1
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
2
|
Ng QX, Yau CE, Yaow CYL, Chong RIH, Chong NZY, Teoh SE, Lim YL, Soh AYS, Ng WK, Thumboo J. What Has Longitudinal 'Omics' Studies Taught Us about Irritable Bowel Syndrome? A Systematic Review. Metabolites 2023; 13:484. [PMID: 37110143 PMCID: PMC10142038 DOI: 10.3390/metabo13040484] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Irritable bowel syndrome is a prototypical disorder of the brain-gut-microbiome axis, although the underlying pathogenesis and mechanisms remain incompletely understood. With the recent advances in 'omics' technologies, studies have attempted to uncover IBS-specific variations in the host-microbiome profile and function. However, no biomarker has been identified to date. Given the high inter-individual and day-to-day variability of the gut microbiota, and a lack of agreement across the large number of microbiome studies, this review focused on omics studies that had sampling at more than one time point. A systematic literature search was performed using various combinations of the search terms "Irritable Bowel Syndrome" and "Omics" in the Medline, EMBASE, and Cochrane Library up to 1 December 2022. A total of 16 original studies were reviewed. These multi-omics studies have implicated Bacteroides, Faecalibacterium prausnitzii, Ruminococcus spp., and Bifidobacteria in IBS and treatment response, found altered metabolite profiles in serum, faecal, or urinary samples taken from IBS patients compared to the healthy controls, and revealed enrichment in the immune and inflammation-related pathways. They also demonstrated the possible therapeutic mechanisms of diet interventions, for example, synbiotics and low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol (FODMAP) diets on microbial metabolites. However, there was significant heterogeneity among the studies and no uniform characteristics of IBS-related gut microbiota. There is a need to further study these putative mechanisms and also ensure that they can be translated to therapeutic benefits for patients with IBS.
Collapse
Affiliation(s)
- Qin Xiang Ng
- Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore
| | - Chun En Yau
- NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | | | | | | | - Seth En Teoh
- NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Yu Liang Lim
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Alex Yu Sen Soh
- Department of Medicine, Alexandra Hospital, National University Health System, 378 Alexandra Road, Singapore 159964, Singapore
| | - Wee Khoon Ng
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Julian Thumboo
- Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Sun Z, Wang X, Feng S, Xie C, Xing Y, Guo L, Zhao J, Ji C. A review of neuroendocrine immune system abnormalities in IBS based on the brain–gut axis and research progress of acupuncture intervention. Front Neurosci 2023; 17:934341. [PMID: 36968497 PMCID: PMC10034060 DOI: 10.3389/fnins.2023.934341] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common digestive disorder observed in clinics. Current studies suggest that the pathogenesis of the disease is closely related to abnormal brain–gut interactions, hypokinesia, visceral sensory hypersensitivity in the gastrointestinal tract, and alterations in the intestinal microenvironment. However, it is difficult for a single factor to explain the heterogeneity of symptoms. The Rome IV criteria emphasized the holistic biologic-psycho-social model of IBS, suggesting that symptoms of the disease are closely related to neurogastroenterology and various abnormalities in brain–gut interaction. This study comprehensively reviewed the relationship between the brain–gut axis and IBS, the structure of the brain–gut axis, and the relationship between the brain–gut axis and intestinal microenvironment, and discussed the relationship between the abnormal regulation of the nervous system, endocrine system, and immune system and the incidence of IBS on the basis of brain–gut axis. In terms of treatment, acupuncture therapy can regulate the neuroendocrine-immune system of the body and improve the intestinal microenvironment, and it has the advantages of safety, economy, and effectiveness. We study the pathogenesis of IBS from local to global and micro to macro, and review the use of acupuncture to treat the disease as a whole so as to provide new ideas for the treatment of the disease.
Collapse
Affiliation(s)
- Zhangyin Sun
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Xuejiao Wang
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Shangsheng Feng
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chaoju Xie
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yu Xing
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Liang Guo
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jingyu Zhao
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
- *Correspondence: Jingyu Zhao
| | - Changchun Ji
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
- Department of Acupuncture and Moxibustion, Shaanxi Provincial Institute of Traditional Chinese Medicine, Xi'an, China
- Changchun Ji
| |
Collapse
|
4
|
Grozić A, Coker K, Dussik CM, Sabir MS, Sabir Z, Bradley A, Zhang L, Park J, Yale S, Kaneko I, Hockley M, Harris LA, Lunsford TN, Sandrin TR, Jurutka PW. Identification of putative transcriptomic biomarkers in irritable bowel syndrome (IBS): Differential gene expression and regulation of TPH1 and SERT by vitamin D. PLoS One 2022; 17:e0275683. [PMID: 36264926 PMCID: PMC9584396 DOI: 10.1371/journal.pone.0275683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and affects approximately 4% of the global population. The diagnosis of IBS can be made based on symptoms using the validated Rome criteria and ruling out commonly occurring organic diseases. Although biomarkers exist for "IBS mimickers" such as celiac disease and inflammatory bowel disease (IBD), no such test exists for IBS. DNA microarrays of colonic tissue have been used to identify disease-associated variants in other gastrointestinal (GI) disorders. In this study, our objective was to identify biomarkers and unique gene expression patterns that may define the pathological state of IBS. Mucosal tissue samples were collected from the sigmoid colon of 29 participants (11 IBS and 18 healthy controls). DNA microarray analysis was used to assess gene expression profiling. Extraction and purification of RNA were then performed and used to synthesize cDNA. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was employed to identify differentially expressed genes in patients diagnosed with IBS compared to healthy, non-IBS patient-derived cDNA. Additional testing probed vitamin D-mediated regulation of select genes associated with serotonergic metabolism. DNA microarray analyses led to the identification of 858 differentially expressed genes that may characterize the IBS pathological state. After screening a series of genes using a combination of gene ontological analysis and RT-qPCR, this spectrum of potential IBS biomarkers was narrowed to 23 genes, some of which are regulated by vitamin D. Seven putative IBS biomarkers, including genes involved in serotonin metabolism, were identified. This work further supports the hypothesis that IBS pathophysiology is evident within the human transcriptome and that vitamin D modulates differential expression of genes in IBS patients. This suggests that IBS pathophysiology may also involve vitamin D deficiency and/or an irregularity in serotonin metabolism.
Collapse
Affiliation(s)
- Aleksandra Grozić
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Keaton Coker
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Christopher M. Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Marya S. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Zhela Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Arianna Bradley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Jin Park
- Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Steven Yale
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, United States of America
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States of America
| | - Maryam Hockley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Lucinda A. Harris
- Mayo Clinic Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Tisha N. Lunsford
- Mayo Clinic Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, United States of America
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States of America
- * E-mail:
| |
Collapse
|
5
|
Fan W, Fang X, Hu C, Fei G, Xiao Q, Li Y, Li X, Wood JD, Zhang X. Multiple rather than specific autoantibodies were identified in irritable bowel syndrome with HuProt™ proteome microarray. Front Physiol 2022; 13:1010069. [PMID: 36262261 PMCID: PMC9573966 DOI: 10.3389/fphys.2022.1010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Immune activation and several autoantibodies might be involved in the pathophysiology of irritable bowel syndrome (IBS). We aimed to identify serum biomarkers for IBS by HuProt™ microarray. IBS patients met Rome III criteria were enrolled. Control groups included healthy controls (HCs) and disease controls (DCs). In stage I, we profiled sera from IBS and control groups with HuProt™ microarrays. Based on significant different proteins in stage I, IBS focused microarrays were constructed and validated in a larger cohort in stage II, then decision tree models were generated to establish a combination of biomarkers. In stage III, 4 purified proteins were verified by ELISA. Finally, we analyzed the correlation of autoantibodies with symptoms. In stage I, we identified 47 significant different proteins including 8 autoantibodies of IgG, 2 of IgA between IBS and HCs; 13 autoantibodies of IgG, 13 of IgA between IBS and DCs. In stage II, we found the positive rates of 14 IgG and IgA autoantibodies in IBS were significantly higher than HCs. Five autoantibodies of IgG and 7 IgA were comprehensively involved in differentiating IBS and HCs with the sensitivity and specificity to diagnose IBS as 40%–46.7% and 79.4%–86.3%. The median optical density value of ELAVL4 (IgG) and PIGP (IgA) were significantly higher in IBS than HCs. Parts of autoantibodies above were related to IBS symptoms. We found a combination of autoantibodies to differentiate IBS with HCs, but no specific autoantibodies could serve as serum biomarkers for IBS.
Collapse
Affiliation(s)
- Wenjuan Fan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiucai Fang,
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guijun Fei
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyun Xiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology and Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jackie D. Wood
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Camilleri M, Magnus Y, Carlson P, Wang XJ, Chedid V, Maselli D, Taylor A, McKinzie S, Kengunte Nagaraj N, Busciglio I, Nair A. Differential mRNA expression in ileal and colonic biopsies in irritable bowel syndrome with diarrhea or constipation. Am J Physiol Gastrointest Liver Physiol 2022; 323:G88-G101. [PMID: 35502856 PMCID: PMC9291427 DOI: 10.1152/ajpgi.00063.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Altered mucosal functions are documented in jejunal or colorectal mucosa from patients with irritable bowel syndrome (IBS). Our aim was to quantify ileal, ascending, and rectosigmoid colon mucosal expression of genes in IBS-diarrhea (D) and IBS-constipation (C). Forty-four patients with IBS-D, 30 with IBS-C, and 30 healthy volunteers underwent colonoscopic ileal, ascending, and rectosigmoid colon biopsies. Biopsies were stored in RNAlater at -80 °C, purified with on-column DNase, cDNA libraries prepared from 100-200 ng of total RNA, sequenced on Illumina NovaSeq 6000, and analyzed on Illumina's RTA version 3.4.4. Normalized mRNA expression was obtained using MAP-RSeq bioinformatics pipeline. Differential expressions in the groups (Log2-fold change) were measured using the bioinformatics package edgeR 2.6.2, corrected for false discovery rate (PADJ <0.05). There were 30 females with IBS-C and 31 females and 13 males with IBS-D. In IBS-D and IBS-C groups, there were differential expressions of 181 genes in ascending colon and 199 genes in rectosigmoid colon. The majority were gene upregulations in IBS-D with functions reflecting activation of inflammation genes, TRPV1 (visceral hypersensitivity) and neurotransmitters/receptors (specifically purinergic, GABA, and cannabinoid). Although gene differential expressions in the ascending and rectosigmoid colon mucosa of the two groups were different, the diverse upregulated genes involved immune functions, receptors, transmitters, ion channels, and transporters. Conversely, there was reduced expression of PI15 and PI16 genes that inhibit proteases. In patients with IBS-D and IBS-C, differential expressions of genes related to immune, transmitter, nociceptive, protease inhibition, channel, and transporter functions suggest opportunities to reverse the pathobiology and treat patients with IBS.NEW & NOTEWORTHY This study compares gene expression in mucosa of the terminal ileum, right colon, and left colon in patients with diarrhea- or constipation-predominant irritable bowel syndrome (IBS) and contrasts expression between these two disease entities and also between each entity and mucosa from healthy controls. The study shows there is differential expression of genes related to immune, transmitter, nociceptive, ion channel, and transporter functions, as well as reduced serine protease inhibition, in patients with IBS.
Collapse
Affiliation(s)
- Michael Camilleri
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Yorick Magnus
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Paula Carlson
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Xiao Jing Wang
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Victor Chedid
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Daniel Maselli
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Ann Taylor
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Sanna McKinzie
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | | | - Irene Busciglio
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Asha Nair
- 2Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Mucosal Plasma Cell Activation and Proximity to Nerve Fibres Are Associated with Glycocalyx Reduction in Diarrhoea-Predominant Irritable Bowel Syndrome: Jejunal Barrier Alterations Underlying Clinical Manifestations. Cells 2022; 11:cells11132046. [PMID: 35805133 PMCID: PMC9265332 DOI: 10.3390/cells11132046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a disorder of brain-gut interaction characterised by abdominal pain and changes in bowel habits. In the diarrhoea subtype (IBS-D), altered epithelial barrier and mucosal immune activation are associated with clinical manifestations. We aimed to further evaluate plasma cells and epithelial integrity to gain understanding of IBS-D pathophysiology. One mucosal jejunal biopsy and one stool sample were obtained from healthy controls and IBS-D patients. Gastrointestinal symptoms, stress, and depression scores were recorded. In the jejunal mucosa, RNAseq and gene set enrichment analyses were performed. A morphometric analysis by electron microscopy quantified plasma cell activation and proximity to enteric nerves and glycocalyx thickness. Immunoglobulins concentration was assessed in the stool. IBS-D patients showed differential expression of humoral pathways compared to controls. Activation and proximity of plasma cells to nerves and IgG concentration were also higher in IBS-D. Glycocalyx thickness was lower in IBS-D compared to controls, and this reduction correlated with plasma cell activation, proximity to nerves, and clinical symptoms. These results support humoral activity and loss of epithelial integrity as important contributors to gut dysfunction and clinical manifestations in IBS-D. Additional studies are needed to identify the triggers of these alterations to better define IBS-D pathophysiology.
Collapse
|
8
|
Expression of TRP Channels in Colonic Mucosa of IBS-D Patients and Its Correlation with the Severity of the Disease. Gastroenterol Res Pract 2022; 2022:7294775. [PMID: 35677724 PMCID: PMC9168202 DOI: 10.1155/2022/7294775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Lots of researches have endeavored to elucidate the pathogenetic mechanism of visceral hypersensitivity in order to guide the therapy of diarrhea predominant-irritable bowel syndrome (IBS-D). Transient receptor potential (TRP) channels and their role in visceral nociception have been vastly investigated. We investigated the expression of TRP channels in IBS-D colonic biopsies and its correlation with the severity of the disease. Methods Sigmoid biopsies were obtained from 34 IBS-D patients and 28 healthy controls (HCs). IBS-D was diagnosed according to Rome IV criteria. Their clinical parameters were assessed through questionnaires. Expression of TRPV1, TRPV4, TRPA1, TRPM2, and TRPM8 was evaluated with immunohistology staining. Results Expression levels of TRPV1, TRPV4, and TRPA1 in the colonic mucosa of IBS-D patients were significantly higher than those in HCs (p < 0.05), while there was no obvious difference of TRPM2 and TRPM8 expression between IBS-D patients and HCs. In addition, the expression levels of TRPV1 and TRPA1, but TRPV4, in the colonic mucosa correlated positively with the severity of diseases (r = 0.6303 and 0.4506, respectively, p < 0.05). Conclusions Expression of TRPV1, TRPA1, and TRPV4 in the colonic mucosa was enhanced in IBS-D patients compared with HCs with the former two correlated with the severity of the disease. TRP channels might be promising biomarkers in the diagnosis and estimate of the severity in IBS-D.
Collapse
|
9
|
Kumar S, Singh P, Kumar A. Targeted therapy of irritable bowel syndrome with anti-inflammatory cytokines. Clin J Gastroenterol 2022; 15:1-10. [PMID: 34862947 PMCID: PMC8858303 DOI: 10.1007/s12328-021-01555-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a multifactorial disease of which infection, as well as inflammation, has recently been considered as an important cause. Inflammation works as a potential pathway for the pathogenesis of IBS. In this review, we have discussed the targeted therapy of IBS. We used the search term "inflammation in IBS" and "proinflammatory" and "antiinflammatory cytokines and IBS" using PubMed, MEDLINE, and Google Scholar. The literature search included only articles written in the English language. We have also reviewed currently available anti-inflammatory treatment and future perspectives. Cytokine imbalance in the systematic circulation and the intestinal mucosa may also characterize IBS presentation. Imbalances of pro-and anti-inflammatory cytokines and polymorphisms in cytokine genes have been reported in IBS. The story of targeted therapy of IBS with anti-inflammatory cytokines is far from complete and it seems that it has only just begun. This review describes the key issues related to pro-inflammatory cytokines associated with IBS, molecular regulation of immune response in IBS, inhibitors of pro-inflammatory cytokines in IBS, and clinical perspectives of pro- and anti-inflammatory cytokines in IBS.
Collapse
Affiliation(s)
- Sunil Kumar
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, 225003, Uttar Pradesh, India.
| | - Priyanka Singh
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
10
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fecal Microbiota Transplantation Increases Colonic IL-25 and Dampens Tissue Inflammation in Patients with Recurrent Clostridioides difficile. mSphere 2021; 6:e0066921. [PMID: 34704776 PMCID: PMC8550158 DOI: 10.1128/msphere.00669-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the most common hospital-acquired infection in the United States. Antibiotic-induced dysbiosis is the primary cause of susceptibility, and fecal microbiota transplantation (FMT) has emerged as an effective therapy for recurrence. We previously demonstrated in the mouse model of CDI that antibiotic-induced dysbiosis reduced colonic expression of interleukin 25 (IL-25) and that FMT protected in part by restoring IL-25 signaling. Here, we conducted a prospective study in humans to test if FMT induced IL-25 expression in the colons of patients with recurrent CDI (rCDI). Colonic biopsy specimens and blood were collected at the time of FMT and 60 days later. Colon biopsy specimens were analyzed for IL-25 protein levels, total tissue transcriptome, and epithelium-associated microbiota before and after FMT, and peripheral immune cells were immunophenotyped. FMT increased alpha diversity of the colonic microbiota and levels of IL-25 in colonic tissue. In addition, FMT increased expression of homeostatic genes and repressed inflammatory genes. Finally, circulating Th17 cells were decreased post-FMT. The increase in levels of the cytokine IL-25 accompanied by decreased inflammation is consistent with FMT acting in part to protect from recurrent CDI via restoration of commensal activation of type 2 immunity. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for C. difficile infection for most patients; however, introducing a complex mixture of microbes also has had unintended consequences for some patients. Attempts to create a standardized probiotic therapeutic that recapitulates the efficacy of FMT have been unsuccessful to date. We sought to understand what immune markers are changed in patients undergoing FMT to treat recurrent C. difficile infection and identified an immune signaling molecule, IL-25, that was restored by FMT. This finding indicates that adjunctive therapy with IL-25 could be useful in treating C. difficile infection.
Collapse
|
12
|
Gottfried-Blackmore A, Namkoong H, Adler E, Martin B, Gubatan J, Fernandez-Becker N, Clarke JO, Idoyaga J, Nguyen L, Habtezion A. Gastric Mucosal Immune Profiling and Dysregulation in Idiopathic Gastroparesis. Clin Transl Gastroenterol 2021; 12:e00349. [PMID: 33979305 PMCID: PMC8132986 DOI: 10.14309/ctg.0000000000000349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION It is unclear how immune perturbations may influence the pathogenesis of idiopathic gastroparesis, a prevalent functional disorder of the stomach which lacks animal models. Several studies have noted altered immune characteristics in the deep gastric muscle layer associated with gastroparesis, but data are lacking for the mucosal layer, which is endoscopically accessible. We hypothesized that immune dysregulation is present in the gastroduodenal mucosa in idiopathic gastroparesis and that specific immune profiles are associated with gastroparesis clinical parameters. METHODS In this cross-sectional prospective case-control study, routine endoscopic biopsies were used for comprehensive immune profiling by flow cytometry, multicytokine array, and gene expression in 3 segments of the stomach and the duodenal bulb. Associations of immune endpoints with clinical parameters of gastroparesis were also explored. RESULTS The gastric mucosa displayed large regional variation of distinct immune profiles. Furthermore, several-fold increases in innate and adaptive immune cells were found in gastroparesis. Various immune cell types showed positive correlations with duration of disease, proton pump inhibitor dosing, and delayed gastric emptying. DISCUSSION This initial observational study showed immune compartmentalization of the human stomach mucosa and significant immune dysregulation at the level of leukocyte infiltration in idiopathic gastroparesis patients that extends to the duodenum. Select immune cells, such as macrophages, may correlate with clinicopathological traits of gastroparesis. This work supports further mucosal studies to advance our understanding of gastroparesis pathophysiology.
Collapse
Affiliation(s)
| | - Hong Namkoong
- Division of Gastroenterology and Hepatology,
Department of Medicine, Stanford University, Stanford, USA
| | - Emerald Adler
- Northwestern University Feinberg School of Medicine,
Division of Gastroenterology and Hepatology, Chicago, Illinois, USA
| | - Brock Martin
- Department of Pathology, Stanford University,
Stanford, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology,
Department of Medicine, Stanford University, Stanford, USA
| | - Nielsen Fernandez-Becker
- Division of Gastroenterology and Hepatology,
Department of Medicine, Stanford University, Stanford, USA
| | - John O. Clarke
- Division of Gastroenterology and Hepatology,
Department of Medicine, Stanford University, Stanford, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, USA
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology,
Department of Medicine, Stanford University, Stanford, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology,
Department of Medicine, Stanford University, Stanford, USA
| |
Collapse
|
13
|
Wang XJ, Carlson P, Chedid V, Maselli DB, Taylor AL, McKinzie S, Camilleri M. Differential mRNA Expression in Ileal Mucosal Biopsies of Patients With Diarrhea- or Constipation-Predominant Irritable Bowel Syndrome. Clin Transl Gastroenterol 2021; 12:e00329. [PMID: 33843785 PMCID: PMC8043738 DOI: 10.14309/ctg.0000000000000329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Previous studies in patients with irritable bowel syndrome (IBS) showed immune activation, secretion, and barrier dysfunction in duodenal, jejunal, or colorectal mucosa. This study aimed to measure ileal mucosal expression of genes and proteins associated with mucosal functions. METHODS We measured by reverse transcription polymerase chain reaction messenger RNA (mRNA) expression of 78 genes (reflecting tight junction proteins, chemokines, innate immunity, ion channels, and transmitters) and 5 proteins (barrier, bile acid receptor, and ion exchanger) in terminal ileal mucosa from 11 patients with IBS-diarrhea (IBS-D), 17 patients with IBS-constipation (IBS-C), and 14 healthy controls. Fold changes in mRNA were calculated using 2(-Δ, ΔCT) formula. Group differences were measured using analysis of variance. Protein ratios relative to healthy controls were based on Western blot analysis. Nominal P values (P < 0.05) are reported. RESULTS In ileal mucosal biopsies, significant differences of mRNA expression in IBS-D relative to IBS-C were upregulation of barrier proteins (TJP1, FN1, CLDN1, and CLDN12), repair function (TFF1), and cellular functions. In ileal mucosal biopsies, mRNA expression in IBS-C relative to healthy controls was reduced GPBAR1 receptor, myosin light chain kinase (MYLK in barrier function), and innate immunity (TLR3), but increased mRNA expression of cadherin cell adhesion mechanisms (CTNNB1) and transport genes SLC9A1 (Na-H exchanger [NHE1]) and INADL (indirect effect on ion transport). DISCUSSION These data support a role of ileal mucosal dysfunction in IBS, including barrier dysfunction in IBS-D and alterations in absorption/secretion mechanisms in IBS-C.
Collapse
Affiliation(s)
- Xiao Jing Wang
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Victor Chedid
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel B. Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Ann L. Taylor
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Sanna McKinzie
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Matsunaga Y, Clark T, Wanek AG, Bitoun JP, Gong Q, Good M, Kolls JK. Intestinal IL-17R Signaling Controls Secretory IgA and Oxidase Balance in Citrobacter rodentium Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:766-775. [PMID: 33431657 DOI: 10.4049/jimmunol.2000591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023]
Abstract
Type 17 cytokines have been strongly implicated in mucosal immunity, in part by regulating the production of antimicrobial peptides. Using a mouse model of Citrobacter rodentium infection, which causes colitis, we found that intestinal IL-17RA and IL-17RC were partially required for control of infection in the colon and IL-17 regulates the production of luminal hydrogen peroxide as well as expression of Tnsf13 Reduced Tnfsf13 expression was associated with a profound defect in generating C. rodentium-specific IgA+ Ab-secreting cells. Taken together, intestinal IL-17R signaling plays key roles in controlling invading pathogens, in part by regulating luminal hydrogen peroxide as well as regulating the generation of pathogen-specific IgA+ Ab-secreting cells.
Collapse
Affiliation(s)
- Yasuka Matsunaga
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112
| | - Trevon Clark
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112
| | - Alanna G Wanek
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112
| | - Jacob P Bitoun
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA 70112; and
| | - Qingqing Gong
- Department of Pediatrics, Washington University, St Louis, MO 63110
| | - Misty Good
- Department of Pediatrics, Washington University, St Louis, MO 63110
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112;
| |
Collapse
|
15
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
16
|
Arredondo-Hernández R, Schmulson M, Orduña P, López-Leal G, Zarate AM, Alanis-Funes G, Alcaraz LD, Santiago-Cruz R, Cevallos MA, Villa AR, Ponce-de-León Rosales S, López-Vidal Y. Mucosal Microbiome Profiles Polygenic Irritable Bowel Syndrome in Mestizo Individuals. Front Cell Infect Microbiol 2020; 10:72. [PMID: 32266159 PMCID: PMC7098960 DOI: 10.3389/fcimb.2020.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder, worldwide, with a high prevalence among Mestizo Latin Americans. Because several inflammatory disorders appear to affect this population, a further understanding of host genomic background variants, in conjunction with colonic mucosa dysbiosis, is necessary to determine IBS physiopathology and the effects of environmental pressures. Using a simple polygenic model, host single nucleotide polymorphisms (SNPs) and the taxonomic compositions of microbiota were compared between IBS patients and healthy subjects. As proof of concept, five IBS-Rome III patients and five healthy controls (HCs) were systematically studied. The human and bacterial intestinal metagenome of each subject was taxonomically annotated and screened for previously annotated IBS, ulcerative colitis, and Crohn's disease-associated SNPs or taxon abundance. Dietary data and fecal markers were collected and associated with the intestinal microbiome. However, more than 1,000 variants were found, and at least 76 SNPs differentiated IBS patients from HCs, as did associations with 4 phyla and 10 bacterial genera. In this study, we found elements supporting a polygenic background, with frequent variants, among the Mestizo population, and the colonic mucosal enrichment of Bacteroides, Alteromonas, Neisseria, Streptococcus, and Microbacterium, may serve as a hallmark for IBS.
Collapse
Affiliation(s)
- Rene Arredondo-Hernández
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Max Schmulson
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gamaliel López-Leal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Gerardo Alanis-Funes
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Luis David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rubí Santiago-Cruz
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Antonio R Villa
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Samuel Ponce-de-León Rosales
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
17
|
Escribano-Vazquez U, Beimfohr C, Bellet D, Thomas M, Zimmermann K, Langella P, Cherbuy C. Symbioflor2 ® Escherichia coli Genotypes Enhance Ileal and Colonic Gene Expression Associated with Mucosal Defense in Gnotobiotic Mice. Microorganisms 2020; 8:microorganisms8040512. [PMID: 32260205 PMCID: PMC7232167 DOI: 10.3390/microorganisms8040512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Symbioflor2® is a probiotic product composed of six Escherichia coli genotypes, which has a beneficial effect on irritable bowel syndrome. Our objective was to understand the individual impact of each of the six genotypes on the host, together with the combined impact of the six in the compound Symbioflor2®. Gnotobiotic mice were mono-associated with one of the six genotypes or associated with the compound product. Ileal and colonic gene expression profiling was carried out, and data were compared between the different groups of gnotobiotic mice, along with that obtained from conventional (CV) mice and mice colonized with the probiotic E. coli Nissle 1917. We show that Symbioflor2® genotypes induce intestinal transcriptional responses involved in defense and immune mechanisms. Using mice associated with Symbioflor2®, we reveal that the product elicits a balanced response from the host without any predominance of a single genotype. The Nissle strain and the six bacterial genotypes have different effects on the intestinal gene expression, suggesting that the impacts of these probiotics are not redundant. Our data show the effect of the Symbioflor2® genotypes at the molecular level in the digestive tract, which further highlights their beneficial action on several aspects of intestinal physiology.
Collapse
Affiliation(s)
- Unai Escribano-Vazquez
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (U.E.-V.); (D.B.); (M.T.); (P.L.)
| | | | - Deborah Bellet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (U.E.-V.); (D.B.); (M.T.); (P.L.)
| | - Muriel Thomas
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (U.E.-V.); (D.B.); (M.T.); (P.L.)
| | - Kurt Zimmermann
- SymbioGruppe GmbH & Co KG, 35745 Herborn, Germany;
- SymbioPharm GmbH, 35745 Herborn, Germany
| | - Philippe Langella
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (U.E.-V.); (D.B.); (M.T.); (P.L.)
| | - Claire Cherbuy
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (U.E.-V.); (D.B.); (M.T.); (P.L.)
- Correspondence: ; Tel.: +33-(0)1-34-65-24-98
| |
Collapse
|
18
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
19
|
Florens MV, Van Wanrooy S, Dooley J, Aguilera-Lizarraga J, Vanbrabant W, Wouters MM, Van Oudenhove L, Peetermans WE, Liston A, Boeckxstaens GE. Prospective study evaluating immune-mediated mechanisms and predisposing factors underlying persistent postinfectious abdominal complaints. Neurogastroenterol Motil 2019; 31:e13542. [PMID: 30657233 DOI: 10.1111/nmo.13542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The role of persistent immune activation in postinfectious irritable bowel syndrome (PI-IBS) remains controversial. Here, we prospectively studied healthy subjects traveling to destinations with a high-risk to develop infectious gastroenteritis (IGE) in order to identify immune-mediated mechanisms and risk factors of PI-IBS. METHODS One hundred and one travelers were asked to complete questionnaires on psychological profile and gastrointestinal (GI) symptoms before travel, 2 weeks, 6 months and 1 year after travel. At each visit, blood was collected for PBMC isolation and rectal biopsies were taken. PI-IBS was diagnosed using the Rome III criteria and subjects with persistent postinfectious abdominal complaints (PI-AC) were identified using 3 GSRS symptoms (ie, loose stools, urgency and abdominal pain). RESULTS Forty-seven of the 101 subjects reported IGE during travel. After 1 year, two subjects were diagnosed with PI-IBS and eight subjects were presented with PI-AC versus two subjects with IBS and two with abdominal complaints in the non-infected group. PBMC analysis showed no differences in T and B cell populations in subjects with PI-AC vs healthy. Additionally, no differences in gene expression were observed in the early postinfectious phase or after 1 year. Regression analysis identified looser stools, higher anxiety and somatization before infection and several postinfectious GI symptoms as risk factors for PI-AC. CONCLUSIONS The incidence of PI-IBS is low following travelers' diarrhea and there is need for larger studies investigating the role of immune activation in PI-IBS. Psychological factors before infection and the severity of symptoms shortly after infection are risk factors for the persistence of PI-AC.
Collapse
Affiliation(s)
- Morgane V Florens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Sander Van Wanrooy
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - James Dooley
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | | | - Winde Vanbrabant
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Mira M Wouters
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Willy E Peetermans
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | - Guy E Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
İliaz R, Akyüz F, Yeğen G, Örmeci A, Göktürk S, Akyüz Ü, Baran B, Mutluay Ö, Evirgen S, Karaca Ç, Demir K, Beşışık F, Güllüoğlu M, Kaymakoğlu S. Does the number of mucosal immune cells differ in irritable bowel syndrome and its subtypes? TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:384-391. [PMID: 30249551 DOI: 10.5152/tjg.2018.17491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Recently, mucosal inflammation has been proposed to be one of the mechanisms underlying the pathophysiology of irritable bowel syndrome (IBS); however, there are controversial results regarding this hypotheses. Our aim was to evaluate immune cell infiltration in rectal and ileal biopsy specimens of patients with IBS and to compare it with those of healthy controls. MATERIALS AND METHODS In total, 36 patients with IBS (15 with diarrhea and 21 with constipation) and 16 healthy volunteers were enrolled. Ileocolonoscopy and ileal/rectal biopsies were performed. Rectal and terminal ileal biopsy specimens were evaluated for mucosal immune cell infiltration using immunohistochemical analysis. Serotonin positivity as well as counts of intraepithelial lymphocytes (IEL) and CD4+, CD8+, CD20+, and CD3+ cells were determined by a single pathologist who is an expert in the gastrointestinal system. RESULTS CD3+ and CD4+ cell counts in rectal and terminal ileal biopsy specimens were lower in the IBS group than in the controls. Conversely, there was no statistically significant difference between the IBS and control groups in terms of serotonin positivity as well as counts of IEL and CD20+ and CD8+ cells. Comparison between the IBS subgroups revealed a higher number of IEL in rectal biopsy specimens of the diarrhea dominant group. In the IBS subgroups, immune cell counts in terminal ileal and rectal biopsy specimens showed a positive correlation. CONCLUSION IBS and its subgroups showed lower immune cell counts than the controls in our study. These results indicate that there is no significant mucosal inflammation in homogeneous groups of patients with IBS. Rectal biopsies may be sufficient for the evaluation of inflammation in IBS.
Collapse
Affiliation(s)
- Raim İliaz
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Filiz Akyüz
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Gülçin Yeğen
- Department of Pathology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Aslı Örmeci
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Suut Göktürk
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Ümit Akyüz
- Department of Gastroenterology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Bülent Baran
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Özlem Mutluay
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Sami Evirgen
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Çetin Karaca
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Kadir Demir
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Fatih Beşışık
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Mine Güllüoğlu
- Department of Pathology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Sabahattin Kaymakoğlu
- Department of Gastroenterology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
21
|
Shin A, Preidis GA, Shulman R, Kashyap PC. The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin Gastroenterol Hepatol 2019; 17:256-274. [PMID: 30153517 PMCID: PMC6314902 DOI: 10.1016/j.cgh.2018.08.054] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/23/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
The importance of gut microbiota in gastrointestinal (GI) physiology was well described, but our ability to study gut microbial ecosystems in their entirety was limited by culture-based methods prior to the sequencing revolution. The advent of high-throughput sequencing opened new avenues, allowing us to study gut microbial communities as an aggregate, independent of our ability to culture individual microbes. Early studies focused on association of changes in gut microbiota with different disease states, which was necessary to identify a potential role for microbes and generate novel hypotheses. Over the past few years the field has moved beyond associations to better understand the mechanistic implications of the microbiome in the pathophysiology of complex diseases. This movement also has resulted in a shift in our focus toward therapeutic strategies, which rely on better understanding the mediators of gut microbiota-host cross-talk. It is not surprising the gut microbiome has been implicated in the pathogenesis of functional gastrointestinal disorders given its role in modulating physiological processes such as immune development, GI motility and secretion, epithelial barrier integrity, and brain-gut communication. In this review, we focus on the current state of knowledge and future directions in microbiome research as it pertains to functional gastrointestinal disorders. We summarize the factors that help shape the gut microbiome in human beings. We discuss data from animal models and human studies to highlight existing paradigms regarding the mechanisms underlying microbiota-mediated alterations in physiological processes and their relevance in human interventions. While translation of microbiome science is still in its infancy, the outlook is optimistic and we are advancing in the right direction toward precise mechanism-based microbiota therapies.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Geoffrey A Preidis
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Robert Shulman
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Purna C Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
22
|
Pohl D, Van Oudenhove L, Törnblom H, Le Nevé B, Tack J, Simrén M. Functional Dyspepsia and Severity of Psychologic Symptoms Associate With Postprandial Symptoms in Patients With Irritable Bowel Syndrome. Clin Gastroenterol Hepatol 2018; 16:1745-1753.e1. [PMID: 29702295 DOI: 10.1016/j.cgh.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with irritable bowel syndrome (IBS) have an increased response of postprandial symptoms to a combined lactulose nutrient challenge test, compared with healthy volunteers. We investigated the associations among comorbid functional dyspepsia (FD), severity of psychologic symptoms, and breath test results in response to this test. METHODS We performed a prospective study of 205 patients with IBS (Rome III criteria), 94 of whom also had FD (IBS-FD), and 83 healthy volunteers in Sweden from 2008 through 2015. All participants completed a breath hydrogen test after a 400-mL liquid meal with 25 g lactulose. Gastrointestinal (GI) symptom severity was assessed using a graded scale and digestive comfort was recorded before the meal and every 15 minutes until 240 minutes after the meal. GI symptom scores over time were compared between groups using linear mixed models with anxiety, depression, and somatization as covariates. RESULTS Average levels of all GI symptoms varied over time among all groups (P < .0001). Patients with IBS-FD had higher levels of bloating (P = .004), abdominal pain (P = .005), and lower levels of digestive comfort (P < .01) than patients with only IBS. We observed a difference in increase in abdominal pain from baseline between IBS-FD and IBS groups (P = .013). Anxiety levels were associated with levels of all symptoms (all P < .025) except abdominal pain, which was associated with somatization severity (P < .0001). Furthermore, anxiety levels associated with level of exhaled hydrogen (P = .0042). CONCLUSIONS In a prospective study of patients with IBS, we found those with FD to have increased GI symptoms before and after a liquid meal with lactulose. Anxiety and somatization have an independent additional effect. The presence of comorbid FD and levels of psychologic symptoms affect reports of food-related symptoms in patients with IBS. ClinicalTrial.gov no: NCT01252550.
Collapse
Affiliation(s)
- Daniel Pohl
- Functional Diagnostics Laboratory, Division of Gastroenterology, University Hospital Zurich, Zurich, Switzerland.
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Hans Törnblom
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Magnus Simrén
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Sweden; Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Louzada RA, Corre R, Ameziane-El-Hassani R, Hecht F, Cazarin J, Buffet C, Carvalho DP, Dupuy C. Conformation of the N-Terminal Ectodomain Elicits Different Effects on DUOX Function: A Potential Impact on Congenital Hypothyroidism Caused by a H 2O 2 Production Defect. Thyroid 2018; 28:1052-1062. [PMID: 29845893 DOI: 10.1089/thy.2017.0596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dual oxidases (DUOX1 and DUOX2) were initially identified as H2O2 sources involved in thyroid hormone synthesis. Congenital hypothyroidism (CH) resulting from inactivating mutations in the DUOX2 gene highlighted that DUOX2 is the major H2O2 provider to thyroperoxidase. The role of DUOX1 in the thyroid remains unknown. A recent study suggests that it could compensate for DUOX2 deficiency in CH. Both DUOX enzymes and their respective maturation factors DUOXA1 and DUOXA2 form a stable complex at the cell surface, which is fundamental for their enzymatic activity. Recently, intra- and intermolecular disulfide bridges were identified that are essential for the structure and the function of the DUOX2-DUOXA2 complex. This study investigated the involvement of cysteine residues conserved in DUOX1 toward the formation of disulfide bridges, which could be important for the function of the DUOX1DUOXA1 complex. METHODS To analyze the role of these cysteine residues in both the targeting and function of dual oxidase, different human DUOX1 mutants were constructed, where the cysteine residues were replaced with glycine. The effect of these mutations on cell surface expression and H2O2-generating activity of the DUOX1-DUOXA1 complex was analyzed. RESULTS Mutations of two cysteine residues (C118 and C1165), involved in the formation of the intramolecular disulfide bridge between the N-terminal ectodomain and one of the extracellular loops, mildly altered the function and the targeting of DUOX1, while this bridge is crucial for DUOX2 function. Unlike DUOXA2, with respect to DUOX2, the stability of the maturation factor DUOXA1 is not dependent on the oxidative folding of DUOX1. Only mutation of C579 induced a strong alteration of both targeting and function of the oxidase by preventing the covalent interaction between DUOX1 and DUOXA1. CONCLUSION An intermolecular disulfide bridge rather than an intramolecular disulfide bridge is important for both the trafficking and H2O2-generating activity of the DUOX1-DUOXA1 complex.
Collapse
Affiliation(s)
- Ruy Andrade Louzada
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Raphael Corre
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| | - Rabii Ameziane-El-Hassani
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 5 Laboratoire de Biologie des Pathologies Humaines "BioPatH," Université Mohammed V , Faculté des Sciences, Rabat, Morocco
| | - Fabio Hecht
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Juliana Cazarin
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Camille Buffet
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| | - Denise P Carvalho
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Corinne Dupuy
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| |
Collapse
|
24
|
Affiliation(s)
- Brian D. Gulbransen
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
25
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
26
|
Videlock EJ, Mahurkar-Joshi S, Hoffman JM, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G140-G157. [PMID: 29565640 PMCID: PMC6109711 DOI: 10.1152/ajpgi.00288.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
Peripheral factors likely play a role in at least a subset of irritable bowel syndrome (IBS) patients. Few studies have investigated mucosal gene expression using an unbiased approach. Here, we performed mucosal gene profiling in a sex-balanced sample to identify relevant signaling pathways and gene networks and compare with publicly available profiling data from additional cohorts. Twenty Rome III+ IBS patients [10 IBS with constipation (IBS-C), 10 IBS with diarrhea (IBS-D), 5 men/women each), and 10 age-/sex-matched healthy controls (HCs)] underwent sigmoidoscopy with biopsy for gene microarray analysis, including differential expression, weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis, and comparison with publicly available data. Expression levels of 67 genes were validated in an expanded cohort, including the above samples and 18 additional participants (6 each of IBS-C, IBS-D, HCs) using NanoString nCounter technology. There were 1,270 differentially expressed genes (FDR < 0.05) in IBS-C vs. HCs but none in IBS or IBS-D vs. HCs. WGNCA analysis identified activation of the cAMP/protein kinase A signaling pathway. Nine of 67 genes were validated by the NanoString nCounter technology (FDR < 0.05) in the expanded sample. Comparison with publicly available microarray data from the Mayo Clinic and University of Nottingham supports the reproducibility of 17 genes from the microarray analysis and three of nine genes validated by nCounter in IBS-C vs. HCs. This study supports the involvement of peripheral mechanisms in IBS-C, particularly pathways mediating neuronal signaling. NEW & NOTEWORTHY Peripheral factors play a role in the pathophysiology of irritable bowel syndrome (IBS), which, to date, has been mostly evident in IBS with diarrhea. Here, we show that sigmoid colon mucosal gene expression profiles differentiate IBS with constipation from healthy controls. These profiling data and analysis of additional cohorts also support the concept that peripheral neuronal pathways contribute to IBS pathophysiology.
Collapse
Affiliation(s)
- Elizabeth J Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Jill M Hoffman
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| |
Collapse
|
27
|
Rodiño-Janeiro BK, Martínez C, Fortea M, Lobo B, Pigrau M, Nieto A, González-Castro AM, Salvo-Romero E, Guagnozzi D, Pardo-Camacho C, Iribarren C, Azpiroz F, Alonso-Cotoner C, Santos J, Vicario M. Decreased TESK1-mediated cofilin 1 phosphorylation in the jejunum of IBS-D patients may explain increased female predisposition to epithelial dysfunction. Sci Rep 2018; 8:2255. [PMID: 29396473 PMCID: PMC5797119 DOI: 10.1038/s41598-018-20540-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Disturbed intestinal epithelial barrier and mucosal micro-inflammation characterize irritable bowel syndrome (IBS). Despite intensive research demonstrating ovarian hormones modulation of IBS severity, there is still limited knowledge on the mechanisms underlying female predominance in this disorder. Our aim was to identify molecular pathways involved in epithelial barrier dysfunction and female predominance in diarrhea-predominant IBS (IBS-D) patients. Total RNA and protein were obtained from jejunal mucosal biopsies from healthy controls and IBS-D patients meeting the Rome III criteria. IBS severity was recorded based on validated questionnaires. Gene and protein expression profiles were obtained and data integrated to explore biological and molecular functions. Results were validated by western blot. Tight junction signaling, mitochondrial dysfunction, regulation of actin-based motility by Rho, and cytoskeleton signaling were differentially expressed in IBS-D. Decreased TESK1-dependent cofilin 1 phosphorylation (pCFL1) was confirmed in IBS-D, which negatively correlated with bowel movements only in female participants. In conclusion, deregulation of cytoskeleton dynamics through TESK1/CFL1 pathway underlies epithelial intestinal dysfunction in the small bowel mucosa of IBS-D, particularly in female patients. Further understanding of the mechanisms involving sex-mediated regulation of mucosal epithelial integrity may have significant preventive, diagnostic, and therapeutic implications for IBS.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Marina Fortea
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Ana María González-Castro
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Danila Guagnozzi
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Cristina Pardo-Camacho
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Cristina Iribarren
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Fernando Azpiroz
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain.
| | - Maria Vicario
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| |
Collapse
|
28
|
Dussik CM, Hockley M, Grozić A, Kaneko I, Zhang L, Sabir MS, Park J, Wang J, Nickerson CA, Yale SH, Rall CJ, Foxx-Orenstein AE, Borror CM, Sandrin TR, Jurutka PW. Gene Expression Profiling and Assessment of Vitamin D and Serotonin Pathway Variations in Patients With Irritable Bowel Syndrome. J Neurogastroenterol Motil 2018; 24:96-106. [PMID: 29291611 PMCID: PMC5753908 DOI: 10.5056/jnm17021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Irritable bowel syndrome (IBS) is a multifaceted disorder that afflicts millions of individuals worldwide. IBS is currently diagnosed based on the presence/duration of symptoms and systematic exclusion of other conditions. A more direct manner to identify IBS is needed to reduce healthcare costs and the time required for accurate diagnosis. The overarching objective of this work is to identify gene expression-based biological signatures and biomarkers of IBS. METHODS Gene transcripts from 24 tissue biopsy samples were hybridized to microarrays for gene expression profiling. A combination of multiple statistical analyses was utilized to narrow the raw microarray data to the top 200 differentially expressed genes between IBS versus control subjects. In addition, quantitative polymerase chain reaction was employed for validation of the DNA microarray data. Gene ontology/pathway enrichment analysis was performed to investigate gene expression patterns in biochemical pathways. Finally, since vitamin D has been shown to modulate serotonin production in some models, the relationship between serum vitamin D and IBS was investigated via 25-hydroxyvitamin D (25[OH]D) chemiluminescence immunoassay. RESULTS A total of 858 genetic features were identified with differential expression levels between IBS and asymptomatic populations. Gene ontology enrichment analysis revealed the serotonergic pathway as most prevalent among the differentially expressed genes. Further analysis via real-time polymerase chain reaction suggested that IBS patient-derived RNA exhibited lower levels of tryptophan hydroxylase-1 expression, the enzyme that catalyzes the rate-limiting step in serotonin biosynthesis. Finally, mean values for 25(OH)D were lower in IBS patients relative to non-IBS controls. CONCLUSIONS Values for serum 25(OH)D concentrations exhibited a trend towards lower vitamin D levels within the IBS cohort. In addition, the expression of select IBS genetic biomarkers, including tryptophan hydroxylase 1, was modulated by vitamin D. Strikingly, the direction of gene regulation elicited by vitamin D in colonic cells is "opposite" to the gene expression profile observed in IBS patients, suggesting that vitamin D may help "reverse" the pathological direction of biomarker gene expression in IBS. Thus, our results intimate that IBS pathogenesis and pathophysiology may involve dysregulated serotonin production and/or vitamin D insufficiency.
Collapse
Affiliation(s)
- Christopher M Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Maryam Hockley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Aleksandra Grozić
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ,
USA
| | - Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Jin Park
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, AZ,
USA
| | - Jie Wang
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, AZ,
USA
| | - Cheryl A Nickerson
- School of Life Sciences, Biodesign Institute, Arizona State University, Tempe, AZ,
USA
| | - Steven H Yale
- Department of Medicine, North Florida Regional Medical Center, Gainesville, FL,
USA
| | | | - Amy E Foxx-Orenstein
- Department of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ,
USA
| | - Connie M Borror
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ,
USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ,
USA
| |
Collapse
|
29
|
Martínez C, Rodiño-Janeiro BK, Lobo B, Stanifer ML, Klaus B, Granzow M, González-Castro AM, Salvo-Romero E, Alonso-Cotoner C, Pigrau M, Roeth R, Rappold G, Huber W, González-Silos R, Lorenzo J, de Torres I, Azpiroz F, Boulant S, Vicario M, Niesler B, Santos J. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017; 66:1537-1538. [PMID: 28082316 PMCID: PMC5561373 DOI: 10.1136/gutjnl-2016-311477] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs. DESIGN Healthy controls and patients meeting Rome III IBS-D criteria were studied. Intestinal tissue samples were analysed to identify potential candidates by: (a) miRNA-mRNA profiling; (b) miRNA-mRNA pairing analysis to assess the co-expression profile of miRNA-mRNA pairs; (c) pathway analysis and upstream regulator identification; (d) miRNA and target mRNA validation. Candidate miRNA-mRNA pairs were functionally assessed in intestinal epithelial cells. RESULTS IBS-D samples showed distinct miRNA and mRNA profiles compared with healthy controls. TJ signalling was associated with the IBS-D transcriptional profile. Further validation of selected genes showed consistent upregulation in 75% of genes involved in epithelial barrier function. Bioinformatic analysis of putative miRNA binding sites identified hsa-miR-125b-5p and hsa-miR-16 as regulating expression of the TJ genes CGN (cingulin) and CLDN2 (claudin-2), respectively. Consistently, protein expression of CGN and CLDN2 was upregulated in IBS-D, while the respective targeting miRNAs were downregulated. In addition, bowel dysfunction, perceived stress and depression and number of mast cells correlated with the expression of hsa-miR-125b-5p and hsa-miR-16 and their respective target proteins. CONCLUSIONS Modulation of the intestinal epithelial barrier function in IBS-D involves both transcriptional and post-transcriptional mechanisms. These molecular mechanisms include miRNAs as master regulators in controlling the expression of TJ proteins and are associated with major clinical symptoms.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruno K Rodiño-Janeiro
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Lobo
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Bernd Klaus
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Eloisa Salvo-Romero
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Marc Pigrau
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rosa González-Silos
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Inés de Torres
- Department of Pathology, Facultat de Medicina, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany,Research Group ‘Cellular Polarity and Viral Infection’ (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María Vicario
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Javier Santos
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| |
Collapse
|
30
|
Tsigaridas A, Papanikolaou IS, Vaiopoulou A, Anagnostopoulos AK, Viazis N, Karamanolis G, Karamanolis DG, Tsangaris GT, Mantzaris GJ, Gazouli M. Proteomics and irritable bowel syndrome. Expert Rev Proteomics 2017; 14:461-468. [PMID: 28395553 DOI: 10.1080/14789450.2017.1317600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal disease that according to Rome IV criteria is subdivided into four subtypes. The pathophysiology of this disease is not well understood due to numerous factors playing multiple roles in disease development, such as diet, stress and hormones. IBS has a variety of symptoms and overlaps with many other gastrointestinal and non-gastrointestinal diseases. Area covered: This review aims to present an overview of implementation of proteomics in experimental studies in the field of IBS. Expert commentary: Proteomics is commonly used for biomarker discovery in and has also been extensively used in IBS research. The necessity of a sensitive and specific biomarker for IBS is apparent, but despite the intensive research performed in this field, an appropriate biomarker is not yet available.
Collapse
Affiliation(s)
| | - Ioannis S Papanikolaou
- b Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Anna Vaiopoulou
- c Department of Basic Medical Sciences, Laboratory of Biology Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | | | - Nikos Viazis
- a Gastroenterology Unit , Evangelismos Hospital , Athens , Greece
| | - George Karamanolis
- e Gastroenterology Unit, 2nd Department of Surgery, 'Aretaieio' University Hospital, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | | | - George T Tsangaris
- d Proteomics Research Unit , Biomedical Research Foundation of the Academy of Athens (IIBEAA) , Athens , Greece
| | | | - Maria Gazouli
- c Department of Basic Medical Sciences, Laboratory of Biology Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
31
|
Abstract
Communication between the brain and gut is not one-way, but a bidirectional highway whereby reciprocal signals between the two organ systems are exchanged to coordinate function. The messengers of this complex dialogue include neural, metabolic, endocrine and immune mediators responsive to diverse environmental cues, including nutrients and components of the intestinal microbiota (microbiota-gut-brain axis). We are now starting to understand how perturbation of these systems affects transition between health and disease. The pathological repercussions of disordered gut-brain dialogue are probably especially pertinent in functional gastrointestinal diseases, including IBS and functional dyspepsia. New insights into these pathways might lead to novel treatment strategies in these common gastrointestinal diseases. In this Review, we consider the role of the immune system as the gatekeeper and master regulator of brain-gut and gut-brain communications. Although adaptive immunity (T cells in particular) participates in this process, there is an emerging role for cells of the innate immune compartment (including innate lymphoid cells and cells of the mononuclear phagocyte system). We will also consider how these key immune cells interact with the specific components of the enteric and central nervous systems, and rapidly respond to environmental variables, including the microbiota, to alter gut homeostasis.
Collapse
|
32
|
Camilleri M, Ford AC. Irritable Bowel Syndrome: Pathophysiology and Current Therapeutic Approaches. Handb Exp Pharmacol 2017; 239:75-113. [PMID: 27995391 DOI: 10.1007/164_2016_102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a prevalent condition affecting 10-20% of adults in most countries; IBS results in significant morbidity and health care costs. IBS is a disorder of the brain-gut axis, and recent insights into the pathophysiological mechanisms include altered bile acid metabolism, neurohormonal regulation, immune dysfunction, alterations in the epithelial barrier, and secretory properties of the gut. There remains a significant unmet need for effective treatments, particularly for the pain component of IBS, although the introduction of drugs directed at secretion, motility, and a nonabsorbable antibiotic provides an option for the bowel dysfunction in IBS.
Collapse
Affiliation(s)
- Michael Camilleri
- Department of Medicine, Pharmacology, and Physiology, Division of Gastroenterology, Mayo Clinic College of Medicine, Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), 200 First Street S.W, Rochester, MN, 55905, USA.
| | - Alexander C Ford
- Department of Gastroenterology and Honorary Consultant Gastroenterologist, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds and Leeds Gastroenterology Institute, Leeds Teaching Hospitals Trust, Leeds, UK
| |
Collapse
|
33
|
Fourie NH, Peace RM, Abey SK, Sherwin LB, Wiley JW, Henderson WA. Perturbations of Circulating miRNAs in Irritable Bowel Syndrome Detected Using a Multiplexed High-throughput Gene Expression Platform. J Vis Exp 2016:54693. [PMID: 27929459 PMCID: PMC5226328 DOI: 10.3791/54693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The gene expression platform assay allows for robust and highly reproducible quantification of the expression of up to 800 transcripts (mRNA or miRNAs) in a single reaction. The miRNA assay counts transcripts by directly imaging and digitally counting miRNA molecules that are labeled with color-coded fluorescent barcoded probe sets (a reporter probe and a capture probe). Barcodes are hybridized directly to mature miRNAs that have been elongated by ligating a unique oligonucleotide tag (miRtag) to the 3' end. Reverse transcription and amplification of the transcripts are not required. Reporter probes contain a sequence of six color positions populated using a combination of four fluorescent colors. The four colors over six positions are used to construct a gene-specific color barcode sequence. Post-hybridization processing is automated on a robotic prep station. After hybridization, the excess probes are washed away, and the tripartite structures (capture probe-miRNA-reporter probe) are fixed to a streptavidin-coated slide via the biotin-labeled capture probe. Imaging and barcode counting is done using a digital analyzer. The immobilized barcoded miRNAs are visualized and imaged using a microscope and camera, and the unique barcodes are decoded and counted. Data quality control (QC), normalization, and analysis are facilitated by a custom-designed data processing and analysis software that accompanies the assay software. The assay demonstrates high linearity over a broad range of expression, as well as high sensitivity. Sample and assay preparation does not involve enzymatic reactions, reverse transcription, or amplification; has few steps; and is largely automated, reducing investigator effects and resulting in high consistency and technical reproducibility. Here, we describe the application of this technology to identifying circulating miRNA perturbations in irritable bowel syndrome.
Collapse
Affiliation(s)
- Nicolaas H Fourie
- Digestive Disorders Unit, National Institute of Nursing Research, National Institutes of Health, DHHS
| | - Ralph M Peace
- Digestive Disorders Unit, National Institute of Nursing Research, National Institutes of Health, DHHS; National Institutes of Health Research Scholar, Howard Hughes Medical Institute
| | - Sarah K Abey
- Digestive Disorders Unit, National Institute of Nursing Research, National Institutes of Health, DHHS
| | - LeeAnne B Sherwin
- Digestive Disorders Unit, National Institute of Nursing Research, National Institutes of Health, DHHS
| | - John W Wiley
- Internal Medicine, Medical School, University of Michigan
| | - Wendy A Henderson
- Digestive Disorders Unit, National Institute of Nursing Research, National Institutes of Health, DHHS;
| |
Collapse
|
34
|
Camilleri M, Carlson P, Valentin N, Acosta A, O'Neill J, Eckert D, Dyer R, Na J, Klee EW, Murray JA. Pilot study of small bowel mucosal gene expression in patients with irritable bowel syndrome with diarrhea. Am J Physiol Gastrointest Liver Physiol 2016; 311:G365-76. [PMID: 27445342 PMCID: PMC5076008 DOI: 10.1152/ajpgi.00037.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/09/2016] [Indexed: 02/08/2023]
Abstract
Prior studies in with irritable bowel syndrome with diarrhea (IBS-D) patients showed immune activation, secretion, and barrier dysfunction in jejunal or colorectal mucosa. We measured mRNA expression by RT-PCR of 91 genes reflecting tight junction proteins, chemokines, innate immunity, ion channels, transmitters, housekeeping genes, and controls for DNA contamination and PCR efficiency in small intestinal mucosa from 15 IBS-D and 7 controls (biopsies negative for celiac disease). Fold change was calculated using 2((-ΔΔCT)) formula. Nominal P values (P < 0.05) were interpreted with false detection rate (FDR) correction (q value). Cluster analysis with Lens for Enrichment and Network Studies (LENS) explored connectivity of mechanisms. Upregulated genes (uncorrected P < 0.05) were related to ion transport (INADL, MAGI1, and SONS1), barrier (TJP1, 2, and 3 and CLDN) or immune functions (TLR3, IL15, and MAPKAPK5), or histamine metabolism (HNMT); downregulated genes were related to immune function (IL-1β, TGF-β1, and CCL20) or antigen detection (TLR1 and 8). The following genes were significantly upregulated (q < 0.05) in IBS-D: INADL, MAGI1, PPP2R5C, MAPKAPK5, TLR3, and IL-15. Among the 14 nominally upregulated genes, there was clustering of barrier and PDZ domains (TJP1, TJP2, TJP3, CLDN4, INADL, and MAGI1) and clustering of downregulated genes (CCL20, TLR1, IL1B, and TLR8). Protein expression of PPP2R5C in nuclear lysates was greater in patients with IBS-D and controls. There was increase in INADL protein (median 9.4 ng/ml) in patients with IBS-D relative to controls (median 5.8 ng/ml, P > 0.05). In conclusion, altered transcriptome (and to lesser extent protein) expression of ion transport, barrier, immune, and mast cell mechanisms in small bowel may reflect different alterations in function and deserves further study in IBS-D.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Nelson Valentin
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Jessica O'Neill
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Roy Dyer
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| | - Jie Na
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and Division of Biomedical Statistic and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Eric W Klee
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and Division of Biomedical Statistic and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Murray
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
35
|
Li L, Xiong L, Yao J, Zhuang X, Zhang S, Yu Q, Xiao Y, Cui Y, Chen M. Increased small intestinal permeability and RNA expression profiles of mucosa from terminal ileum in patients with diarrhoea-predominant irritable bowel syndrome. Dig Liver Dis 2016; 48:880-7. [PMID: 27246797 DOI: 10.1016/j.dld.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered intestinal permeability in diarrhoea-predominant irritable bowel syndrome (IBS-D) has been reported in some studies. AIMS The study aimed to investigate the altered intestinal permeability and its associated clinical characteristics and RNA expression profiles in IBS-D. METHODS We stratified IBS-D patients into two groups according to the P95 value of the permeability in controls. The clinical characteristics of the two groups were evaluated, and two biopsy cases from each of the two groups were selected for the RNA-seq analysis. RESULTS IBS-D patients had a significant increase in the small intestinal permeability compared with controls [0.0245 (0.0229) median (interquartile range)] versus 0.0156 (0.0098), P=0.010), but no significant difference was found in the colonic permeability [23.286 (10.470) versus 21.650 (6.650), P=0.574]. The IBS-D patients with increased small intestinal permeability had worse psychological effects (P=0.027) and quality of life (P=0.044). Analysis of RNA-seq data revealed 185 genes differentially expressed, many of which were related to mucosal inflammation and immunity. CONCLUSIONS Small intestinal permeability, but not colonic permeability, is increased in IBS-D patients. IBS-D patients with increased small intestinal permeability tend to be more severely impaired in terms of psychological effects and quality of life, and analysis of RNA-seq data reveals that increased small intestinal permeability is related to mucosal inflammation and immunity.
Collapse
Affiliation(s)
- Li Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Junhua Yao
- Instrumental Analysis and Research Centre, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Zhuang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiao Yu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yinglian Xiao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi Cui
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Le Nevé B, Brazeilles R, Derrien M, Tap J, Guyonnet D, Ohman L, Törnblom H, Simrén M. Lactulose Challenge Determines Visceral Sensitivity and Severity of Symptoms in Patients With Irritable Bowel Syndrome. Clin Gastroenterol Hepatol 2016; 14:226-33.e1-3. [PMID: 26492847 DOI: 10.1016/j.cgh.2015.09.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with irritable bowel syndrome (IBS) can be assigned to groups with different gastrointestinal (GI) symptoms based on results from a combined nutrient and lactulose challenge. We aimed to identify factors that predict outcomes to this challenge and to determine whether this can be used in noninvasive assessment of visceral sensitivity in patients with IBS. METHODS We performed a prospective study of 100 patients with IBS diagnosed according to Rome III criteria (all subtypes) and seen at a secondary or tertiary care center. After an overnight fast, subjects were given a liquid breakfast (400 mL; Nutridrink) that contained 25 g lactulose. Before the challenge, we assessed visceral sensitivity (via rectal barostat), oro-anal transit time, and fecal microbiota composition (via 16S ribosomal RNA pyrosequencing); we determined IBS severity using questionnaires. The intensity of 8 GI symptoms, the level of digestive comfort, and the amount of exhaled H2 and CH4 in breath were measured before and during a 4-hour period after the liquid breakfast. RESULTS Based on the intensity of 8 GI symptoms and level of digestive comfort during the challenge, patients were assigned to groups with high-intensity GI symptoms (HGS; n = 39) or low-intensity GI symptoms (LGS; n = 61); patients with HGS had more severe IBS (P < .0001), higher somatization (P < .01), and lower quality of life (P < .05-.01) than patients with LGS. Patients with HGS also had significantly higher rectal sensitivity to random phasic distensions (P < .05-.001, compared with patients with LGS). There were no significant differences between groups in fecal microbiota composition, exhaled gas in breath, or oro-anal transit time. CONCLUSIONS We found, in a prospective study, that results from a lactulose challenge test could be used to determine visceral sensitivity and severity of IBS. The intensity of patient symptoms did not correlate with the composition of the fecal microbiota. The lactulose challenge test may help better characterize patients with IBS and evaluate the efficacy of new treatments. ClinicalTrial.gov no: NCT01252550.
Collapse
Affiliation(s)
- Boris Le Nevé
- Danone Nutricia Research, Life Sciences Department, Palaiseau, France.
| | - Rémi Brazeilles
- Danone Nutricia Research, Life Sciences Department, Palaiseau, France
| | - Muriel Derrien
- Danone Nutricia Research, Life Sciences Department, Palaiseau, France
| | - Julien Tap
- Danone Nutricia Research, Life Sciences Department, Palaiseau, France; INRA (Institut National de la Recherche Agronomique) MetaGenoPolis, Jouy en Josas, France
| | - Denis Guyonnet
- Danone Nutricia Research, Life Sciences Department, Palaiseau, France
| | - Lena Ohman
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Koçak E, Akbal E, Köklü S, Ergül B, Can M. The Colonic Tissue Levels of TLR2, TLR4 and Nitric Oxide in Patients with Irritable Bowel Syndrome. Intern Med 2016; 55:1043-8. [PMID: 27150852 DOI: 10.2169/internalmedicine.55.5716] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective Irritable bowel syndrome (IBS) is a highly prevalent and debilitating functional disorder. The toll-like receptors (TLRs) are a family of pathogen-recognition receptors in the innate immune system. In the present study we aimed to investigate the TLR2, TLR4 and nitric oxide (NO) levels in patients with IBS. Methods Fifty-one IBS patients and 15 healthy controls were included in the present study. Colonic tissue levels of TLR2, TLR4 and NO were detected using an enzyme-linked immunosorbent assays (ELISA) and through biochemical methods. Results The colonic tissue levels of TLR4 and NO were significantly higher in IBS patients than in healthy controls. A subgroup analysis, which was based on the presence of diarrhea and constipation, showed that TLR2 levels were significantly higher among individuals with diarrhea-predominant IBS than among constipation-predominant IBS patients and healthy controls. The TLR4 levels were significantly higher in the diarrhea-predominant IBS patients and constipation-predominant IBS patients than in comparison healthy controls. The colonic tissue levels of NO were higher in the constipation-predominant IBS patients than in the diarrhea-predominant IBS patients and healthy controls. Conclusion In the present study we found that the colonic tissue levels of TLR and NO were elevated in IBS patients. Our results support the presence of a degree of immune dysregulation and oxidative stress in patients with IBS.
Collapse
Affiliation(s)
- Erdem Koçak
- Department of Gastroenterology, Çanakkale State Hospital, Turkey
| | | | | | | | | |
Collapse
|
38
|
Grasberger H, Gao J, Nagao-Kitamoto H, Kitamoto S, Zhang M, Kamada N, Eaton KA, El-Zaatari M, Shreiner AB, Merchant JL, Owyang C, Kao JY. Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine. Gastroenterology 2015; 149:1849-59. [PMID: 26261005 PMCID: PMC4663159 DOI: 10.1053/j.gastro.2015.07.062] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Dual oxidase 2 (DUOX2), a hydrogen-peroxide generator at the apical membrane of gastrointestinal epithelia, is up-regulated in patients with inflammatory bowel disease (IBD) before the onset of inflammation, but little is known about its effects. We investigated the role of DUOX2 in maintaining mucosal immune homeostasis in mice. METHODS We analyzed the regulation of DUOX2 in intestinal tissues of germ-free vs conventional mice, mice given antibiotics or colonized with only segmented filamentous bacteria, mice associated with human microbiota, and mice with deficiencies in interleukin (IL) 23 and IL22 signaling. We performed 16S ribosomal RNA gene quantitative polymerase chain reaction of intestinal mucosa and mesenteric lymph nodes of Duoxa(-/-) mice that lack functional DUOX enzymes. Genes differentially expressed in Duoxa(-/-) mice compared with co-housed wild-type littermates were correlated with gene expression changes in early-stage IBD using gene set enrichment analysis. RESULTS Colonization of mice with segmented filamentous bacteria up-regulated intestinal expression of DUOX2. DUOX2 regulated redox signaling within mucosa-associated microbes and restricted bacterial access to lymphatic tissues of the mice, thereby reducing microbiota-induced immune responses. Induction of Duox2 transcription by microbial colonization did not require the mucosal cytokines IL17 or IL22, although IL22 increased expression of Duox2. Dysbiotic, but not healthy human microbiota, activated a DUOX2 response in recipient germ-free mice that corresponded to abnormal colonization of the mucosa with distinct populations of microbes. In Duoxa(-/-) mice, abnormalities in ileal mucosal gene expression at homeostasis recapitulated those in patients with mucosal dysbiosis. CONCLUSIONS DUOX2 regulates interactions between the intestinal microbiota and the mucosa to maintain immune homeostasis in mice. Mucosal dysbiosis leads to increased expression of DUOX2, which might be a marker of perturbed mucosal homeostasis in patients with early-stage IBD.
Collapse
Affiliation(s)
- Helmut Grasberger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Jun Gao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Min Zhang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kathryn A Eaton
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mohamad El-Zaatari
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew B Shreiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juanita L Merchant
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Y Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
39
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
40
|
Carré A, Louzada RAN, Fortunato RS, Ameziane-El-Hassani R, Morand S, Ogryzko V, de Carvalho DP, Grasberger H, Leto TL, Dupuy C. When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2. Antioxid Redox Signal 2015; 23:724-33. [PMID: 25761904 PMCID: PMC4580306 DOI: 10.1089/ars.2015.6265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS The dual oxidase 2 (DUOX2) protein belongs to the NADPH oxidase (NOX) family. As H2O2 generator, it plays a key role in both thyroid hormone biosynthesis and innate immunity. DUOX2 forms with its maturation factor, DUOX activator 2 (DUOXA2), a stable complex at the cell surface that is crucial for the H2O2-generating activity, but the nature of their interaction is unknown. The contribution of some cysteine residues located in the N-terminal ectodomain of DUOX2 in a surface protein-protein interaction is suggested. We have investigated the involvement of different cysteine residues in the formation of covalent bonds that could be of critical importance for the function of the complex. RESULTS We report the identification and the characterization of an intramolecular disulfide bond between cys-124 of the N-terminal ectodomain and cys-1162 of an extracellular loop of DUOX2, which has important functional implications in both export and activity of DUOX2. This intramolecular bridge provides structural support for the formation of interdisulfide bridges between the N-terminal domain of DUOX2 and the two extracellular loops of its partner, DUOXA2. INNOVATION Both stability and function of the maturation factor, DUOXA2, are dependent on the oxidative folding of DUOX2, indicating that DUOX2 displays a chaperone-like function with respect to its partner. CONCLUSIONS The oxidative folding of DUOX2 that takes place in the endoplasmic reticulum (ER) appears to be a key event in the trafficking of the DUOX2/DUOXA2 complex as it promotes an appropriate conformation of the N-terminal region, which is propitious to subsequent covalent interactions with the maturation factor, DUOXA2.
Collapse
Affiliation(s)
- Aurore Carré
- 1 Université Paris-Sud , Orsay, France .,2 UMR 8200 CNRS , Villejuif, France .,3 Institut Gustave Roussy , Villejuif, France
| | - Ruy A N Louzada
- 1 Université Paris-Sud , Orsay, France .,4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Rabii Ameziane-El-Hassani
- 1 Université Paris-Sud , Orsay, France .,2 UMR 8200 CNRS , Villejuif, France .,3 Institut Gustave Roussy , Villejuif, France
| | - Stanislas Morand
- 5 Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | | | - Denise Pires de Carvalho
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Helmut Grasberger
- 7 Department of Internal Medicine, Division of Gastroenterology, University of Michigan , Ann Arbor, Michigan
| | - Thomas L Leto
- 5 Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | - Corinne Dupuy
- 1 Université Paris-Sud , Orsay, France .,2 UMR 8200 CNRS , Villejuif, France .,3 Institut Gustave Roussy , Villejuif, France
| |
Collapse
|
41
|
Pike BL, Paden KA, Alcala AN, Jaep KM, Gormley RP, Maue AC, Christmann BS, Elson CO, Riddle MS, Porter CK. Immunological Biomarkers in Postinfectious Irritable Bowel Syndrome. J Travel Med 2015; 22:242-50. [PMID: 26058758 DOI: 10.1111/jtm.12218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/18/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a recognized need for biological markers to facilitate diagnoses of irritable bowel syndrome (IBS) and to distinguish it from other functional and organic disorders. As postinfectious IBS (PI-IBS) is believed to account for as many as one third of all IBS cases, here we sought to identify differences in specific cytokines and serologic responses across patients with idiopathic IBS and PI-IBS and healthy controls. METHODS At total of 120 US military personnel were identified from the Defense Medical Surveillance System-based International Classification of Diseases, 9th Revision, Clinical Modification (ICD9-CM) codes recorded during medical encounters and were grouped based on infectious gastroenteritis (IGE) episode (Shigella, Campylobacter, Salmonella, or an unspecified pathogen) followed by IBS, IBS without antecedent IGE, or IGE without subsequent IBS within 2 years of the IGE exposure. Sera from subjects were assayed for cytokine levels and antibodies against a panel of microbiome antigens. RESULTS In total, 10 of 118 markers considered were shown to differ between IBS patients and healthy controls, including cytokines interleukin-6 (IL-6), IL-8, IL-1β, and macrophage inflammatory protein-1β (MIP-1β), as well as antibody responses to microbial antigens. Antimicrobial antibody response profiles also differed between PI-IBS cases compared with IBS cases without an antecedent episode of acute IGE. Comparisons also suggest that immunoglobulin A (IgA) and IgG profiles may point to pathogen-specific origins among PI-IBS cases. CONCLUSION Taken together, these results provide further evidence as to the molecular distinctness of classes of IBS cases and that serum biomarkers may prove useful in elucidating their pathobiological pathways.
Collapse
Affiliation(s)
- Brian L Pike
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Katie Ann Paden
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Ashley N Alcala
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Kayla M Jaep
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Robert P Gormley
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Alexander C Maue
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | | | - Charles O Elson
- Department of Medicine and Microbiology, University of Alabama, Birmingham, AL, USA
| | - Mark S Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
42
|
Camilleri M, Carlson P, Acosta A, Busciglio I. Colonic mucosal gene expression and genotype in irritable bowel syndrome patients with normal or elevated fecal bile acid excretion. Am J Physiol Gastrointest Liver Physiol 2015; 309:G10-20. [PMID: 25930081 PMCID: PMC4491506 DOI: 10.1152/ajpgi.00080.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 02/08/2023]
Abstract
The mucosal gene expression in rectosigmoid mucosa (RSM) in irritable bowel syndrome with diarrhea (IBS-D) is unknown. Our objectives were, first, to study mRNA expression [by RT(2) PCR of 19 genes pertaining to tight junctions, immune activation, intestinal ion transport and bile acid (BA) homeostasis] in RSM in IBS-D patients (n = 47) and healthy controls (n = 17) and study expression of a selected protein (PDZD3) in 10 IBS-D patients and 4 healthy controls; second, to assess RSM mRNA expression according to genotype and fecal BA excretion (high ≥ 2,337 μmol/48 h); and third, to determine whether genotype or mucosal mRNA expression is associated with colonic transit or BA parameters. Fold changes were corrected for false detection rate for 19 genes studied (P < 0.00263). In RSM in IBS-D patients compared with controls, mRNA expression of GUC2AB, PDZD3, and PR2Y4 was increased, whereas CLDN1 and FN1 were decreased. One immune-related gene was upregulated (C4BP4) and one downregulated (CCL20). There was increased expression of a selected ion transport protein (PDZD3) on immunohistochemistry and Western blot in IBS-D compared with controls (P = 0.02). There were no significant differences in mucosal mRNA in 20 IBS-D patients with high compared with 27 IBS-D patients with normal BA excretion. GPBAR1 (P < 0.05) was associated with colonic transit. We concluded that mucosal ion transport mRNA (for several genes and PDZD3 protein) is upregulated and barrier protein mRNA downregulated in IBS-D compared with healthy controls, independent of genotype. There are no differences in gene expression in IBS-D with high compared with normal fecal BA excretion.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
43
|
Claudin-related intestinal diseases. Semin Cell Dev Biol 2015; 42:30-8. [PMID: 25999319 DOI: 10.1016/j.semcdb.2015.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
With up to 200 m(2) the human intestine is the organ with the largest absorptive surface of the body. It is lined by a single layer of epithelial cells that separates the host from the environment. The intestinal epithelium provides both, selective absorption of nutrients, ions, and water but also a highly effective barrier function which includes the first line of defense against environmental antigens. The paracellular part of this barrier function is provided by tight junction (TJ) proteins, especially the large family of claudins. Changes in abundance or molecular structure of claudins can generally result in three typical effects, (i) decreased absorptive passage, (ii) increased secretory passage of small solutes and water causing leak flux diarrhea and (iii) increased absorptive passage of macromolecules which may induce inflammatory processes. Several intestinal diseases are associated with such changes that can result in intestinal inflammation and symptoms like weight loss, abdominal pain or diarrhea. This review summarizes our current knowledge on barrier dysfunction and claudin dysregulation in several intestinal diseases gastroenterologists are often faced with, like inflammatory bowel disease, microscopic colitis, celiac disease, irritable bowel syndrome, gallstones and infectious diseases like HIV enteropathy, Campylobacter jejuni and Clostridium perfringens infection.
Collapse
|
44
|
El-Salhy M, Hatlebakk JG, Gilja OH, Hausken T. Densities of rectal peptide YY and somatostatin cells as biomarkers for the diagnosis of irritable bowel syndrome. Peptides 2015; 67:12-9. [PMID: 25765365 DOI: 10.1016/j.peptides.2015.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common chronic disorder. IBS diagnosis is a diagnosis of exclusion since there are no blood tests, radiological or endoscopic examinations for this disorder. Although several attempts have been made to develop a symptoms-based diagnosis, such systems are not widely used in clinics. Several tests and examinations measuring pathological findings in IBS have been considered for the diagnosis of IBS, but none of them has proved useful as a biomarker. Abnormalities in the cell densities of rectal peptide YY (PYY) and somatostatin cells have been reported in IBS patients. The aim of the present study was to determine the utility of these abnormalities as biomarkers for the diagnosis of IBS. Patients with IBS established according to Rome III criteria (n = 101) were included in this study (71 females and 30 males with a mean age of 35 years; range 18-61 years), and 62 healthy subjects (38 females and 24 males with a mean age of 41 years; range 18-65 years) were recruited as controls. Both the patients and controls underwent colonoscopy during which rectal biopsy samples were taken. The tissue samples were immunostained for PYY and somatostatin, and the number of stained cells was quantified relative to both the area of epithelial cells and per microscopic field. The density of PYY cells was significantly lower in IBS patients than in the healthy controls (P < 0.0001); receiver operator characteristic (ROC) analysis revealed an area under the ROC curve (AUC) of 0.99. The somatostatin cell density in IBS patients was higher than in the controls (P < 0.0001); ROC analysis revealed an AUC of 0.86. The densities of the rectal PYY and somatostatin cells appear to be clinically effective biomarkers for IBS. Furthermore, measurement of these parameters is inexpensive, rapid and does not require considerable experience or sophisticated equipment.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Trygve Hausken
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
45
|
Localization of the Dual Oxidase BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of Caenorhabditis elegans. PLoS One 2015; 10:e0124091. [PMID: 25909649 PMCID: PMC4409361 DOI: 10.1371/journal.pone.0124091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/25/2015] [Indexed: 01/10/2023] Open
Abstract
Dual oxidases (DUOX) are enzymes that contain an NADPH oxidase domain that produces hydrogen peroxide (H2O2) and a peroxidase domain that can utilize H2O2 to carry out a variety of reactions. The model organism Caenorhabditis elegans produces the DUOX, BLI-3, which has roles in both cuticle development and in protection against infection. In previous work, we demonstrated that while certain peroxidases were protective against the human bacterial pathogen Enterococcus faecalis, the peroxidase domain of BLI-3 was not, leading to the postulate that the NADPH oxidase domain is the basis for BLI-3’s protective effects. In this work, we show that a strain carrying a mutation in the NADPH oxidase domain of BLI-3, bli-3(im10), is more susceptible to E. faecalis and the human fungal pathogen Candida albicans. Additionally, less H2O2 is produced in response to pathogen using both an established Amplex Red assay and a strain of C. albicans, WT-OXYellow, which acts as a biosensor of reactive oxygen species (ROS). Finally, a C. elegans line containing a BLI-3::mCherry transgene was generated. Previous work suggested that BLI-3 is produced in the hypodermis and the intestine. Expression of the transgene was observed in both these tissues, and additionally in the pharynx. The amount and pattern of localization of BLI-3 did not change in response to pathogen exposure.
Collapse
|
46
|
Yan J, Xu Y, Hu B, Alnajm S, Liu L, Lu Y, Sun Z, Cheng F. TIBS: A web database to browse gene expression in irritable bowel syndrome. J Theor Biol 2014; 354:48-53. [DOI: 10.1016/j.jtbi.2014.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/19/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
|
47
|
Camilleri M, Carlson P, Acosta A, Busciglio I, Nair AA, Gibbons SJ, Farrugia G, Klee EW. RNA sequencing shows transcriptomic changes in rectosigmoid mucosa in patients with irritable bowel syndrome-diarrhea: a pilot case-control study. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1089-98. [PMID: 24763552 PMCID: PMC4059976 DOI: 10.1152/ajpgi.00068.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our aim was to conduct a pilot case-control study of RNA expression profile using RNA sequencing of rectosigmoid mucosa of nine females with -diarrhea-predominant irritable bowel syndrome (IBS-D) with accelerated colonic transit and nine female healthy controls. Mucosal total RNA was isolated and purified, and next-generation pair-end sequencing was performed using Illumina TruSeq. Analysis was carried out using a targeted approach toward 12 genes previously associated with IBS and a hypothesis-generating approach. Of the 12 targeted genes tested, patients with IBS-D had decreased mRNA expression of TNFSF15 (fold change controls to IBS-D: 1.53, P = 0.01). Overall, up- and downregulated mRNA expressions of 21 genes (P = 10(-5) to 10(-8); P values with false detection rates are shown) were potentially relevant to IBS-D including the following: neurotransmitters [P2RY4 (P = 0.001), vasoactive intestinal peptide (VIP, P = 0.02)]; cytokines [CCL20 (P = 0.019)]; immune function [C4BPA complement cascade (P = 0.0187)]; interferon-related [IFIT3 (P = 0.016)]; mucosal repair and cell adhesion [trefoil protein (TFF1, P = 0.012)], retinol binding protein [RBP2 (P = 0.017)]; fibronectin (FN1, P = 0.009); and ion channel functions [guanylate cyclase (GUCA2B, P = 0.017), PDZ domain-containing protein 3 (PDZD3, P = 0.029)]. Ten genes associated with functions related to pathobiology of IBS-D were validated by RT-PCR. There was significant correlation in fold changes of the selected genes (Rs = 0.73, P = 0.013). Up- or downregulation of P2RY4, GUC2AB, RBP2, FNI, and C4BPA genes were confirmed on RT-PCR, which also revealed upregulation of farnesoid X receptor (FXR) and apical sodium-coupled bile acid transporter (IBAT/ASBT). RNA-Seq and RT-PCR analysis of rectosigmoid mucosa in IBS-D show transcriptome changes that provide the rationale for validation studies to explore the role of mucosal factors in the pathobiology of IBS-D.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) and
| | - Paula Carlson
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) and
| | - Andres Acosta
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) and
| | - Irene Busciglio
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) and
| | - Asha A. Nair
- 2Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Simon J. Gibbons
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) and
| | - Gianrico Farrugia
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) and
| | - Eric W. Klee
- 2Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Novianti PW, Roes KCB, Eijkemans MJC. Evaluation of gene expression classification studies: factors associated with classification performance. PLoS One 2014; 9:e96063. [PMID: 24770439 PMCID: PMC4000205 DOI: 10.1371/journal.pone.0096063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.
Collapse
Affiliation(s)
- Putri W Novianti
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kit C B Roes
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marinus J C Eijkemans
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
49
|
Chao CH, Lin CL, Wang HY, Sung FC, Chang YJ, Kao CH. Increased subsequent risk of erectile dysfunction in patients with irritable bowel syndrome: a nationwide population-based cohort study. Andrology 2014; 1:793-8. [PMID: 23970456 DOI: 10.1111/j.2047-2927.2013.00120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 12/14/2022]
Abstract
This retrospective population-based study aimed to investigate associations between erectile dysfunction (ED) and the irritable bowel syndrome (IBS) using a Taiwanese cohort. We identified 17 608 male patients who were newly diagnosed with IBS from 1997 to 2010. The date that the diagnosis of IBS had been made was the index date. IBS patients with a history of ED before the index date or with incomplete demographic information were excluded. 70 432 age-matched subjects without IBS were selected as comparison cohort. Both cohorts were followed until the end of 2010 or censored. Cox proportional hazard regression model was used to estimate the effects of IBS on ED risks. The incidence rate ratio of ED in the IBS cohort was 2.92 times higher than that in the non-IBS cohort (29.5 vs. 10.1 per 10 000 person-years), with an adjusted hazard ratio (aHR) of 2.58 (95% confidence interval [CI]: 2.24-2.98). The risk of ED increased with increasing age and number of comorbidities. Patients with depression were at a higher risk of ED (aHR: 1.97; 95% CI: 1.49-2.63) compared with the subjects without depression. IBS patients had a higher risk of developing ED compared with non-IBS subjects. Ageing and comorbidities including diabetes, cardiovascular disease, chronic kidney disease and depression were associated with the risk of ED.
Collapse
Affiliation(s)
- C-H Chao
- Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Camilleri M. Physiological underpinnings of irritable bowel syndrome: neurohormonal mechanisms. J Physiol 2014; 592:2967-80. [PMID: 24665101 DOI: 10.1113/jphysiol.2014.270892] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is a vast neuroendocrine organ with extensive extrinsic and intrinsic neural circuits that interact to control its function. Circulating and paracrine hormones (amine and peptide) provide further control of secretory, absorptive, barrier, motor and sensory mechanisms that are essential to the digestion and assimilation of nutrients, and the transport and excretion of waste products. Specialized elements of the mucosa (including enteroendocrine cells, enterocytes and immune cells) and the microbiome interact with other intraluminal contents derived from the diet, and with endogenous chemicals that alter the gut's functions. The totality of these control mechanisms is often summarized as the brain-gut axis. In irritable bowel syndrome (IBS), which is the most common gastrointestinal disorder, there may be disturbances at one or more of these diverse control mechanisms. Patients present with abdominal pain in association with altered bowel function. This review documents advances in understanding the pathophysiological mechanisms in the brain-gut axis in patients with IBS. It is anticipated that identification of one or more disordered functions in clinical practice will usher in a renaissance in the management of IBS, leading to effective therapy tailored to the needs of the individual patient.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|