1
|
Schendel SL, Yu X, Halfmann PJ, Mahita J, Ha B, Hastie KM, Li H, Bedinger D, Troup C, Li K, Kuzmina N, Torrelles JB, Munt JE, Maddocks M, Osei-Twum M, Callaway HM, Reece S, Palser A, Kellam P, Dennison SM, Huntwork RHC, Horn GQ, Abraha M, Feeney E, Martinez-Sobrido L, Pino PA, Hicks A, Ye C, Park JG, Maingot B, Periasamy S, Mallory M, Scobey T, Lepage MN, St-Amant N, Khan S, Gambiez A, Baric RS, Bukreyev A, Gagnon L, Germann T, Kawaoka Y, Tomaras GD, Peters B, Saphire EO. A global collaboration for systematic analysis of broad-ranging antibodies against the SARS-CoV-2 spike protein. Cell Rep 2025; 44:115499. [PMID: 40184253 PMCID: PMC12014896 DOI: 10.1016/j.celrep.2025.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The Coronavirus Immunotherapeutic Consortium (CoVIC) conducted side-by-side comparisons of over 400 anti-SARS-CoV-2 spike therapeutic antibody candidates contributed by large and small companies as well as academic groups on multiple continents. Nine reference labs analyzed antibody features, including in vivo protection in a mouse model of infection, spike protein affinity, high-resolution epitope binning, ACE-2 binding blockage, structures, and neutralization of pseudovirus and authentic virus infection, to build a publicly accessible dataset in the database CoVIC-DB. High-throughput, high-resolution binning of CoVIC antibodies defines a broad and predictive landscape of antibody epitopes on the SARS-CoV-2 spike protein and identifies features associated with durable potency against multiple SARS-CoV-2 variants of concern and high in vivo efficacy. Results of the CoVIC studies provide a guide for selecting effective and durable antibody therapeutics and for immunogen design as well as providing a framework for rapid response to future viral disease outbreaks.
Collapse
Affiliation(s)
- Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xiaoying Yu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Jarjapu Mahita
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Brendan Ha
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Kan Li
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Jordi B Torrelles
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jennifer E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Melissa Maddocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Mary Osei-Twum
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephen Reece
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Paul Kellam
- RQ Biotechnology Ltd., London W12 7RZ, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College, London SW7 2AZ, UK
| | - S Moses Dennison
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Richard H C Huntwork
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Gillian Q Horn
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Paula A Pino
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amberlee Hicks
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jun-Gyu Park
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Billie Maingot
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Sivakumar Periasamy
- Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Michael Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Marie-Noelle Lepage
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Natalie St-Amant
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Sarwat Khan
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Anaïs Gambiez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ralph S Baric
- Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luc Gagnon
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Dadonaite B, Burrell AR, Logue J, Chu HY, Payne DC, Haslam DB, Staat MA, Bloom JD. SARS-CoV-2 neutralizing antibody specificities differ dramatically between recently infected infants and immune-imprinted individuals. J Virol 2025; 99:e0010925. [PMID: 40130874 PMCID: PMC11998527 DOI: 10.1128/jvi.00109-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The immune response to viral infection is shaped by past exposures to related virus strains, a phenomenon known as imprinting. For severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), much of the population has been imprinted by a viral spike from an early strain, either through vaccination or infection during the early stages of the COVID-19 pandemic. As a consequence of this imprinting, infection with more recent SARS-CoV-2 strains primarily boosts cross-reactive antibodies elicited by the imprinting strain. Here we compare the neutralizing antibody specificities of imprinted individuals versus infants infected with a recent strain. Specifically, we use pseudovirus-based deep mutational scanning to measure how spike mutations affect neutralization by the serum antibodies of adults and children imprinted by the original vaccine versus infants with a primary infection by an XBB* variant. While the serum neutralizing activity of the imprinted individuals primarily targets the spike receptor-binding domain (RBD), the serum neutralizing activity of infants infected with only XBB* mostly targets the spike N-terminal domain. In these infants, secondary exposure to the XBB* spike via vaccination shifts more of the neutralizing activity toward the RBD, although the specific RBD sites targeted are different from imprinted adults. The dramatic differences in neutralization specificities among individuals with different exposure histories likely impact SARS-CoV-2 evolution.IMPORTANCEWe show that a person's exposure history to different SARS-CoV-2 strains strongly affects which regions on the viral spike that their neutralizing antibodies target. In particular, infants who have just been infected once with a recent viral strain make neutralizing antibodies that target different regions of the viral spike than adults or children who have been exposed to both older and more recent strains. This person-to-person heterogeneity means that the same viral mutation can have different impacts on the antibody immunity of different people.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenni Logue
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Helen Y. Chu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Daniel C. Payne
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
Lauster D, Haag R, Ballauff M, Herrmann A. Balancing stability and function: impact of the surface charge of SARS-CoV-2 Omicron spike protein. NPJ VIRUSES 2025; 3:23. [PMID: 40295844 PMCID: PMC11962157 DOI: 10.1038/s44298-025-00104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/30/2025]
Abstract
The ectodomain of the Omicron SARS-CoV-2 spike has an increased positive surface charge, favoring binding to the host cell surface, but may affect the stability of the ectodomain. Thermal stability studies identified two transitions associated with the flexibility of the receptor binding domain and the unfolding of the whole ectodomain, respectively. Despite destabilizing effects of some mutations, compensatory mutations maintain ECD stability and functional advantages thus supporting viral fitness.
Collapse
Affiliation(s)
- Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Matthias Ballauff
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Dadonaite B, Burrell AR, Logue J, Chu HY, Payne DC, Haslam DB, Staat MA, Bloom JD. SARS-CoV-2 neutralizing antibody specificities differ dramatically between recently infected infants and immune-imprinted individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633612. [PMID: 39896663 PMCID: PMC11785066 DOI: 10.1101/2025.01.17.633612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The immune response to viral infection is shaped by past exposures to related virus strains, a phenomenon known as imprinting. For SARS-CoV-2, much of the population has been imprinted by a viral spike from an early strain, either through vaccination or infection during the early stages of the COVID-19 pandemic. As a consequence of this imprinting, infection with more recent SARS-CoV-2 strains primarily boosts cross-reactive antibodies elicited by the imprinting strain. Here we compare the neutralizing antibody specificities of imprinted individuals versus infants infected with a recent strain. Specifically, we use pseudovirus-based deep mutational scanning to measure how spike mutations affect neutralization by the serum antibodies of adults and children imprinted by the original vaccine versus infants with a primary infection by a XBB* variant. While the serum neutralizing activity of the imprinted individuals primarily targets the spike receptor-binding domain (RBD), serum neutralizing activity of infants only infected with XBB* mostly targets the spike N-terminal domain (NTD). In these infants, secondary exposure to the XBB* spike via vaccination shifts more of the neutralizing activity towards the RBD, although the specific RBD sites targeted are different than for imprinted adults. The dramatic differences in neutralization specificities among individuals with different exposure histories likely impact SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - Helen Y. Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - Daniel C. Payne
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|
6
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
7
|
Qing E, Salgado J, Wilcox A, Gallagher T. SARS-CoV-2 Omicron variations reveal mechanisms controlling cell entry dynamics and antibody neutralization. PLoS Pathog 2024; 20:e1012757. [PMID: 39621785 PMCID: PMC11637440 DOI: 10.1371/journal.ppat.1012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane "S2" domains, yet we found that substitutions in peripheral "S1" domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry-fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Julisa Salgado
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Alexandria Wilcox
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
8
|
Modjarrad K, Che Y, Chen W, Wu H, Cadima CI, Muik A, Maddur MS, Tompkins KR, Martinez LT, Cai H, Ramos M, Mensah S, Cumbia B, Falcao L, McKeen AP, Chang JS, Fennell KF, Huynh KW, McLellan TJ, Sahasrabudhe PV, Chen W, Cerswell M, Garcia MA, Li S, Sharma R, Li W, Dizon KP, Duarte S, Gillett F, Smith R, Illenberger DM, Efferen KS, Vogel AB, Anderson AS, Şahin U, Swanson KA. Preclinical characterization of the Omicron XBB.1.5-adapted BNT162b2 COVID-19 vaccine. NPJ Vaccines 2024; 9:229. [PMID: 39567521 PMCID: PMC11579292 DOI: 10.1038/s41541-024-01013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
As SARS-CoV-2 evolves, increasing in potential for greater transmissibility and immune escape, updated vaccines are needed to boost adaptive immunity to protect against COVID-19 caused by circulating strains. Here, we report features of the monovalent Omicron XBB.1.5-adapted BNT162b2 vaccine, which contains XBB.1.5-specific sequence changes, relative to the original BNT162b2 backbone, in the encoded prefusion-stabilized SARS-CoV-2 spike protein (S(P2)). Biophysical characterization of Omicron XBB.1.5 S(P2) demonstrated that it maintains a prefusion conformation and adopts a flexible, predominantly open, state, with high affinity for the human ACE-2 receptor. When administered as a 4th dose in BNT162b2-experienced mice, the monovalent Omicron XBB.1.5 vaccine elicited substantially higher serum neutralizing titers against pseudotyped viruses of Omicron XBB.1.5, XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1 and HV.1 sublineages and phylogenetically distant BA.2.86 lineage than the bivalent Wild Type + Omicron BA.4/5 vaccine. Similar trends were observed against Omicron XBB sublineage pseudoviruses when the vaccine was administered as a 2-dose series in naive mice. Strong S-specific Th1 CD4+ and IFNγ+ CD8+ T cell responses were also observed. These findings, together with real world performance of the XBB.1.5-adapted vaccine, suggest that preclinical data for the monovalent Omicron XBB.1.5-adapted BNT162b2 was predictive of protective immunity against dominant SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Kayvon Modjarrad
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA.
| | - Ye Che
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
- Viral Vaccines, Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Huixian Wu
- Discovery Sciences, Pfizer Inc., Groton, CT, USA
| | | | | | - Mohan S Maddur
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | | | - Hui Cai
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Minah Ramos
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Sonia Mensah
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Brittney Cumbia
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Larissa Falcao
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Andrew P McKeen
- Global Biometrics and Data Management, Pfizer Inc., Pearl River, NY, USA
| | | | | | | | | | | | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
- Early Bioprocess Development, Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Michael Cerswell
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Miguel A Garcia
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Shilong Li
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Rahul Sharma
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Weiqiang Li
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Stacy Duarte
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Frank Gillett
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Rachel Smith
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | | | | | | | | | - Kena A Swanson
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA.
| |
Collapse
|
9
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathways for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. PLoS Pathog 2024; 20:e1012704. [PMID: 39546542 PMCID: PMC11602109 DOI: 10.1371/journal.ppat.1012704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
Affiliation(s)
- Alexandra L. Tse
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Jacob Berrigan
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gorka Lasso
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Toheeb Balogun
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fiona L. Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Georgia L. McClain
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Amartya Mudry Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Charlotte Lemeunier
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Rommie E. Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Present address: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Emily Happy Miller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|
10
|
Yajima H, Nomai T, Okumura K, Maenaka K, The Genotype to Phenotype Japan (G2P-Japan) Consortium MatsunoKeita1NaoNaganori1SawaHirofumi1MizumaKeita1LiJingshu1KidaIzumi1MimuraYume1OhariYuma1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1MohriHiromi1IidaMiki1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1TsujinoShuhei1ItoHayato1KakuYu2MisawaNaoko2PlianchaisukArnon2GuoZiyi2HinayAlfredo A.Jr.2UsuiKaoru2SaikruangWilaiporn2LytrasSpyridon2UriuKeiya2YoshimuraRyo2KawakuboShusuke2NishumuraLuca2KosugiYusuke2FujitaShigeru2M.TolentinoJarel Elgin2ChenLuo2PanLin2LiWenye2YoMaximilian Stanley2HorinakaKio2SuganamiMai2ChibaMika2YasudaKyoko2IidaKeiko2StrangeAdam Patrick2OhsumiNaomi2TanakaShiho2OgawaEiko2FukudaTsuki2OsujoRina2YoshimuraKazuhisa3SadamasKenji3NagashimaMami3AsakuraHiroyuki3YoshidaIsao3NakagawaSo4TakayamaKazuo5HashimotoRina5DeguchiSayaka5WatanabeYukio5NakataYoshitaka5FutatsusakoHiroki5SakamotoAyaka5YasuharaNaoko5SuzukiTateki5KimuraKanako5SasakiJiei5NakajimaYukari5IrieTakashi6KawabataRyoko6Sasaki-TabataKaori7IkedaTerumasa8NasserHesham8ShimizuRyo8BegumMst Monira8JonathanMichael8MugitaYuka8LeongSharee8TakahashiOtowa8UenoTakamasa8MotozonoChihiro8ToyodaMako8SaitoAkatsuki9KosakaAnon9KawanoMiki9MatsubaraNatsumi9NishiuchiTomoko9ZahradnikJiri10AndrikopoulosProkopios10Padilla-BlancoMiguel10KonarAditi10Hokkaido University, Sapporo, JapanDivision of Systems Virology, Department of Microbiology and Immunolog, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanTokai University, Kanagawa, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, JapanCharles University, Vestec-Prague, Czechia, Ito J, Hashiguchi T, Sato K. Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio 2024; 15:e0322023. [PMID: 39283095 PMCID: PMC11481514 DOI: 10.1128/mbio.03220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Due to the incessant emergence of various SARS-CoV-2 variants with enhanced fitness in the human population, controlling the COVID-19 pandemic has been challenging. Understanding how the virus enhances its fitness during a pandemic could offer valuable insights for more effective control of viral epidemics. In this manuscript, we review the evolution of SARS-CoV-2 from early 2022 to the end of 2023-from Omicron BA.2 to XBB descendants. Focusing on viral evolution during this period, we provide concrete examples that SARS-CoV-2 has increased its fitness by enhancing several functions of the spike (S) protein, including its binding affinity to the ACE2 receptor and its ability to evade humoral immunity. Furthermore, we explore how specific mutations modify these functions of the S protein through structural alterations. This review provides evolutionary, molecular, and structural insights into how SARS-CoV-2 has increased its fitness and repeatedly caused epidemic surges during the pandemic.
Collapse
Affiliation(s)
- Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomo Nomai
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kaho Okumura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) ConsortiumMatsunoKeita1NaoNaganori1SawaHirofumi1MizumaKeita1LiJingshu1KidaIzumi1MimuraYume1OhariYuma1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1MohriHiromi1IidaMiki1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1TsujinoShuhei1ItoHayato1KakuYu2MisawaNaoko2PlianchaisukArnon2GuoZiyi2HinayAlfredo A.Jr.2UsuiKaoru2SaikruangWilaiporn2LytrasSpyridon2UriuKeiya2YoshimuraRyo2KawakuboShusuke2NishumuraLuca2KosugiYusuke2FujitaShigeru2M.TolentinoJarel Elgin2ChenLuo2PanLin2LiWenye2YoMaximilian Stanley2HorinakaKio2SuganamiMai2ChibaMika2YasudaKyoko2IidaKeiko2StrangeAdam Patrick2OhsumiNaomi2TanakaShiho2OgawaEiko2FukudaTsuki2OsujoRina2YoshimuraKazuhisa3SadamasKenji3NagashimaMami3AsakuraHiroyuki3YoshidaIsao3NakagawaSo4TakayamaKazuo5HashimotoRina5DeguchiSayaka5WatanabeYukio5NakataYoshitaka5FutatsusakoHiroki5SakamotoAyaka5YasuharaNaoko5SuzukiTateki5KimuraKanako5SasakiJiei5NakajimaYukari5IrieTakashi6KawabataRyoko6Sasaki-TabataKaori7IkedaTerumasa8NasserHesham8ShimizuRyo8BegumMst Monira8JonathanMichael8MugitaYuka8LeongSharee8TakahashiOtowa8UenoTakamasa8MotozonoChihiro8ToyodaMako8SaitoAkatsuki9KosakaAnon9KawanoMiki9MatsubaraNatsumi9NishiuchiTomoko9ZahradnikJiri10AndrikopoulosProkopios10Padilla-BlancoMiguel10KonarAditi10Hokkaido University, Sapporo, JapanDivision of Systems Virology, Department of Microbiology and Immunolog, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanTokai University, Kanagawa, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, JapanCharles University, Vestec-Prague, Czechia
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
11
|
Yajima H, Anraku Y, Kaku Y, Kimura KT, Plianchaisuk A, Okumura K, Nakada-Nakura Y, Atarashi Y, Hemmi T, Kuroda D, Takahashi Y, Kita S, Sasaki J, Sumita H, Ito J, Maenaka K, Sato K, Hashiguchi T. Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1. Nat Commun 2024; 15:8574. [PMID: 39375326 PMCID: PMC11458767 DOI: 10.1038/s41467-024-52808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Since 2019, SARS-CoV-2 has undergone mutations, resulting in pandemic and epidemic waves. The SARS-CoV-2 spike protein, crucial for cellular entry, binds to the ACE2 receptor exclusively when its receptor-binding domain (RBD) adopts the up-conformation. However, whether ACE2 also interacts with the RBD in the down-conformation to facilitate the conformational shift to RBD-up remains unclear. Herein, we present the structures of the BA.2.86 and the JN.1 spike proteins bound to ACE2. Notably, we successfully observed the ACE2-bound down-RBD, indicating an intermediate structure before the RBD-up conformation. The wider and mobile angle of RBDs in the up-state provides space for ACE2 to interact with the down-RBD, facilitating the transition to the RBD-up state. The K356T, but not N354-linked glycan, contributes to both of infectivity and neutralizing-antibody evasion in BA.2.86. These structural insights the spike-protein dynamics would help understand the mechanisms underlying SARS-CoV-2 infection and its neutralization.
Collapse
Affiliation(s)
- Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Kaku
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kanako Terakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaho Okumura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
| | - Yoshiko Nakada-Nakura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Atarashi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takuya Hemmi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sumita
- Research Administration Office, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Kyushu University, Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Yang H, Guo H, Wang A, Cao L, Fan Q, Jiang J, Wang M, Lin L, Ge X, Wang H, Zhang R, Liao M, Yan R, Ju B, Zhang Z. Structural basis for the evolution and antibody evasion of SARS-CoV-2 BA.2.86 and JN.1 subvariants. Nat Commun 2024; 15:7715. [PMID: 39231977 PMCID: PMC11374805 DOI: 10.1038/s41467-024-51973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The Omicron subvariants of SARS-CoV-2, especially for BA.2.86 and JN.1, have rapidly spread across multiple countries, posing a significant threat in the ongoing COVID-19 pandemic. Distinguished by 34 additional mutations on the Spike (S) protein compared to its BA.2 predecessor, the implications of BA.2.86 and its evolved descendant, JN.1 with additional L455S mutation in receptor-binding domains (RBDs), are of paramount concern. In this work, we systematically examine the neutralization susceptibilities of SARS-CoV-2 Omicron subvariants and reveal the enhanced antibody evasion of BA.2.86 and JN.1. We also determine the cryo-EM structures of the trimeric S proteins from BA.2.86 and JN.1 in complex with the host receptor ACE2, respectively. The mutations within the RBDs of BA.2.86 and JN.1 induce a remodeling of the interaction network between the RBD and ACE2. The L455S mutation of JN.1 further induces a notable shift of the RBD-ACE2 interface, suggesting the notably reduced binding affinity of JN.1 than BA.2.86. An analysis of the broadly neutralizing antibodies possessing core neutralizing epitopes reveals the antibody evasion mechanism underlying the evolution of Omicron BA.2.86 subvariant. In general, we construct a landscape of evolution in virus-receptor of the circulating Omicron subvariants.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Humans
- Immune Evasion
- COVID-19/immunology
- COVID-19/virology
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Cryoelectron Microscopy
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Mutation
- Evolution, Molecular
- Protein Binding
- Models, Molecular
Collapse
Affiliation(s)
- Haonan Yang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huimin Guo
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Aojie Wang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Liwei Cao
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Qing Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jie Jiang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Miao Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lin Lin
- Sustech Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Runze Zhang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ming Liao
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China.
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China.
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China.
| |
Collapse
|
13
|
Zhang QE, Lindenberger J, Parsons RJ, Thakur B, Parks R, Park CS, Huang X, Sammour S, Janowska K, Spence TN, Edwards RJ, Martin M, Williams WB, Gobeil S, Montefiori DC, Korber B, Saunders KO, Haynes BF, Henderson R, Acharya P. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. Mol Cell 2024; 84:2747-2764.e7. [PMID: 39059371 PMCID: PMC11366207 DOI: 10.1016/j.molcel.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.
Collapse
Affiliation(s)
- Qianyi E Zhang
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA
| | | | - Ruth J Parsons
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA
| | - Bhishem Thakur
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Rob Parks
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Chan Soo Park
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Xiao Huang
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Salam Sammour
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Taylor N Spence
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Mitchell Martin
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA
| | - Sophie Gobeil
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Centre de Recherche en Infectiologie de l'Université Laval, PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, QC, Canada
| | - David C Montefiori
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; The New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Kevin O Saunders
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA
| | - Rory Henderson
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Wilke CO. The biophysical landscape of viral evolution. Proc Natl Acad Sci U S A 2024; 121:e2409667121. [PMID: 38913906 PMCID: PMC11228502 DOI: 10.1073/pnas.2409667121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Affiliation(s)
- Claus O. Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
16
|
Wang D, Huot M, Mohanty V, Shakhnovich EI. Biophysical principles predict fitness of SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2314518121. [PMID: 38820002 PMCID: PMC11161772 DOI: 10.1073/pnas.2314518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the identification of a fitness function based on binding thermodynamics, we unravel the relationship between the biophysical properties of RBD variants and their contribution to viral fitness. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by dissociation constants of RBD to ACE2, LY-CoV016, LY-CoV555, REGN10987, and S309, onto an epistatic fitness landscape. We validate our findings through experimentally measured and machine learning (ML) estimated binding affinities, coupled with infectivity data derived from population-level sequencing. Our analysis reveals that this model effectively predicts the fitness of novel RBD variants and can account for the epistatic interactions among mutations, including explaining the later reversal of Q493R. Our study sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low-frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Dianzhuo Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Marian Huot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- École Polytechnique, Institut Polytechnique de Paris, Palaiseau91128, France
| | - Vaibhav Mohanty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA02115
- Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
17
|
Ishimaru H, Nishimura M, Shigematsu H, Marini MI, Hasegawa N, Takamiya R, Iwata S, Mori Y. Epitopes of an antibody that neutralizes a wide range of SARS-CoV-2 variants in a conserved subdomain 1 of the spike protein. J Virol 2024; 98:e0041624. [PMID: 38624232 PMCID: PMC11092320 DOI: 10.1128/jvi.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued, enabling the virus to escape from host immunity by changing its spike antigen, while biased toward the receptor-binding domain and N-terminal domain. Here, we isolated a novel pan-SARS-CoV-2 neutralizing antibody (which we named MO11) for even the recent dominators XBB.1.16 and EG.5.1, from a convalescent patient who had received three doses of an original mRNA COVID-19 vaccination. A cryo-electron microscopy analysis of the spike-MO11 complex at 2.3 Å atomic resolution revealed that it recognizes a conserved epitope hidden behind a glycan shield at N331 on subdomain 1 (SD1), holding both the N- and C-terminal segments comprising SD1. Our identification of MO11 unveiled the functional importance of SD1 for the spike's function, and we discuss the potential availability of a novel common epitope among the SARS-CoV-2 variants.IMPORTANCENovel severe acute respiratory syndrome coronavirus 2 variants with immune evasion ability are still repeatedly emerging, nonetheless, a part of immunity developed in responding to the antigen of earlier variants retains efficacy against recent variants irrespective of the numerous mutations. In exploration for the broadly effective antibodies, we identified a cross-neutralizing antibody, named MO11, from the B cells of the convalescent patient. MO11 targets a novel epitope in subdomain 1 (SD1) and was effective against all emerging variants including XBB.1.16 and EG.5.1. The neutralizing activity covering from D614G to EG.5.1 variants was explained by the conservation of the epitope, and it revealed the importance of the subdomain on regulating the function of the antigen for viral infection. Demonstrated identification of the neutralizing antibody that recognizes a conserved epitope implies basal contribution of such group of antibodies for prophylaxis against COVID-19.
Collapse
Affiliation(s)
- Hanako Ishimaru
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute SPring-8, Sayo, Hyogo, Japan
| | - Maria Istiqomah Marini
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Natsumi Hasegawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rei Takamiya
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Sachiyo Iwata
- Division of Cardiovascular Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Yuan M, Wilson IA. The D Gene in CDR H3 Determines a Public Class of Human Antibodies to SARS-CoV-2. Vaccines (Basel) 2024; 12:467. [PMID: 38793718 PMCID: PMC11126049 DOI: 10.3390/vaccines12050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Public antibody responses have been found against many infectious agents. Structural convergence of public antibodies is usually determined by immunoglobulin V genes. Recently, a human antibody public class against SARS-CoV-2 was reported, where the D gene (IGHD3-22) encodes a common YYDxxG motif in heavy-chain complementarity-determining region 3 (CDR H3), which determines specificity for the receptor-binding domain (RBD). In this review, we discuss the isolation, structural characterization, and genetic analyses of this class of antibodies, which have been isolated from various cohorts of COVID-19 convalescents and vaccinees. All eleven YYDxxG antibodies with available structures target the SARS-CoV-2 RBD in a similar binding mode, where the CDR H3 dominates the interaction with antigen. The antibodies target a conserved site on the RBD that does not overlap with the receptor-binding site, but their particular angle of approach results in direct steric hindrance to receptor binding, which enables both neutralization potency and breadth. We also review the properties of CDR H3-dominant antibodies that target other human viruses. Overall, unlike most public antibodies, which are identified by their V gene usage, this newly discovered public class of YYDxxG antibodies is dominated by a D-gene-encoded motif and uncovers further opportunities for germline-targeting vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Ouchari L, Hemlali M, Ghammaz H, Chouati T, Melloul M, Alaoui Amine S, Rhoulam S, Elannaz H, Touil N, Ennibi K, El Fahime E. Genome sequencing of severe acute respiratory syndrome COVID-19 EF.1 variant strain obtained from a Moroccan patient. Microbiol Resour Announc 2024; 13:e0125523. [PMID: 38501774 PMCID: PMC11008184 DOI: 10.1128/mra.01255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we report the identification and coding-complete genome sequence of a severe acute respiratory syndrome COVID-19 (SARS-CoV-2) strain obtained from a Moroccan patient. The detected strain EF.1 belongs to the BQ1.1 subvariant of the BA.5 Omicron variant.
Collapse
Affiliation(s)
- Lahcen Ouchari
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
- Microbiology and Molecular Biology Team, Plant and Microbial Biotechnology, Biodiversity and Environment Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mouhssine Hemlali
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hamza Ghammaz
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Taha Chouati
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Marouane Melloul
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
- Microbiology and Molecular Biology Team, Plant and Microbial Biotechnology, Biodiversity and Environment Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Sanaâ Alaoui Amine
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
| | - Safaa Rhoulam
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
| | - Hicham Elannaz
- Cell Culture Unit, Center of Virology, Infectious, and Tropical Diseases, Med V Military Hospital, Rabat, Morocco
| | - Nadia Touil
- Cell Culture Unit, Center of Virology, Infectious, and Tropical Diseases, Med V Military Hospital, Rabat, Morocco
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Khalid Ennibi
- Cell Culture Unit, Center of Virology, Infectious, and Tropical Diseases, Med V Military Hospital, Rabat, Morocco
| | - Elmostafa El Fahime
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
20
|
Zhang QE, Lindenberger J, Parsons R, Thakur B, Parks R, Park CS, Huang X, Sammour S, Janowska K, Spence TN, Edwards RJ, Martin M, Williams WB, Gobeil S, Montefiori DC, Korber B, Saunders KO, Haynes BF, Haynes BF, Henderson R, Acharya P. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580004. [PMID: 38405707 PMCID: PMC10888797 DOI: 10.1101/2024.02.12.580004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A recombinant lineage of the SARS-CoV-2 Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryo-EM structures of XBB.1.5, XBB.1.16, EG.5 and EG.5.1 spike (S) ectodomains to reveal reinforced 3-RBD-down receptor inaccessible closed states mediated by interprotomer receptor binding domain (RBD) interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters including stability, receptor binding and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.
Collapse
|
21
|
Mannar D, Saville JW, Poloni C, Zhu X, Bezeruk A, Tidey K, Ahmed S, Tuttle KS, Vahdatihassani F, Cholak S, Cook L, Steiner TS, Subramaniam S. Altered receptor binding, antibody evasion and retention of T cell recognition by the SARS-CoV-2 XBB.1.5 spike protein. Nat Commun 2024; 15:1854. [PMID: 38424106 PMCID: PMC10904792 DOI: 10.1038/s41467-024-46104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
The XBB.1.5 variant of SARS-CoV-2 has rapidly achieved global dominance and exhibits a high growth advantage over previous variants. Preliminary reports suggest that the success of XBB.1.5 stems from mutations within its spike glycoprotein, causing immune evasion and enhanced receptor binding. We present receptor binding studies that demonstrate retention of binding contacts with the human ACE2 receptor and a striking decrease in binding to mouse ACE2 due to the revertant R493Q mutation. Despite extensive evasion of antibody binding, we highlight a region on the XBB.1.5 spike protein receptor binding domain (RBD) that is recognized by serum antibodies from a donor with hybrid immunity, collected prior to the emergence of the XBB.1.5 variant. T cell assays reveal high frequencies of XBB.1.5 spike-specific CD4+ and CD8+ T cells amongst donors with hybrid immunity, with the CD4+ T cells skewed towards a Th1 cell phenotype and having attenuated effector cytokine secretion as compared to ancestral spike protein-specific cells. Thus, while the XBB.1.5 variant has retained efficient human receptor binding and gained antigenic alterations, it remains susceptible to recognition by T cells induced via vaccination and previous infection.
Collapse
Affiliation(s)
- Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Chad Poloni
- Department of Medicine and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Alison Bezeruk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Keith Tidey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sana Ahmed
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Katharine S Tuttle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Faezeh Vahdatihassani
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Spencer Cholak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Laura Cook
- Department of Medicine and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia
| | - Theodore S Steiner
- Department of Medicine and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Gandeeva Therapeutics, Inc., Burnaby, BC, V5C 6N5, Canada.
| |
Collapse
|
22
|
Parsons RJ, Acharya P. Evolution of the SARS-CoV-2 Omicron spike. Cell Rep 2023; 42:113444. [PMID: 37979169 PMCID: PMC10782855 DOI: 10.1016/j.celrep.2023.113444] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern, first identified in November 2021, rapidly spread worldwide and diversified into several subvariants. The Omicron spike (S) protein accumulated an unprecedented number of sequence changes relative to previous variants. In this review, we discuss how Omicron S protein structural features modulate host cell receptor binding, virus entry, and immune evasion and highlight how these structural features differentiate Omicron from previous variants. We also examine how key structural properties track across the still-evolving Omicron subvariants and the importance of continuing surveillance of the S protein sequence evolution over time.
Collapse
Affiliation(s)
- Ruth J Parsons
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Malewana RD, Stalls V, May A, Lu X, Martinez DR, Schäfer A, Li D, Barr M, Sutherland LL, Lee E, Parks R, Beck WE, Newman A, Bock KW, Minai M, Nagata BM, DeMarco CT, Denny TN, Oguin TH, Rountree W, Wang Y, Mansouri K, Edwards RJ, Sempowski GD, Eaton A, Muramatsu H, Henderson R, Tam Y, Barbosa C, Tang J, Cain DW, Santra S, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Montefiori DC, Pardi N, Weissman D, Baric RS, Acharya P, Haynes BF, Saunders KO. Broadly neutralizing antibody induction by non-stabilized SARS-CoV-2 Spike mRNA vaccination in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572191. [PMID: 38187726 PMCID: PMC10769253 DOI: 10.1101/2023.12.18.572191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.
Collapse
Affiliation(s)
- R Dilshan Malewana
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Immunobiology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Whitney Edwards Beck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ying Tam
- Acuitas Therapeutics, LLC, Vancouver, BC, V6T 1Z3, Canada
| | | | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. Cell Host Microbe 2023; 31:1961-1973.e11. [PMID: 37989312 PMCID: PMC10913562 DOI: 10.1016/j.chom.2023.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rhinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. We determine a cryo-EM structure of the PRD-0038 RBD bound to Rhinolophus alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryo-EM and monoclonal antibody reactivity reveals its distinct antigenicity relative to SARS-CoV-2 and identifies PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared with SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Luo M, Zhou B, Reddem ER, Tang B, Chen B, Zhou R, Liu H, Liu L, Katsamba PS, Au KK, Man HO, To KKW, Yuen KY, Shapiro L, Dang S, Ho DD, Chen Z. Structural insights into broadly neutralizing antibodies elicited by hybrid immunity against SARS-CoV-2. Emerg Microbes Infect 2023; 12:2146538. [PMID: 36354024 PMCID: PMC9817130 DOI: 10.1080/22221751.2022.2146538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACTIncreasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II and III bNAbs with new epitopes mapped to the receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.
Collapse
Affiliation(s)
- Mengxiao Luo
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Biao Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | | | - Bingjie Tang
- Division of Life Science, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bohao Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hang Liu
- Division of Life Science, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Ka-Kit Au
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hiu-On Man
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behaviour Institute, New York, NY, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shangyu Dang
- Division of Life Science, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People’s Republic of China
- HKUST-Shenzhen Research Institute, Nanshan, People’s Republic of China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
26
|
Yao H, Wang H, Zhang Z, Lu Y, Zhang Z, Zhang Y, Xiong X, Wang Y, Wang Z, Yang H, Zhao J, Xu W. A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses, including all major Omicron strains. MedComm (Beijing) 2023; 4:e397. [PMID: 37901798 PMCID: PMC10600506 DOI: 10.1002/mco2.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
SARS-CoV-2 viruses are highly transmissible and immune evasive. It is critical to develop broad-spectrum prophylactic and therapeutic antibodies for potential future pandemics. Here, we used the phage display method to discover nanobodies (Nbs) for neutralizing SARS-CoV-2 viruses especially Omicron strains. The leading nanobody (Nb), namely, Nb4, with excellent physicochemical properties, can neutralize Delta and Omicron subtypes, including BA.1, BA.1.1 (BA.1 + R346K), BA.2, BA.5, BQ.1, and XBB.1. The crystal structure of Nb4 in complex with the receptor-binding domain (RBD) of BA.1 Spike protein reveals that Nb4 interacts with an epitope on the RBD overlapping with the receptor-binding motif, and thus competes with angiotensin-converting enzyme 2 (ACE2) binding. Nb4 is expected to be effective for neutralizing most recent Omicron variants, since the epitopes are evolutionarily conserved among them. Indeed, trivalent Nb4 interacts with the XBB1.5 Spike protein with low nM affinity and competes for ACE2 binding. Prophylactic and therapeutic experiments in mice indicated that Nb4 could reduce the Omicron virus loads in the lung. In particular, in prophylactic experiments, intranasal administration of multivalent Nb4 completely protected mice from Omicron infection. Taken together, these results demonstrated that Nb4 could serve as a potent and broad-spectrum prophylactic and therapeutic Nb for COVID-19.
Collapse
Affiliation(s)
- Hebang Yao
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Hongyang Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yuchi Lu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Zhiying Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xinyi Xiong
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yanqun Wang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhizhi Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Haitao Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
- Guangzhou LaboratoryBio‐IslandGuangzhouGuangdongChina
- Institute of Infectious DiseaseGuangzhou Eighth People's Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Institute for HepatologyNational Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Wenqing Xu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
27
|
de Souza AS, de Souza RF, Guzzo CR. Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). J Comput Aided Mol Des 2023; 37:585-606. [PMID: 37792106 DOI: 10.1007/s10822-023-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| |
Collapse
|
28
|
Kapingidza AB, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Catanzaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Van Itallie E, Vure P, Dunn B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori DC, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered immunogens to elicit antibodies against conserved coronavirus epitopes. Nat Commun 2023; 14:7897. [PMID: 38036525 PMCID: PMC10689493 DOI: 10.1038/s41467-023-43638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel J Marston
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Caitlin Harris
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kaitlyn Winters
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dieter Mielke
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Lu Xiaozhi
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qi Yin
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Eaton
- Department of Surgery, Duke University, Durham, NC, USA
| | - Justine Mae Flores
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Austin Harner
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa D Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher Beverly
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Elizabeth Van Itallie
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Pranay Vure
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University, Durham, NC, USA
| | - Taylor Keyes
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth A Petzold
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
29
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Accurate Characterization of Conformational Ensembles and Binding Mechanisms of the SARS-CoV-2 Omicron BA.2 and BA.2.86 Spike Protein with the Host Receptor and Distinct Classes of Antibodies Using AlphaFold2-Augmented Integrative Computational Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567697. [PMID: 38045395 PMCID: PMC10690158 DOI: 10.1101/2023.11.18.567697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The latest wave SARS-CoV-2 Omicron variants displayed a growth advantage and the increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with all-atom MD simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that AlphaFold2-predicted conformational ensemble of the BA.2.86 spike protein complex can accurately capture the main dynamics signatures obtained from microscond molecular dynamics simulations. The ensemble-based dynamic mutational scanning of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 dissected the role of the BA.2 and BA.2.86 backgrounds in modulating binding free energy changes revealing a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 mutational sites R403K, F486P and R493Q. To examine immune evasion properties of BA.2.86 in atomistic detail, we performed large scale structure-based mutational profiling of the S protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against BA.2.86 variant. The results quantified specific function of the BA.2.86 mutations to ensure broad resistance against different classes of RBD antibodies. This study revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have primarily evolved to improve immune escape while modulating binding affinity with ACE2 through cooperative effect of R403K, F486P and R493Q mutations. The study supports a hypothesis that the impact of the increased ACE2 binding affinity on viral fitness is more universal and is mediated through cross-talk between convergent mutational hotspots, while the effect of immune evasion could be more variant-dependent.
Collapse
|
30
|
Pillay A, Yeola A, Tea F, Denkova M, Houston S, Burrell R, Merheb V, Lee FXZ, Lopez JA, Moran L, Jadhav A, Sterling K, Lai CL, Vitagliano TL, Aggarwal A, Catchpoole D, Wood N, Phan TG, Nanan R, Hsu P, Turville SG, Britton PN, Brilot F. Infection and Vaccine Induced Spike Antibody Responses Against SARS-CoV-2 Variants of Concern in COVID-19-Naïve Children and Adults. J Clin Immunol 2023; 43:1706-1723. [PMID: 37405544 PMCID: PMC10661752 DOI: 10.1007/s10875-023-01540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Although a more efficient adaptive humoral immune response has been proposed to underlie the usually favorable outcome of pediatric COVID-19, the breadth of viral and vaccine cross-reactivity toward the ever-mutating Spike protein among variants of concern (VOCs) has not yet been compared between children and adults. We assessed antibodies to conformational Spike in COVID-19-naïve children and adults vaccinated by BNT162b2 and ChAdOx1, and naturally infected with SARS-CoV-2 Early Clade, Delta, and Omicron. Sera were analyzed against Spike including naturally occurring VOCs Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.2, BA.5, BQ.1.1, BA2.75.2, and XBB.1, and variants of interest Epsilon, Kappa, Eta, D.2, and artificial mutant Spikes. There was no notable difference between breadth and longevity of antibody against VOCs in children and adults. Vaccinated individuals displayed similar immunoreactivity profiles across variants compared with naturally infected individuals. Delta-infected patients had an enhanced cross-reactivity toward Delta and earlier VOCs compared to patients infected by Early Clade SARS-CoV-2. Although Omicron BA.1, BA.2, BA.5, BQ.1.1, BA2.75.2, and XBB.1 antibody titers were generated after Omicron infection, cross-reactive binding against Omicron subvariants was reduced across all infection, immunization, and age groups. Some mutations, such as 498R and 501Y, epistatically combined to enhance cross-reactive binding, but could not fully compensate for antibody-evasive mutations within the Omicron subvariants tested. Our results reveal important molecular features central to the generation of high antibody titers and broad immunoreactivity that should be considered in future vaccine design and global serosurveillance in the context of limited vaccine boosters available to the pediatric population.
Collapse
Affiliation(s)
- Aleha Pillay
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Avani Yeola
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Martina Denkova
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Samuel Houston
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Rebecca Burrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Joseph A Lopez
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Lilly Moran
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Ajay Jadhav
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Katrina Sterling
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Catherine L Lai
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tennille L Vitagliano
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Dan Catchpoole
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Nicholas Wood
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- National Center for Immunisation Research and Surveillance, the Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Center and Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Philip N Britton
- Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Disease, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney Institute for Infectious Disease, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites. Viruses 2023; 15:2073. [PMID: 37896850 PMCID: PMC10612107 DOI: 10.3390/v15102073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results are significant for understanding the functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
32
|
Ruocco V, Vavra U, König-Beihammer J, Bolaños−Martínez OC, Kallolimath S, Maresch D, Grünwald-Gruber C, Strasser R. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs. FRONTIERS IN PLANT SCIENCE 2023; 14:1275228. [PMID: 37868317 PMCID: PMC10588190 DOI: 10.3389/fpls.2023.1275228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Omayra C. Bolaños−Martínez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
33
|
Verkhivker G, Alshahrani M, Gupta G. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites. Viruses 2023; 15:2009. [PMID: 37896786 PMCID: PMC10610873 DOI: 10.3390/v15102009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron variants. By using a combination of atomistic simulations, a dynamics network analysis, and an allostery-guided network screening of binding pockets in the conformational ensembles of the BA.1 and BA.2 spike conformations, we identified all experimentally known allosteric sites and discovered significant variant-specific differences in the distribution of binding sites in the BA.1 and BA.2 trimers. This study provided a structural characterization of the predicted cryptic pockets and captured the experimentally known allosteric sites, revealing the critical role of conformational plasticity in modulating the distribution and cross-talk between functional binding sites. We found that mutational and dynamic changes in the BA.1 variant can induce the remodeling and stabilization of a known druggable pocket in the N-terminal domain, while this pocket is drastically altered and may no longer be available for ligand binding in the BA.2 variant. Our results predicted the experimentally known allosteric site in the receptor-binding domain that remains stable and ranks as the most favorable site in the conformational ensembles of the BA.2 variant but could become fragmented and less probable in BA.1 conformations. We also uncovered several cryptic pockets formed at the inter-domain and inter-protomer interface, including functional regions of the S2 subunit and stem helix region, which are consistent with the known role of pocket residues in modulating conformational transitions and antibody recognition. The results of this study are particularly significant for understanding the dynamic and network features of the universe of available binding pockets in spike proteins, as well as the effects of the Omicron-variant-specific modulation of preferential druggable pockets. The exploration of predicted druggable sites can present a new and previously underappreciated opportunity for therapeutic interventions for Omicron variants through the conformation-selective and variant-specific targeting of functional sites involved in allosteric changes.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| |
Collapse
|
34
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
35
|
Kapingidza B, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Cantazaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Itallie EV, Vure P, Manness B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori D, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered Immunogens to Elicit Antibodies Against Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530277. [PMID: 36909627 PMCID: PMC10002628 DOI: 10.1101/2023.02.27.530277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
|
36
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557371. [PMID: 37745523 PMCID: PMC10515872 DOI: 10.1101/2023.09.12.557371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad ACE2 usage and that RBD mutations further expand receptor promiscuity and enable human ACE2 utilization. We determined a cryoEM structure of the PRD-0038 RBD bound to R. alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryoEM and monoclonal antibody reactivity revealed its distinct antigenicity relative to SARS-CoV-2 and identified PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicited greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared to SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Elizabeth M. Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Examining Functional Linkages Between Conformational Dynamics, Protein Stability and Evolution of Cryptic Binding Pockets in the SARS-CoV-2 Omicron Spike Complexes with the ACE2 Host Receptor: Recombinant Omicron Variants Mediate Variability of Conserved Allosteric Sites and Binding Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557205. [PMID: 37745525 PMCID: PMC10515794 DOI: 10.1101/2023.09.11.557205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results of are significant for understanding functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
|
38
|
Landry SJ, Mettu RR, Kolls JK, Aberle JH, Norton E, Zwezdaryk K, Robinson J. Structural Framework for Analysis of CD4+ T-Cell Epitope Dominance in Viral Fusion Proteins. Biochemistry 2023; 62:2517-2529. [PMID: 37554055 PMCID: PMC10483696 DOI: 10.1021/acs.biochem.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Antigen conformation shapes CD4+ T-cell specificity through mechanisms of antigen processing, and the consequences for immunity may rival those from conformational effects on antibody specificity. CD4+ T cells initiate and control immunity to pathogens and cancer and are at least partly responsible for immunopathology associated with infection, autoimmunity, and allergy. The primary trigger for CD4+ T-cell maturation is the presentation of an epitope peptide in the MHC class II antigen-presenting protein (MHCII), most commonly on an activated dendritic cell, and then the T-cell responses are recalled by subsequent presentations of the epitope peptide by the same or other antigen-presenting cells. Peptide presentation depends on the proteolytic fragmentation of the antigen in an endosomal/lysosomal compartment and concomitant loading of the fragments into the MHCII, a multistep mechanism called antigen processing and presentation. Although the role of peptide affinity for MHCII has been well studied, the role of proteolytic fragmentation has received less attention. In this Perspective, we will briefly summarize evidence that antigen resistance to unfolding and proteolytic fragmentation shapes the specificity of the CD4+ T-cell response to selected viral envelope proteins, identify several remarkable examples in which the immunodominant CD4+ epitopes most likely depend on the interaction of processing machinery with antigen conformation, and outline how knowledge of antigen conformation can inform future efforts to design vaccines.
Collapse
Affiliation(s)
- Samuel J. Landry
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R. Mettu
- Department
of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jay K. Kolls
- John
W. Deming Department of Internal Medicine, Center for Translational
Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Judith H. Aberle
- Center
for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elizabeth Norton
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kevin Zwezdaryk
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - James Robinson
- Department
of Pediatrics, Tulane University School
of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
39
|
Addetia A, Piccoli L, Case JB, Park YJ, Beltramello M, Guarino B, Dang H, de Melo GD, Pinto D, Sprouse K, Scheaffer SM, Bassi J, Silacci-Fregni C, Muoio F, Dini M, Vincenzetti L, Acosta R, Johnson D, Subramanian S, Saliba C, Giurdanella M, Lombardo G, Leoni G, Culap K, McAlister C, Rajesh A, Dellota E, Zhou J, Farhat N, Bohan D, Noack J, Chen A, Lempp FA, Quispe J, Kergoat L, Larrous F, Cameroni E, Whitener B, Giannini O, Cippà P, Ceschi A, Ferrari P, Franzetti-Pellanda A, Biggiogero M, Garzoni C, Zappi S, Bernasconi L, Kim MJ, Rosen LE, Schnell G, Czudnochowski N, Benigni F, Franko N, Logue JK, Yoshiyama C, Stewart C, Chu H, Bourhy H, Schmid MA, Purcell LA, Snell G, Lanzavecchia A, Diamond MS, Corti D, Veesler D. Neutralization, effector function and immune imprinting of Omicron variants. Nature 2023; 621:592-601. [PMID: 37648855 PMCID: PMC10511321 DOI: 10.1038/s41586-023-06487-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
Currently circulating SARS-CoV-2 variants have acquired convergent mutations at hot spots in the receptor-binding domain1 (RBD) of the spike protein. The effects of these mutations on viral infection and transmission and the efficacy of vaccines and therapies remains poorly understood. Here we demonstrate that recently emerged BQ.1.1 and XBB.1.5 variants bind host ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1, XBB.1 and BN.1 RBDs bound to the fragment antigen-binding region of the S309 antibody (the parent antibody for sotrovimab) and human ACE2 explain the preservation of antibody binding through conformational selection, altered ACE2 recognition and immune evasion. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1 and hamsters challenged with XBB.1.5. Vaccine-elicited human plasma antibodies cross-react with and trigger effector functions against current Omicron variants, despite a reduced neutralizing activity, suggesting a mechanism of protection against disease, exemplified by S309. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring the role of persistent immune imprinting.
Collapse
Affiliation(s)
- Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | - Ha Dang
- Vir Biotechnology, San Francisco, CA, USA
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | | | - Kaitlin Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Dana Bohan
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Alex Chen
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | | | - Bradley Whitener
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Pietro Cippà
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Stephanie Zappi
- Division of Nephrology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Min Jeong Kim
- Division of Nephrology, Cantonal Hospital Aarau, Aarau, Switzerland
| | | | | | | | | | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jennifer K Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | | | | | | | | | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Qing E, Gallagher T. Adaptive variations in SARS-CoV-2 spike proteins: effects on distinct virus-cell entry stages. mBio 2023; 14:e0017123. [PMID: 37382441 PMCID: PMC10470846 DOI: 10.1128/mbio.00171-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 06/30/2023] Open
Abstract
Evolved SARS-CoV-2 variants of concern (VOCs) spread through human populations in succession. Major virus variations are in the entry-facilitating viral spike (S) proteins; Omicron VOCs have 29-40 S mutations relative to ancestral D614G viruses. The impacts of this Omicron divergence on S protein structure, antigenicity, cell entry pathways, and pathogenicity have been extensively evaluated, yet gaps remain in correlating specific alterations with S protein functions. In this study, we compared the functions of ancestral D614G and Omicron VOCs using cell-free assays that can reveal differences in several distinct steps of the S-directed virus entry process. Relative to ancestral D614G, Omicron BA.1 S proteins were hypersensitized to receptor activation, to conversion into intermediate conformational states, and to membrane fusion-activating proteases. We identified mutations conferring these changes in S protein character by evaluating domain-exchanged D614G/Omicron recombinants in the cell-free assays. Each of the three functional alterations was mapped to specific S protein domains, with the recombinants providing insights on inter-domain interactions that fine-tune S-directed virus entry. Our results provide a structure-function atlas of the S protein variations that may promote the transmissibility and infectivity of current and future SARS-CoV-2 VOCs. IMPORTANCE Continuous SARS-CoV-2 adaptations generate increasingly transmissible variants. These succeeding variants show ever-increasing evasion of suppressive antibodies and host factors, as well as increasing invasion of susceptible host cells. Here, we evaluated the adaptations enhancing invasion. We used reductionist cell-free assays to compare the entry steps of ancestral (D614G) and Omicron (BA.1) variants. Relative to D614G, Omicron entry was distinguished by heightened responsiveness to entry-facilitating receptors and proteases and by enhanced formation of intermediate states that execute virus-cell membrane fusion. We found that these Omicron-specific characteristics arose from mutations in specific S protein domains and subdomains. The results reveal the inter-domain networks controlling S protein dynamics and efficiencies of entry steps, and they offer insights on the evolution of SARS-CoV-2 variants that arise and ultimately dominate infections worldwide.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
41
|
Zhang W, Shi K, Geng Q, Herbst M, Wang M, Huang L, Bu F, Liu B, Aihara H, Li F. Structural evolution of SARS-CoV-2 omicron in human receptor recognition. J Virol 2023; 97:e0082223. [PMID: 37578233 PMCID: PMC10506476 DOI: 10.1128/jvi.00822-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Understanding the evolutionary strategies of the SARS-CoV-2 omicron variant is crucial for comprehending the COVID-19 pandemic and preventing future coronavirus pandemics. In this study, we determined the crystal structures of the receptor-binding domains (RBDs) from currently circulating omicron subvariants XBB.1 and XBB.1.5 (also the emerging XBB.1.9.1), each complexed with human ACE2. We studied how individual RBD residues evolved structurally in omicron subvariants, specifically how they adapted to human ACE2. Our findings revealed that residues 493 and 496, which exhibited good human ACE2 adaptation in pre-omicron variants, evolved to poor adaptation in early omicron subvariants (but with good adaption to mouse ACE2) and then reverted to good adaptation in recent omicron subvariants. This result is consistent with the hypothesis that non-human animals facilitated the evolution of early omicron subvariants. Additionally, residue 486, which exhibited good human ACE2 adaptation in early omicron subvariants, evolved to poor adaptation in later omicron subvariants and then returned to good adaptation in recent omicron subvariants. This result is consistent with the hypothesis that immune evasion facilitated the evolution of later omicron subvariants. Thus, our study suggests that both non-human animals and immune evasion may have contributed to driving omicron evolution at different stages of the pandemic. IMPORTANCE The sudden emergence and continued evolution of the SARS-CoV-2 omicron variant have left many mysteries unanswered, such as the origin of early omicron subvariants and the factors driving omicron evolution. To address these questions, we studied the crystal structures of human ACE2-bound receptor-binding domains (RBDs) from omicron subvariants XBB.1 and XBB.1.5 (XBB.1.9.1). Our in-depth structural analysis sheds light on how specific RBD mutations adapt to either human or mouse ACE2 and suggests non-human animals and immune evasion may have influenced omicron evolution during different stages of the pandemic. These findings provide valuable insights into the mechanisms underlying omicron evolution, deepen our understanding of the COVID-19 pandemic, and have significant implications for preventing future coronavirus pandemics.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qibin Geng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Wang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Linfen Huang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. J Chem Inf Model 2023; 63:5272-5296. [PMID: 37549201 PMCID: PMC11162552 DOI: 10.1021/acs.jcim.3c00778] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
43
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Probing conformational landscapes of binding and allostery in the SARS-CoV-2 omicron variant complexes using microsecond atomistic simulations and perturbation-based profiling approaches: hidden role of omicron mutations as modulators of allosteric signaling and epistatic relationships. Phys Chem Chem Phys 2023; 25:21245-21266. [PMID: 37548589 PMCID: PMC10536792 DOI: 10.1039/d3cp02042h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 spike protein complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which can be contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using the dynamics-based mutational scanning of spike residues, we identified structural stability and binding affinity hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron mutations on allosteric interactions and communications in the complexes. The results of this analysis revealed specific roles of Omicron mutations as conformationally plastic and evolutionary adaptable modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes performed in the background of the original strain, we characterized regions of epistatic couplings that are centered around the binding affinity hotspots N501Y and Q498R. Our results dissected the vital role of these epistatic centers in regulating protein stability, efficient ACE2 binding and allostery which allows for accumulation of multiple Omicron immune escape mutations at other sites. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| |
Collapse
|
44
|
Oliveira ASF, Shoemark DK, Davidson AD, Berger I, Schaffitzel C, Mulholland AJ. SARS-CoV-2 spike variants differ in their allosteric responses to linoleic acid. J Mol Cell Biol 2023; 15:mjad021. [PMID: 36990513 PMCID: PMC10563148 DOI: 10.1093/jmcb/mjad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 spike protein contains a functionally important fatty acid (FA) binding site, which is also found in some other coronaviruses, e.g. SARS-CoV and MERS-CoV. The occupancy of the FA site by linoleic acid (LA) reduces infectivity by 'locking' the spike in a less infectious conformation. Here, we use dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations to compare the allosteric responses of spike variants to LA removal. D-NEMD simulations show that the FA site is coupled to other functional regions of the protein, e.g. the receptor-binding motif (RBM), N-terminal domain (NTD), furin cleavage site, and regions surrounding the fusion peptide. D-NEMD simulations also identify the allosteric networks connecting the FA site to these functional regions. The comparison between the wild-type spike and four variants (Alpha, Delta, Delta plus, and Omicron BA.1) shows that the variants differ significantly in their responses to LA removal. The allosteric connections to the FA site on Alpha are generally similar to those on the wild-type protein, with the exception of the RBM and the S71-R78 region, which show a weaker link to the FA site. In contrast, Omicron is the most different variant, exhibiting significant differences in the RBM, NTD, V622-L629, and furin cleavage site. These differences in the allosteric modulation may be of functional relevance, potentially affecting transmissibility and virulence. Experimental comparison of the effects of LA on SARS-CoV-2 variants, including emerging variants, is warranted.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, Max Planck Bristol Centre for Minimal Biology, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
45
|
Haddox HK, Galloway JG, Dadonaite B, Bloom JD, Matsen IV FA, DeWitt WS. Jointly modeling deep mutational scans identifies shifted mutational effects among SARS-CoV-2 spike homologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551037. [PMID: 37577604 PMCID: PMC10418112 DOI: 10.1101/2023.07.31.551037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Deep mutational scanning (DMS) is a high-throughput experimental technique that measures the effects of thousands of mutations to a protein. These experiments can be performed on multiple homologs of a protein or on the same protein selected under multiple conditions. It is often of biological interest to identify mutations with shifted effects across homologs or conditions. However, it is challenging to determine if observed shifts arise from biological signal or experimental noise. Here, we describe a method for jointly inferring mutational effects across multiple DMS experiments while also identifying mutations that have shifted in their effects among experiments. A key aspect of our method is to regularize the inferred shifts, so that they are nonzero only when strongly supported by the data. We apply this method to DMS experiments that measure how mutations to spike proteins from SARS-CoV-2 variants (Delta, Omicron BA.1, and Omicron BA.2) affect cell entry. Most mutational effects are conserved between these spike homologs, but a fraction have markedly shifted. We experimentally validate a subset of the mutations inferred to have shifted effects, and confirm differences of > 1,000-fold in the impact of the same mutation on spike-mediated viral infection across spikes from different SARS-CoV-2 variants. Overall, our work establishes a general approach for comparing sets of DMS experiments to identify biologically important shifts in mutational effects.
Collapse
Affiliation(s)
- Hugh K. Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Jared G. Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jesse D. Bloom
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Frederick A. Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - William S. DeWitt
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
46
|
Wrobel AG. Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike. Curr Opin Struct Biol 2023; 81:102619. [PMID: 37285618 PMCID: PMC10183628 DOI: 10.1016/j.sbi.2023.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
Spike glycoprotein of SARS-CoV-2 mediates viral entry into host cells by facilitating virus attachment and membrane fusion. ACE2 is the main receptor of SARS-CoV-2 and its interaction with spike has shaped the virus' emergence from an animal reservoir and subsequent evolution in the human host. Many structural studies on the spike:ACE2 interaction have provided insights into mechanisms driving viral evolution during the on-going pandemic. This review describes the molecular basis of spike binding to ACE2, outlines mechanisms that have optimised this interaction during viral evolution, and suggests directions for future research.
Collapse
Affiliation(s)
- Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
47
|
Chia WN, Tan CW, Tan AWK, Young B, Starr TN, Lopez E, Fibriansah G, Barr J, Cheng S, Yeoh AYY, Yap WC, Lim BL, Ng TS, Sia WR, Zhu F, Chen S, Zhang J, Kwek MSS, Greaney AJ, Chen M, Au GG, Paradkar PN, Peiris M, Chung AW, Bloom JD, Lye D, Lok S, Wang LF. Potent pan huACE2-dependent sarbecovirus neutralizing monoclonal antibodies isolated from a BNT162b2-vaccinated SARS survivor. SCIENCE ADVANCES 2023; 9:eade3470. [PMID: 37494438 PMCID: PMC10371021 DOI: 10.1126/sciadv.ade3470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2. Among the six mAbs identified, one (E7) showed better huACE2-dependent sarbecovirus neutralizing potency and breadth than any other mAbs reported to date. Mutagenesis and cryo-electron microscopy studies indicate that these mAbs have a unique RBD contact footprint and that E7 binds to a quaternary structure-dependent epitope.
Collapse
Affiliation(s)
- Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Aaron Wai Kit Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Barnaby Young
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jennifer Barr
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Samuel Cheng
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Beng Lee Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Shiwei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Madeline Sheng Si Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Mark Chen
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Gough G. Au
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Prasad N. Paradkar
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Immunology & Infection, New Territories, Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Lye
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheemei Lok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
48
|
McConnell SA, Sachithanandham J, Mudrak NJ, Zhu X, Farhang PA, Cordero RJB, Wear MP, Shapiro JR, Park HS, Klein SL, Tobian AAR, Bloch EM, Sullivan DJ, Pekosz A, Casadevall A. Spike-protein proteolytic antibodies in COVID-19 convalescent plasma contribute to SARS-CoV-2 neutralization. Cell Chem Biol 2023; 30:726-738.e4. [PMID: 37354908 PMCID: PMC10288624 DOI: 10.1016/j.chembiol.2023.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Understanding the mechanisms of antibody-mediated neutralization of SARS-CoV-2 is critical in combating the COVID-19 pandemic. Based on previous reports of antibody catalysis, we investigated the proteolysis of spike (S) by antibodies in COVID-19 convalescent plasma (CCP) and its contribution to viral neutralization. Quenched fluorescent peptides were designed based on S epitopes to sensitively detect antibody-mediated proteolysis. We observed epitope cleavage by CCP from different donors which persisted when plasma was heat-treated or when IgG was isolated from plasma. Further, purified CCP antibodies proteolyzed recombinant S domains, as well as authentic viral S. Cleavage of S variants suggests CCP antibody-mediated proteolysis is a durable phenomenon despite antigenic drift. We differentiated viral neutralization occurring via direct interference with receptor binding from that occurring by antibody-mediated proteolysis, demonstrating that antibody catalysis enhanced neutralization. These results suggest that antibody-catalyzed damage of S is an immunologically relevant function of neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Scott A McConnell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Parsa Alba Farhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Radames J B Cordero
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Maggie P Wear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Janna R Shapiro
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nat Struct Mol Biol 2023; 30:980-990. [PMID: 37430064 DOI: 10.1038/s41594-023-01023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hailong Gao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Matina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Li Y, Shen Y, Zhang Y, Yan R. Structural Basis for the Enhanced Infectivity and Immune Evasion of Omicron Subvariants. Viruses 2023; 15:1398. [PMID: 37376697 PMCID: PMC10304477 DOI: 10.3390/v15061398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The Omicron variants of SARS-CoV-2 have emerged as the dominant strains worldwide, causing the COVID-19 pandemic. Each Omicron subvariant contains at least 30 mutations on the spike protein (S protein) compared to the original wild-type (WT) strain. Here we report the cryo-EM structures of the trimeric S proteins from the BA.1, BA.2, BA.3, and BA.4/BA.5 subvariants, with BA.4 and BA.5 sharing the same S protein mutations, each in complex with the surface receptor ACE2. All three receptor-binding domains of the S protein from BA.2 and BA.4/BA.5 are "up", while the BA.1 S protein has two "up" and one "down". The BA.3 S protein displays increased heterogeneity, with the majority in the all "up" RBD state. The different conformations preferences of the S protein are consistent with their varied transmissibility. By analyzing the position of the glycan modification on Asn343, which is located at the S309 epitopes, we have uncovered the underlying immune evasion mechanism of the Omicron subvariants. Our findings provide a molecular basis of high infectivity and immune evasion of Omicron subvariants, thereby offering insights into potential therapeutic interventions against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Renhong Yan
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|