1
|
Zhang J, Ding Q, Wang AX, Lin M, Yu N, Moss K, Williamson MA, Miao D, Marchesan JT, Zeng E, Shi W, Sun H, Lei YL, Zhang S. Type I interferon protects against bone loss in periodontitis by mitigating an interleukin (IL)-17-neutrophil axis. Life Sci 2025; 371:123559. [PMID: 40086745 DOI: 10.1016/j.lfs.2025.123559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Type I interferons (IFNs-I), a group of pleiotropic cytokines, critically modulate host response in various inflammatory diseases. However, the role of the IFN-I pathway in periodontitis remains largely unknown. In this report, we describe that the IFN-β levels in the gingival crevicular fluid of human subjects were negatively associated with periodontitis and clinical gingival inflammation. Disruption of IFN-I signaling worsened alveolar bone resorption in a ligature-induced periodontitis murine model. Deficiency of the IFN-I pathway resulted in an exaggerated inflammatory response in myeloid cells and drastically increased the interleukin-17 (IL-17)-mediated neutrophil recruitment in the gingiva. We further identified that the myeloid lineage-specific IFN-I response was essential in safeguarding against periodontal inflammation by suppressing the IL-17-producing γδ T cells in gingiva. IFN-I signaling also directly repressed osteoclastogenesis in monocytes, which are precursor cells for osteoclasts. Therefore, our findings demonstrate that an integral myeloid-specific IFN-I pathway protects against bone loss by keeping the IL-17-neutrophil axis in check and directly inhibiting osteoclast formation in periodontitis.
Collapse
Affiliation(s)
- Jinmei Zhang
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Qiong Ding
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Angela X Wang
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Maoxuan Lin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ning Yu
- The Forsyth Institute, Cambridge, MA, USA
| | - Kevin Moss
- Department of Biostatistics and Health Data Science, School of Medicine, University of Indiana, Indianapolis, IN, USA
| | - Megumi A Williamson
- Department of Surgical Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Di Miao
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Julie T Marchesan
- Division of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Wei Shi
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery, Cancer Biology, and Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shaoping Zhang
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA.
| |
Collapse
|
2
|
Ito S, Geramita E, Ventura K, Neupane B, Bhise S, Moore EM, Furlan S, Shlomchik WD. IFN-γ and donor leukocyte infusions for relapsed myeloblastic malignancies after allogeneic hematopoietic stem cell transplantation. JCI Insight 2025; 10:e190655. [PMID: 40131369 DOI: 10.1172/jci.insight.190655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUNDThe graft-versus-leukemia (GVL) effect contributes to the efficacy of allogeneic stem cell transplantation (alloSCT). However, relapse, indicative of GVL failure, is the greatest single cause of treatment failure. Based on preclinical data showing that IFN-γ is important to sensitize myeloblasts to alloreactive T cells, we performed a phase I trial of IFN-γ combined with donor leukocyte infusions (DLIs) in myeloblastic malignancies that relapsed after HLA-matched alloSCT.METHODSPatients with relapsed acute myeloid leukemia or myelodysplastic syndrome after alloSCT were eligible. Patients self-administered IFN-γ for 4 weeks (cohort 1) or 1 week (cohort 2), followed by DLI and concurrent IFN-γ for a total of 12 weeks. Bone marrow samples were analyzed by single-cell RNA sequencing (scRNA-Seq) to assess in vivo responses to IFN-γ by malignant myeloblasts.RESULTSIFN-γ monotherapy was well tolerated by all participants (n = 7). Treatment-related toxicities after DLI included grade I-II graft-versus-host disease (n = 5), immune effector cell-associated neurotoxicity syndrome (n = 2), and idiopathic pulmonary syndrome (n = 1), all of which resolved with corticosteroids. Four of 6 DLI recipients achieved minimal residual disease-negative complete remissions and full donor hematopoietic recovery. Median overall survival was 579 days (range, 97-906) in responders. scRNA-Seq validated in vivo activation of the IFN-γ response pathway in hematopoietic stem cell-like or myeloid progenitor cells after IFN-γ in analyzed samples.CONCLUSIONIFN-γ was safe and well tolerated in this phase I study of IFN-γ for relapsed acute myeloid leukemia and myelodysplastic syndrome after alloSCT, with a promising efficacy signal when combined with DLI. Larger studies are needed to formally test the efficacy of this approach.TRIAL REGISTRATIONClinicalTrials.gov NCT04628338.FUNDINGUPMC Hillman Cancer Center Cancer Immunology and Immunotherapy Program Pilot Award and Cure Within Reach: Drug Repurposing Clinical Trials to Impact Blood Cancers.
Collapse
Affiliation(s)
- Sawa Ito
- Division of Hematology-Oncology, Department of Medicine
- Thomas E. Starzl Transplantation Institute; and
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Shruti Bhise
- Department of Pediatrics, University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Erika M Moore
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott Furlan
- Department of Pediatrics, University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Warren D Shlomchik
- Division of Hematology-Oncology, Department of Medicine
- Thomas E. Starzl Transplantation Institute; and
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Abraham E, Kostina A, Volmert B, Roule T, Huang L, Yu J, Williams AE, Megill E, Douglas A, Pericak OM, Morris A, Stronati E, Larrinaga-Zamanillo A, Fueyo R, Zubillaga M, Andrake MD, Akizu N, Aguirre A, Estaras C. A retinoic acid:YAP1 signaling axis controls atrial lineage commitment. Cell Rep 2025; 44:115687. [PMID: 40343798 DOI: 10.1016/j.celrep.2025.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/10/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
In cardiac progenitor cells (CPCs), retinoic acid (RA) signaling induces atrial lineage gene expression and acquisition of an atrial cell fate. To achieve this, RA coordinates a complex regulatory network of downstream effectors that is not fully identified. To address this gap, we applied a functional genomics approach (i.e., scRNA-seq and snATAC-seq) to untreated and RA-treated human embryonic stem cell (hESC)-derived CPCs. Unbiased analysis revealed that the Hippo effectors YAP1 and TEAD4 are integrated with the atrial transcription factor enhancer network and that YAP1 activates RA enhancers in CPCs. Furthermore, Yap1 deletion in mouse embryos compromises the expression of RA-induced genes, such as Nr2f2, in the CPCs of the second heart field. Accordingly, in hESC-derived patterned heart organoids, YAP1 regulates the formation of an atrial chamber but is dispensable for the formation of a ventricle. Overall, our findings revealed that YAP1 cooperates with RA signaling to induce atrial lineages during cardiogenesis.
Collapse
Affiliation(s)
- Elizabeth Abraham
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aleksandra Kostina
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aidan Douglas
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Olivia M Pericak
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alex Morris
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Eleonora Stronati
- Department of Child and Adolescence Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Arantza Larrinaga-Zamanillo
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Zubillaga
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mark D Andrake
- Molecular Modeling Facility, Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Conchi Estaras
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
4
|
Cao S, Nguyen KM, Colonna M. Reply. Gastroenterology 2025; 168:1031-1032. [PMID: 39827919 DOI: 10.1053/j.gastro.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
5
|
Habibi M, Ferguson D, Eichler SJ, Chan MM, Fu C, Pietka TA, Bredemeyer AL, LaPoint A, Shew TM, He M, Liss KHH, Lutkewitte AJ, Cho K, Schilling JD, Patti GJ, Finck BN. A Critical Role for the Mitochondrial Pyruvate Carrier in Hepatic Stellate Cell Activation. Cell Mol Gastroenterol Hepatol 2025:101517. [PMID: 40239806 DOI: 10.1016/j.jcmgh.2025.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are non-parenchymal cells of the liver that produce the extracellular matrix that forms fibrotic lesions in chronic liver disease, including metabolic dysfunction-associated steatohepatitis (MASH). The mitochondrial pyruvate carrier (MPC) catalyzes the transport of pyruvate from the cytosol into the mitochondrial matrix, which is a critical step in pyruvate metabolism. An MPC inhibitor has shown promise as a novel therapeutic for MASH and HSC activation, but a mechanistic understanding of the direct effects of MPC inhibition on HSC activation is lacking. METHODS Stable lines of LX2 cells expressing short hairpin RNA against MPC2 were established and examined in a series of studies to assess HSC metabolism and activation. Mice with conditional, HSC-specific MPC2 deletion were generated and their phenotypes assessed in the context of diets that cause hepatic steatosis, injury, and early-stage fibrosis. RESULTS Genetic suppression of MPC activity markedly decreased expression of markers of HSC activation in vitro. MPC knockdown reduced the abundance of several intermediates of the tricarboxylic acid cycle and attenuated HSC activation by suppressing hypoxia inducible factor-1α signaling. Supplementing alpha-ketoglutarate to replenish the tricarboxylic acid cycle intermediates was sufficient to overcome the effects of MPC inhibition on hypoxia inducible factor-1α and HSC activation. On high-fat diets, mice with HSC-specific MPC deletion exhibited reduced circulating transaminases, numbers of HSCs, and hepatic expression of markers of HSC activation and inflammation compared with wild-type mice. CONCLUSIONS These data suggest that MPC inhibition modulates HSC metabolism to attenuate activation and illuminate mechanisms by which MPC inhibitors could prove therapeutically beneficial for treating MASH.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sophie J Eichler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mandy M Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christina Fu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Terri A Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea L Bredemeyer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew LaPoint
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kim H H Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; (4)Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew J Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Cho
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gary J Patti
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Chemistry, Washington University, St. Louis, Missouri
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
Singh I, Fernandez-Perez D, Sanchez PS, Rodriguez-Fraticelli AE. Pre-existing stem cell heterogeneity dictates clonal responses to the acquisition of leukemic driver mutations. Cell Stem Cell 2025; 32:564-580.e6. [PMID: 40010350 DOI: 10.1016/j.stem.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/02/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Cancer cells display wide phenotypic variation even across patients with the same mutations. Differences in the cell of origin provide a potential explanation, but traditional assays lack the resolution to distinguish clonally heterogeneous subsets of stem and progenitor cells. To address this challenge, we developed simultaneous tracking of recombinase activation and clonal kinetics (STRACK), a method to trace clonal dynamics and gene expression before and after the acquisition of cancer mutations. Using mouse models, we studied two leukemic mutations, Dnmt3a-R878H and Npm1c, and found that their effect was highly variable across different stem cell states. Specifically, a subset of differentiation-primed stem cells, which normally becomes outcompeted with time, expands with both mutations. Intriguingly, Npm1c mutations reversed the intrinsic bias of the clone of origin, with differentiation-primed stem cells giving rise to more primitive malignant states. Thus, we highlight the relevance of single-cell lineage tracing to unravel early events in cancer evolution and posit that different cellular histories carry distinct cancer phenotypic potential.
Collapse
Affiliation(s)
- Indranil Singh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Daniel Fernandez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Pedro Sanchez Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Alejo E Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; ICREA, Catalan Institution for Research and Advanced Studies Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Nirgude S, Tichy ED, Liu Z, Kavari SL, Pradieu RD, Byrne M, Yang F, Gil-de-Gómez L, Mamou B, Bernt KM, Yang W, MacFarland S, Xie M, Kalish JM. Single-nucleus multiomic analysis of Beckwith-Wiedemann syndrome liver reveals PPARA signaling enrichment and metabolic dysfunction. Commun Biol 2025; 8:495. [PMID: 40133415 PMCID: PMC11937391 DOI: 10.1038/s42003-025-07961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS may exhibit hepatomegaly, as well as an increased risk of hepatoblastoma. To understand the impact of these 11p15 changes in the liver, we performed a multiomic study [single nucleus RNA-sequencing (snRNA-seq) + single nucleus assay for transposable-accessible chromatin-sequencing (snATAC-seq)] of both BWS-liver and nonBWS-liver tumor-adjacent tissue. Our approach uncovers hepatocyte-specific enrichment of processes related to peroxisome proliferator-activated receptor alpha (PPARA). To confirm our findings, we differentiated a BWS induced pluripotent stem cell model into hepatocytes. Our data demonstrate the dysregulation of lipid metabolism in BWS-liver, which coincides with observed upregulation of PPARA during hepatocyte differentiation. BWS hepatocytes also exhibit decreased neutral lipids and increased fatty acid β-oxidation. We also observe increased reactive oxygen species byproducts in BWS hepatocytes, coinciding with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisia D Tichy
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhengfeng Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose D Pradieu
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariah Byrne
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feikun Yang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Gil-de-Gómez
- Department of Pediatrics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon Mamou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin M Bernt
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne MacFarland
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Xie
- DBHI, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Eduardo MB, Cottone G, McCloskey CW, Liu S, Palma FR, Zappia MP, Islam AB, Gao P, Setya J, Dennis S, Gao H, Zhang Q, Xuei X, Luo Y, Locasale J, Bonini MG, Khokha R, Frolov MV, Benevolenskaya EV, Chandel NS, Khan SA, Clare SE. A metabolic shift to the serine pathway induced by lipids fosters epigenetic reprogramming in nontransformed breast cells. SCIENCE ADVANCES 2025; 11:eads9182. [PMID: 40117373 PMCID: PMC11927636 DOI: 10.1126/sciadv.ads9182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Lipid metabolism and the serine, one-carbon, glycine (SOG) and methionine pathways are independently and significantly correlated with estrogen receptor-negative breast cancer (ERneg BC). Here, we propose a link between lipid metabolism and ERneg BC through phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the de novo serine pathway. We demonstrate that the metabolism of the paradigmatic medium-chain fatty acid octanoic acid leads to a metabolic shift toward the SOG and methionine pathways. PHGDH plays a role in both the forward direction, contributing to the production of S-adenosylmethionine, and the reverse direction, generating the oncometabolite 2-hydroxyglutarate, leading to epigenomic reprogramming and phenotypic plasticity. The methionine cycle is closely linked to the transsulfuration pathway. Consequently, we observe that the shift increases the antioxidant glutathione, which mitigates reactive oxygen species (ROS), enabling survival of a subset of cells that have undergone DNA damage. These metabolic changes contribute to several hallmarks of cancer.
Collapse
Affiliation(s)
| | - Gannon Cottone
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Curtis W. McCloskey
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shiyu Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Flavio R. Palma
- Department of Medicine/Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul B.M.M.K. Islam
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joel Setya
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Saya Dennis
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qian Zhang
- Robert H. Lurie Cancer Center Metabolomics Core, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jason Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marcelo G. Bonini
- Department of Medicine/Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maxim V. Frolov
- Department of Medicine/Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizaveta V. Benevolenskaya
- Department of Medicine/Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Navdeep S. Chandel
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Seema A. Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Susan E. Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Li TL, Blair JD, Yoo T, Grant GA, Hockemeyer D, Porter BE, Bateup HS. mTORC1 activation drives astrocyte reactivity in cortical tubers and brain organoid models of TSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640914. [PMID: 40093155 PMCID: PMC11908165 DOI: 10.1101/2025.02.28.640914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tuberous Sclerosis Complex (TSC) is a genetic neurodevelopmental disorder associated with early onset epilepsy, intellectual disability and neuropsychiatric disorders. A hallmark of the disorder is cortical tubers, which are focal malformations of brain development containing dysplastic cells with hyperactive mTORC1 signaling. One barrier to developing therapeutic approaches and understanding the origins of tuber cells is the lack of a model system that recapitulates this pathology. To address this, we established a genetically mosaic cortical organoid system that models a somatic "second-hit" mutation, which is thought to drive the formation of tubers in TSC. With this model, we find that loss of TSC2 cell-autonomously promotes the differentiation of astrocytes, which exhibit features of a disease-associated reactive state. TSC2 -/- astrocytes have pronounced changes in morphology and upregulation of proteins that are risk factors for neurodegenerative diseases, such as clusterin and APOE. Using multiplexed immunofluorescence in primary tubers from TSC patients, we show that tuber cells with hyperactive mTORC1 activity also express reactive astrocyte proteins, and we identify a unique population of cells with expression profiles that match those observed in organoids. Together, this work reveals that reactive astrogliosis is a primary feature of TSC that arises early in cortical development. Dysfunctional glia are therefore poised to be drivers of pathophysiology, nominating a potential therapeutic target for treating TSC and related mTORopathies.
Collapse
Affiliation(s)
- Thomas L. Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - John D. Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Taesun Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Lucile Packard Children’s Hospital and Stanford University Medical Center, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
10
|
Ceraolo MG, Leccese M, Cassotta A, Triolo S, Bombaci M, Coluccio E, Prati D, Ungaro R, Abrignani S, Bandera A, Sallusto F, Lanzavecchia A, Notarbartolo S. Dual Activation-Induced Marker Combinations Efficiently Identify and Discern Antigen-Specific and Bystander-Activated Human CD4 + T Cells. Eur J Immunol 2025; 55:e202451404. [PMID: 39663678 PMCID: PMC11830384 DOI: 10.1002/eji.202451404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Identifying activated T lymphocytes and differentiating antigen-specific from bystander T cells is crucial for understanding adaptive immune responses. This study investigates the efficacy of activation-induced markers (AIMs) in distinguishing these cell populations. We measured the expression of commonly used AIMs (CD25, CD38, CD40L, CD69, CD137, HLA-DR, ICOS, and OX40) in an in vitro T-cell activation system and evaluated their sensitivity, specificity, and positive predictive value. We demonstrated that individual AIMs, while specific in detecting activated CD4+ T cells, poorly discriminate between antigen-specific and bystander activation, as assessed by a discriminative capacity (DC) score we developed. Our analysis revealed that dual AIM combinations significantly enhanced the ability to distinguish antigen-specific from bystander-activated T cells, achieving DC scores above 90%. These combinations also improved positive predictive value and specificity with a modest reduction in sensitivity. The CD25hi/ICOShi combination emerged as the most efficient, with an average sensitivity of 84.35%, specificity of 99.7%, and DC score of 90.12%. Validation through T-cell cloning and antigen re-stimulation confirmed the robustness of our predictions. This study provides a practical framework for researchers to optimize strategies for identifying and isolating antigen-specific human CD4+ T lymphocytes and studying their phenotype, function, and T-cell receptor repertoire.
Collapse
Affiliation(s)
- Maria Grazia Ceraolo
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Maristella Leccese
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Antonino Cassotta
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
| | - Sara Triolo
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Mauro Bombaci
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Elena Coluccio
- Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Daniele Prati
- Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Riccardo Ungaro
- Infectious Diseases UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alessandra Bandera
- Infectious Diseases UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Centre for Multidisciplinary Research in Health Science (MACH)Università degli Studi di MilanoMilanItaly
| | - Federica Sallusto
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
- Institute of Microbiology, ETH ZurichZurichSwitzerland
| | - Antonio Lanzavecchia
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Samuele Notarbartolo
- Infectious Diseases UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
11
|
Li F, Song X, Fan W, Pei L, Liu J, Zhao R, Zhang Y, Li M, Song K, Sun Y, Zhang C, Zhang Y, Xu Y. SPathDB: a comprehensive database of spatial pathway activity atlas. Nucleic Acids Res 2025; 53:D1205-D1214. [PMID: 39546631 PMCID: PMC11701687 DOI: 10.1093/nar/gkae1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
Spatial transcriptomics sequencing technology deepens our understanding of the diversity of cell behaviors, fates and states within complex tissue, which is often determined by the fine-tuning of regulatory network functional activities. Therefore, characterizing the functional activity within tissue space is helpful for revealing the functional features that drive spatial heterogeneity, and understanding complex biological processes. Here, we describe a database, SPathDB (http://bio-bigdata.hrbmu.edu.cn/SPathDB/), which aims to dissect the pathway-mediated multidimensional spatial heterogeneity in the context of functional activity. We manually curated spatial transcriptomics datasets and biological pathways from public data resources. SPathDB consists of 1689 868 spatial spots of 695 slices from 84 spatial transcriptome datasets of human and mouse, which involves 36 tissues, and also diseases such as cancer, and provides interactive analysis and visualization of the functional activities of 114 998 pathways across these spatial spots. SPathDB provides five flexible interfaces to retrieve and analyze pathways with highly variable functional activity across spatial spots, the distribution of pathway functional activities along pseudo-space axis, pathway-mediated spatial intercellular communications and the associations between spatial pathway functional activity and the occurrence of cell types. SPathDB will serve as a foundational resource for identifying functional features and elucidating underlying mechanisms of spatial heterogeneity.
Collapse
Affiliation(s)
- Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Xinyu Song
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Wenli Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Liying Pei
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Jiaqi Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Rui Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yifang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Kaiyue Song
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yu Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| |
Collapse
|
12
|
Wang C, Lu M, Chen C, Chen J, Cai Y, Wang H, Tao L, Yin W, Chen J. Integrating scRNA-seq and Visium HD for the analysis of the tumor microenvironment in the progression of colorectal cancer. Int Immunopharmacol 2025; 145:113752. [PMID: 39642568 DOI: 10.1016/j.intimp.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) development is a complex, multi-stage process, transitioning from normal to adenomatous tissue, and then to invasive carcinoma. Despite research, there's a knowledge gap on using high-resolution spatial omics to understand CRC's tumor microenvironment dynamics. METHODS We used single-cell transcriptomics to study major biological changes and cell interactions in CRC progression. Additionally, high-resolution spatial transcriptomics helped us examine the spatial distribution of cells with significant pathway changes, offering insights into the tumor microenvironment's development throughout CRC stages. RESULTS In the progression of CRC, plasma cells, neutrophils, and fibroblasts exhibit the most significant changes in hallmark pathways, while epithelial cells show the most pronounced alterations in metabolic pathways. We also identified a population of NOTUM + epithelial cells and IGHG1/3 + plasma cells that are concentrated at the boundary between normal tissue and adenomas. Pathway analysis further suggests that these NOTUM + cells activate numerous cancer-related pathways, despite the absence of significant pathological morphological changes. Additionally, we conducted a targeted drug prediction analysis to identify potential therapeutic agents for NOTUM-expressing epithelial cells. CONCLUSIONS Analyzing scRNA-seq and Visium HD data, we found that IGHG1/3 + plasma cells and tumor-associated neutrophil (TANs) may significantly affect colorectal tissue transformation from normal to adenoma and carcinoma. These cells are concentrated at the transition between normal and adenomatous tissue. We also found NOTUM-expressing cells at the edge of normal and adenomatous areas, possibly indicating a morphological transition as normal cells evolve into adenoma cells.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mengying Lu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Cuimin Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiajun Chen
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yusi Cai
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lili Tao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiakang Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
13
|
Luo S, Notaro A, Lin L. ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs. Nat Commun 2025; 16:216. [PMID: 39746936 PMCID: PMC11696065 DOI: 10.1038/s41467-024-54675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e., major histocompatibility complex (MHC) multimer staining) focus on high-affinity interactions between the TCR and MHC-antigen complex, and may fail to identify TCRs with high efficacy for activating T cells. Here, we develop a microfluidic single-cell screening method for antigen-reactive T cells named ATLAS-seq (Aptamer-based T Lymphocyte Activity Screening and SEQuencing). This technology isolates and characterizes activated T cells via an aptamer-based fluorescent molecular sensor, which monitors the cytotoxic cytokine IFNγ secretion from single T cells upon antigen stimulation, followed by single-cell RNA and single-cell TCR sequencing. We use ATLAS-seq to screen TCRs reactive to cytomegalovirus (CMV) or prostate specific antigen (PSA) from peripheral blood mononuclear cells (PBMCs). ATLAS-seq identifies distinct TCR clonotype populations with higher T cell activation levels compared to TCRs recovered by MHC multimer staining. Select TCR clonotypes from ATLAS-seq are more efficient in target cell killing than those from MHC multimer staining. Collectively, ATLAS-seq provides an efficient and broadly applicable technology to screen antigen-reactive TCRs for engineered T cell immunotherapy.
Collapse
Affiliation(s)
- Siwei Luo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Notaro
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lan Lin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Dufour A, Heydari Olya A, Foulon S, Réda C, Mokhtari A, Faivre V, Hua J, Bokobza C, Griffiths AD, Nghe P, Gressens P, Delahaye-Duriez A, Van Steenwinckel J. Neonatal inflammation impairs developmentally-associated microglia and promotes a highly reactive microglial subset. Brain Behav Immun 2025; 123:466-482. [PMID: 39322088 DOI: 10.1016/j.bbi.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Microglia and border-associated macrophages play critical roles in both immunity and neurodevelopment. The disruption of microglial development trajectories by neonatal inflammation is an important issue in research on neurodevelopmental disorders (NDDs), as models have suggested a strong association between inflammation and cognitive deficits. Here, we explored by single-cell RNA sequencing and flow cytometry the impact of neonatal inflammation in a mouse NDD model on brain myeloid cell subsets. A specific subset of microglia expressing the complement receptor C5ar1 has been identified, in which inflammatory pathways are most strongly activated. Based on transcriptional similarity, this subset appears to originate from the most mature and "homeostatic" microglia at this stage of development and demonstrated hypersensitivity to inflammation. Besides that, Spp1-microglia supporting oligodendrocyte differentiation, primitive and proliferative microglia were reduced by inflammation. These findings suggest major changes in microglial subsets developmental trajectories and reactivity contributing to NDDs induced by neonatal inflammation.
Collapse
Affiliation(s)
- Adrien Dufour
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France; Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | | | - Sophie Foulon
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France
| | - Clémence Réda
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | | | - Valérie Faivre
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | - Jennifer Hua
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | - Cindy Bokobza
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France
| | - Andrew D Griffiths
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France; Laboratoire Biophysique et Evolution, UMR CBI 8231, ESPCI Paris,10 rue Vauquelin 75005 Paris, France
| | | | - Andrée Delahaye-Duriez
- NeuroDiderot, INSERM, Université Paris Cité, Paris, France; Unité fonctionnelle de médecine génomique et génétique clinique, Hôpital Jean Verdier, AP-HP, 93140 Bondy, France; Université Sorbonne Paris Nord, UFR de santé, médecine et biologie humaine, 93000 Bobigny, France.
| | | |
Collapse
|
15
|
Ferreira RM, Gisch DL, Phillips CL, Cheng YH, Asthana M, Lake BB, Bowen WS, Fang F, Asghari M, Sabo A, Barwinska D, Ferkowicz MJ, Toto RD, Sedor JR, Rosas SE, Bjornstad P, Hodgin JB, Alpers CE, Sarder P, Himmelfarb J, Schaub JA, Nair V, Winfree S, Sutton TA, Kelly KJ, Kretzler M, Jain S, El-Achkar TM, Dagher PC, Eadon MT. A MEF2C transcription factor network regulates proliferation of glomerular endothelial cells in diabetic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615250. [PMID: 39803522 PMCID: PMC11722318 DOI: 10.1101/2024.09.27.615250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells. Data were culled from single nucleus RNA and ATAC sequencing and three orthogonal spatial transcriptomic technologies for correlation with histopathological and clinical trial data. We identified a cellular niche in diabetic glomeruli enriched in a proliferative endothelial cell subtype (prEC) and altered vascular smooth muscle cells (VSMCs). Cellular communication within this niche maintained pro-angiogenic signaling with loss of anti-angiogenic factors. We identified a TF network of MEF2C, MEF2A, and TRPS1 which regulated SEMA6A and PLXNA2, a receptor-ligand pair opposing angiogenesis. In silico knockout of the TF network accelerated the transition from healthy EC-GCs toward a degenerative (injury) endothelial phenotype, with concomitant disruption of EC-GC and prEC expression patterns. Glomeruli enriched in the prEC niche had histologic evidence of neovascularization. MEF2C activity was increased in diabetic glomeruli with nodular mesangial sclerosis. The gene regulatory network (GRN) of MEF2C was dysregulated in EC-GCs of patients with DKD, but sodium glucose transporter-2 inhibitor (SGLT2i) treatment reversed the MEF2C GRN effects of DKD. The MEF2C, MEF2A, and TRPS1 TF network carefully balances the fate of the EC-GC in DKD. When the TF network is "on" or over-expressed in DKD, EC-GCs may progress to a prEC state, while TF suppression leads to cell death. SGLT2i therapy may restore the balance of MEF2C activity.
Collapse
|
16
|
Livne D, Efroni S. Pathway metrics accurately stratify T cells to their cells states. BioData Min 2024; 17:60. [PMID: 39716187 DOI: 10.1186/s13040-024-00416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Pathway analysis is a powerful approach for elucidating insights from gene expression data and associating such changes with cellular phenotypes. The overarching objective of pathway research is to identify critical molecular drivers within a cellular context and uncover novel signaling networks from groups of relevant biomolecules. In this work, we present PathSingle, a Python-based pathway analysis tool tailored for single-cell data analysis. PathSingle employs a unique graph-based algorithm to enable the classification of diverse cellular states, such as T cell subtypes. Designed to be open-source, extensible, and computationally efficient, PathSingle is available at https://github.com/zurkin1/PathSingle under the MIT license. This tool provides researchers with a versatile framework for uncovering biologically meaningful insights from high-dimensional single-cell transcriptomics data, facilitating a deeper understanding of cellular regulation and function.
Collapse
Affiliation(s)
- Dani Livne
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
17
|
Li H, Liu Y, Wang X, Yu S, Wang J, Hu Y, Hong N, Jin W. Protocol for mapping T cell activation using single-cell RNA-seq. STAR Protoc 2024; 5:103409. [PMID: 39427308 PMCID: PMC11533540 DOI: 10.1016/j.xpro.2024.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Stimulation of CD4 T cells with anti-CD3/CD28 is a commonly used model to study T cell activation. Here, we present a protocol for investigating T cell activation based on anti-CD3/CD28 bead stimulation and single-cell RNA sequencing (scRNA-seq). We describe the workflow from the isolation of human peripheral blood mononuclear cells (PMBCs) and CD4 T cell enrichment to anti-CD3/CD28 bead stimulation, scRNA-seq, and data analysis. For complete details on the use and execution of this protocol, please refer to Li et al.1.
Collapse
Affiliation(s)
- Hui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yifei Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuefei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiya Yu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junliang Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ni Hong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Cao S, Nguyen KM, Ma K, Du X, Liu X, Ulezko Antonova A, Rood RP, Gremida A, Chen CH, Gutierrez A, Rubin DC, Gregory MH, Gergely M, Escudero GO, Huang K, Jaeger N, Cella M, Newberry RD, Davidson NO, Ciorba MA, Deepak P, Colonna M. Mucosal Single-Cell Profiling of Crohn's-Like Disease of the Pouch Reveals Unique Pathogenesis and Therapeutic Targets. Gastroenterology 2024; 167:1399-1414.e2. [PMID: 39084267 PMCID: PMC11973979 DOI: 10.1053/j.gastro.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND & AIMS The pathophysiology of Crohn's-like disease of the pouch (CDP) in patients with a history of ulcerative colitis (UC) is unknown. We examined mucosal cells from patients with and without CDP using single-cell analyses. METHODS Endoscopic samples were collected from pouch body and prepouch ileum (pouch/ileum) of 50 patients with an ileal pouch-anal anastomosis. Single-cell RNA sequencing was performed on pouch/ileal tissues of patients with normal pouch/ileum and CDP. Mass cytometry was performed on mucosal immune cells from patients with UC with normal pouch/ileum, CDP, pouchitis, and those with familial adenomatous polyposis after pouch formation. Findings were independently validated using immunohistochemistry. RESULTS The cell populations/states in the pouch body differed from those in the prepouch ileum, likely secondary to increased microbial burden. Compared with the familial adenomatous polyposis pouch, the UC pouch was enriched in colitogenic immune cells even without inflammation. CDP was characterized by increases in T helper 17 cells, inflammatory fibroblasts, inflammatory monocytes, TREM1+ monocytes, clonal expansion of effector T cells, and overexpression of T helper 17 cells-inducing cytokine genes such as IL23, IL1B, and IL6 by mononuclear phagocytes. Ligand-receptor analysis further revealed a stromal-mononuclear phagocytes-lymphocyte circuit in CDP. Integrated analysis showed that up-regulated immune mediators in CDP were similar to those in CD and pouchitis, but not UC. Additionally, CDP pouch/ileum exhibited heightened endoplasmic reticulum stress across all major cell compartments. CONCLUSIONS CDP likely represents a distinct entity of inflammatory bowel disease with heightened endoplasmic reticulum stress in both immune and nonimmune cells, which may become a novel diagnostic biomarker and therapeutic target for CDP.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Xiaotang Du
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Xiuli Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Richard P Rood
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Anas Gremida
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Chien-Huan Chen
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alexandra Gutierrez
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Martin H Gregory
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Mate Gergely
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Guadalupe Oliva Escudero
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Katherine Huang
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Natalia Jaeger
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marina Cella
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Parakkal Deepak
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
19
|
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M. CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice. JCI Insight 2024; 9:e179729. [PMID: 39576014 PMCID: PMC11601911 DOI: 10.1172/jci.insight.179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Neurosurgery and
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Huang Z, Zheng Y, Wang W, Zhou W, Zhang Y, Wei C, Zhang X, Jin X, Yin J. Uncovering disease-related multicellular pathway modules on large-scale single-cell transcriptomes with scPAFA. Commun Biol 2024; 7:1523. [PMID: 39550507 PMCID: PMC11569158 DOI: 10.1038/s42003-024-07238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Pathway analysis is a crucial analytical phase in disease research on single-cell RNA sequencing (scRNA-seq) data, offering biological interpretations based on prior knowledge. However, currently available tools for generating cell-level pathway activity scores (PAS) exhibit computational inefficacy in large-scale scRNA-seq datasets. Additionally, disease-related pathways are often identified through cross-condition comparisons within specific cell types, overlooking potential patterns that involve multiple cell types. Here, we present single-cell pathway activity factor analysis (scPAFA), a Python library designed for large-scale single-cell datasets allowing rapid PAS computation and uncovering biologically interpretable disease-related multicellular pathway modules, which are low-dimensional representations of disease-related PAS alterations in multiple cell types. Application on colorectal cancer (CRC) datasets and large-scale lupus atlas over 1.2 million cells demonstrated that scPAFA can achieve over 40-fold reductions in the runtime of PAS computation and further identified reliable and interpretable multicellular pathway modules that capture the heterogeneity of CRC and transcriptional abnormalities in lupus patients, respectively. Overall, scPAFA presents a valuable addition to existing research tools in disease research, with the potential to reveal complex disease mechanisms and support biomarker discovery at the pathway level.
Collapse
Affiliation(s)
- Zhuoli Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuhui Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Wenwen Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yanbo Zhang
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Chen Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianhua Yin
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
21
|
Nishide M, Shimagami H, Kumanogoh A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol 2024; 24:781-797. [PMID: 38914790 DOI: 10.1038/s41577-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
22
|
Obare LM, Priest S, Ismail A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Nthenge K, Vue Z, Neikirk K, Beasley HK, Gabriel C, Temu T, Gianella S, Mallal SA, Koethe JR, Hinton A, Bailin SS, Wanjalla CN. Cytokine and chemokine receptor profiles in adipose tissue vasculature unravel endothelial cell responses in HIV. J Cell Physiol 2024; 239:e31415. [PMID: 39263801 DOI: 10.1002/jcp.31415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single-cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF-α via NFK-β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.
Collapse
Affiliation(s)
- Laventa M Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anas Ismail
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kisyua Nthenge
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, Massachusetts, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Simon A Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Samuel S Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Huang J, Sati S, Murphy C, Spencer CA, Rapp E, Prouty SM, Korte S, Ahart O, Sheng E, Jones P, Kersh AE, Leung D, Leung TH. Granulocyte colony stimulating factor promotes scarless tissue regeneration. Cell Rep 2024; 43:114742. [PMID: 39306847 PMCID: PMC11574610 DOI: 10.1016/j.celrep.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mammals typically heal with fibrotic scars, and treatments to regenerate human skin and hair without a scar remain elusive. We discovered that mice lacking C-X-C motif chemokine receptor 2 (CXCR2 knockout [KO]) displayed robust and complete tissue regeneration across three different injury models: skin, hair follicle, and cartilage. Remarkably, wild-type mice receiving plasma from CXCR2 KO mice through parabiosis or injections healed wounds scarlessly. A comparison of circulating proteins using multiplex ELISA revealed a 24-fold higher plasma level of granulocyte colony stimulating factor (G-CSF) in CXCR2 KO blood. Local injections of G-CSF into wild-type (WT) mouse wound beds reduced scar formation and increased scarless tissue regeneration. G-CSF directly polarized macrophages into an anti-inflammatory phenotype, and both CXCR2 KO and G-CSF-treated mice recruited more anti-inflammatory macrophages into injured areas. Modulating macrophage activation states at early time points after injury promotes scarless tissue regeneration and may offer a therapeutic approach to improve healing of human skin wounds.
Collapse
Affiliation(s)
- Jianhe Huang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Satish Sati
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Christina Murphy
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Casey A Spencer
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Emmanuel Rapp
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen M Prouty
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Olivia Ahart
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Emily Sheng
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Parker Jones
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Anna E Kersh
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Denis Leung
- Singapore Management University, Singapore, Singapore
| | - Thomas H Leung
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Zehra B, Mohamed N, Farhat A, Bru-Mercier G, Satsangi D, Tambi R, Kamarudheen R, Kumail M, Khalil R, Pessia M, D'Adamo MC, Berdiev BK, Uddin M. Integrative analysis of long isoform sequencing and functional data identifies distinct cortical layer neuronal subtypes derived from human iPSCs. J Neurophysiol 2024; 132:653-665. [PMID: 38988287 DOI: 10.1152/jn.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, β tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).
Collapse
Affiliation(s)
- Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nesrin Mohamed
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Gilles Bru-Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dharana Satsangi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richa Tambi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rihana Kamarudheen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Muhammad Kumail
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| |
Collapse
|
25
|
Sarsenova M, Lawarde A, Pathare ADS, Saare M, Modhukur V, Soplepmann P, Terasmaa A, Käämbre T, Gemzell-Danielsson K, Lalitkumar PGL, Salumets A, Peters M. Endometriotic lesions exhibit distinct metabolic signature compared to paired eutopic endometrium at the single-cell level. Commun Biol 2024; 7:1026. [PMID: 39169201 PMCID: PMC11339455 DOI: 10.1038/s42003-024-06713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Current therapeutics of endometriosis focus on hormonal disruption of endometriotic lesions (ectopic endometrium, EcE). Recent findings show higher glycolysis utilization in EcE, suggesting non-hormonal strategy for disease treatment that addresses cellular metabolism. Identifying metabolically altered cell types in EcE is important for targeted metabolic drug therapy without affecting eutopic endometrium (EuE). Here, using single-cell RNA-sequencing, we examine twelve metabolic pathways in paired samples of EuE and EcE from women with confirmed endometriosis. We detect nine major cell types in both EuE and EcE. Metabolic pathways are most differentially regulated in perivascular, stromal, and endothelial cells, with the highest changes in AMPK signaling, HIF-1 signaling, glutathione metabolism, oxidative phosphorylation, and glycolysis. We identify transcriptomic co-activation of glycolytic and oxidative metabolism in perivascular and stromal cells of EcE, indicating a critical role of metabolic reprogramming in maintaining endometriotic lesion growth. Perivascular cells, involved in endometrial stroma repair and angiogenesis, may be potential targets for non-hormonal treatment of endometriosis.
Collapse
Affiliation(s)
- Meruert Sarsenova
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Neonatology, Obstetrics and Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- WHO Collaborating Centre, Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Ankita Lawarde
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Amruta D S Pathare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kristina Gemzell-Danielsson
- Division of Neonatology, Obstetrics and Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- WHO Collaborating Centre, Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Parameswaran Grace Luther Lalitkumar
- Division of Neonatology, Obstetrics and Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- WHO Collaborating Centre, Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
26
|
Abraham E, Volmert B, Roule T, Huang L, Yu J, Williams AE, Cohen HM, Douglas A, Megill E, Morris A, Stronati E, Fueyo R, Zubillaga M, Elrod JW, Akizu N, Aguirre A, Estaras C. A Retinoic Acid:YAP1 signaling axis controls atrial lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602981. [PMID: 39026825 PMCID: PMC11257518 DOI: 10.1101/2024.07.11.602981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Vitamin A/Retinoic Acid (Vit A/RA) signaling is essential for heart development. In cardiac progenitor cells (CPCs), RA signaling induces the expression of atrial lineage genes while repressing ventricular genes, thereby promoting the acquisition of an atrial cardiomyocyte cell fate. To achieve this, RA coordinates a complex regulatory network of downstream effectors that is not fully identified. To address this gap, we applied a functional genomics approach (i.e scRNAseq and snATACseq) to untreated and RA-treated human embryonic stem cells (hESCs)-derived CPCs. Unbiased analysis revealed that the Hippo effectors YAP1 and TEAD4 are integrated with the atrial transcription factor enhancer network, and that YAP1 is necessary for activation of RA-enhancers in CPCs. Furthermore, in vivo analysis of control and conditionally YAP1 KO mouse embryos (Sox2-cre) revealed that the expression of atrial lineage genes, such as NR2F2, is compromised by YAP1 deletion in the CPCs of the second heart field. Accordingly, we found that YAP1 is required for the formation of an atrial chamber but is dispensable for the formation of a ventricle, in hESC-derived patterned cardiac organoids. Overall, our findings revealed that YAP1 is a non-canonical effector of RA signaling essential for the acquisition of atrial lineages during cardiogenesis.
Collapse
Affiliation(s)
- Elizabeth Abraham
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry M Cohen
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Aidan Douglas
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Alex Morris
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Eleonora Stronati
- Department of Child and Adolescence Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mikel Zubillaga
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - John W Elrod
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
| | - Conchi Estaras
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Xiong G, LeRoy NJ, Bekiranov S, Sheffield NC, Zhang A. DeepGSEA: explainable deep gene set enrichment analysis for single-cell transcriptomic data. Bioinformatics 2024; 40:btae434. [PMID: 38950178 PMCID: PMC11236288 DOI: 10.1093/bioinformatics/btae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
MOTIVATION Gene set enrichment (GSE) analysis allows for an interpretation of gene expression through pre-defined gene set databases and is a critical step in understanding different phenotypes. With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, GSE analysis can be performed on fine-grained gene expression data to gain a nuanced understanding of phenotypes of interest. However, with the cellular heterogeneity in single-cell gene profiles, current statistical GSE analysis methods sometimes fail to identify enriched gene sets. Meanwhile, deep learning has gained traction in applications like clustering and trajectory inference in single-cell studies due to its prowess in capturing complex data patterns. However, its use in GSE analysis remains limited, due to interpretability challenges. RESULTS In this paper, we present DeepGSEA, an explainable deep gene set enrichment analysis approach which leverages the expressiveness of interpretable, prototype-based neural networks to provide an in-depth analysis of GSE. DeepGSEA learns the ability to capture GSE information through our designed classification tasks, and significance tests can be performed on each gene set, enabling the identification of enriched sets. The underlying distribution of a gene set learned by DeepGSEA can be explicitly visualized using the encoded cell and cellular prototype embeddings. We demonstrate the performance of DeepGSEA over commonly used GSE analysis methods by examining their sensitivity and specificity with four simulation studies. In addition, we test our model on three real scRNA-seq datasets and illustrate the interpretability of DeepGSEA by showing how its results can be explained. AVAILABILITY AND IMPLEMENTATION https://github.com/Teddy-XiongGZ/DeepGSEA.
Collapse
Affiliation(s)
- Guangzhi Xiong
- Department of Computer Science, University of Virginia, Charlottesville, VA, 22904, United States
| | - Nathan J LeRoy
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22904, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, United States
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22904, United States
| | - Aidong Zhang
- Department of Computer Science, University of Virginia, Charlottesville, VA, 22904, United States
| |
Collapse
|
28
|
Nirgude S, Tichy ED, Liu Z, Pradieu RD, Byrne M, Gil De Gomez L, Mamou B, Bernt KM, Yang W, MacFarland S, Xie M, Kalish JM. Single-nucleus multiomic analysis of Beckwith-Wiedemann syndrome liver reveals PPARA signaling enrichment and metabolic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599077. [PMID: 38948745 PMCID: PMC11212859 DOI: 10.1101/2024.06.14.599077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS exhibit tissue overgrowth, as well as an increased risk of childhood neoplasms in the liver and kidney. To understand the impact of these 11p15 changes, specifically in the liver, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) to generate paired, cell-type-specific transcriptional and chromatin accessibility profiles of both BWS-liver and nonBWS-liver nontumorous tissue. Our integrated RNA+ATACseq multiomic approach uncovered hepatocyte-specific enrichment and activation of the peroxisome proliferator-activated receptor α (PPARA) - a liver metabolic regulator. To confirm our findings, we utilized a BWS-induced pluripotent stem cell (iPSC) model, where cells were differentiated into hepatocytes. Our data demonstrates the dysregulation of lipid metabolism in BWS-liver, which coincided with observed upregulation of PPARA during hepatocyte differentiation. BWS liver cells exhibited decreased neutral lipids and increased fatty acid β-oxidation, relative to controls. We also observed increased reactive oxygen species (ROS) byproducts in the form of peroxidated lipids in BWS hepatocytes, which coincided with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism.
Collapse
|
29
|
Wen Z, Wang L, Ma H, Li L, Wan L, Shi L, Li H, Chen H, Hao W, Song S, Xue Q, Wei Y, Li F, Xu J, Zhang S, Wong KW, Song Y. Integrated single-cell transcriptome and T cell receptor profiling reveals defects of T cell exhaustion in pulmonary tuberculosis. J Infect 2024; 88:106158. [PMID: 38642678 DOI: 10.1016/j.jinf.2024.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Tuberculosis-affected lungs with chronic inflammation harbor abundant immunosuppressive immune cells but the nature of such inflammation is unclear. Dysfunction in T cell exhaustion, while implicated in chronic inflammatory diseases, remains unexplored in tuberculosis. Given that immunotherapy targeting exhaustion checkpoints exacerbates tuberculosis, we speculate that T cell exhaustion is dysfunctional in tuberculosis. Using integrated single-cell RNA sequencing and T cell receptor profiling we reported defects in exhaustion responses within inflamed tuberculosis-affected lungs. Tuberculosis lungs demonstrated significantly reduced levels of exhausted CD8+ T cells and exhibited diminished expression of exhaustion-related transcripts among clonally expanded CD4+ and CD8+ T cells. Additionally, clonal expansion of CD4+ and CD8+ T cells bearing T cell receptors specific for CMV was observed. Expanded CD8+ T cells expressed the cytolytic marker GZMK. Hence, inflamed tuberculosis-affected lungs displayed dysfunction in T cell exhaustion. Our findings likely hold implications for understanding the reactivation of tuberculosis observed in patients undergoing immunotherapy targeting the exhaustion checkpoint.
Collapse
Affiliation(s)
- Zilu Wen
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leilei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Laiyi Wan
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Shi
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongwei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wentao Hao
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qinghua Xue
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yutong Wei
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Respiratory Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shulin Zhang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Tomimatsu K, Fujii T, Bise R, Hosoda K, Taniguchi Y, Ochiai H, Ohishi H, Ando K, Minami R, Tanaka K, Tachibana T, Mori S, Harada A, Maehara K, Nagasaki M, Uchida S, Kimura H, Narita M, Ohkawa Y. Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states. Nat Commun 2024; 15:3657. [PMID: 38719795 PMCID: PMC11078938 DOI: 10.1038/s41467-024-47989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cell states are regulated by the response of signaling pathways to receptor ligand-binding and intercellular interactions. High-resolution imaging has been attempted to explore the dynamics of these processes and, recently, multiplexed imaging has profiled cell states by achieving a comprehensive acquisition of spatial protein information from cells. However, the specificity of antibodies is still compromised when visualizing activated signals. Here, we develop Precise Emission Canceling Antibodies (PECAbs) that have cleavable fluorescent labeling. PECAbs enable high-specificity sequential imaging using hundreds of antibodies, allowing for reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system can serve as a comprehensive platform for analyzing complex cell processes.
Collapse
Affiliation(s)
- Kosuke Tomimatsu
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Ryoma Bise
- Department of Advanced Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | - Yosuke Taniguchi
- Department of Medicinal Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Hiroaki Ohishi
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Kanta Ando
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Ryoma Minami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Taro Tachibana
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, Osaka, 558-8585, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Seiichi Uchida
- Department of Advanced Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Center, University of Cambridge, Cambridge, CB2 0RE, UK
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan.
| |
Collapse
|
31
|
Smit V, de Mol J, Kleijn MNAB, Depuydt MAC, de Winther MPJ, Bot I, Kuiper J, Foks AC. Sexual dimorphism in atherosclerotic plaques of aged Ldlr -/- mice. Immun Ageing 2024; 21:27. [PMID: 38698438 PMCID: PMC11064395 DOI: 10.1186/s12979-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Atherosclerosis, the main underlying pathology of cardiovascular disease, is a chronic inflammatory disease characterized by lipid accumulation and immune cell responses in the vascular wall, resulting in plaque formation. It is well-known that atherosclerosis prevalence and manifestation vary by sex. However, sexual dimorphism in the immune landscape of atherosclerotic plaques has up to date not been studied at high-resolution. In this study, we investigated sex-specific differences in atherosclerosis development and the immunological landscape of aortas at single-cell level in aged Ldlr-/- mice. METHODS We compared plaque morphology between aged male and female chow diet-fed Ldlr-/- mice (22 months old) with histological analysis. Using single-cell RNA-sequencing and flow cytometry on CD45+ immune cells from aortas of aged Ldlr-/- mice, we explored the immune landscape in the atherosclerotic environment in males and females. RESULTS We show that plaque volume is comparable in aged male and female mice, and that plaques in aged female mice contain more collagen and cholesterol crystals, but less necrotic core and macrophage content compared to males. We reveal increased immune cell infiltration in female aortas and found that expression of pro-atherogenic markers and inflammatory signaling pathways was enriched in plaque immune cells of female mice. Particularly, female aortas show enhanced activation of B cells (Egr1, Cd83, Cd180), including age-associated B cells, in addition to an increased M1/M2 macrophage ratio, where Il1b+ M1-like macrophages display a more pro-inflammatory phenotype (Nlrp3, Cxcl2, Mmp9) compared to males. In contrast, increased numbers of age-associated Gzmk+CD8+ T cells, dendritic cells, and Trem2+ macrophages were observed in male aortas. CONCLUSIONS Altogether, our findings highlight that sex is a variable that contributes to immunological differences in the atherosclerotic plaque environment in mice and provide valuable insights for further preclinical studies into the impact of sex on the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Virginia Smit
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Jill de Mol
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Marie A C Depuydt
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ilze Bot
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Johan Kuiper
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Amanda C Foks
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
32
|
Piening A, Ebert E, Gottlieb C, Khojandi N, Kuehm LM, Hoft SG, Pyles KD, McCommis KS, DiPaolo RJ, Ferris ST, Alspach E, Teague RM. Obesity-related T cell dysfunction impairs immunosurveillance and increases cancer risk. Nat Commun 2024; 15:2835. [PMID: 38565540 PMCID: PMC10987624 DOI: 10.1038/s41467-024-47359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.
Collapse
Affiliation(s)
- Alexander Piening
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Emily Ebert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Carter Gottlieb
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Niloufar Khojandi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kelly D Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Stephen T Ferris
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
33
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Obare LM, Priest S, Ismael A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Vue Z, Neikirk K, Beasley H, Gabriel C, Temu T, Gianella S, Mallal S, Koethe JR, Hinton A, Bailin S, Wanjalla CN. Cytokine and Chemokine Receptor Profiles in Adipose Tissue Vasculature Unravel Endothelial Cell Responses in HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584280. [PMID: 38559150 PMCID: PMC10979923 DOI: 10.1101/2024.03.10.584280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anas Ismael
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, MA, USA
| | - Sara Gianella
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Simon Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Lei Y, Liang X, Sun Y, Yao T, Gong H, Chen Z, Gao Y, Wang H, Wang R, Huang Y, Yang T, Yu M, Liu L, Yi CX, Wu QF, Kong X, Xu X, Liu S, Zhang Z, Liu T. Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus. Cell Metab 2024; 36:438-453.e6. [PMID: 38325338 DOI: 10.1016/j.cmet.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.
Collapse
Affiliation(s)
- Ying Lei
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Xian Liang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yunong Sun
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Ting Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi 710063, China
| | - Hongyu Gong
- School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yunqi Huang
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Tao Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Miao Yu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Longqi Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxing Kong
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xun Xu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Shiping Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China; School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
36
|
Jeuken GS, Käll L. Pathway analysis through mutual information. Bioinformatics 2024; 40:btad776. [PMID: 38195928 PMCID: PMC10783954 DOI: 10.1093/bioinformatics/btad776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
MOTIVATION In pathway analysis, we aim to establish a connection between the activity of a particular biological pathway and a difference in phenotype. There are many available methods to perform pathway analysis, many of them rely on an upstream differential expression analysis, and many model the relations between the abundances of the analytes in a pathway as linear relationships. RESULTS Here, we propose a new method for pathway analysis, MIPath, that relies on information theoretical principles and, therefore, does not model the association between pathway activity and phenotype, resulting in relatively few assumptions. For this, we construct a graph of the data points for each pathway using a nearest-neighbor approach and score the association between the structure of this graph and the phenotype of these same samples using Mutual Information while adjusting for the effects of random chance in each score. The initial nearest neighbor approach evades individual gene-level comparisons, hence making the method scalable and less vulnerable to missing values. These properties make our method particularly useful for single-cell data. We benchmarked our method on several single-cell datasets, comparing it to established and new methods, and found that it produces robust, reproducible, and meaningful scores. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/statisticalbiotechnology/mipath, or through Python Package Index as "mipathway."
Collapse
Affiliation(s)
- Gustavo S Jeuken
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 171 65, Sweden
- Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Lukas Käll
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 171 65, Sweden
| |
Collapse
|
37
|
Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, Wei L, Shen S, Feng Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer 2023; 22:170. [PMID: 37833788 PMCID: PMC10571470 DOI: 10.1186/s12943-023-01876-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population that plays a crucial role in remodeling the tumor microenvironment (TME). Here, through the integrated analysis of spatial and single-cell transcriptomics data across six common cancer types, we identified four distinct functional subgroups of CAFs and described their spatial distribution characteristics. Additionally, the analysis of single-cell RNA sequencing (scRNA-seq) data from three additional common cancer types and two newly generated scRNA-seq datasets of rare cancer types, namely epithelial-myoepithelial carcinoma (EMC) and mucoepidermoid carcinoma (MEC), expanded our understanding of CAF heterogeneity. Cell-cell interaction analysis conducted within the spatial context highlighted the pivotal roles of matrix CAFs (mCAFs) in tumor angiogenesis and inflammatory CAFs (iCAFs) in shaping the immunosuppressive microenvironment. In patients with breast cancer (BRCA) undergoing anti-PD-1 immunotherapy, iCAFs demonstrated heightened capacity in facilitating cancer cell proliferation, promoting epithelial-mesenchymal transition (EMT), and contributing to the establishment of an immunosuppressive microenvironment. Furthermore, a scoring system based on iCAFs showed a significant correlation with immune therapy response in melanoma patients. Lastly, we provided a web interface ( https://chenxisd.shinyapps.io/pancaf/ ) for the research community to investigate CAFs in the context of pan-cancer.
Collapse
Affiliation(s)
- Chenxi Ma
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Ai Peng
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Tianyong Sun
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Xiaoli Ji
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Jinan, Shandong, China
| | - Jun Mi
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Li Wei
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Song Shen
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Qiang Feng
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
38
|
Nishide M, Nishimura K, Matsushita H, Edahiro R, Inukai S, Shimagami H, Kawada S, Kato Y, Kawasaki T, Tsujimoto K, Kamon H, Omiya R, Okada Y, Hattori K, Narazaki M, Kumanogoh A. Single-cell multi-omics analysis identifies two distinct phenotypes of newly-onset microscopic polyangiitis. Nat Commun 2023; 14:5789. [PMID: 37821442 PMCID: PMC10567716 DOI: 10.1038/s41467-023-41328-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
The immunological basis of the clinical heterogeneity in autoimmune vasculitis remains poorly understood. In this study, we conduct single-cell transcriptome analyses on peripheral blood mononuclear cells (PBMCs) from newly-onset patients with microscopic polyangiitis (MPA). Increased proportions of activated CD14+ monocytes and CD14+ monocytes expressing interferon signature genes (ISGs) are distinctive features of MPA. Patient-specific analysis further classifies MPA into two groups. The MPA-MONO group is characterized by a high proportion of activated CD14+ monocytes, which persist before and after immunosuppressive therapy. These patients are clinically defined by increased monocyte ratio in the total PBMC count and have a high relapse rate. The MPA-IFN group is characterized by a high proportion of ISG+ CD14+ monocytes. These patients are clinically defined by high serum interferon-alpha concentrations and show good response to immunosuppressive therapy. Our findings identify the immunological phenotypes of MPA and provide clinical insights for personalized treatment and accurate prognostic prediction.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kei Nishimura
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Hiroaki Matsushita
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sachi Inukai
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shoji Kawada
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hokuto Kamon
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Ryusuke Omiya
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Statistical Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kunihiro Hattori
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
39
|
Allard-Chamard H, Li Q, Rahman P. Emerging Concepts in Precision Medicine in Axial Spondyloarthritis. Curr Rheumatol Rep 2023; 25:204-212. [PMID: 37505349 DOI: 10.1007/s11926-023-01113-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW Axial spondyloarthritis (AxSpA) is among the rheumatology's most heritable complex diseases, yet precision medicine at clinics still needs to be explored. We reviewed the emerging concepts and recent developments in polygenic risk scores, Mendelian randomization, pharmacogenomics, single-cell sequencing, and spatial transcriptomics. RECENT FINDINGS Polygenic risk score has resulted in encouraging results with potential diagnostic utility as it appears to outperform current diagnostic tools. Its performance and generalizability vary with ethnicity. Mendelian randomization has elucidated multiple causal associations, particularly between inflammatory bowel disease and AxSpA. Single-cell transcriptomics (particularly scRNA-seq and scATAC-seq) has identified numerous cell types, including synovial and blood immunological cells, to understand the contribution of both innate and adaptative immunity in AxSpA. Current molecular tools provide an exciting opportunity to advance precision medicine for AxSpA patients. However, extensive research and implementation strategies are still required before they can have an impact in the clinic.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Faculté de Médecine Et Des Sciences de La Santé de L'Université de Sherbrooke Et Centre de Recherche du CHUS, Sherbrooke, QC, J1K 2R1, Canada
| | - Quan Li
- Department of Medicine, Memorial University, St. John's, NL, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Proton Rahman
- Department of Medicine, Division of Rheumatology, Memorial University of Newfoundland, 154 LeMarchant Rd, St. John's, Newfoundland, A1C-5B8, Canada.
| |
Collapse
|
40
|
Li H, Liu H, Liu Y, Wang X, Yu S, Huang H, Shen X, Zhang Q, Hong N, Jin W. Exploring the dynamics and influencing factors of CD4 T cell activation using single-cell RNA-seq. iScience 2023; 26:107588. [PMID: 37646019 PMCID: PMC10460988 DOI: 10.1016/j.isci.2023.107588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
T cell activation is a key event in adaptive immunity. However, the dynamics and influencing factors of T cell activation remain unclear. Here, we analyzed CD4 T cells that were stimulated with anti-CD3/CD28 under several conditions to explore the factors affecting T cell activation. We found a stimulated T subset (HSPhi T) highly expressing heat shock proteins, which was derived from stimulated naive T. We identified and characterized inert T, a stimulated T cell subset in transitional state from resting T to activated T. Interestingly, resting CXCR4low T responded to stimulation more efficiently than resting CXCR4hi T. Furthermore, stimulation of CD4 T in the presence of CD8 T resulted in more effector T and more homogeneous expressions of CD25, supporting that presence of CD8 T reduces the extreme response of T cells, which can be explained by regulation of CD4 T activation through CD8 T-initiated cytokine signaling and FAS/FASLG signaling.
Collapse
Affiliation(s)
- Hui Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyi Liu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifei Liu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuefei Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiya Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwen Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangru Shen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ni Hong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
41
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, Samuel D, Arora RK, Matthews TW, Chandarana S, Hart R, Dort JC, Biernaskie J, Neri P, Hyrcza MD, Bose P. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun 2023; 14:5029. [PMID: 37596273 PMCID: PMC10439131 DOI: 10.1038/s41467-023-40271-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is conserved across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Additionally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases ( http://www.pboselab.ca/spatial_OSCC/ ; http://www.pboselab.ca/dynamo_OSCC/ ) that can be foundational for developing novel targeted therapies.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christian Cao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehul Kumar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ayan Chanda
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reid McNeil
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Divya Samuel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahul K Arora
- Center for Health Informatics, University of Calgary, Calgary, AB, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - T Wayne Matthews
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Hart
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph C Dort
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Martin D Hyrcza
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
43
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
44
|
Strati P, Li X, Deng Q, Marques-Piubelli ML, Henderson J, Watson G, Deaton L, Cain T, Yang H, Ravanmehr V, Fayad LE, Iyer SP, Nastoupil LJ, Hagemeister FB, Parra ER, Saini N, Takahashi K, Fowler NH, Westin JR, Steiner RE, Nair R, Flowers CR, Wang L, Ahmed S, Al-Atrash G, Vega F, Neelapu SS, Green MR. Prolonged cytopenia following CD19 CAR T cell therapy is linked with bone marrow infiltration of clonally expanded IFNγ-expressing CD8 T cells. Cell Rep Med 2023; 4:101158. [PMID: 37586321 PMCID: PMC10439270 DOI: 10.1016/j.xcrm.2023.101158] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Autologous anti-CD19 chimeric antigen receptor T cell (CAR T) therapy is highly effective in relapsed/refractory large B cell lymphoma (rrLBCL) but is associated with toxicities that delay recovery. While the biological mechanisms of cytokine release syndrome and neurotoxicity have been investigated, the pathophysiology is poorly understood for prolonged cytopenia, defined as grade ≥3 cytopenia lasting beyond 30 days after CAR T infusion. We performed single-cell RNA sequencing of bone marrow samples from healthy donors and rrLBCL patients with or without prolonged cytopenia and identified significantly increased frequencies of clonally expanded CX3CR1hi cytotoxic T cells, expressing high interferon (IFN)-γ and cytokine signaling gene sets, associated with prolonged cytopenia. In line with this, we found that hematopoietic stem cells from these patients expressed IFN-γ response signatures. IFN-γ deregulates hematopoietic stem cell self-renewal and differentiation and can be targeted with thrombopoietin agonists or IFN-γ-neutralizing antibodies, highlighting a potential mechanism-based approach for the treatment of CAR T-associated prolonged cytopenia.
Collapse
Affiliation(s)
- Paolo Strati
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xubin Li
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Deng
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario L Marques-Piubelli
- Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Henderson
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Watson
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurel Deaton
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taylor Cain
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vida Ravanmehr
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis E Fayad
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loretta J Nastoupil
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick B Hagemeister
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeraj Saini
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan H Fowler
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael E Steiner
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranjit Nair
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
46
|
Yazicioglu YF, Marin E, Sandhu C, Galiani S, Raza IGA, Ali M, Kronsteiner B, Compeer EB, Attar M, Dunachie SJ, Dustin ML, Clarke AJ. Dynamic mitochondrial transcription and translation in B cells control germinal center entry and lymphomagenesis. Nat Immunol 2023; 24:991-1006. [PMID: 37095377 PMCID: PMC10232359 DOI: 10.1038/s41590-023-01484-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023]
Abstract
Germinal center (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor A, mitochondrial (TFAM). TFAM, while also necessary for normal B cell development, is required for entry of activated GC precursor B cells into the germinal center reaction; deletion of Tfam significantly impairs GC formation, function and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signaling, leading to their spatial disorganization. We show that B cell lymphoma substantially increases mitochondrial translation and that deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic mouse model. Finally, we show that pharmacological inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells and induces similar defects in the actin cytoskeleton.
Collapse
Affiliation(s)
| | - Eros Marin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ciaran Sandhu
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Silvia Galiani
- Medical Research Centre Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
47
|
Chen F, Yang J, Guo Y, Su D, Sheng Y, Wu Y. Integrating bulk and single-cell RNA sequencing data reveals the relationship between intratumor microbiome signature and host metabolic heterogeneity in breast cancer. Front Immunol 2023; 14:1140995. [PMID: 36999009 PMCID: PMC10049788 DOI: 10.3389/fimmu.2023.1140995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionNowadays, it has been recognized that gut microbiome can indirectly modulate cancer susceptibility or progression. However, whether intratumor microbes are parasitic, symbiotic, or merely bystanders in breast cancer is not fully understood. Microbial metabolite plays a pivotal role in the interaction of host and microbe via regulating mitochondrial and other metabolic pathways. And the relationship between tumor-resident microbiota and cancer metabolism remains an open question.Methods1085 breast cancer patients with normalized intratumor microbial abundance data and 32 single-cell RNA sequencing samples were retrieved from public datasets. We used the gene set variation analysis to evaluate the various metabolic activities of breast cancer samples. Furthermore, we applied Scissor method to identify microbe-associated cell subpopulations from single-cell data. Then, we conducted comprehensive bioinformatic analyses to explore the association between host and microbe in breast cancer.ResultsHere, we found that the metabolic status of breast cancer cells was highly plastic, and some microbial genera were significantly correlated with cancer metabolic activity. We identified two distinct clusters based on microbial abundance and tumor metabolism data. And dysregulation of the metabolic pathway was observed among different cell types. Metabolism-related microbial scores were calculated to predict overall survival in patients with breast cancer. Furthermore, the microbial abundance of the specific genus was associated with gene mutation due to possible microbe-mediated mutagenesis. The infiltrating immune cell compositions, including regulatory T cells and activated NK cells, were significantly associated with the metabolism-related intratumor microbes, as indicated in the Mantel test analysis. Moreover, the mammary metabolism-related microbes were related to T cell exclusion and response to immunotherapy.ConclusionsOverall, the exploratory study shed light on the potential role of the metabolism-related microbiome in breast cancer patients. And the novel treatment will be realized by further investigating the metabolic disturbance in host and intratumor microbial cells.
Collapse
Affiliation(s)
- Fangyue Chen
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Jun Yang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Youxiang Guo
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Dongwei Su
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yuan Sheng
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
- *Correspondence: Yuan Sheng, ; Yanmei Wu,
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
- *Correspondence: Yuan Sheng, ; Yanmei Wu,
| |
Collapse
|