1
|
Skoufou-Papoutsaki N, Adler S, Mehmed S, Tume C, Olpe C, Morrissey E, Kemp R, Girard AC, Moutin EB, Chilamakuri CSR, Miller JL, Lindskog C, Werle F, Marks K, Perrone F, Zilbauer M, Tourigny DS, Winton DJ. Haploinsufficient phenotypes promote selection of PTEN and ARID1A-deficient clones in human colon. EMBO Rep 2025; 26:1269-1289. [PMID: 39920335 PMCID: PMC11893880 DOI: 10.1038/s44319-025-00373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Cancer driver mutations are defined by their high prevalence in cancers and presumed rarity in normal tissues. However, recent studies show that positive selection in normal epithelia can increase the prevalence of some cancer drivers. To determine their true cancer-driving potential, it is essential to evaluate how frequent these mutations are in normal tissues and what are their phenotypes. Here, we explore the bioavailability of somatic variants by quantifying age-related mutational burdens in normal human colonic epithelium using immunodetection in FFPE samples (N = 181 patients). Positive selection of variants of tumour suppressor genes PTEN and ARID1A associates with monoallelic gene loss as confirmed by CRISPR/Cas9 mutagenesis and changes in their downstream effectors. Comparison of the mutational burden in normal tissue and colorectal cancers allows quantification of cancer driver potency based on relative representation. Additionally, immune exclusion, a cancer hallmark feature, is observed within ARID1A-deficient clones in histologically normal tissue. The behaviour resulting from haploinsufficiency of PTEN and ARID1A demonstrates how somatic mosaicism of tumour suppressors arises and can predispose to cancer initiation.
Collapse
Affiliation(s)
- Nefeli Skoufou-Papoutsaki
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Sam Adler
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Shenay Mehmed
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Claire Tume
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Cora Olpe
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Richard Kemp
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Anne-Claire Girard
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Elisa B Moutin
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | | | - Jodi L Miller
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Research Program, Uppsala University, Uppsala, 751 85, Sweden
| | - Fabian Werle
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Kate Marks
- University of Leeds School of Medicine, Leeds Institute of Medical Research, Pathology and Data Analytics, University of Leeds, Leeds, LS2 9JT, UK
| | - Francesca Perrone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - David S Tourigny
- School of Mathematics, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Douglas J Winton
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
2
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Luo X, Wang J, Ju Q, Li T, Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech Ageing Dev 2025; 223:112020. [PMID: 39667622 DOI: 10.1016/j.mad.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Sarcopenia, a common condition observed in the elderly, presenting a significant public health challenge due to its high prevalence, insidious onset and diverse systemic effects. Despite ongoing research, the precise etiology of sarcopenia remains elusive. Aging-related processes, which included inflammation, oxidative stress, compromised mitochondrial function and apoptosis, have been implicated in its development. Notably, effective pharmacological treatments for sarcopenia are currently lacking, highlighting the necessity for a deeper understanding of its pathogenesis and causative factors to enable proactive interventions. This article is aimed to provide an extensive overview of the pathogenesis of sarcopenia, along with a summary of current treatment and prevention strategies.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qingqing Ju
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianyu Li
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China; Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China.
| |
Collapse
|
4
|
Narendra R, Phan HV, Patterson SL, Almonte Loya AL, Lanata C, Love C, Park J, Lydon EC, Shimoda MA, Barcellos L, Mekonen H, Detweiler A, Deosthale P, Neff N, Criswell LA, Maliskova L, Eckalbar W, Fragiadakis G, Yazdany J, Dall'Era M, Katz P, Ye CJ, Sirota M, Langelier CR. Epigenetic attenuation of interferon signaling drives aging-related improvements in systemic lupus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25321143. [PMID: 39974140 PMCID: PMC11838985 DOI: 10.1101/2025.01.27.25321143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In the general human population, aging is associated with a rise in systemic inflammation, primarily involving innate immune pathways related to interferon (IFN), toll-like receptor, and cytokine signaling. In systemic lupus erythematosus (SLE), a prototypical systemic autoimmune disease, aging is distinctly associated with improvements in disease activity, suggesting a unique relationship between aging and inflammation in this disease. Using a multi-omic approach incorporating transcriptional profiling, single cell RNA sequencing, proteomics and methylation analysis, we studied age-related changes in the immune profiles of 287 SLE patients between 20 and 83 years old, and compared the results against 928 healthy controls aged between 21 and 89 years old. In contrast to the increase in inflammatory gene expression that occurs with aging in most healthy adults, SLE patients exhibited the opposite. Most notable was a decrease in type I IFN signaling that was evident across multiple cell types, with CD56-dim natural killer (NK) cells, CD4 + effector memory T cells, and naïve B cells exhibiting the most significant differences. We found that aging in SLE patients was also associated with decreased IFN-α2 and IFN-λ1 levels, and differential methylation of the genome. Notably, of the genes both downregulated and hypermethylated with older age, IFN-related genes were disproportionately represented, suggesting that age-related decreases in IFN signaling were driven in part by epigenetic silencing. Both SLE patients and healthy controls demonstrated age-related declines in naïve T cells and lymphoid progenitor cells, but only SLE patients demonstrated age-related increases in CD56-dim NK cells. Taken together, our work provides new insight into the phenomenon of inflammaging and the unique clinical improvement in disease activity that occurs in SLE patients as they age.
Collapse
|
5
|
Ramalingam P, Gutkin MC, Poulos MG, Winiarski A, Smith A, Carter C, Doughty C, Tillery T, Redmond D, Freire AG, Butler JM. Suppression of thrombospondin-1-mediated inflammaging prolongs hematopoietic health span. Sci Immunol 2025; 10:eads1556. [PMID: 39752538 DOI: 10.1126/sciimmunol.ads1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 04/04/2025]
Abstract
Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of Thbs1 is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.
Collapse
Affiliation(s)
- Pradeep Ramalingam
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael C Gutkin
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Michael G Poulos
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Agatha Winiarski
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Arianna Smith
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cody Carter
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chelsea Doughty
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Taylor Tillery
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - David Redmond
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Jason M Butler
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Winardi K, Mach J, McKay MJ, Molloy MP, Mitchell SJ, MacArthur MR, McKenzie C, Le Couteur DG, Hilmer SN. Chronic polypharmacy, monotherapy, and deprescribing: Understanding complex effects on the hepatic proteome of aging mice. Aging Cell 2025; 24:e14357. [PMID: 39462793 PMCID: PMC11709111 DOI: 10.1111/acel.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Polypharmacy (use of ≥5 concurrent medications) is highly prevalent among older adults to manage chronic diseases and is linked to adverse geriatric outcomes, including physical and cognitive functional impairments, falls, frailty, hospitalization, and mortality. Deprescribing (withdrawal) is a potential strategy to manage polypharmacy. The broad molecular changes by which polypharmacy causes harm and deprescribing may be beneficial are unknown and unfeasible to study rigorously in tissue from geriatric patients. Therefore, in a randomized controlled trial, we administered therapeutic doses of commonly used chronic medications (oxycodone, oxybutynin, citalopram, simvastatin, or metoprolol) as monotherapy or concurrently (polypharmacy) from middle-age (12 months) to old-age (26 months) to male C57BL/6J (B6) mice and deprescribed (gradually withdrew) treatments in a subset from age 21 months. We compared drug-related hepatic effects by applying proteomics along with transcriptomics and histology. We found that monotherapy effects on hepatic proteomics were limited but significant changes were seen with polypharmacy (93% unique to polypharmacy). Polypharmacy altered the hepatic expression of proteins involved in immunity, and in drug, cholesterol, and amino acid metabolism, accompanied by higher serum drug levels than monotherapies. Deprescribing not only reversed some effects but also caused irreversible and novel changes in the hepatic proteome. Furthermore, our study identified several hepatic protein co-expressed modules that are associated with clinically relevant adverse geriatric outcomes, such as mobility, frailty, and activities of daily living. This study highlights the complex molecular changes following aging, chronic polypharmacy, and deprescribing. Further exploration of these mechanistic pathways may inform management of polypharmacy and deprescribing in older adults.
Collapse
Affiliation(s)
- Kevin Winardi
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| | - Matthew J. McKay
- Bowel Cancer and Biomarker Laboratory, School of Medical Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | | | | | - Catriona McKenzie
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - David G. Le Couteur
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- ANZAC Research InstituteUniversity of Sydney and Concord HospitalConcordNew South WalesAustralia
- Centre for Education and Research on Ageing, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Sarah N. Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| |
Collapse
|
7
|
Tao S, Qiu X, Wang Y, Qiu R, Yu C, Sun M, Liu L, Tao Z, Zhang L, Tang D. Effect of Post-transplant Dietary Restriction on Hematopoietic Reconstitution and Maintenance of Reconstitution Capacity of Hematopoietic Stem Cells. Stem Cell Rev Rep 2025; 21:80-95. [PMID: 38965147 PMCID: PMC11762425 DOI: 10.1007/s12015-024-10754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) is an important therapy for many hematological malignancies as well as some non-malignant diseases. Post-transplant hematopoiesis is affected by multiple factors, and the mechanisms of delayed post-transplant hematopoiesis remain poorly understood. Patients undergoing HCT often suffer from significantly reduced food intake due to complications induced by preconditioning treatments. Here, we used a dietary restriction (DR) mouse model to study the effect of post-transplant dietary reduction on hematopoiesis and hematopoietic stem cells (HSCs). We found that post-transplant DR significantly inhibited both lymphopoiesis and myelopoiesis in the primary recipient mice. However, when bone marrow cells (BMCs) from the primary recipient mice were serially transplanted into secondary and tertiary recipient mice, the HSCs derived from the primary recipient mice, which were exposed to post-transplant DR, exhibited a much higher reconstitution capacity. Transplantation experiments with purified HSCs showed that post-transplant DR greatly inhibited hematopoietic stem cell (HSC) expansion. Additionally, post-transplant DR reshaped the gut microbiotas of the recipient mice, which inhibited inflammatory responses and thus may have contributed to maintaining HSC function. Our findings may have important implications for clinical work because reduced food intake and problems with digestion and absorption are common in patients undergoing HCT.
Collapse
Affiliation(s)
- Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xingxing Qiu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Rongrong Qiu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chenghui Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Man Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Lulu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
8
|
Wang Y, Jiang Y, Wang H, Liang S, Sambou ML, Wang M, Yang M, Salimata Y, Xu F, Li C, Wang X, Yang J, Zhu M, Wang C, Jin G, Ma H, Yi H, Shen H, Dai J. Novel Genetic Loci Associated with PhenoAge Acceleration - Changzhou City, Jiangsu Province, China, 2012-2019. China CDC Wkly 2024; 6:1294-1298. [PMID: 39698482 PMCID: PMC11649982 DOI: 10.46234/ccdcw2024.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 12/20/2024] Open
Abstract
What is already known about this topic? China is rapidly encountering population aging, yet studies on aging are limited by the traditional aging measure: chronological age, particularly in the field of genomics. Several promising aging measures have been proposed, but they lack comparative evaluation. What is added by this report? PhenoAge was identified as a measure of aging that demonstrated greater applicability in contemporary populations. Based on this, several novel genetic variants were found to enhance the predictive accuracy of aging. What are the implications for public health practice? These findings might provide new insights into aging and facilitate the development of a practical screening program based on PhenoAge, which aims to promote healthy aging in China.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Hui Wang
- State Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Shuang Liang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Muhammed Lamin Sambou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Mei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Meiqi Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yakubu Salimata
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Feifei Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Chenjie Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Xiao Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Junpeng Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- The Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- State Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, China
- Jiangsu Life and Health Industry Academician Collaborative Innovation Center, Nanjing City, Jiangsu Province, China
| |
Collapse
|
9
|
Yang Z, Luo B, Li M, He Z, Ren C, Chen X, Kang X, Chen H, Xu E, Guan W, Xia X. The effector function of mucosal associated invariant T cells alters with aging and is regulated by RORγt. Front Immunol 2024; 15:1504806. [PMID: 39669566 PMCID: PMC11634854 DOI: 10.3389/fimmu.2024.1504806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells are a predominant subset of innate-like T cells in humans, characterized by diverse gene expression profiles and functional capabilities. However, the factors influencing the transcriptomes and effector functions of MAIT cells, particularly at mucosal barriers, remain largely unclear. Methods In this study, we employed single-cell RNA sequencing (scRNA-seq) and functional assays to investigate the transcriptomic and functional characteristics of intestinal MAIT cells in mouse models during aging. We also extended scRNA-seq analysis to human intestinal MAIT cells to compare their gene expression patterns with those observed in aged mice. Results Our findings demonstrated that the transcriptomes and functional capabilities of intestinal MAIT cells shifted from MAIT17 to MAIT1 profiles with aging in mouse models, with notable changes in the production of cytotoxic molecules. Further scRNA-seq analysis of human intestinal MAIT cells revealed a segregation into MAIT1 and MAIT17 subsets, displaying gene expression patterns that mirrored those seen in aged mouse models. The transcription factor RORγt was expressed in both MAIT1 and MAIT17 cells, acting to repress IFNγ production while promoting IL17 expression. Moreover, reduced expression of RORC and Il17A was correlated with poorer survival outcomes in colorectal cancer patients. Discussion These results suggest that aging induces a functional shift between MAIT1 and MAIT17 cells, which may be influenced by transcriptional regulators like RORγt. The observed alterations in MAIT cell activity could potentially impact disease prognosis, particularly in colorectal cancer. This study provides new insights into the dynamics of MAIT cell responses at mucosal barriers, highlighting possible therapeutic targets for modulating MAIT cell functions in aging and disease.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Banxin Luo
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Minhuan Li
- Department of Andrology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ziyun He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuanfu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hong Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Taikang Xianlin DrumTower Hospital, The Affiliated Hospital of Wuhan University Medical School, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Taikang Xianlin DrumTower Hospital, The Affiliated Hospital of Wuhan University Medical School, Nanjing, China
| |
Collapse
|
10
|
Talley S, Nguyen T, Van Ye L, Valiauga R, DeCarlo J, Mustafa J, Cook B, White FA, Campbell EM. Characterization of age-associated inflammasome activation reveals tissue specific differences in transcriptional and post-translational inflammatory responses. Immun Ageing 2024; 21:60. [PMID: 39256821 PMCID: PMC11384696 DOI: 10.1186/s12979-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Aging is associated with systemic chronic, low-grade inflammation, termed 'inflammaging'. This pattern of inflammation is multifactorial and is driven by numerous inflammatory pathways, including the inflammasome. However, most studies to date have examined changes in the transcriptomes that are associated with aging and inflammaging, despite the fact that inflammasome activation is driven by a series of post-translational activation steps, culminating in the cleavage and activation of caspase-1. Here, we utilized transgenic mice expressing a caspase-1 biosensor to examine age-associated inflammasome activation in various organs and tissues to define these post-translational manifestations of inflammaging. Consistent with other studies, we observe increased inflammation, including inflammasome activation, in aged mice and specific tissues. However, we note that the degree of inflammasome activation is not uniformly associated with transcriptional changes commonly used as a surrogate for inflammasome activation in tissues. Furthermore, we used a skull thinning technique to monitor central nervous system inflammasome activation in vivo in aged mice and found that neuroinflammation is significantly amplified in aged mice in response to endotoxin challenge. Together, these data reveal that inflammaging is associated with both transcriptional and post-translational inflammatory pathways that are not uniform between tissues and establish new methodologies for measuring age-associated inflammasome activation in vivo and ex vivo.
Collapse
Affiliation(s)
- Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Lily Van Ye
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jake DeCarlo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Jabra Mustafa
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Benjamin Cook
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
11
|
Guduric‐Fuchs J, Pedrini E, Bertelli PM, McDonnell S, Pathak V, McLoughlin K, O'Neill CL, Stitt AW, Medina RJ. A new gene signature for endothelial senescence identifies self-RNA sensing by retinoic acid-inducible gene I as a molecular facilitator of vascular aging. Aging Cell 2024; 23:e14240. [PMID: 39422883 PMCID: PMC11488300 DOI: 10.1111/acel.14240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024] Open
Abstract
The number of senescent vascular endothelial cells increases during aging and their dysfunctional phenotype contributes to age-related cardiovascular disease. Identification of senescent cells is challenging as molecular changes are often tissue specific and occur amongst clusters of normal cells. Here, we established, benchmarked, and validated a new gene signature called EndoSEN that pinpoints senescent endothelial cells. The EndoSEN signature was enriched for interferon-stimulated genes (ISG) and correlated with the senescence-associated secretory phenotype (SASP). SASP establishment is classically attributed to DNA damage and cyclic GMP-AMP synthase activation, but our results revealed a pivotal role for RNA accumulation and sensing in senescent endothelial cells. Mechanistically, we showed that endothelial cell senescence hallmarks include self-RNA accumulation, RNA sensor RIG-I upregulation, and an ISG signature. Moreover, a virtual model of RIG-I knockout in endothelial cells underscored senescence as a key pathway regulated by this sensor. We tested and confirmed that RIG-I knockdown was sufficient to extend the lifespan and decrease the SASP in endothelial cells. Taken together, our evidence suggests that targeting RNA sensing is a potential strategy to delay vascular aging.
Collapse
Affiliation(s)
- Jasenka Guduric‐Fuchs
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Edoardo Pedrini
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
- Center for Omics Sciences (COSR)San Raffaele Scientific InstituteMilanItaly
| | - Pietro M. Bertelli
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Shannon McDonnell
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Varun Pathak
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Kiran McLoughlin
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Christina L. O'Neill
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Alan W. Stitt
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Reinhold J. Medina
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
- Department of Eye and Vision ScienceInstitute for Life Course and Medical Science, University of LiverpoolLiverpoolUK
| |
Collapse
|
12
|
Staels W, Berthault C, Bourgeois S, Laville V, Lourenço C, De Leu N, Scharfmann R. Comprehensive alpha, beta, and delta cell transcriptomics reveal an association of cellular aging with MHC class I upregulation. Mol Metab 2024; 87:101990. [PMID: 39009220 PMCID: PMC11327396 DOI: 10.1016/j.molmet.2024.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of a purification method developed for isolating alpha, beta, and delta cells from pancreatic islets of adult mice, extending its application to islets from newborn and aged mice. Furthermore, it sought to examine transcriptome dynamics in mouse pancreatic endocrine islet cells throughout postnatal development and to validate age-related alterations within these cell populations. METHODS We leveraged the high surface expression of CD71 on beta cells and CD24 on delta cells to FACS-purify alpha, beta, and delta cells from newborn (1-week-old), adult (12-week-old), and old (18-month-old) mice. Bulk RNA sequencing was conducted on these purified cell populations, and subsequent bioinformatic analyses included differential gene expression, overrepresentation, and intersection analysis. RESULTS Alpha, beta, and delta cells from newborn and aged mice were successfully FACS-purified using the same method employed for adult mice. Our analysis of the age-related transcriptional changes in alpha, beta, and delta cell populations revealed a decrease in cell cycling and an increase in neuron-like features processes during the transition from newborn to adult mice. Progressing from adult to old mice, we identified an inflammatory gene signature related to aging (inflammaging) encompassing an increase in β-2 microglobulin and major histocompatibility complex (MHC) Class I expression. CONCLUSIONS Our study demonstrates the effectiveness of our cell sorting technique in purifying endocrine subsets from mouse islets at different ages. We provide a valuable resource for better understanding endocrine pancreas aging and identified an inflammaging gene signature with increased β-2 microglobulin and MHC Class I expression as a common hallmark of old alpha, beta, and delta cells, with potential implications for immune response regulation and age-related diabetes.
Collapse
Affiliation(s)
- W Staels
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France; Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - C Berthault
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - S Bourgeois
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - V Laville
- Stem Cells and Development Unit, Institut Pasteur, Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France; Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - C Lourenço
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - N De Leu
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - R Scharfmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
13
|
Lau AA, Jin K, Beard H, Windram T, Xie K, O'Brien JA, Neumann D, King BM, Snel MF, Trim PJ, Mitrofanis J, Hemsley KM, Austin PJ. Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice. J Neurochem 2024; 168:2791-2813. [PMID: 38849324 DOI: 10.1111/jnc.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Sanfilippo syndrome results from inherited mutations in genes encoding lysosomal enzymes that catabolise heparan sulfate (HS), leading to early childhood-onset neurodegeneration. This study explores the therapeutic potential of photobiomodulation (PBM), which is neuroprotective and anti-inflammatory in several neurodegenerative diseases; it is also safe and PBM devices are readily available. We investigated the effects of 10-14 days transcranial PBM at 670 nm (2 or 4 J/cm2/day) or 904 nm (4 J/cm2/day) in young (3 weeks) and older (15 weeks) Sanfilippo or mucopolysaccharidosis type IIIA (MPS IIIA) mice. Although we found no PBM-induced changes in HS accumulation, astrocyte activation, CD206 (an anti-inflammatory marker) and BDNF expression in the brains of Sanfilippo mice, there was a near-normalisation of microglial activation in older MPS IIIA mice by 904 nm PBM, with decreased IBA1 expression and a return of their morphology towards a resting state. Immune cell immunophenotyping of peripheral blood with mass cytometry revealed increased pro-inflammatory signalling through pSTAT1 and p-p38 in NK and T cells in young but not older MPS IIIA mice (5 weeks of age), and expansion of NK, B and CD8+ T cells in older affected mice (17 weeks of age), highlighting the importance of innate and adaptive lymphocytes in Sanfilippo syndrome. Notably, 670 and 904 nm PBM both reversed the Sanfilippo-induced increase in pSTAT1 and p-p38 expression in multiple leukocyte populations in young mice, while 904 nm reversed the increase in NK cells in older mice. In conclusion, this is the first study to demonstrate the beneficial effects of PBM in Sanfilippo mice. The distinct reduction in microglial activation and NK cell pro-inflammatory signalling and number suggests PBM may alleviate neuroinflammation and lymphocyte activation, encouraging further investigation of PBM as a standalone, or complementary therapy in Sanfilippo syndrome.
Collapse
Affiliation(s)
- A A Lau
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Jin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - H Beard
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - T Windram
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Xie
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - J A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - D Neumann
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - B M King
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - M F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - J Mitrofanis
- Fonds Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - P J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
14
|
Shi Y, Zhao L, Wang J, Liu X, Bai Y, Cong H, Li X. Empagliflozin protects against heart failure with preserved ejection fraction partly by inhibiting the senescence-associated STAT1-STING axis. Cardiovasc Diabetol 2024; 23:269. [PMID: 39044275 PMCID: PMC11267814 DOI: 10.1186/s12933-024-02366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a mortal clinical syndrome without effective therapies. Empagliflozin (EMPA) improves cardiovascular outcomes in HFpEF patients, but the underlying mechanism remains elusive. Here, mice were fed a high-fat diet (HFD) supplemented with L-NAME for 12 weeks and subsequently intraperitoneally injected with EMPA for another 4 weeks. A 4D-DIA proteomic assay was performed to detect protein changes in the failing hearts. We identified 310 differentially expressed proteins (DEPs) (ctrl vs. HFpEF group) and 173 DEPs (HFpEF vs. EMPA group). The regulation of immune system processes was enriched in all groups and the interferon response genes (STAT1, Ifit1, Ifi35 and Ifi47) were upregulated in HFpEF mice but downregulated after EMPA administration. In addition, EMPA treatment suppressed the increase in the levels of aging markers (p16 and p21) in HFpEF hearts. Further bioinformatics analysis verified STAT1 as the hub transcription factor during pathological changes in HFpEF mice. We next treated H9C2 cells with IFN-γ, a primary agonist of STAT1 phosphorylation, to investigate whether EMPA plays a beneficial role by blocking STAT1 activation. Our results showed that IFN-γ treatment caused cardiomyocyte senescence and STAT1 activation, which were inhibited by EMPA administration. Notably, STAT1 inhibition significantly reduced cellular senescence possibly by regulating STING expression. Our findings revealed that EMPA mitigates cardiac inflammation and aging in HFpEF mice by inhibiting STAT1 activation. The STAT1-STING axis may act as a pivotal mechanism in the pathogenesis of HFpEF, especially under inflammatory and aging conditions.
Collapse
Affiliation(s)
- Ying Shi
- Tianjin Chest Hospital, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Lili Zhao
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Jing Wang
- Tianjin Chest Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Xiankun Liu
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yiming Bai
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Hongliang Cong
- Tianjin Chest Hospital, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, 300222, China.
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, 300222, China.
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, China.
| | - Ximing Li
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, China.
| |
Collapse
|
15
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
16
|
Van Phan H, Tsitsiklis A, Maguire CP, Haddad EK, Becker PM, Kim-Schulze S, Lee B, Chen J, Hoch A, Pickering H, van Zalm P, Altman MC, Augustine AD, Calfee CS, Bosinger S, Cairns CB, Eckalbar W, Guan L, Doni Jayavelu N, Kleinstein SH, Krammer F, Maecker HT, Ozonoff A, Peters B, Rouphael N, Montgomery RR, Reed E, Schaenman J, Steen H, Levy O, Diray-Arce J, Langelier CR. Host-microbe multiomic profiling reveals age-dependent immune dysregulation associated with COVID-19 immunopathology. Sci Transl Med 2024; 16:eadj5154. [PMID: 38630846 PMCID: PMC11931290 DOI: 10.1126/scitranslmed.adj5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.
Collapse
Affiliation(s)
- Hoang Van Phan
- University of California San Francisco, San Francisco, CA
94115, USA
| | | | | | - Elias K. Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA
19104, USA
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Brian Lee
- Icahn School of Medicine at Mount Sinai, New York, NY
10029, USA
| | - Jing Chen
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Research Computing, Department of Information Technology,
Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115,
USA
| | - Annmarie Hoch
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Pickering
- David Geffen School of Medicine, University of California
Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew C. Altman
- Benaroya Research Institute, University of Washington,
Seattle, WA 98101, USA
| | - Alison D. Augustine
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, MD 20814, USA
| | - Carolyn S. Calfee
- University of California San Francisco, San Francisco, CA
94115, USA
| | | | - Charles B. Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA
19104, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA
94115, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510,
USA
| | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY
10029, USA
| | | | - Al Ozonoff
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Research Computing, Department of Information Technology,
Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115,
USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037,
USA
| | | | | | | | - Elaine Reed
- David Geffen School of Medicine, University of California
Los Angeles, Los Angeles, CA 90095, USA
| | - Joanna Schaenman
- David Geffen School of Medicine, University of California
Los Angeles, Los Angeles, CA 90095, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles R. Langelier
- University of California San Francisco, San Francisco, CA
94115, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA
94158, USA
| |
Collapse
|
17
|
Landsberger T, Amit I, Alon U. Geroprotective interventions converge on gene expression programs of reduced inflammation and restored fatty acid metabolism. GeroScience 2024; 46:1627-1639. [PMID: 37698783 PMCID: PMC10828297 DOI: 10.1007/s11357-023-00915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
Understanding the mechanisms of geroprotective interventions is central to aging research. We compare four prominent interventions: senolysis, caloric restriction, in vivo partial reprogramming, and heterochronic parabiosis. Using published mice transcriptomic data, we juxtapose these interventions against normal aging. We find a gene expression program common to all four interventions, in which inflammation is reduced and several metabolic processes, especially fatty acid metabolism, are increased. Normal aging exhibits the inverse of this signature across multiple organs and tissues. A similar inverse signature arises in three chronic inflammation disease models in a non-aging context, suggesting that the shift in metabolism occurs downstream of inflammation. Chronic inflammation is also shown to accelerate transcriptomic age. We conclude that a core mechanism of geroprotective interventions acts through the reduction of inflammation with downstream effects that restore fatty acid metabolism. This supports the notion of directly targeting genes associated with these pathways to mitigate age-related deterioration.
Collapse
Affiliation(s)
- Tomer Landsberger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Sharma R. Exploring the emerging bidirectional association between inflamm-aging and cellular senescence in organismal aging and disease. Cell Biochem Funct 2024; 42:e3970. [PMID: 38456500 DOI: 10.1002/cbf.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
19
|
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int J Mol Sci 2024; 25:2497. [PMID: 38473743 PMCID: PMC10931919 DOI: 10.3390/ijms25052497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.
Collapse
Affiliation(s)
| | | | - Eunsil Hahm
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA; (A.P.J.-U.); (S.M.)
| |
Collapse
|
20
|
Van Phan H, Tsitsiklis A, Maguire CP, Haddad EK, Becker PM, Kim-Schulze S, Lee B, Chen J, Hoch A, Pickering H, Van Zalm P, Altman MC, Augustine AD, Calfee CS, Bosinger S, Cairns C, Eckalbar W, Guan L, Jayavelu ND, Kleinstein SH, Krammer F, Maecker HT, Ozonoff A, Peters B, Rouphael N, Montgomery RR, Reed E, Schaenman J, Steen H, Levy O, Diray-Arce J, Langelier CR. Host-Microbe Multiomic Profiling Reveals Age-Dependent COVID-19 Immunopathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.11.24301704. [PMID: 38405760 PMCID: PMC10888993 DOI: 10.1101/2024.02.11.24301704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases/National Institutes of Health
| | | | - Brian Lee
- Icahn School of Medicine at Mount Sinai
| | - Jing Chen
- Precision Vaccines Program, Boston Children’s Hospital
- Research Computing, Department of Information Technology, Boston Children’s Hospital
| | - Annmarie Hoch
- Precision Vaccines Program, Boston Children’s Hospital
| | - Harry Pickering
- David Geffen School of Medicine, University of California Los Angeles
| | | | | | - Alison D. Augustine
- National Institute of Allergy and Infectious Diseases/National Institutes of Health
| | | | | | | | | | | | | | | | | | | | - Al Ozonoff
- Precision Vaccines Program, Boston Children’s Hospital
| | | | | | | | | | - Elaine Reed
- David Geffen School of Medicine, University of California Los Angeles
| | - Joanna Schaenman
- David Geffen School of Medicine, University of California Los Angeles
| | - Hanno Steen
- Precision Vaccines Program, Boston Children’s Hospital
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital
| | | | | |
Collapse
|
21
|
Funk MC, Gleixner JG, Heigwer F, Vonficht D, Valentini E, Aydin Z, Tonin E, Del Prete S, Mahara S, Throm Y, Hetzer J, Heide D, Stegle O, Odom DT, Feldmann A, Haas S, Heikenwalder M, Boutros M. Aged intestinal stem cells propagate cell-intrinsic sources of inflammaging in mice. Dev Cell 2023; 58:2914-2929.e7. [PMID: 38113852 DOI: 10.1016/j.devcel.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/03/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Low-grade chronic inflammation is a hallmark of ageing, associated with impaired tissue function and disease development. However, how cell-intrinsic and -extrinsic factors collectively establish this phenotype, termed inflammaging, remains poorly understood. We addressed this question in the mouse intestinal epithelium, using mouse organoid cultures to dissect stem cell-intrinsic and -extrinsic sources of inflammaging. At the single-cell level, we found that inflammaging is established differently along the crypt-villus axis, with aged intestinal stem cells (ISCs) strongly upregulating major histocompatibility complex class II (MHC-II) genes. Importantly, the inflammaging phenotype was stably propagated by aged ISCs in organoid cultures and associated with increased chromatin accessibility at inflammation-associated loci in vivo and ex vivo, indicating cell-intrinsic inflammatory memory. Mechanistically, we show that the expression of inflammatory genes is dependent on STAT1 signaling. Together, our data identify that intestinal inflammaging in mice is promoted by a cell-intrinsic mechanism, stably propagated by ISCs, and associated with a disbalance in immune homeostasis.
Collapse
Affiliation(s)
- Maja C Funk
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Jan G Gleixner
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany; Department of Life Sciences and Engineering, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Dominik Vonficht
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine, (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Zeynep Aydin
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Elena Tonin
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Stefania Del Prete
- German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Sylvia Mahara
- German Cancer Research Center (DKFZ), Junior Research Group Mechanisms of Genome Control, 69120 Heidelberg, Germany
| | - Yannick Throm
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Angelika Feldmann
- German Cancer Research Center (DKFZ), Junior Research Group Mechanisms of Genome Control, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division Chronic Inflammation and Cancer, 69120 Heidelberg, Germany; M3 Research Center, Medical Faculty Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, BioQuant & Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Institute for Human Genetics, Medical Faculty Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Krepelova A, Neri F. DNA methylation controls hematopoietic stem cell aging. NATURE AGING 2023; 3:1320-1322. [PMID: 37884766 DOI: 10.1038/s43587-023-00511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Affiliation(s)
- Anna Krepelova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Francesco Neri
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
- Molecular Biotechnology Center, University of Turin, Turin, Italy.
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
23
|
McEntee CM, Cavalier AN, LaRocca TJ. ADAR1 suppression causes interferon signaling and transposable element transcript accumulation in human astrocytes. Front Mol Neurosci 2023; 16:1263369. [PMID: 38035265 PMCID: PMC10685929 DOI: 10.3389/fnmol.2023.1263369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Neuroinflammation is a central mechanism of brain aging and Alzheimer's disease (AD), but the exact causes of age- and AD-related neuroinflammation are incompletely understood. One potential modulator of neuroinflammation is the enzyme adenosine deaminase acting on RNA 1 (ADAR1), which regulates the accumulation of endogenous double-stranded RNA (dsRNA), a pro-inflammatory/innate immune activator. However, the role of ADAR1 and its transcriptomic targets in astrocytes, key mediators of neuroinflammation, have not been comprehensively investigated. Here, we knock down ADAR1 in primary human astrocytes via siRNA transfection and use transcriptomics (RNA-seq) to show that this results in: (1) increased expression of type I interferon and pro-inflammatory signaling pathways and (2) an accumulation of transposable element (TE) transcripts with the potential to form dsRNA. We also show that our findings may be clinically relevant, as ADAR1 gene expression declines with brain aging and AD in humans, and this is associated with a similar increase in TE transcripts. Together, our results suggest an important role for ADAR1 in preventing pro-inflammatory activation of astrocytes in response to endogenous dsRNA with aging and AD.
Collapse
Affiliation(s)
- Cali M. McEntee
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - Alyssa N. Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - Thomas J. LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
24
|
Jin Y, Wei C, Huang X, Zhang D, Zhang L, Li X. Bioinformatics Analysis and Experimental Verification of Exercise for Aging Mice in Different Brain Regions Based on Transcriptome Sequencing. Life (Basel) 2023; 13:1988. [PMID: 37895370 PMCID: PMC10608440 DOI: 10.3390/life13101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Physical exercise mitigates the effects of aging and cognitive decline. However, the precise neurobiological mechanisms underlying this phenomenon remain unclear. The primary aim of this study was to investigate the protective effect of exercise on age-related memory deficits in the prefrontal cortex (PFC) and hippocampus using bioinformatic analysis and biochemical verification. METHODS Young and aging mice were subjected to natural feeding or treadmill exercise (12 m/min, 8 weeks). Cognitive function was accessed using the Barnes maze and novel object recognition. Bioinformatic analysis was performed to identify co-expressed genes in different groups and brain regions. The selected genes and pathways were validated using RT-qPCR. RESULTS Regular exercise significantly ameliorated age-related cognitive deficits. Four up-regulated targets (Ifi27l2a, Irf7, Oas1b, Ifit1) and one down-regulation (Septin2) were reversed by exercise, demonstrating the underlying mechanisms of cognitive functions induced by aging with exercise in the hippocampus and PFC. The Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that the NOD-like receptor signaling pathway was inhibited in the neuroinflammation effects of exercise in aging mice in both brain regions. CONCLUSION Exercise enhances age-related learning and memory deficits. This beneficial effect may be attributed to the changes in five up/down-regulated genes and the NOD-like receptor signaling pathway in both the hippocampus and PFC. These findings establish the modulation of neuroinflammation as a pivotal molecular mechanism supporting exercise intervention in the brain aging process.
Collapse
Affiliation(s)
- Yu Jin
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Changling Wei
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Xiaohan Huang
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Deman Zhang
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Xue Li
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.J.); (C.W.); (X.H.); (D.Z.)
| |
Collapse
|
25
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Schädel P, Wichmann-Costaganna M, Czapka A, Gebert N, Ori A, Werz O. Short-Term Caloric Restriction and Subsequent Re-Feeding Compromise Liver Health and Associated Lipid Mediator Signaling in Aged Mice. Nutrients 2023; 15:3660. [PMID: 37630850 PMCID: PMC10458887 DOI: 10.3390/nu15163660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Aging is characterized by alterations in the inflammatory microenvironment, which is tightly regulated by a complex network of inflammatory mediators. Excessive calorie consumption contributes to age- and lifestyle-associated diseases like obesity, type 2 diabetes, cardiovascular disorders, and cancer, while limited nutrient availability may lead to systemic health-promoting adaptations. Geroprotective effects of short-term caloric restriction (CR) can beneficially regulate innate immune receptors and interferon signaling in the liver of aged mice, but how CR impacts the hepatic release of immunomodulatory mediators like cytokines and lipid mediators (LM) is elusive. Here, we investigated the impact of aging on the inflammatory microenvironment in the liver and its linkage to calorie consumption. The livers of female young and aged C57BL/6JRj mice, as well as of aged mice after caloric restriction (CR) up to 28 days, with and without subsequent re-feeding (2 days), were evaluated. Surprisingly, despite differences in the hepatic proteome of young and old mice, aging did not promote a pro-inflammatory environment in the liver, but it reduced lipoxygenase-mediated formation of LM from polyunsaturated fatty acids without affecting the expression of the involved lipoxygenases and related oxygenases. Moreover, CR failed to ameliorate the secretion of pro-inflammatory cytokines but shifted the LM production to the formation of monohydroxylated LM with inflammation-resolving features. Unexpectedly, re-feeding after CR even further decreased the inflammatory response as LM species were markedly downregulated. Our findings raise the question of how short-term CR is indeed beneficial as a nutritional intervention for healthy elderly subjects and further stress the necessity to address tissue-specific inflammatory states.
Collapse
Affiliation(s)
- Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| | - Mareike Wichmann-Costaganna
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Nadja Gebert
- Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (N.G.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (N.G.); (A.O.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| |
Collapse
|
27
|
Affaticati F, Bartholomeus E, Mullan K, Damme PV, Beutels P, Ogunjimi B, Laukens K, Meysman P. Multi-View Learning to Unravel the Different Levels Underlying Hepatitis B Vaccine Response. Vaccines (Basel) 2023; 11:1236. [PMID: 37515051 PMCID: PMC10384938 DOI: 10.3390/vaccines11071236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The immune system acts as an intricate apparatus that is dedicated to mounting a defense and ensures host survival from microbial threats. To engage this faceted immune response and provide protection against infectious diseases, vaccinations are a critical tool to be developed. However, vaccine responses are governed by levels that, when interrogated, separately only explain a fraction of the immune reaction. To address this knowledge gap, we conducted a feasibility study to determine if multi-view modeling could aid in gaining actionable insights on response markers shared across populations, capture the immune system's diversity, and disentangle confounders. We thus sought to assess this multi-view modeling capacity on the responsiveness to the Hepatitis B virus (HBV) vaccination. Seroconversion to vaccine-induced antibodies against the HBV surface antigen (anti-HBs) in early converters (n = 21; <2 months) and late converters (n = 9; <6 months) and was defined based on the anti-HBs titers (>10IU/L). The multi-view data encompassed bulk RNA-seq, CD4+ T-cell parameters (including T-cell receptor data), flow cytometry data, and clinical metadata (including age and gender). The modeling included testing single-view and multi-view joint dimensionality reductions. Multi-view joint dimensionality reduction outperformed single-view methods in terms of the area under the curve and balanced accuracy, confirming the increase in predictive power to be gained. The interpretation of these findings showed that age, gender, inflammation-related gene sets, and pre-existing vaccine-specific T-cells could be associated with vaccination responsiveness. This multi-view dimensionality reduction approach complements clinical seroconversion and all single modalities. Importantly, this modeling could identify what features could predict HBV vaccine response. This methodology could be extended to other vaccination trials to identify the key features regulating responsiveness.
Collapse
Affiliation(s)
- Fabio Affaticati
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp (VAXINFECTIO), 2610 Antwerp, Belgium
| | - Kerry Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Pierre Van Damme
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for the Evaluation of Vaccination (CEV), Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Philippe Beutels
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp (VAXINFECTIO), 2610 Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
28
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
29
|
Poirier A, Wu C, Hincapie AM, Martinez-Cordova Z, Abidin BM, Tremblay ML. TAOK3 limits age-associated inflammation by negatively modulating macrophage differentiation and their production of TNFα. Immun Ageing 2023; 20:31. [PMID: 37400834 DOI: 10.1186/s12979-023-00350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.
Collapse
Affiliation(s)
- Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine, McGill University, Montréal, Québec, Canada.
- McGill University, Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue West, Montréal, Québec, H3A 1A3, Canada.
| |
Collapse
|
30
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
31
|
Hooftman A, Peace CG, Ryan DG, Day EA, Yang M, McGettrick AF, Yin M, Montano EN, Huo L, Toller-Kawahisa JE, Zecchini V, Ryan TAJ, Bolado-Carrancio A, Casey AM, Prag HA, Costa ASH, De Los Santos G, Ishimori M, Wallace DJ, Venuturupalli S, Nikitopoulou E, Frizzell N, Johansson C, Von Kriegsheim A, Murphy MP, Jefferies C, Frezza C, O'Neill LAJ. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 2023; 615:490-498. [PMID: 36890227 PMCID: PMC10411300 DOI: 10.1038/s41586-023-05720-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/10/2023] [Indexed: 03/10/2023]
Abstract
Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.
Collapse
Affiliation(s)
- Alexander Hooftman
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Christian G Peace
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Emily A Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Erica N Montano
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lihong Huo
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Juliana E Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tristram A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Alva M Casey
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Matterworks, Somerville, MA, USA
| | - Gabriela De Los Santos
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mariko Ishimori
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel J Wallace
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Swamy Venuturupalli
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Norma Frizzell
- School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Caroline Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
32
|
Mitochondrial Aging and Senolytic Natural Products with Protective Potential. Int J Mol Sci 2022; 23:ijms232416219. [PMID: 36555859 PMCID: PMC9784569 DOI: 10.3390/ijms232416219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Living organisms do not disregard the laws of thermodynamics and must therefore consume energy for their survival. In this way, cellular energy exchanges, which aim above all at the production of ATP, a fundamental molecule used by the cell for its metabolisms, favor the formation of waste products that, if not properly disposed of, can contribute to cellular aging and damage. Numerous genes have been linked to aging, with some favoring it (gerontogenes) and others blocking it (longevity pathways). Animal model studies have shown that calorie restriction (CR) may promote longevity pathways, but given the difficult application of CR in humans, research is investigating the use of CR-mimetic substances capable of producing the same effect. These include some phytonutrients such as oleuropein, hydroxytyrosol, epigallo-catechin-gallate, fisetin, quercetin, and curcumin and minerals such as magnesium and selenium. Some of them also have senolytic effects, which promote the apoptosis of defective cells that accumulate over the years (senescent cells) and disrupt normal metabolism. In this article, we review the properties of these natural elements that can promote a longer and healthier life.
Collapse
|
33
|
Duan H, Li J, Yu L, Fan L. The road ahead of dietary restriction on anti-aging: focusing on personalized nutrition. Crit Rev Food Sci Nutr 2022; 64:891-908. [PMID: 35950606 DOI: 10.1080/10408398.2022.2110034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary restriction (DR), including caloric restriction (CR), intermittent fasting (IF), and restriction of specific food compositions, can delay aging, and the main mechanisms include regulation of nutrient-sensing pathways and gut microbiota. However, the effects of DR regimens on longevity remain controversial, as some studies have demonstrated that IF, rather than CR or diet composition, influences longevity, while other studies have shown that the restricted-carbohydrate or -protein diets, rather than CR, determine health and longevity. Many factors, including DR-related factors (carbohydrate or protein composition, degree and duration of DR), and individual differences (health status, sex, genotype, and age of starting DR), would be used to explain the controversial anti-aging effects of DR, thus highlighting the necessity of precise DR intervention for anti-aging. Personalized DR intervention in humans is challenging because of the lack of accurate aging molecular biomarkers and vast individual variability. Using machine learning to build a predictive model based on the data set of clinical features, gut microbiome and metabolome, may be a good method to achieve precise DR intervention. Therefore, this review analyzed the anti-aging effects of various DR regimens, summarized their mechanisms and influencing factors, and proposed a future research direction for achieving personalized DR regimens for slowing aging.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|