lung Organoids: Systematic Review of Recent Advancements and its Future Perspectives. Tissue Eng Regen Med 2024; 21:653-671. [PMID: 38466362 PMCID: PMC11187038 DOI: 10.1007/s13770-024-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Organoids are essentially an in vitro (lab-grown) three-dimensional tissue culture system model that meticulously replicates the structure and physiology of human organs. A few of the present applications of organoids are in the basic biological research area, molecular medicine and pharmaceutical drug testing. Organoids are crucial in connecting the gap between animal models and human clinical trials during the drug discovery process, which significantly lowers the time duration and cost associated with each stage of testing. Likewise, they can be used to understand cell-to-cell interactions, a crucial aspect of tissue biology and regeneration, and to model disease pathogenesis at various stages of the disease. Lung organoids can be utilized to explore numerous pathophysiological activities of a lung since they share similarities with its function. Researchers have been trying to recreate the complex nature of the lung by developing various "Lung organoids" models.This article is a systematic review of various developments of lung organoids and their potential progenitors. It also covers the in-depth applications of lung organoids for the advancement of translational research. The review discusses the methodologies to establish different types of lung organoids for studying the regenerative capability of the respiratory system and comprehending various respiratory diseases.Respiratory diseases are among the most common worldwide, and the growing burden must be addressed instantaneously. Lung organoids along with diverse bio-engineering tools and technologies will serve as a novel model for studying the pathophysiology of various respiratory diseases and for drug screening purposes.
Collapse
Affiliation(s)
- T Thangam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - K Supraja
- Medway Hospitals, No 2/26, 1st Main Road, Kodambakkam, Chennai, Tamil Nadu, 600024, India
| | - V Haribalaji
- VivagenDx, No. 28, Venkateswara Nagar, 100 Feet Bypass Road, Velachery, Chennai, Tamil Nadu, 600042, India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Sudhanarayani S Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Sakthivel Jayaraj
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
11
|
Wong IG, Stark J, Ya V, Moye AL, Vazquez AB, Dang SM, Shehaj A, Rouhani MJ, Bronson R, Janes SM, Rowbotham SP, Paschini M, Franklin RA, Kim CF. Airway injury induces alveolar epithelial and mesenchymal responses mediated by macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587596. [PMID: 38617297 PMCID: PMC11014629 DOI: 10.1101/2024.04.02.587596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.
Collapse
|
12
|
Yin DE, Palin AC, Lombo TB, Mahon RN, Poon B, Wu DY, Atala A, Brooks KM, Chen S, Coyne CB, D’Souza MP, Fackler OT, Furler O’Brien RL, Garcia-de-Alba C, Jean-Philippe P, Karn J, Majji S, Muotri AR, Ozulumba T, Sakatis MZ, Schlesinger LS, Singh A, Spiegel HM, Struble E, Sung K, Tagle DA, Thacker VV, Tidball AM, Varthakavi V, Vunjak-Novakovic G, Wagar LE, Yeung CK, Ndhlovu LC, Ott M. 3D human tissue models and microphysiological systems for HIV and related comorbidities. Trends Biotechnol 2024; 42:526-543. [PMID: 38071144 PMCID: PMC11065605 DOI: 10.1016/j.tibtech.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 03/03/2024]
Abstract
Three-dimensional (3D) human tissue models/microphysiological systems (e.g., organs-on-chips, organoids, and tissue explants) model HIV and related comorbidities and have potential to address critical questions, including characterization of viral reservoirs, insufficient innate and adaptive immune responses, biomarker discovery and evaluation, medical complexity with comorbidities (e.g., tuberculosis and SARS-CoV-2), and protection and transmission during pregnancy and birth. Composed of multiple primary or stem cell-derived cell types organized in a dedicated 3D space, these systems hold unique promise for better reproducing human physiology, advancing therapeutic development, and bridging the human-animal model translational gap. Here, we discuss the promises and achievements with 3D human tissue models in HIV and comorbidity research, along with remaining barriers with respect to cell biology, virology, immunology, and regulatory issues.
Collapse
|
13
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
14
|
Yao Y, Miethe S, Kattler K, Colakoglu B, Walter J, Schneider-Daum N, Herr C, Garn H, Ritzmann F, Bals R, Beisswenger C. Mutual Regulation of Transcriptomes between Murine Pneumocytes and Fibroblasts Mediates Alveolar Regeneration in Air-Liquid Interface Cultures. Am J Respir Cell Mol Biol 2024; 70:203-214. [PMID: 38051640 DOI: 10.1165/rcmb.2023-0078oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Alveolar type 2 and club cells are part of the stem cell niche of the lung and their differentiation is required for pulmonary homeostasis and tissue regeneration. A disturbed crosstalk between fibroblasts and epithelial cells contributes to the loss of lung structure in chronic lung diseases. Therefore, it is important to understand how fibroblasts and lung epithelial cells interact during regeneration. Here, we analyzed the interaction of fibroblasts and the alveolar epithelium modeled in air-liquid interface cultures. Single-cell transcriptomics showed that cocultivation with fibroblasts leads to increased expression of type 2 markers in pneumocytes, activation of regulons associated with the maintenance of alveolar type 2 cells (e.g., Etv5), and transdifferentiation of club cells toward pneumocytes. This was accompanied by an intensified transepithelial barrier. Vice versa, the activation of NF-κB pathways and the CEBPB regulon and the expression of IL-6 and other differentiation factors (e.g., fibroblast growth factors) were increased in fibroblasts cocultured with epithelial cells. Recombinant IL-6 enhanced epithelial barrier formation. Therefore, in our coculture model, regulatory loops were identified by which lung epithelial cells mediate regeneration and differentiation of the alveolar epithelium in a cooperative manner with the mesenchymal compartment.
Collapse
Affiliation(s)
- Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine and
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sarah Miethe
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics and
- German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
- The Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Kathrin Kattler
- Department of Genetics and Epigenetics, Saarland University, Homburg, Germany
| | - Betül Colakoglu
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine and
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Homburg, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine and
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics and
- German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
- The Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine and
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine and
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine and
| |
Collapse
|
15
|
Honjo R, Cho K, Hashimoto K, Takeda K, Seto Y, Kaneshi Y, Furuse Y, Manabe A. Neonatal-onset pulmonary alveolar proteinosis is a phenotype associated with poor outcomes in surfactant protein-C disorder. Early Hum Dev 2024; 189:105930. [PMID: 38199047 DOI: 10.1016/j.earlhumdev.2023.105930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Surfactant protein C (SP-C) disorder is a major component of hereditary interstitial lung disease (HILD) among Japanese. The correlation between clinical outcomes and the phenotype/genotype of SP-C disorder has not been evaluated comprehensively. The current study aimed to evaluate the phenotype/genotype correlated with poor outcomes in patients with SP-C disorder. METHODS Sequencing analysis of SFTPC in 291 candidates with HILD was performed. The phenotype and genotype correlated with poor outcomes were examined. The log-rank test was used to compare the probability of good outcomes between two patient groups. RESULTS Twenty patients were diagnosed with SP-C disorder. Of nine patients with neonatal-onset disease, four and five presented with pulmonary alveolar proteinosis (PAP) and interstitial pneumonitis (IP), respectively. The remaining 11 patients with late-onset disease had IP. In total, four and 16 patients had PAP and IP phenotypes, respectively. Four of nine patients with neonatal-onset disease died, and one survived after lung transplant. Further, 1 of 11 patients with late-onset disease died. Four patients with neonatal-onset PAP had a significantly lower probability of good outcomes than the remaining patients. Two patients with neonatal-onset PAP had the p.Leu45Arg variant, one died and the another survived after lung transplant. Of eight patients with variants in the BRICHOS domain, one with frame shift variant located in exon 4, one with variant located at the splicing acceptor site of exon 4, and one with variant located at the splicing donor site of exon 4 died. CONCLUSION Neonatal-onset PAP was a phenotype predicting poor outcomes in patients with SP-C disorder. The p.Leu45Arg variant and splicing disorder of exon 4 might be genotypes predicting poor outcomes in patients with SP-C disorder.
Collapse
Affiliation(s)
- Ryota Honjo
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazutoshi Cho
- Department of Pediatrics, Japan Community Healthcare Organization Hokkaido Hospital, Sapporo, Japan.
| | - Kahoko Hashimoto
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kenta Takeda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshitaka Seto
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yosuke Kaneshi
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yuta Furuse
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Rowbotham SP, Pessina P, Garcia-de-Alba C, Jensen J, Nguyen Y, Yoon J, Li J, Wong IG, Fahey C, Moye AL, Chongsaritsinsuk J, Bronson R, Ho Sui SJ, Kim CF. Age-associated H3K9me2 loss alters the regenerative equilibrium between murine lung alveolar and bronchiolar progenitors. Dev Cell 2023; 58:2974-2991.e6. [PMID: 37977149 PMCID: PMC10873032 DOI: 10.1016/j.devcel.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
The lung contains multiple progenitor cell types, but how their responses are choreographed during injury repair and whether this changes with age is poorly understood. We report that histone H3 lysine 9 di-methylation (H3K9me2), mediated by the methyltransferase G9a, regulates the dynamics of distal lung epithelial progenitor cells and that this regulation deteriorates with age. In aged mouse lungs, H3K9me2 loss coincided with fewer alveolar type 2 (AT2) cell progenitors and reduced alveolar regeneration but increased the frequency and activity of multipotent bronchioalveolar stem cells (BASCs) and bronchiolar progenitor club cells. H3K9me2 depletion in young mice decreased AT2 progenitor activity and impaired alveolar injury repair. Conversely, H3K9me2 depletion increased chromatin accessibility of bronchiolar cell genes, increased BASC frequency, and accelerated bronchiolar cell injury repair. These findings indicate that during aging, the epigenetic regulation that coordinates lung progenitor cells' regenerative responses becomes dysregulated, aiding our understanding of age-related susceptibility to lung disease.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Patrizia Pessina
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jake Jensen
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yvonne Nguyen
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joon Yoon
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Jingyun Li
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Irene G Wong
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Fahey
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L Moye
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joann Chongsaritsinsuk
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Carla F Kim
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Wang F, Ting C, Riemondy KA, Douglas M, Foster K, Patel N, Kaku N, Linsalata A, Nemzek J, Varisco BM, Cohen E, Wilson JA, Riches DW, Redente EF, Toivola DM, Zhou X, Moore BB, Coulombe PA, Omary MB, Zemans RL. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133:e165612. [PMID: 37768734 PMCID: PMC10645382 DOI: 10.1172/jci165612] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation. However, whether and how transitional cells cause fibrosis, whether keratins regulate transitional cell accumulation and fibrosis, and why transitional AECs and fibrosis resolve in mouse models but accumulate in IPF are unclear. Here, we show that human keratin 8 (KRT8) genetic variants were associated with IPF. Krt8-/- mice were protected from fibrosis and accumulation of the transitional state. Keratin 8 (K8) regulated the expression of macrophage chemokines and macrophage recruitment. Profibrotic macrophages and myofibroblasts promoted the accumulation of transitional AECs, establishing a K8-dependent positive feedback loop driving fibrogenesis. Finally, rare murine transitional AECs were highly senescent and basaloid and may not differentiate into AEC1s, recapitulating the aberrant basaloid state in human IPF. We conclude that transitional AECs induced and were maintained by fibrosis in a K8-dependent manner; in mice, most transitional cells and fibrosis resolved, whereas in human IPF, transitional AECs evolved into an aberrant basaloid state that persisted with progressive fibrosis.
Collapse
Affiliation(s)
- Fa Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Ting
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Douglas
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nisha Patel
- College of Literature, Science, and the Arts
| | - Norihito Kaku
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jean Nemzek
- Unit for Laboratory Animal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jasmine A. Wilson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver Colorado, USA
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Bishr Omary
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology, School of Medicine, and
| |
Collapse
|
18
|
Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji HL. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines 2023; 11:3034. [PMID: 38002035 PMCID: PMC10669847 DOI: 10.3390/biomedicines11113034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of AT2 cells, media composition, and feeder cell origins. This article highlights the currently available methods for growing AT2 organoids and prospective improvements to improve the available culture techniques/conditions. Further, we discuss various applications, particularly those aimed at modeling human distal lung diseases and cell therapy.
Collapse
Affiliation(s)
- Krishan Gopal Jain
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Runzhen Zhao
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Waqas Ahmad
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gibran Ali
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Hong-Long Ji
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
19
|
Yampolskaya M, Herriges MJ, Ikonomou L, Kotton DN, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. Development 2023; 150:dev201873. [PMID: 37756586 PMCID: PMC10629677 DOI: 10.1242/dev.201873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Advances in single-cell RNA sequencing provide an unprecedented window into cellular identity. The abundance of data requires new theoretical and computational frameworks to analyze the dynamics of differentiation and integrate knowledge from cell atlases. We present 'single-cell Type Order Parameters' (scTOP): a statistical, physics-inspired approach for quantifying cell identity given a reference basis of cell types. scTOP can accurately classify cells, visualize developmental trajectories and assess the fidelity of engineered cells. Importantly, scTOP does this without feature selection, statistical fitting or dimensional reduction (e.g. uniform manifold approximation and projection, principle components analysis, etc.). We illustrate the power of scTOP using human and mouse datasets. By reanalyzing mouse lung data, we characterize a transient hybrid alveolar type 1/alveolar type 2 cell population. Visualizations of lineage tracing hematopoiesis data using scTOP confirm that a single clone can give rise to multiple mature cell types. We assess the transcriptional similarity between endogenous and donor-derived cells in the context of murine pulmonary cell transplantation. Our results suggest that physics-inspired order parameters can be an important tool for understanding differentiation and characterizing engineered cells. scTOP is available as an easy-to-use Python package.
Collapse
Affiliation(s)
| | - Michael J. Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
20
|
Kovatcheva M, Melendez E, Chondronasiou D, Pietrocola F, Bernad R, Caballe A, Junza A, Capellades J, Holguín-Horcajo A, Prats N, Durand S, Rovira M, Yanes O, Stephan-Otto Attolini C, Kroemer G, Serrano M. Vitamin B 12 is a limiting factor for induced cellular plasticity and tissue repair. Nat Metab 2023; 5:1911-1930. [PMID: 37973897 PMCID: PMC10663163 DOI: 10.1038/s42255-023-00916-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B12 and molecular hallmarks of methionine starvation. Supplementation with vitamin B12 increases the efficiency of reprogramming both in mice and in cultured cells, the latter indicating a cell-intrinsic effect. We show that the epigenetic mark H3K36me3, which prevents illegitimate initiation of transcription outside promoters (cryptic transcription), is sensitive to vitamin B12 levels, providing evidence for a link between B12 levels, H3K36 methylation, transcriptional fidelity and efficient reprogramming. Vitamin B12 supplementation also accelerates tissue repair in a model of ulcerative colitis. We conclude that vitamin B12, through its key role in one-carbon metabolism and epigenetic dynamics, improves the efficiency of in vivo reprogramming and tissue repair.
Collapse
Affiliation(s)
- Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Elena Melendez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Dafni Chondronasiou
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Federico Pietrocola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Raquel Bernad
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Adrià Caballe
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandra Junza
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Capellades
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| | - Adrián Holguín-Horcajo
- Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms UMS AMMICa/UMR 1138, Institut Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms UMS AMMICa/UMR 1138, Institut Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
| |
Collapse
|
21
|
Herriges MJ, Yampolskaya M, Thapa BR, Lindstrom-Vautrin J, Wang F, Huang J, Na CL, Ma L, Montminy MM, Bawa P, Villacorta-Martin C, Mehta P, Kotton DN. Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. Cell Stem Cell 2023; 30:1217-1234.e7. [PMID: 37625412 PMCID: PMC10529386 DOI: 10.1016/j.stem.2023.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Durable reconstitution of the distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising therapy for diseases that result from alveolar damage. Here, we differentiate murine PSCs into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. After transplantation, these progenitors mature in the distal lung, assuming the molecular phenotypes of alveolar type 2 (AT2) and type 1 (AT1) cells. After months in vivo, donor-derived cells retain their mature phenotypes, as characterized by single-cell RNA sequencing (scRNA-seq), histologic profiling, and functional assessment that demonstrates continued capacity of the engrafted cells to proliferate and differentiate. These results indicate durable reconstitution of the distal lung's facultative progenitor and differentiated epithelial cell compartments with PSC-derived cells, thus establishing a novel model for pulmonary cell therapy that can be utilized to better understand the mechanisms and utility of engraftment.
Collapse
Affiliation(s)
- Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - McKenna M Montminy
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
22
|
Ma L, Thapa BR, Le Suer JA, Tilston-Lünel A, Herriges MJ, Berical A, Beermann ML, Wang F, Bawa PS, Kohn A, Ysasi AB, Kiyokawa H, Matte TM, Randell SH, Varelas X, Hawkins FJ, Kotton DN. Airway stem cell reconstitution by the transplantation of primary or pluripotent stem cell-derived basal cells. Cell Stem Cell 2023; 30:1199-1216.e7. [PMID: 37625411 PMCID: PMC10528754 DOI: 10.1016/j.stem.2023.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia. The engrafted basal-like cells retain extensive self-renewal potential, evident by the capacity to reconstitute the tracheal epithelium through seven generations of secondary transplantation. Using the same approach, human primary or PSC-derived BCs transplanted into NOD scid gamma (NSG) recipient mice similarly display multilineage airway epithelial differentiation in vivo. Our results may provide a step toward potential future syngeneic cell-based therapy for patients with diseases resulting from airway epithelial cell damage or dysfunction.
Collapse
Affiliation(s)
- Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Tilston-Lünel
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anat Kohn
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra B Ysasi
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hirofumi Kiyokawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Taylor M Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
23
|
Xu L, Sun X. Lung repair empowered by exogenous cells taking residence. Cell Stem Cell 2023; 30:1127-1129. [PMID: 37683601 DOI: 10.1016/j.stem.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Stem cell therapy uses transplantation of exogenous stem cells to repair damaged tissues. In this issue of Cell Stem Cell, Ma et al. and Herriges et al. reported durable engraftment of pluripotent stem cell (PSC)-derived airway and alveolar epithelial progenitor cells, respectively, in the mouse lung.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Ptasinski V, Monkley SJ, Öst K, Tammia M, Alsafadi HN, Overed-Sayer C, Hazon P, Wagner DE, Murray LA. Modeling fibrotic alveolar transitional cells with pluripotent stem cell-derived alveolar organoids. Life Sci Alliance 2023; 6:e202201853. [PMID: 37230801 PMCID: PMC10213712 DOI: 10.26508/lsa.202201853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Repeated injury of the lung epithelium is proposed to be the main driver of idiopathic pulmonary fibrosis (IPF). However, available therapies do not specifically target the epithelium and human models of fibrotic epithelial damage with suitability for drug discovery are lacking. We developed a model of the aberrant epithelial reprogramming observed in IPF using alveolar organoids derived from human-induced pluripotent stem cells stimulated with a cocktail of pro-fibrotic and inflammatory cytokines. Deconvolution of RNA-seq data of alveolar organoids indicated that the fibrosis cocktail rapidly increased the proportion of transitional cell types including the KRT5 - /KRT17 + aberrant basaloid phenotype recently identified in the lungs of IPF patients. We found that epithelial reprogramming and extracellular matrix (ECM) production persisted after removal of the fibrosis cocktail. We evaluated the effect of the two clinically approved compounds for IPF, nintedanib and pirfenidone, and found that they reduced the expression of ECM and pro-fibrotic mediators but did not completely reverse epithelial reprogramming. Thus, our system recapitulates key aspects of IPF and is a promising system for drug discovery.
Collapse
Affiliation(s)
- Victoria Ptasinski
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Susan J Monkley
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karolina Öst
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Tammia
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hani N Alsafadi
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Catherine Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Petra Hazon
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Darcy E Wagner
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lynne A Murray
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
25
|
Altalhi W, Wu T, Wojtkiewicz GR, Jeffs S, Miki K, Ott HC. Intratracheally injected human-induced pluripotent stem cell-derived pneumocytes and endothelial cells engraft in the distal lung and ameliorate emphysema in a rat model. J Thorac Cardiovasc Surg 2023; 166:e23-e37. [PMID: 36933786 DOI: 10.1016/j.jtcvs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/20/2023]
Abstract
OBJECTIVES Pulmonary emphysema is characterized by the destruction of alveolar units and reduced gas exchange capacity. In the present study, we aimed to deliver induced pluripotent stem cell-derived endothelial cells and pneumocytes to repair and regenerate distal lung tissue in an elastase-induced emphysema model. METHODS We induced emphysema in athymic rats via intratracheal injection of elastase as previously reported. At 21 and 35 days after elastase treatment, we suspended 80 million induced pluripotent stem cell-derived endothelial cells and 20 million induced pluripotent stem cell-derived pneumocytes in hydrogel and injected the mixture intratracheally. On day 49 after elastase treatment, we performed imaging, functional analysis, and collected lungs for histology. RESULTS Using immunofluorescence detection of human-specific human leukocyte antigen 1, human-specific CD31, and anti--green fluorescent protein for the reporter labeled pneumocytes, we found that transplanted cells engrafted in 14.69% ± 0.95% of the host alveoli and fully integrated to form vascularized alveoli together with host cells. Transmission electron microscopy confirmed the incorporation of the transplanted human cells and the formation of a blood-air barrier. Human endothelial cells formed perfused vasculature. Computed tomography scans revealed improved vascular density and decelerated emphysema progression in cell-treated lungs. Proliferation of both human and rat cell was higher in cell-treated versus nontreated controls. Cell treatment reduced alveolar enlargement, improved dynamic compliance and residual volume, and improved diffusion capacity. CONCLUSIONS Our findings suggest that human induced pluripotent stem cell-derived distal lung cells can engraft in emphysematous lungs and participate in the formation of functional distal lung units to ameliorate the progression of emphysema.
Collapse
Affiliation(s)
- Wafa Altalhi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Clinical Laboratory Medicine, Faculty of Medical Sciences, Taif University, Taif, Makkah, Saudi Arabia
| | - Tong Wu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | | | - Sydney Jeffs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kenji Miki
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Harald C Ott
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
26
|
Leiby KL, Yuan Y, Ng R, Raredon MSB, Adams TS, Baevova P, Greaney AM, Hirschi KK, Campbell SG, Kaminski N, Herzog EL, Niklason LE. Rational engineering of lung alveolar epithelium. NPJ Regen Med 2023; 8:22. [PMID: 37117221 PMCID: PMC10147714 DOI: 10.1038/s41536-023-00295-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
Engineered whole lungs may one day expand therapeutic options for patients with end-stage lung disease. However, the feasibility of ex vivo lung regeneration remains limited by the inability to recapitulate mature, functional alveolar epithelium. Here, we modulate multimodal components of the alveolar epithelial type 2 cell (AEC2) niche in decellularized lung scaffolds in order to guide AEC2 behavior for epithelial regeneration. First, endothelial cells coordinate with fibroblasts, in the presence of soluble growth and maturation factors, to promote alveolar scaffold population with surfactant-secreting AEC2s. Subsequent withdrawal of Wnt and FGF agonism synergizes with tidal-magnitude mechanical strain to induce the differentiation of AEC2s to squamous type 1 AECs (AEC1s) in cultured alveoli, in situ. These results outline a rational strategy to engineer an epithelium of AEC2s and AEC1s contained within epithelial-mesenchymal-endothelial alveolar-like units, and highlight the critical interplay amongst cellular, biochemical, and mechanical niche cues within the reconstituting alveolus.
Collapse
Affiliation(s)
- Katherine L Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Karen K Hirschi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Li J, Dang SM, Schurmann P, Dost AF, Moye AL, Paschini M, Bhetariya PJ, Bronson R, Sui SJH, Kim CF. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. RESEARCH SQUARE 2023:rs.3.rs-2663901. [PMID: 36993454 PMCID: PMC10055547 DOI: 10.21203/rs.3.rs-2663901/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alveolar type 2 (AT2) cells, the epithelial progenitor cells of the distal lung, are known to be the prominent cell of origin for lung adenocarcinoma. The regulatory programs that control chromatin and gene expression in AT2 cells during the early stages of tumor initiation are not well understood. Here, we dissected the response of AT2 cells to Kras activation and p53 loss (KP) using combined single cell RNA and ATAC sequencing in an established tumor organoid system. Multi-omic analysis showed that KP tumor organoid cells exhibit two major cellular states: one more closely resembling AT2 cells (SPC-high) and another with loss of AT2 identity (hereafter, Hmga2-high). These cell states are characterized by unique transcription factor (TF) networks, with SPC-high states associated with TFs known to regulate AT2 cell fate during development and homeostasis, and distinct TFs associated with the Hmga2-high state. CD44 was identified as a marker of the Hmga2-high state, and was used to separate organoid cultures for functional comparison of these two cell states. Organoid assays and orthotopic transplantation studies indicated that SPC-high cells have higher tumorigenic capacity in the lung microenvironment compared to Hmga2-high cells. These findings highlight the utility of understanding chromatin regulation in the early oncogenic versions of epithelial cells, which may reveal more effective means to intervene the progression of Kras-driven lung cancer.
Collapse
Affiliation(s)
- Jingyun Li
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Susanna M. Dang
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Schurmann
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Antonella F.M. Dost
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L. Moye
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Preetida J Bhetariya
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Carla F. Kim
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Yampolskaya M, Herriges M, Ikonomou L, Kotton D, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525581. [PMID: 36747864 PMCID: PMC9900792 DOI: 10.1101/2023.01.25.525581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in single-cell RNA-sequencing (scRNA-seq) provide an unprecedented window into cellular identity. The increasing abundance of data requires new theoretical and computational frameworks for understanding cell fate determination, accurately classifying cell fates from expression data, and integrating knowledge from cell atlases. Here, we present single-cell Type Order Parameters (scTOP): a statistical-physics-inspired approach for constructing "order parameters" for cell fate given a reference basis of cell types. scTOP can quickly and accurately classify cells at a single-cell resolution, generate interpretable visualizations of developmental trajectories, and assess the fidelity of engineered cells. Importantly, scTOP does this without using feature selection, statistical fitting, or dimensional reduction (e.g., UMAP, PCA, etc.). We illustrate the power of scTOP utilizing a wide variety of human and mouse datasets (both in vivo and in vitro ). By reanalyzing mouse lung alveolar development data, we characterize a transient perinatal hybrid alveolar type 1/alveolar type 2 (AT1/AT2) cell population that disappears by 15 days post-birth and show that it is transcriptionally distinct from previously identified adult AT2-to-AT1 transitional cell types. Visualizations of lineage tracing data on hematopoiesis using scTOP confirm that a single clone can give rise to as many as three distinct differentiated cell types. We also show how scTOP can quantitatively assess the transcriptional similarity between endogenous and transplanted cells in the context of murine pulmonary cell transplantation. Finally, we provide an easy-to-use Python implementation of scTOP. Our results suggest that physics-inspired order parameters can be an important tool for understanding development and characterizing engineered cells.
Collapse
Affiliation(s)
| | - Michael Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Laertis Ikonomou
- Department of Oral Biology. University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Darrell Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
29
|
Chen J, Na F. Organoid technology and applications in lung diseases: Models, mechanism research and therapy opportunities. Front Bioeng Biotechnol 2022; 10:1066869. [PMID: 36568297 PMCID: PMC9772457 DOI: 10.3389/fbioe.2022.1066869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The prevalency of lung disease has increased worldwide, especially in the aging population. It is essential to develop novel disease models, that are superior to traditional models. Organoids are three-dimensional (3D) in vitro structures that produce from self-organizing and differentiating stem cells, including pluripotent stem cells (PSCs) or adult stem cells (ASCs). They can recapitulate the in vivo cellular heterogeneity, genetic characteristics, structure, and functionality of original tissues. Drug responses of patient-derived organoids (PDOs) are consistent with that of patients, and show correlations with genetic alterations. Thus, organoids have proven to be valuable in studying the biology of disease, testing preclinical drugs and developing novel therapies. In recent years, organoids have been successfully applied in studies of a variety of lung diseases, such as lung cancer, influenza, cystic fibrosis, idiopathic pulmonary fibrosis, and the recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. In this review, we provide an update on the generation of organoid models for these diseases and their applications in basic and translational research, highlighting these signs of progress in pathogenesis study, drug screening, personalized medicine and immunotherapy. We also discuss the current limitations and future perspectives in organoid models of lung diseases.
Collapse
Affiliation(s)
| | - Feifei Na
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Alsafadi HN, Stegmayr J, Ptasinski V, Silva I, Mittendorfer M, Murray LA, Wagner DE. Simultaneous isolation of proximal and distal lung progenitor cells from individual mice using a 3D printed guide reduces proximal cell contamination of distal lung epithelial cell isolations. Stem Cell Reports 2022; 17:2718-2731. [PMID: 36460000 PMCID: PMC9768627 DOI: 10.1016/j.stemcr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022] Open
Abstract
The respiratory epithelium consists of multiple, functionally distinct cell types and is maintained by regionally specific progenitor populations that repair the epithelium following injury. Several in vitro methods exist for studying lung epithelial repair using primary murine lung cells, but isolation methods are hampered by a lack of surface markers distinguishing epithelial progenitors along the respiratory epithelium. Here, we developed a 3D printed lobe divider (3DLD) to aid in simultaneous isolation of proximal versus distal lung epithelial progenitors from individual mice that give rise to differentiated epithelia in multiple in vitro assays. In contrast to 3DLD-isolated distal progenitor cells, commonly used manual tracheal ligation methods followed by lobe removal resulted in co-isolation of rare proximal cells with distal cells, which altered the transcriptional landscape and size distribution of distal organoids. The 3DLD aids in reproducible isolation of distal versus proximal progenitor populations and minimizes the potential for contaminating populations to confound in vitro assays.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - John Stegmayr
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Victoria Ptasinski
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden,Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Iran Silva
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Margareta Mittendorfer
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lynne A. Murray
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden,Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Darcy E. Wagner
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden,NanoLund, Lund University, Lund, Sweden,Corresponding author
| |
Collapse
|
31
|
Abstract
Acute and chronic lung diseases are a leading cause of morbidity and mortality globally. Unfortunately, these diseases are increasing in frequency and we have limited treatment options for severe lung diseases. New therapies are needed that not only treat symptoms or slow disease progression, but also enable the regeneration of functional lung tissue. Both airways and alveoli contain populations of epithelial stem cells with the potential to self-renew and produce differentiated progeny. Understanding the mechanisms that determine the behaviour of these cells, and their interactions with their niches, will allow future generations of respiratory therapies that protect the lungs from disease onset, promote regeneration from endogenous stem cells or enable regeneration through the delivery of exogenous cells. This review summarises progress towards each of these goals, highlighting the challenges and opportunities of developing pro-regenerative (bio)pharmaceutical, gene and cell therapies for respiratory diseases.
Collapse
Affiliation(s)
- Robert E. Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| |
Collapse
|