1
|
Allen AM, Lazarus JV, Alkhouri N, Noureddin M, Wong VWS, Tsochatzis EA, de Avila L, Racila A, Nader F, Mark HE, Henry L, Stepanova M, Castera L, Younossi ZM. Global patterns of utilization of noninvasive tests for the clinical management of metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2025; 9:e0678. [PMID: 40304566 PMCID: PMC12045536 DOI: 10.1097/hc9.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Noninvasive tests (NITs) are used to risk-stratify metabolic dysfunction-associated steatotic liver disease. The aim was to survey global patterns of real-world use of NITs. METHODS A 38-item survey was designed by the Global NASH Council. Providers were asked about risks for advanced fibrosis, which NITs (cutoff values) they use to risk-stratify liver disease, monitor progression, and which professional guidelines they follow. RESULTS A total of 321 participants from 43 countries completed the survey (54% hepatologists, 28% gastroenterologists, and 18% other). Of the respondents, 85% would risk-stratify patients with type 2 diabetes, obesity (82%), or abnormal liver enzymes (73%). Among NITs to rule out significant or advanced fibrosis, transient elastography (TE) and fibrosis-4 (FIB-4) were most used, followed by NAFLD Fibrosis Score, Enhanced Liver Fibrosis, and magnetic resonance elastography. The cutoffs for ruling out significant fibrosis varied considerably between practices and from guidelines, with only 50% using TE <8 kPa, 65% using FIB-4 <1.30 for age <65, and 41% using FIB-4 <2.00 for age ≥65. Similar variability was found for ruling in advanced fibrosis, where thresholds of FIB-4 ≥2.67 and TE ≥10 kPa were used by 20% and 17%, respectively. To establish advanced fibrosis, 48% would use 2 NITs while 23% would consider 1 NIT, and 17% would confirm with liver biopsy. TE was used by >75% to monitor, and 66% would monitor (intermediate or high risk) annually. Finally, 65% follow professional guideline recommendations regarding NITs. CONCLUSIONS In clinical practice, there is variability in NIT use and their thresholds. Additionally, there is suboptimal adherence to professional societies' guidelines.
Collapse
Affiliation(s)
- Alina M. Allen
- The Global NASH Council, Washington, District of Columbia, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey V. Lazarus
- The Global NASH Council, Washington, District of Columbia, USA
- CUNY Graduate School of Public Health and Health Policy, New York, New York, USA
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Naim Alkhouri
- The Global NASH Council, Washington, District of Columbia, USA
- Arizona Liver Health, Chandler, Arizona, USA
| | - Mazen Noureddin
- The Global NASH Council, Washington, District of Columbia, USA
- Houston Methodist Hospital, Houston, Texas, USA
| | - Vincent Wai-Sun Wong
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Emmanuel A. Tsochatzis
- The Global NASH Council, Washington, District of Columbia, USA
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Leyla de Avila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Andrei Racila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Fatema Nader
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Henry E. Mark
- The Global NASH Council, Washington, District of Columbia, USA
| | - Linda Henry
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Maria Stepanova
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Laurent Castera
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Hepatology, Beaujon Hospital, Assistance Publique—Hôpitaux de Paris, Université Paris-Cité, Clichy, France
| | - Zobair M. Younossi
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Alves VDPV, Mouzaki M, Xanthakos SA, Zhang B, Tkach JA, Ouyang J, Dillman JR, Trout AT. Longitudinal evaluation of pediatric and young adult metabolic dysfunction-associated steatotic liver disease defined by MR elastography. Eur Radiol 2025; 35:2474-2486. [PMID: 39438331 DOI: 10.1007/s00330-024-11146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/09/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES To inform clinical monitoring of children and young adults with metabolic dysfunction-associated steatotic liver disease (MASLD) by characterizing the real-world natural history of MASLD and identifying baseline predictors of liver disease progression. MATERIALS AND METHODS This retrospective study included consecutive patients ages < 23 years with MASLD who underwent serial MR elastography (MRE) and/or MR fat fraction (FF) examinations between 09/2009 and 11/2022. Outcomes of MASLD were defined based on maximum ratio values. A relative change ≥ 19% in liver stiffness measures (LSM) and an absolute change ≥ 5% for liver FF were considered clinically meaningful. Random intercept models characterized the yearly rate of change in LSM (kilopascals per year) and FF (percentage per year). RESULTS One hundred twenty-one patients (87 males, mean age at baseline: 12 ± 3 [SD] years) underwent 297 MRE examinations. The mean interval between the first and last MRE was 34 (± 24) months (range: 1-120 months). Among the 114 patients with serial LSM, 33% (38/114) showed progression, 46% (53/114) remained stable, and 21% (23/114) showed regression. Among the 88 patients with serial FF measures, 57% (50/88) showed progression, 2% (2/88) remained stable, and 41% (36/88) showed regression. LSM progression was associated with Hispanic ethnicity, baseline BMI-for-age percentile, baseline mean liver FF, and GGT changes over time. Predictors for liver FF progression included ALT, AST, GGT, and LDL. CONCLUSION In a real-world sample of children and young adults with MASLD who underwent serial liver MRI, a minority of patients demonstrated improvements in liver stiffness or FF over time. KEY POINTS Question In children, there is scarce data regarding the natural history of MASLD. Findings In this retrospective study, most children and young adults with MASLD had either unchanged or worsening liver stiffness (n = 91/114, 79%) and liver fat (n = 52/88, 59%). Clinical relevance Our findings emphasize the need for optimized care in pediatric MASLD. The identified risk factors for the progression of liver fat and stiffness may help to identify children who require interventions beyond changes in lifestyle.
Collapse
Affiliation(s)
- Vinicius de Padua V Alves
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marialena Mouzaki
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stavra A Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bin Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jiarong Ouyang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Villanueva C, Tripathi D, Bosch J. Preventing the progression of cirrhosis to decompensation and death. Nat Rev Gastroenterol Hepatol 2025; 22:265-280. [PMID: 39870944 DOI: 10.1038/s41575-024-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur. In recent years, innovative studies have provided evidence supporting new strategies to prevent decompensation in cACLD. These studies have yielded major advances, including the development of noninvasive tests (NITs) to identify patients with CSPH with reasonable confidence, the demonstration that aetiological therapies can prevent disease progression and even achieve regression of cirrhosis, and the finding that non-selective β-blockers can effectively prevent decompensation in patients with cACLD and CSPH, mainly by reducing the risk of ascites, the most frequent decompensating event. Here, we review the evidence supporting new strategies to manage cACLD to prevent decompensation and the caveats for their implementation, from patient selection using NITs to ancillary therapies.
Collapse
Affiliation(s)
- Càndid Villanueva
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.
| | - Dhiraj Tripathi
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jaume Bosch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
- Department of Visceral Surgery and Medicine (Hepatology), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Grady J, Song M, Townsend W, Mahmud N, Tapper EB, Parikh ND. A systematic review of noninvasive laboratory indices and elastography to predict hepatic decompensation. Hepatol Commun 2025; 9:e0675. [PMID: 40131017 PMCID: PMC11936601 DOI: 10.1097/hc9.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Hepatic decompensation carries profound implications for patient quality of life and risk of mortality. We lack comparative data on how noninvasive tools perform in risk stratification for those with compensated cirrhosis. We performed a systematic review to assess the performance of laboratory and transient elastography-based models for predicting hepatic decompensation in patients with compensated cirrhosis. METHODS The following databases were searched by an informationist to identify relevant studies, including adult patients with compensated cirrhosis from inception to August 2023: Medline, Embase, Scopus, Web of Science, and ClinicalTrials.gov. Title and abstract screening followed by full-text review were performed by 2 independent reviewers, and data abstraction was completed using standardized forms. Studies of patients with decompensation at baseline (defined by ascites, variceal bleeding, and HE) or any primary hepatic malignancy were excluded. The primary outcome was hepatic decompensation, as defined above. Pooled HRs were calculated using the common-effect inverse-variance model. RESULTS Forty-four full-text studies met the inclusion criteria. Across 52,589 patients, the cumulative incidence of any decompensation was 17.9% over a follow-up time of 111,401 patient years. Pooled risk estimates for all-cause decompensation demonstrated that MELD (HR: 1.08; 95% CI: 1.06-1.10), albumin-bilirubin (HR: 2.13, 95% CI: 1.92-2.36), fibrosis-4 (HR: 1.04, 95% CI: 1.03-1.06), albumin-bilirubin-fibrosis-4 (HR: 1.25, 95% CI: 1.18-1.33), and liver stiffness by transient elastography (HR: 1.04; 95% CI: 1.04-1.05) predict decompensation. CONCLUSIONS Available blood and imaging-based biomarkers can risk-stratify patients for hepatic decompensation. Changes in albumin-bilirubin appear to have the highest discrimination in predicting decompensation events.
Collapse
Affiliation(s)
- John Grady
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Song
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Whitney Townsend
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nadim Mahmud
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Leonard David Institute of Health Economics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elliot B. Tapper
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Ann Arbor VA Healthcare System, Ann Arbor, Michigan, USA
| | - Neehar D. Parikh
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Truong E, Alnimer L, Gornbein JA, Yang JD, Alkhouri N, Harrison SA, Noureddin M. Agile 3+ and 4 Scores Accurately Predict Major Adverse Liver Outcomes, Liver Transplant, Progression of MELD Score, the Development of Hepatocellular Carcinoma, and Death in NAFLD. Dig Dis Sci 2025:10.1007/s10620-025-08850-1. [PMID: 40126753 DOI: 10.1007/s10620-025-08850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/04/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Based on liver stiffness measurement by vibration controlled transient elastography (LSM by VCTE), the Agile 3+ and 4 are novel noninvasive scores that accurately identify advanced fibrosis (≥ F3) and cirrhosis (F4), respectively. We investigated and compared the Agile 3+ and 4 scores' performances in predicting adverse events to LSM alone, FIB-4 and Fibroscan-AST (FAST) score. METHOD This retrospective analysis included NAFLD patients with LSM by VCTE and laboratory testing from a tertiary care center from 2013 to 2022. Adverse events were defined as major adverse liver outcomes (MALO), hepatocellular carcinoma, liver transplant, and death. MALO was defined as ascites, hepatic encephalopathy, or esophageal variceal bleeding. We used the Cox proportional hazard rate model and the Harrell's concordance (C) statistic to compare predictive performances. RESULTS 733 total subjects with median follow-up of 27.0 months were included. Average age was 58.1 years and 32.8% had type 2 diabetes. Average alanine aminotransferase was 46.6 IU/L, aspartate aminotransferase: 34.5 IU/L, albumin: 4.4 g/dL, and platelets: 241.1 × 109/L. Fourteen subjects had 21 adverse outcomes, including 10 MALO, 5 HCC, 4 liver transplants, 3 progression of MELD score, and 6 deaths. Agile 3+ and 4 respectively had the highest C stats of 0.911 (C stat SE 0.028) and 0.909 (C stat SE 0.029) compared to LSM (C stat 0.857, C stat SE 0.045), FIB-4 (C stat 0.843, C stat SE 0.037) or FAST (C stat 0.703, C stat SE 0.085). CONCLUSION The Agile 3+ and 4 scores had the highest likelihood of accurately predicting adverse outcomes including MALO and death compared to LSM alone, FIB-4 or FAST score.
Collapse
Affiliation(s)
- Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lynna Alnimer
- Division of Gastroenterology, Henry Ford Providence Hospital, Michigan State University/College of Human Medicine, Southfield, MI, USA
| | - Jeffrey A Gornbein
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, 1155 Dairy Ashford Suite 200, Houston, TX, 77079, USA.
- Lynda K. and David M. Underwood Center for Digestive Disorders, Department of Medicine, J.C. Walter Jr. Transplant Center, Sherrie & Alan Conover Center for Liver Disease & Transplantation, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, USA.
| |
Collapse
|
6
|
Jiang H, Yu H, Hu C, Huang Y, Yang B, Xi X, Lei Y, Wu B, Yang Y. Liver stiffness measurement trajectory analysis for prognosis in patients with chronic hepatitis B and compensated advanced chronic liver disease. Ann Hepatol 2025; 30:101788. [PMID: 40068764 DOI: 10.1016/j.aohep.2025.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION AND OBJECTIVES Liver stiffness measurements (LSMs) offer a noninvasive method for monitoring liver disease development. This study evaluated the prognostic value of different LSM trajectories in chronic hepatitis B (CHB) and compensated advanced chronic liver disease (cACLD) patients. MATERIALS AND METHODS We retrospectively analyzed 1272 CHB and cACLD patients with at least two LSMs, applied group-based trajectory modeling (GBTM) to identify distinct LSM trajectories, and used a Cox model to analyze their associations with liver-related events (LREs) and mortality risk. RESULTS Patients were categorized into five groups with distinct LSM trajectories: 67 (8.5 %), 13 (11 %), 36 (23.5 %), 34 (27.6 %) and 23 (25.0 %) developed LREs in Groups 1-5. The low stable trajectory (Group 3), the medium gradual decrease trajectory (Group 4) and high quickly decrease followed by increase trajectory (Group 5) had higher LREs risks than the low gradual decrease trajectory (Group 1) (adjusted HRs 2.26, 2.39, 2.67; 95 % CIs 1.50-3.40, 1.57-3.66, 1.61-4.43, respectively). Similar elevated risks were observed for hepatic decompensation, hepatocellular carcinoma (HCC), liver-related and all-cause mortality, except that there was no significant difference in the risk of HCC between Groups 4 and 1 (aHR 0.66, 0.36-1.23). When comparing Group 1 with the medium quickly decrease trajectory (Group 2), no significant differences were noted in the prognosis (P > 0.05). Notably, age over 40, high LSM, low PLT, and high total bilirubin were linked to high-risk trajectories (Groups 3-5). CONCLUSIONS Monitoring LSM trajectories improves prognostic prediction in CHB and cACLD compared with single measurements and may guide personalized treatment strategies.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Hongsheng Yu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Can Hu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Yinan Huang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Bilan Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510230, PR China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Yiming Lei
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Bin Wu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China
| | - Yidong Yang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, PR China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Takawy MW, Abdelmalek MF. Impact of Weight Loss on Metabolic Dysfunction Associated Steatohepatitis and Hepatic Fibrosis. Curr Diab Rep 2025; 25:23. [PMID: 39964660 DOI: 10.1007/s11892-025-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE OF REVIEW This review highlights the impact of weight loss on metabolic dysfunction associated steatotic liver disease (MASLD), formally known as nonalcoholic fatty liver disease (NAFLD), and its progressive form of metabolic dysfunction associated steatohepatitis (MASH), formally known as nonalcoholic steatohepatitis (NASH). The effects of weight loss, as achieved through lifestyle modification, pharmacotherapy, bariatric surgery or endobariatric procedures on MASLD/MASH and hepatic fibrosis are discussed. RECENT FINDINGS Although foundational in the treatment of MASLD/MASH, weight loss through life-style modification is challenging for most patients to achieve and sustain long-term. In patients with MASLD/MASH, a multidisciplinary approach may facilitate success with lifestyle modification, individualized consideration of pharmacotherapies and/or surgical approaches that have potential to lend an improvement in MASLD/MASH. Effective and sustained weight loss improves hepatic steatosis, steatohepatitis and potentially hepatic fibrosis. Improvement in hepatic fibrosis can improve patient-related outcomes associated with complications of advanced hepatic fibrosis or cirrhosis in patients with MASLD/MASH. Identifying risk factors that influence MASLD/MASH and early implementation of therapeutic weight loss strategies may improve chronic liver injury and decrease risk for adverse clinical outcomes related to progressive hepatic fibrosis attributable to MASLD/MASH.
Collapse
Affiliation(s)
- Marina W Takawy
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester Rochester, MN, 55905, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Liu C, You H, Zeng QL, Wong YJ, Wang B, Grgurevic I, Liu C, Yim HJ, Gou W, Dong B, Ju S, Guo Y, Yu Q, Hirooka M, Enomoto H, Hanafy AS, Cao Z, Dong X, LV J, Kim TH, Koizumi Y, Hiasa Y, Nishimura T, Iijima H, Xu C, Dai E, Lan X, Lai C, Liu S, Wang F, Guo Y, Lv J, Zhang L, Wang Y, Xie Q, Shao C, Liu Z, Ravaioli F, Colecchia A, Li J, Teng GJ, Qi X. Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306). Clin Mol Hepatol 2025; 31:105-118. [PMID: 38988296 PMCID: PMC11791610 DOI: 10.3350/cmh.2024.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUNDS/AIMS Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model. METHODS Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort. RESULTS In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new "CSPH risk" model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and -0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <-0.68 (low-risk), -0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM). CONCLUSION Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
Collapse
Affiliation(s)
- Chuan Liu
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University; State Key Laboratory of Digital Medical Engineering, Nanjing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Jun Wong
- Department of Gastroenterology & Hepatology, Changi General Hospital, Singapore
- Duke-NUS Medical School, Singapore
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ivica Grgurevic
- University Hospital Dubrava, University of Zagreb School of Medicine and Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Hyung Joon Yim
- Division of Gastroenterology and Hepatology, Korea University Ansan Hospital, Ansan, Korea
| | - Wei Gou
- Qingdao Sixth People’s Hospital, Qingdao, China
| | - Bingtian Dong
- Department of Ultrasound, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanan Guo
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Yu
- Department of Ultrasound, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Hirayuki Enomoto
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Amr Shaaban Hanafy
- Division of Gastroenterology, Hepatology and Endoscopy, Internal Medicine, Zagazig University Faculty of Medicine, Zagazig, Egypt
| | - Zhujun Cao
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiemin Dong
- Qingdao Sixth People’s Hospital, Qingdao, China
| | - Jing LV
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tae Hyung Kim
- Division of Gastroenterology and Hepatology, Korea University Ansan Hospital, Ansan, Korea
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Takashi Nishimura
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hiroko Iijima
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Ultrasound Imaging Center, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Chuanjun Xu
- Department of Radiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Erhei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiaoling Lan
- Department of Infectious Diseases, Lishui People’s Hospital, Lishui, China
| | | | - Shirong Liu
- Department of Infectious Diseases, Qufu People’s Hospital, Qufu, China
| | - Fang Wang
- Shenzhen Third People’s Hospital, Shenzhen, China
| | - Ying Guo
- Department of Hepatology, The Third People’s Hospital of Taiyuan, Taiyuan, China
| | - Jiaojian Lv
- Department of Infectious Diseases, Lishui People’s Hospital, Lishui, China
| | - Liting Zhang
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuqing Wang
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Qing Xie
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Federico Ravaioli
- Gastroenterology Unit, University Hospital of Modena, Department of Medical Specialities, University of Modena & Reggio Emilia, Modena, Italy
- Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, University Hospital of Modena, Department of Medical Specialities, University of Modena & Reggio Emilia, Modena, Italy
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gao-Jun Teng
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University; State Key Laboratory of Digital Medical Engineering, Nanjing, China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaolong Qi
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University; State Key Laboratory of Digital Medical Engineering, Nanjing, China
| |
Collapse
|
9
|
Darwish OI, Koch V, Vogl TJ, Wolf M, Schregel K, Purushotham A, Vilgrain V, Paradis V, Neji R, Sinkus R. MR Elastography Using the Gravitational Transducer. SENSORS (BASEL, SWITZERLAND) 2024; 24:8038. [PMID: 39771774 PMCID: PMC11679839 DOI: 10.3390/s24248038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity. Currently, hepatic MR elastography is deployed in the clinic to assess liver fibrosis in MAFLD patients. In addition, research has demonstrated MR elastography's ability to non-invasively assess chronic liver disease and to characterize breast cancer lesions and brain tumors. MR elastography requires efficient mechanical wave generation and penetration, motion-sensitized MRI sequences, and MR elastography inversion algorithms to retrieve the biomechanical properties of the tissue. MR elastography promises to enable non-invasive and versatile assessment of tissue, leading to better diagnosis and staging of several clinical conditions.
Collapse
Affiliation(s)
- Omar Isam Darwish
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
- MR Predevelopment, Siemens Healthineers, 91052 Erlangen, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60629 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60629 Frankfurt am Main, Germany
| | - Marcos Wolf
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Arnie Purushotham
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Valérie Vilgrain
- INSERM, Centre de Recherche sur l’Inflammation, Universite Paris Cite, 45018 Paris, France
- Department of Radiology, Hospital Beaujon, 92110 Clichy, France
| | - Valérie Paradis
- INSERM, Centre de Recherche sur l’Inflammation, Universite Paris Cite, 45018 Paris, France
- Department of Pathology, Hospital Beaujon, 92110 Clichy, France
| | - Radhouene Neji
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
| | - Ralph Sinkus
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75877 Paris, France
| |
Collapse
|
10
|
Hanedan Uslu G, Taşçı F. Impact of right-sided breast cancer adjuvant radiotherapy on the liver. Radiol Oncol 2024; 58:535-543. [PMID: 39608011 PMCID: PMC11604264 DOI: 10.2478/raon-2024-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND In patients with right-sided breast cancer the liver can be partially irradiated during adjuvant radiotherapy (RT). We aimed to determine breast cancer RT effects on liver using with magnetic resonance elastography (MRE) and biological results. PATIENTS AND METHODS This retrospective study enrolled 34 patients diagnosed with right-sided breast cancer who underwent adjuvant RT. Liver segment assessments were conducted using MRE for all participants. Additionally, a complete blood count and liver enzyme analysis were performed for each patient. All measurements were taken both prior to the initiation and upon completion of RT. RESULTS A statistically significant difference was found in ALT (p = 0.015), ALP (p = 0.026), total protein (p = 0.037), and albumin (p = 0.004) levels before and after RT. The highest mean liver stiffness (kPa) value was recorded in segment 8, while the lowest was observed in segment 6. A weak but statistically significant positive correlation was found between segment 5 stiffness and liver volume (p = 0.039). Additionally, a statistically significant positive correlation was detected between ALP levels and the stiffness values in segment 4A (p = 0.020) and segment 6 (p = 0.003). Conversely, a weak negative correlation was observed between the stiffness values in segment 8 and post-RT total protein levels (p = 0.031). CONCLUSIONS MRE can help us identify the level of fibrotic stiffness in the liver segments within the RT area without establishing clinical symptoms. MRE can support the clinician in evaluating the liver functions of right breast cancer patients who underwent RT. We assume these results will facilitate new studies with a large number of patients on MRE imaging at certain intervals in the follow-up of patients with right breast cancer who received RT before the development of radiation-induced liver disease (RILD).
Collapse
Affiliation(s)
- Gonca Hanedan Uslu
- Department of Radiation Oncology, İstinye University, Faculty of Medicine, İstanbul, Turkey
| | - Filiz Taşçı
- Department of Radiology, Recep Tayyip Erdogan University Faculty of Medicine, Rize, Turkey
| |
Collapse
|
11
|
Kaylan KB, Paul S. NAFLD No More: A Review of Current Guidelines in the Diagnosis and Evaluation of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr Diab Rep 2024; 25:5. [PMID: 39535566 DOI: 10.1007/s11892-024-01558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW Provide a concise update on metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), as well as a practical approach to screening and initial evaluation. RECENT FINDINGS Nomenclature changes have placed a greater focus on cardiometabolic risk factors in the definition of MASLD. Screening for MASLD is by stepwise noninvasive serum and imaging tests which can identify patients at risk for advanced fibrosis and liver-related complications. MASLD has been increasing in prevalence and disease burden but is underrecognized in primary care and endocrinology clinics. Multiple society guidelines, synthesized here, provide a framework for the initial approach in the diagnosis and evaluation of MASLD. Recent advances in pharmacologic treatment underline the importance of screening for patients who are at risk for advanced fibrosis as they are most likely to benefit from new drug classes, such as the liver-directed thyroid receptor agonist resmiterom.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Medicine, Chicago, IL, USA
| | - Sonali Paul
- Section of Gastroenterology, Hepatology, and Nutrition, Center for Liver Diseases, The University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Lawitz EJ, Fraessdorf M, Neff GW, Schattenberg JM, Noureddin M, Alkhouri N, Schmid B, Andrews CP, Takács I, Hussain SA, Fenske WK, Gane EJ, Hosseini-Tabatabaei A, Sanyal AJ, Mazo DF, Younes R. Efficacy, tolerability and pharmacokinetics of survodutide, a glucagon/glucagon-like peptide-1 receptor dual agonist, in cirrhosis. J Hepatol 2024; 81:837-846. [PMID: 38857788 DOI: 10.1016/j.jhep.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Survodutide is a glucagon/glucagon-like peptide-1 receptor dual agonist in development for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). We investigated the pharmacokinetic and safety profile of survodutide in people with cirrhosis. METHODS This multinational, non-randomized, open-label, phase I clinical trial initially evaluated a single subcutaneous dose of survodutide 0.3 mg in people with Child-Pugh class A, B or C cirrhosis and healthy individuals with or without overweight/obesity matched for age, sex, and weight; the primary endpoints were the area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) and maximal plasma concentration (Cmax). Subsequently, people with overweight/obesity with or without cirrhosis (Child-Pugh class A or B) received once-weekly subcutaneous doses escalated from 0.3 mg to 6.0 mg over 24 weeks then maintained for 4 weeks; the primary endpoint was drug-related treatment-emergent adverse events, with MASH/cirrhosis-related endpoints explored. RESULTS In the single-dose cohorts (n = 41), mean AUC0-∞ and Cmax were similar in those with cirrhosis compared with healthy individuals (90% CIs for adjusted geometric mean ratios spanned 1). Drug-related adverse events occurred in 25.0% of healthy individuals and ≤25.0% of those with cirrhosis after single doses, and 82.4% and 87.5%, respectively, of the multiple-dose cohorts (n = 41) over 28 weeks. Liver fat content, liver stiffness, liver volume, body weight, and other hepatic and metabolic disease markers were generally reduced after 28 weeks of survodutide treatment. CONCLUSIONS Survodutide is generally tolerable in people with compensated or decompensated cirrhosis, does not require pharmacokinetic-related dose adjustment, and may improve liver-related non-invasive tests, supporting its investigation for MASH-related cirrhosis. IMPACT AND IMPLICATIONS Survodutide is a glucagon receptor/glucagon-like peptide-1 receptor dual agonist in development for treatment of metabolic dysfunction-associated steatohepatitis (MASH), which causes cirrhosis in ∼20% of cases. This trial delineates the pharmacokinetic and safety profile of survodutide in people with compensated or decompensated cirrhosis, and revealed associated reductions in liver fat content, markers of liver fibrosis and body weight. These findings have potential relevance for people with MASH-including those with decompensated cirrhosis, who are usually excluded from clinical trials of investigational drugs. Based on this study, further investigation of survodutide for MASH-related cirrhosis is warranted. CLINICALTRIALS GOV IDENTIFIER NCT05296733.
Collapse
Affiliation(s)
- Eric J Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | | | - Guy W Neff
- Covenant Metabolic Specialists, Sarasota and Fort Myers, FL, USA
| | - Jörn M Schattenberg
- Department of Internal Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Naim Alkhouri
- Hepatology Division, Arizona Liver Health, Phoenix, AZ, USA
| | | | | | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Wiebke K Fenske
- Department of Internal Medicine I, Endocrinology, Diabetes and Metabolism, Bergmannsheil University Hospital Bochum, Bochum, Germany
| | - Edward J Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
13
|
Low G, Chee RKW, Wong YJ, Tandon P, Manolea F, Locas S, Ferguson C, Tu W, Wilson MP. Abbreviated Multiparametric MR Solution (the "Liver Triple Screen"), the Future of Non-Invasive MR Quantification of Liver Fat, Iron, and Fibrosis. Diagnostics (Basel) 2024; 14:2373. [PMID: 39518341 PMCID: PMC11545674 DOI: 10.3390/diagnostics14212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: To review the findings of a multiparametric MRI (the "liver triple screen") solution for the non-invasive assessment of liver fat, iron, and fibrosis in patients with chronic liver disease (CLD). Methods: A retrospective evaluation of all consecutive triple screen MRI cases was performed at our institution over the last 32 months. Relevant clinical, laboratory, and radiologic data were analyzed using descriptive statistics. Results: There were 268 patients, including 162 (60.4%) males and 106 (39.6%) females. The mean age was 54 ± 15.2 years (range 16 to 71 years). The most common cause of CLD was metabolic dysfunction-associated steatotic liver disease (MASLD) at 45.5%. The most common referring physician group was Gastroenterology at 62.7%. In 23.9% of cases, the reason for ordering the MRI was a pre-existing failed or unreliable US elastography. There were 17 cases (6.3%) of MRI technical failure. Our analysis revealed liver fibrosis in 66% of patients, steatosis in 68.3%, and iron overload in 22.1%. Combined fibrosis and steatosis were seen in 28.7%, steatosis and iron overload in 16.8%, fibrosis and iron overload in 6%, and combined fibrosis, steatosis, and iron overload in 4.1%. A positive MEFIB index, a predictor of liver-related outcomes, was found in 57 (27.5%) of 207 patients. Incidental findings were found in 14.9% of all MRIs. Conclusions: The liver triple screen MRI is an effective tool for evaluating liver fat, iron, and fibrosis in patients with CLD. It provides essential clinical information and can help identify MASLD patients at risk for liver-related outcomes.
Collapse
Affiliation(s)
- Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Ryan K. W. Chee
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Yu Jun Wong
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.J.W.); (P.T.)
| | - Puneeta Tandon
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.J.W.); (P.T.)
| | - Florin Manolea
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Stephanie Locas
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Craig Ferguson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Wendy Tu
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Mitchell P. Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| |
Collapse
|
14
|
Zhai Y, Hai D, Zeng L, Lin C, Tan X, Mo Z, Tao Q, Li W, Xu X, Zhao Q, Shuai J, Pan J. Artificial intelligence-based evaluation of prognosis in cirrhosis. J Transl Med 2024; 22:933. [PMID: 39402630 PMCID: PMC11475999 DOI: 10.1186/s12967-024-05726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Cirrhosis represents a significant global health challenge, characterized by high morbidity and mortality rates that severely impact human health. Timely and precise prognostic assessments of liver cirrhosis are crucial for improving patient outcomes and reducing mortality rates as they enable physicians to identify high-risk patients and implement early interventions. This paper features a thorough literature review on the prognostic assessment of liver cirrhosis, aiming to summarize and delineate the present status and constraints associated with the application of traditional prognostic tools in clinical settings. Among these tools, the Child-Pugh and Model for End-Stage Liver Disease (MELD) scoring systems are predominantly utilized. However, their accuracy varies significantly. These systems are generally suitable for broad assessments but lack condition-specific applicability and fail to capture the risks associated with dynamic changes in patient conditions. Future research in this field is poised for deep exploration into the integration of artificial intelligence (AI) with routine clinical and multi-omics data in patients with cirrhosis. The goal is to transition from static, unimodal assessment models to dynamic, multimodal frameworks. Such advancements will not only improve the precision of prognostic tools but also facilitate personalized medicine approaches, potentially revolutionizing clinical outcomes.
Collapse
Affiliation(s)
- Yinping Zhai
- Department of Gastroenterology Nursing Unit, Ward 192, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Darong Hai
- The School of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Zeng
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chenyan Lin
- The School of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinru Tan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zefei Mo
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qijia Tao
- The School of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenhui Li
- The School of Nursing, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Xu
- Department of Gastroenterology Nursing Unit, Ward 192, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, 325000, China.
| | - Jingye Pan
- Department of Big Data in Health Science, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
16
|
Allen AM, Younossi ZM, Diehl AM, Charlton MR, Lazarus JV. Envisioning how to advance the MASH field. Nat Rev Gastroenterol Hepatol 2024; 21:726-738. [PMID: 38834817 DOI: 10.1038/s41575-024-00938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Since 1980, the cumulative effort of scientists and health-care stakeholders has advanced the prerequisites to address metabolic dysfunction-associated steatotic liver disease (MASLD), a prevalent chronic non-communicable liver disease. This effort has led to, among others, the approval of the first drug specific for metabolic dysfunction-associated steatohepatitis (MASH; formerly known as nonalcoholic steatohepatitis). Despite substantial progress, MASLD is still a leading cause of advanced chronic liver disease, including primary liver cancer. This Perspective contextualizes the nomenclature change from nonalcoholic fatty liver disease to MASLD and proposes important considerations to accelerate further progress in the field, optimize patient-centric multidisciplinary care pathways, advance pharmacological, behavioural and diagnostic research, and address health disparities. Key regulatory and other steps necessary to optimize the approval and access to upcoming additional pharmacological therapeutic agents for MASH are also outlined. We conclude by calling for increased education and awareness, enhanced health system preparedness, and concerted action by policy-makers to further the public health and policy agenda to achieve at least parity with other non-communicable diseases and to aid in growing the community of practice to reduce the human and economic burden and end the public health threat of MASLD and MASH by 2030.
Collapse
Affiliation(s)
- Alina M Allen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
- The Global NASH Council, Washington DC, USA
| | | | - Michael R Charlton
- Center for Liver Diseases, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey V Lazarus
- The Global NASH Council, Washington DC, USA.
- CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, USA.
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Zhi Y, Dong Y, Li X, Zhong W, Lei X, Tang J, Mao Y. Current Progress and Challenges in the Development of Pharmacotherapy for Metabolic Dysfunction-Associated Steatohepatitis. Diabetes Metab Res Rev 2024; 40:e3846. [PMID: 39329241 DOI: 10.1002/dmrr.3846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), poses a significant threat to global health. Despite extensive research efforts over the past decade, only one drug has received market approval under accelerated pathways. In this review, we summarise the pathogenesis of MASH and present a comprehensive overview of recent advances in phase 2-3 clinical trials targeting MASH. These trials have highlighted considerable challenges, including low response rates to drugs, limitations of current surrogate histological endpoints, and inadequacies in the design of MASH clinical trials, all of which hinder the progress of MASH pharmacotherapy. We also explored the potential of non-invasive tests to enhance clinical trial design. Furthermore, given the strong association between MASLD and cardiometabolic disorders, we advocate for an integrated approach to disease management to improve overall patient outcomes. Continued investigation into the mechanisms and pharmacology of combination therapies may offer valuable insights for developing innovative MASH treatments.
Collapse
Affiliation(s)
- Yang Zhi
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Dong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
19
|
Gananandan K, Singh R, Mehta G. Systematic review and meta-analysis of biomarkers predicting decompensation in patients with compensated cirrhosis. BMJ Open Gastroenterol 2024; 11:e001430. [PMID: 39182920 PMCID: PMC11404266 DOI: 10.1136/bmjgast-2024-001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND AND AIMS The transition from compensated to decompensated cirrhosis is crucial, drastically reducing prognosis from a median survival of over 10 years to 2 years. There is currently an unmet need to accurately predict decompensation. We systematically reviewed and meta-analysed data regarding biomarker use to predict decompensation in individuals with compensated cirrhosis. METHODS PubMed and EMBASE database searches were conducted for all studies from inception until February 2024. The study was carried out according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Quality of Prognosis Studies framework was used to assess the risk of bias. The meta-analysis was conducted with a random effects model using STATA software. RESULTS Of the 652 studies initially identified, 63 studies (n=31 438 patients) were included in the final review, examining 49 biomarkers. 25 studies (40%) were prospective with the majority of studies looking at all-cause decompensation (90%). The most well-studied biomarkers were platelets (n=17), Model for End-Stage Liver Disease (n=17) and albumin (n=16). A meta-analysis revealed elevated international normalised ratio was the strongest predictor of decompensation, followed by decreased albumin. However, high statistical heterogeneity was noted (l2 result of 96.3%). Furthermore, 21 studies were assessed as having a low risk of bias (34%), 26 (41%) moderate risk and 16 (25%) high risk. CONCLUSIONS This review highlights key biomarkers that should potentially be incorporated into future scoring systems to predict decompensation. However, future biomarker studies should be conducted with rigorous and standardised methodology to ensure robust and comparable data.
Collapse
Affiliation(s)
| | - Rabiah Singh
- UCL Institute for Liver & Digestive Health, London, UK
| | - Gautam Mehta
- UCL Institute for Liver & Digestive Health, London, UK
| |
Collapse
|
20
|
Tincopa MA, Loomba R. Noninvasive Tests to Assess Fibrosis and Disease Severity in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:287-299. [PMID: 38981691 DOI: 10.1055/s-0044-1788277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Risk of disease progression and clinical outcomes in metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with fibrosis stage and presence of "at-risk metabolic dysfunction-associated steatohepatitis (MASH)." Although liver biopsy is considered the gold standard to diagnose MASH and stage of fibrosis, biopsy is infrequently performed in clinical practice and has associated sampling error, lack of interrater reliability, and risk for procedural complications. Noninvasive tests (NITs) are routinely used in clinical practice for risk stratification of patients with MASLD. Several NITs are being developed for detecting "at-risk MASH" and cirrhosis. Clinical care guidelines apply NITs to identify patients needing subspecialty referral. With recently approved Food and Drug Administration treatment for MASH and additional emerging pharmacotherapy, NITs will identify patients who will most benefit from treatment, monitor treatment response, and assess risk for long-term clinical outcomes. In this review, we examine the performance of NITs to detect "at-risk MASH," fibrosis stage, response to treatment, and risk of clinical outcomes in MASLD and MASH.
Collapse
Affiliation(s)
- Monica A Tincopa
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California at San Diego, La Jolla, California
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California at San Diego, La Jolla, California
- School of Public Health, University of California at San Diego, La Jolla, California
| |
Collapse
|
21
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
22
|
Chen J, Xu P, Kalutkiewicz K, Sheng Y, Warsame F, Tahboub-Amawi MA, Li J, Wang J, Venkatesh SK, Ehman RL, Shah VH, Simonetto DA, Yin M. Liver stiffness measurement by magnetic resonance elastography predicts cirrhosis and decompensation in alcohol-related liver disease. Abdom Radiol (NY) 2024; 49:2231-2241. [PMID: 39023567 PMCID: PMC11286638 DOI: 10.1007/s00261-024-04479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE To evaluate magnetic resonance elastography (MRE)-based liver stiffness measurement as a biomarker to predict the onset of cirrhosis in early-stage alcohol-related liver disease (ALD) patients, and the transition from compensated to decompensated cirrhosis in ALD. METHODS Patients with ALD and at least one MRE examination between 2007 and 2020 were included in this study. Patient demographics, liver chemistries, MELD score (within 30 days of the first MRE), and alcohol abstinence history were collected from the electronic medical records. Liver stiffness and fat fraction were measured. Disease progression was assessed in the records by noting cirrhosis onset in early-stage ALD patients and decompensation in those initially presenting with compensated cirrhosis. Nomograms and cut-off values of liver stiffness, derived from Cox proportional hazards models were created to predict the likelihood of advancing to cirrhosis or decompensation. RESULTS A total of 182 patients (132 men, median age 57 years) were included in this study. Among 110 patients with early-stage ALD, 23 (20.9%) developed cirrhosis after a median follow-up of 6.2 years. Among 72 patients with compensated cirrhosis, 33 (45.8%) developed decompensation after a median follow-up of 4.2 years. MRE-based liver stiffness, whether considered independently or adjusted for age, alcohol abstinence, fat fraction, and sex, was a significant and independent predictor for both future cirrhosis (Hazard ratio [HR] = 2.0-2.2, p = 0.002-0.003) and hepatic decompensation (HR = 1.2-1.3, p = 0.0001-0.006). Simplified Cox models, thresholds, and corresponding nomograms were devised for practical use, excluding non-significant or biased variables. CONCLUSIONS MRE-based liver stiffness assessment is a useful predictor for the development of cirrhosis or decompensation in patients with ALD.
Collapse
Affiliation(s)
- Jingbiao Chen
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Peng Xu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kyle Kalutkiewicz
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yiyang Sheng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Fatima Warsame
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Jiahui Li
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jin Wang
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 2024; 17:374-444. [PMID: 38852583 PMCID: PMC11299976 DOI: 10.1159/000539371] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
24
|
Noureddin N, Copur-Dahi N, Loomba R. Monitoring disease progression in metabolic dysfunction-associated steatotic liver disease. Aliment Pharmacol Ther 2024; 59 Suppl 1:S41-S51. [PMID: 38813822 PMCID: PMC11141723 DOI: 10.1111/apt.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Its prevalence is increasing with the epidemic of obesity and metabolic syndrome. MASLD progression into metabolic dysfunction-associated steatohepatitis (MASH) and advanced fibrosis may lead to decompensated cirrhosis and development of liver-related events, hepatocellular carcinoma and death. Monitoring disease progression is critical in decreasing morbidity, mortality, need for transplant and economic burden. Assessing for treatment response once FDA-approved medications are available is still an unmet clinical need. AIMS To explore the most up-to-date literature on testing used for monitoring disease progression and treatment response METHODS: We searched PubMed from inception to 15 August 2023, using the following MeSH terms: 'MASLD', 'Metabolic dysfunction-associated steatotic liver disease', 'MASH', 'metabolic dysfunction-associated steatohepatitis', 'Non-Alcoholic Fatty Liver Disease', 'NAFLD', 'non-alcoholic steatohepatitis', 'NASH', 'Biomarkers', 'clinical trial'. Articles were also identified through searches of the authors' files. The final reference list was generated based on originality and relevance to this review's broad scope, considering only papers published in English. RESULTS We have cited 101 references in this review detailing methods to monitor MASLD disease progression and treatment response. CONCLUSION Various biomarkers can be used in different care settings to monitor disease progression. Further research is needed to validate noninvasive tests more effectively.
Collapse
Affiliation(s)
- Nabil Noureddin
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Nedret Copur-Dahi
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology & Hepatology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Chan WK, Petta S, Noureddin M, Goh GBB, Wong VWS. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S23-S40. [PMID: 38813831 DOI: 10.1111/apt.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease and an important cause of cirrhosis and hepatocellular carcinoma. It is strongly associated with type 2 diabetes and obesity. Because of the huge number of patients at risk of MASLD, it is imperative to use non-invasive tests appropriately. AIMS To provide a narrative review on the performance and limitations of non-invasive tests, with a special emphasis on the impact of diabetes and obesity. METHODS We searched PubMed and Cochrane databases for articles published from 1990 to August 2023. RESULTS Abdominal ultrasonography remains the primary method to diagnose hepatic steatosis, while magnetic resonance imaging proton density fat fraction is currently the gold standard to quantify steatosis. Simple fibrosis scores such as the Fibrosis-4 index are well suited as initial assessment in primary care and non-hepatology settings to rule out advanced fibrosis and future risk of liver-related complications. However, because of its low positive predictive value, an abnormal test should be followed by specific blood (e.g. Enhanced Liver Fibrosis score) or imaging biomarkers (e.g. vibration-controlled transient elastography and magnetic resonance elastography) of fibrosis. Some non-invasive tests of fibrosis appear to be less accurate in patients with diabetes. Obesity also affects the performance of abdominal ultrasonography and transient elastography, whereas magnetic resonance imaging may not be feasible in some patients with severe obesity. CONCLUSIONS This article highlights issues surrounding the clinical application of non-invasive tests for MASLD in patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Palermo, Italy
- Department of Economics and Statistics, University of Palermo, Palermo, Italy
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas, USA
| | - George Boon Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Lemine AS, Ahmad Z, Al-Thani NJ, Hasan A, Bhadra J. Mechanical properties of human hepatic tissues to develop liver-mimicking phantoms for medical applications. Biomech Model Mechanobiol 2024; 23:373-396. [PMID: 38072897 PMCID: PMC10963485 DOI: 10.1007/s10237-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 03/26/2024]
Abstract
Using liver phantoms for mimicking human tissue in clinical training, disease diagnosis, and treatment planning is a common practice. The fabrication material of the liver phantom should exhibit mechanical properties similar to those of the real liver organ in the human body. This tissue-equivalent material is essential for qualitative and quantitative investigation of the liver mechanisms in producing nutrients, excretion of waste metabolites, and tissue deformity at mechanical stimulus. This paper reviews the mechanical properties of human hepatic tissues to develop liver-mimicking phantoms. These properties include viscosity, elasticity, acoustic impedance, sound speed, and attenuation. The advantages and disadvantages of the most common fabrication materials for developing liver tissue-mimicking phantoms are also highlighted. Such phantoms will give a better insight into the real tissue damage during the disease progression and preservation for transplantation. The liver tissue-mimicking phantom will raise the quality assurance of patient diagnostic and treatment precision and offer a definitive clinical trial data collection.
Collapse
Affiliation(s)
- Aicha S Lemine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Zubair Ahmad
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar
| | - Noora J Al-Thani
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Jolly Bhadra
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar.
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
27
|
Zhang X, Li G, Lin H, Wong VWS, Wong GLH. Noninvasive evaluation of liver fibrosis in MASLD—Imaging/elastography based. METABOLIC STEATOTIC LIVER DISEASE 2024:151-166. [DOI: 10.1016/b978-0-323-99649-5.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Kim BK, Bergstrom J, Loomba R, Tamaki N, Izumi N, Nakajima A, Idilman R, Gumussoy M, Oz DK, Erden A, Truong E, Yang JD, Noureddin M, Allen AM, Loomba R, Ajmera V. Magnetic resonance elastography-based prediction model for hepatic decompensation in NAFLD: A multicenter cohort study. Hepatology 2023; 78:1858-1866. [PMID: 37203233 PMCID: PMC10663382 DOI: 10.1097/hep.0000000000000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Magnetic resonance elastography (MRE) is an accurate, continuous biomarker of liver fibrosis; however, the optimal combination with clinical factors to predict the risk of incident hepatic decompensation is unknown. Therefore, we aimed to develop and validate an MRE-based prediction model for hepatic decompensation for patients with NAFLD. APPROACH AND RESULTS This international multicenter cohort study included participants with NAFLD undergoing MRE from 6 hospitals. A total of 1254 participants were randomly assigned as training (n = 627) and validation (n = 627) cohorts. The primary end point was hepatic decompensation, defined as the first occurrence of variceal hemorrhage, ascites, or HE. Covariates associated with hepatic decompensation on Cox-regression were combined with MRE to construct a risk prediction model in the training cohort and then tested in the validation cohort. The median (IQR) age and MRE values were 61 (18) years and 3.5 (2.5) kPa in the training cohort and 60 (20) years and 3.4 (2.5) kPa in the validation cohort, respectively. The MRE-based multivariable model that included age, MRE, albumin, aspartate aminotransferase, and platelets had excellent discrimination for the 3- and 5-year risk of hepatic decompensation (c-statistic 0.912 and 0.891, respectively) in the training cohort. The diagnostic accuracy remained consistent in the validation cohort with a c-statistic of 0.871 and 0.876 for hepatic decompensation at 3 and 5 years, respectively, and was superior to Fibrosis-4 in both cohorts ( p < 0.05). CONCLUSIONS An MRE-based prediction model allows for accurate prediction of hepatic decompensation and assists in the risk stratification of patients with NAFLD.
Collapse
Affiliation(s)
- Beom Kyung Kim
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaclyn Bergstrom
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Rohan Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Nobuharu Tamaki
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital Tokyo, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan
| | - Ramazan Idilman
- Ankara University School of Medicine, Department of Gastroenterology, Ankara Turkey
| | - Mesut Gumussoy
- Ankara University School of Medicine, Department of Gastroenterology, Ankara Turkey
| | - Digdem Kuru Oz
- Ankara University School of Medicine, Department of Radiology, Ankara Turkey
| | - Ayse Erden
- Ankara University School of Medicine, Department of Radiology, Ankara Turkey
| | - Emily Truong
- Department of Gastroenterology and Hepatology, Cedars Sinai, Los Angeles, CA, USA
| | - Ju Dong Yang
- Department of Gastroenterology and Hepatology, Cedars Sinai, Los Angeles, CA, USA
| | - Mazen Noureddin
- Department of Gastroenterology and Hepatology, Cedars Sinai, Los Angeles, CA, USA
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- School of Public Health, University of California, San Diego
| | - Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Noureddin N, Ajmera V, Bergstrom J, Bettencourt R, Huang DQ, Siddiqi H, Majzoub AM, Nayfeh T, Tamaki N, Izumi N, Nakajima A, Idilman R, Gumussoy M, Oz DK, Erden A, Loomba R. MEFIB-Index and MAST-Score in the assessment of hepatic decompensation in metabolic dysfunction-associated steatosis liver disease-Individual participant data meta-analyses. Aliment Pharmacol Ther 2023; 58:856-865. [PMID: 37694993 PMCID: PMC10901230 DOI: 10.1111/apt.17707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND There are limited data regarding the longitudinal association between MEFIB-Index (MRE combined with FIB-4) versus MAST-Score (MRI-aspartate aminotransferase) and hepatic decompensation. AIM To examine the longitudinal association between MEFIB-Index versus MAST-Score in predicting hepatic decompensation in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS This was a longitudinal, retrospective analysis of subjects from United States, Japan, and Turkey who underwent a baseline MRE and MRI-PDFF and were followed for hepatic decompensation. Cox-proportional hazard analyses were used to assess the association between MEFIB-Index versus MAST-Score with a composite primary outcome (hepatic decompensation) defined as ascites, hepatic encephalopathy, and varices needing treatment. RESULTS This meta-analysis of individual participants (IPDMA) included 454 patients (58% women) with a mean (±SD) age of 56.0 (±13.5) years. The MEFIB-Index (MRE ≥3.3 kPa + FIB 4 ≥1.6) and MAST-Score (>0.242) were positive for 34% and 9% of the sample, respectively. At baseline, 23 patients met criteria for hepatic decompensation. Among 297 patients with available longitudinal data with a median (IQR) of 4.2 (5.0) years of follow-up, 25 incident cases met criteria for hepatic decompensation. A positive MEFIB-Index [HR = 49.22 (95% CI: 6.23-388.64, p < 0.001)] and a positive MAST-Score [HR = 3.86 (95% CI: 1.46-10.17, p < 0.001)] were statistically significant predictors of the incident hepatic decompensation. MEFIB-Index (c-statistic: 0.89, standard error (SE) = 0.02) was statistically superior to the MAST-Score (c-statistic: 0.81, SE = 0.03) (p < 0.0001) in predicting hepatic decompensation. CONCLUSION A combination of MRI-based biomarker and blood tests, MEFIB-Index and MAST-Score can predict the risk of hepatic decompensation in patients with MASLD.
Collapse
Affiliation(s)
- Nabil Noureddin
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Veeral Ajmera
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Jaclyn Bergstrom
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Richele Bettencourt
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Daniel Q. Huang
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Harris Siddiqi
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | | | - Tarek Nayfeh
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
| | - Nobuharu Tamaki
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital Tokyo, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan
| | - Ramzan Idilman
- Ankara University School of Medicine, Department of Gastroenterology, Ankara Turkey
| | - Mesut Gumussoy
- Ankara University School of Medicine, Department of Gastroenterology, Ankara Turkey
| | - Digdem Kuru Oz
- Ankara University School of Medicine, Department of Radiology, Ankara Turkey
| | - Ayse Erden
- Ankara University School of Medicine, Department of Radiology, Ankara Turkey
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Terracciani F, Falcomatà A, Gallo P, Picardi A, Vespasiani-Gentilucci U. Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers. J Physiol Biochem 2023; 79:851-868. [PMID: 36472795 DOI: 10.1007/s13105-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Terracciani
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Falcomatà
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo Gallo
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Antonio Picardi
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | | |
Collapse
|
31
|
Calzadilla-Bertot L, Jeffrey GP, Wang Z, Huang Y, Garas G, Wallace M, de Boer B, George J, Eslam M, Phu A, Ampuero J, Lucena Valera A, Romero-Gómez M, Aller de la Fuente R, Adams LA. Predicting liver-related events in NAFLD: A predictive model. Hepatology 2023; 78:1240-1251. [PMID: 36994693 DOI: 10.1097/hep.0000000000000356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND AIMS Management of NAFLD involves noninvasive prediction of fibrosis, which is a surrogate for patient outcomes. We aimed to develop and validate a model predictive of liver-related events (LREs) of decompensation and/or HCC and compare its accuracy with fibrosis models. APPROACH AND RESULTS Patients with NAFLD from Australia and Spain who were followed for up to 28 years formed derivation (n = 584) and validation (n = 477) cohorts. Competing risk regression and information criteria were used for model development. Accuracy was compared with fibrosis models using time-dependent AUC analysis. During follow-up, LREs occurred in 52 (9%) and 11 (2.3%) patients in derivation and validation cohorts, respectively. Age, type 2 diabetes, albumin, bilirubin, platelet count, and international normalized ratio were independent predictors of LRE and were combined into a model [NAFLD outcomes score (NOS)]. The NOS model calibrated well [calibration slope, 0.99 (derivation), 0.98 (validation)] with excellent overall performance [integrated Brier score, 0.07 (derivation) and 0.01 (validation)]. A cutoff ≥1.3 identified subjects at a higher risk of LRE, (sub-HR 24.6, p < 0.001, 5-year cumulative incidence 38% vs 1.0%, respectively). The predictive accuracy at 5 and 10 years was excellent in both derivation (time-dependent AUC,0.92 and 0.90, respectively) and validation cohorts (time-dependent AUC,0.80 and 0.82, respectively). The NOS was more accurate than the fibrosis-4 or NAFLD fibrosis score for predicting LREs at 5 and 10 years ( p < 0.001). CONCLUSIONS The NOS model consists of readily available measures and has greater accuracy in predicting outcomes in patients with NAFLD than existing fibrosis models.
Collapse
Affiliation(s)
| | - Gary P Jeffrey
- Medical School, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Zhengyi Wang
- Medical School, University of Western Australia, Nedlands, Western Australia, Australia
| | - Yi Huang
- Medical School, University of Western Australia, Nedlands, Western Australia, Australia
| | - George Garas
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Michael Wallace
- Medical School, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Bastiaan de Boer
- Department of Anatomic Pathology, Pathwest, Nedlands, Western Australia, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, New South Wales, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, New South Wales, Australia
| | - Amy Phu
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, New South Wales, Australia
| | - Javier Ampuero
- Unit for the Clinical Management of Digestive Diseases and CIBEREHD, Virgen del Rocio University Hospital. Institute of Biomedicine of Seville (CSIC/US/HUVR). University of Seville, Seville, Spain
| | - Ana Lucena Valera
- Unit for the Clinical Management of Digestive Diseases and CIBEREHD, Virgen del Rocio University Hospital. Institute of Biomedicine of Seville (CSIC/US/HUVR). University of Seville, Seville, Spain
| | - Manuel Romero-Gómez
- Unit for the Clinical Management of Digestive Diseases and CIBEREHD, Virgen del Rocio University Hospital. Institute of Biomedicine of Seville (CSIC/US/HUVR). University of Seville, Seville, Spain
| | - Rocio Aller de la Fuente
- Department of Digestive Disease, Institute of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain, CIBER Infectious Diseases
| | - Leon A Adams
- Medical School, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
32
|
Tilg H, Byrne CD, Targher G. NASH drug treatment development: challenges and lessons. Lancet Gastroenterol Hepatol 2023; 8:943-954. [PMID: 37597527 DOI: 10.1016/s2468-1253(23)00159-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 08/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Although NAFLD is tightly linked to obesity and type 2 diabetes, this liver disease also affects individuals who do not have obesity. NAFLD increases the risk of developing cardiovascular disease, chronic kidney disease, and certain extrahepatic cancers. There is currently no licensed pharmacotherapy for NAFLD, despite numerous clinical trials in the past two decades. Currently, the reason so few drugs have been successful in the treatment of NAFLD in a trial setting is not fully understood. As cardiovascular disease is the predominant cause of mortality in people with NAFLD, future pharmacotherapies for NAFLD must consider associated cardiometabolic risk factors. The successful use of glucose-lowering drugs in the treatment of type 2 diabetes in patients with NAFLD indicates that this strategy is important, and worth developing further. Greater public awareness of NAFLD is needed because collaboration between all stakeholders is vital to enable a holistic approach to successful treatment.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| | - Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Verona, Verona, Italy; IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| |
Collapse
|
33
|
Chen Q, Mei L, Zhong R, Han P, Wen J, Han X, Zhai L, Zhao L, Li J. Serum liver fibrosis markers predict hepatic decompensation in compensated cirrhosis. BMC Gastroenterol 2023; 23:317. [PMID: 37726681 PMCID: PMC10510279 DOI: 10.1186/s12876-023-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/10/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND AND AIM The literature is sparse on the association between serum liver fibrosis markers and the development of hepatic decompensation in patients with compensated cirrhosis. We aimed to assessed whether the serum liver fibrosis markers are predictive of the occurrence of hepatic decompensation. METHODS We ascertained 688 cirrhotic patients with varying etiologies, between December 2015 to December 2019. Serum hyaluronic acid (HA), laminin (LN), collagen IV (CIV), and N-terminal propeptide of type III collagen (PIIINP) levels were measured at enrollment. All subjects were followed for at least 6 months for occurrence of hepatic decompensation. Cox proportional hazard regression models were used to estimate the hazard ratios (HRs) of hepatic decompensation during follow-up. RESULTS During a median follow-up of 22.0 (13.0-32.0) months, decompensation occurred in 69 (10.0%) patients. Multivariate analysis indicated that higher LN (HR: 1.008, 95% confidence interval [CI]: 1.002-1.014, P = 0.011) and CIV (HR: 1.004, 95% CI: 1.001-1.007, P = 0.003) levels were independently associated with hepatic decompensation. Furthermore, patients in the tertile 2 and tertile 3 groups for CIV levels had HRs of 4.787 (1.419, 16.152) (P = 0.012) and 5.153 (1.508, 17.604) (P = 0.009), respectively, for occurrence of decompensation event compared with those in the tertile 1 group. CONCLUSION Serum liver fibrosis markers, particularly in CIV, appeared to be reliable biomarkers of disease progression and liver decompensation in patients with compensated cirrhosis with varying etiologies.
Collapse
Affiliation(s)
- Qingling Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China
| | - Ling Mei
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China
| | - Rui Zhong
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Han
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China
| | - Jun Wen
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China
| | - Xu Han
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China
| | - Lu Zhai
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China
| | - Lili Zhao
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China.
| | - Jia Li
- Department of Gastroenterology and Hepatology, Tianjin Second People's Hospital, No.7, Sudi South Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
34
|
Huang DQ, Noureddin N, Ajmera V, Amangurbanova M, Bettencourt R, Truong E, Gidener T, Siddiqi H, Majzoub AM, Nayfeh T, Tamaki N, Izumi N, Yoneda M, Nakajima A, Idilman R, Gumussoy M, Oz DK, Erden A, Allen AM, Noureddin M, Loomba R. Type 2 diabetes, hepatic decompensation, and hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: an individual participant-level data meta-analysis. Lancet Gastroenterol Hepatol 2023; 8:829-836. [PMID: 37419133 PMCID: PMC10812844 DOI: 10.1016/s2468-1253(23)00157-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Data are scarce regarding the development of hepatic decompensation in patients with non-alcoholic fatty liver disease (NAFLD) with and without type 2 diabetes. We aimed to assess the risk of hepatic decompensation in people with NAFLD with and without type 2 diabetes. METHODS We did a meta-analysis of individual participant-level data from six cohorts in the USA, Japan, and Turkey. Included participants had magnetic resonance elastography between Feb 27, 2007, and June 4, 2021. Eligible studies included those with liver fibrosis characterisation by magnetic resonance elastography, longitudinal assessment for hepatic decompensation and death, and included adult patients (aged ≥18 years) with NAFLD, for whom data were available regarding the presence of type 2 diabetes at baseline. The primary outcome was hepatic decompensation, defined as ascites, hepatic encephalopathy, or variceal bleeding. The secondary outcome was the development of hepatocellular carcinoma. We used competing risk regression using the Fine and Gray subdistribution hazard ratio (sHR) to compare the likelihood of hepatic decompensation in participants with and without type 2 diabetes. Death without hepatic decompensation was a competing event. FINDINGS Data for 2016 participants (736 with type 2 diabetes; 1280 without type 2 diabetes) from six cohorts were included in this analysis. 1074 (53%) of 2016 participants were female with a mean age of 57·8 years (SD 14·2) years and BMI of 31·3 kg/m2 (SD 7·4). Among 1737 participants (602 with type 2 diabetes and 1135 without type 2 diabetes) with available longitudinal data, 105 participants developed hepatic decompensation over a median follow-up time of 2·8 years (IQR 1·4-5·5). Participants with type 2 diabetes had a significantly higher risk of hepatic decompensation at 1 year (3·37% [95% CI 2·10-5·11] vs 1·07% [0·57-1·86]), 3 years (7·49% [5·36-10·08] vs 2·92% [1·92-4·25]), and 5 years (13·85% [10·43-17·75] vs 3·95% [2·67-5·60]) than participants without type 2 diabetes (p<0·0001). After adjustment for multiple confounders (age, BMI, and race), type 2 diabetes (sHR 2·15 [95% CI 1·39-3·34]; p=0·0006) and glycated haemoglobin (1·31 [95% CI 1·10-1·55]; p=0·0019) were independent predictors of hepatic decompensation. The association between type 2 diabetes and hepatic decompensation remained consistent after adjustment for baseline liver stiffness determined by magnetic resonance elastography. Over a median follow-up of 2·9 years (IQR 1·4-5·7), 22 of 1802 participants analysed (18 of 639 with type 2 diabetes and four of 1163 without type 2 diabetes) developed incident hepatocellular carcinoma. The risk of incident hepatocellular carcinoma was higher in those with type 2 diabetes at 1 year (1·34% [95% CI 0·64-2·54] vs 0·09% [0·01-0·50], 3 years (2·44% [1·36-4·05] vs 0·21% [0·04-0·73]), and 5 years (3·68% [2·18-5·77] vs 0·44% [0·11-1·33]) than in those without type 2 diabetes (p<0·0001). Type 2 diabetes was an independent predictor of hepatocellular carcinoma development (sHR 5·34 [1·67-17·09]; p=0·0048). INTERPRETATION Among people with NAFLD, the presence of type 2 diabetes is associated with a significantly higher risk of hepatic decompensation and hepatocellular carcinoma. FUNDING National Institute of Diabetes and Digestive and Kidney Diseases.
Collapse
Affiliation(s)
- Daniel Q Huang
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Nabil Noureddin
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maral Amangurbanova
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ricki Bettencourt
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tolga Gidener
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Harris Siddiqi
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Abdul M Majzoub
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Tarek Nayfeh
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
| | - Nobuharu Tamaki
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan
| | - Ramazan Idilman
- Department of Gastroenterology, School of Medicine, Ankara University, Ankara, Turkey
| | - Mesut Gumussoy
- Department of Gastroenterology, School of Medicine, Ankara University, Ankara, Turkey
| | - Digdem Kuru Oz
- Department of Radiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Ayse Erden
- Department of Radiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mazen Noureddin
- Houston Methodist Transplant Center, Houston, TX, USA; Houston Liver Institute, Houston, TX, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Truong E, Gornbein JA, Yang JD, Noureddin N, Harrison SA, Alkhouri N, Noureddin M. MRI-AST (MAST) Score Accurately Predicts Major Adverse Liver Outcome, Hepatocellular Carcinoma, Liver Transplant, and Liver-Related Death. Clin Gastroenterol Hepatol 2023; 21:2570-2577.e1. [PMID: 36813013 DOI: 10.1016/j.cgh.2023.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND & AIMS The MRI-AST (MAST) score accurately identifies patients with at-risk nonalcoholic steatohepatitis, defined as nonalcoholic steatohepatitis with nonalcoholic fatty liver disease activity score ≥4 and fibrosis stage ≥2 at highest risk for disease progression. It is important to determine the robustness of the MAST score in predicting major adverse liver outcomes (MALO), hepatocellular carcinoma (HCC), liver transplant, and death. METHODS This retrospective analysis included patients with nonalcoholic fatty liver disease from a tertiary care center who underwent magnetic resonance imaging proton density fat fraction, magnetic resonance elastography, and laboratory testing within 6 months from 2013 to 2022. Other causes of chronic liver disease were excluded. Hazard ratios between logit MAST and MALO (ascites, hepatic encephalopathy, or bleeding esophageal varices), liver transplant, HCC, or liver-related death were computed using a Cox proportional hazards regression model. We computed the hazard ratio of MALO or death associated with MAST scores 0.165-0.242 and 0.242-1.000, using MAST scores 0.000-0.165 as the reference group. RESULTS Among 346 total patients, average age was 58.8 years with 52.9% females and 34.4% with type 2 diabetes. Average alanine aminotransferase was 50.7 IU/L (24.3-60.0 IU/L), aspartate aminotransferase was 38.05 IU/L (22.00-41.00 IU/L), platelets were 242.9 × 109/L (193.8-290.0 × 109/L), proton density fat fraction was 12.90% (5.90%-18.22%), and liver stiffness on magnetic resonance elastography was 2.75 kPa (2.07-2.90 kPa). Median follow-up was 29.5 months. Fourteen had adverse outcomes, including 10 MALO, 1 HCC, 1 liver transplant, and 2 liver-related deaths. The Cox regression of MAST versus adverse event rate had a hazard ratio of 2.01 (95% confidence interval, 1.59-2.54; P < .0001) for each 1 logit unit increases in MAST. The corresponding Harrell concordance statistic (C statistic) was 0.919 (95% confidence interval, 0.865-0.953). The MAST score ranges of 0.165-0.242 and 0.242-1.0, respectively, had adverse event rate hazard ratio of 7.75 (1.40-42.9; P = .0189) and 22.11 (6.59-74.2; P < .0000) relative to MAST 0-0.165. CONCLUSIONS The MAST score noninvasively identifies at-risk nonalcoholic steatohepatitis and accurately predicts MALO, HCC, liver transplant, and liver-related death.
Collapse
Affiliation(s)
- Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jeffrey A Gornbein
- Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California; Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, California
| | - Nabil Noureddin
- Division of Gasteroenterology, University of California San Diego, San Diego, California
| | | | | | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas.
| |
Collapse
|
36
|
Livzan MA, Krolevets TS, Syrovenko MI. Liver fibrosis in a comorbid patient with metabolicassociated (non-alcoholic) fatty liver disease (MAFLD-NAFLD) and cardiovascular disease. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:133-139. [DOI: 10.31146/1682-8658-ecg-212-4-133-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The aim of this review is to systematise the available evidence on the comorbid course of non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease, assessing the role of liver fibrosis in patient prognosis. Discussion: the criteria for the diagnosis of metabolic-associated liver disease (MAFLD) in comparison with non-alcoholic fatty liver disease (NAFLD) were presented. The results of studies demonstrating the close relationship of NAFLD and NAFLD with the development of cardiovascular diseases were occurred. The underlying factor tending the cardiovascular risk of patients with NAFLD and MAFLD is liver fibrosis. Invasive and non-invasive methods for the diagnosis of liver fibrosis in NAFLD were discussed. The evidence of the expediency and safety of the use of statins in this pathology was presented. Conclusion: according to the pandemic growth of NAFLD and its association with cardiovascular risk, the question of how to properly monitor patients with comorbid cardiovascular diseases and NAFLD in order to reduce the risks is timely and very relevant. One of the main prognostic risk factors for an unfavorable outcome in this category of patients is liver fibrosis. Lipid-lowering therapy seems to be the most optimal and safe treatment strategy for these patients.
Collapse
|
37
|
Schattenberg JM, Chalasani N, Alkhouri N. Artificial Intelligence Applications in Hepatology. Clin Gastroenterol Hepatol 2023; 21:2015-2025. [PMID: 37088460 DOI: 10.1016/j.cgh.2023.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/16/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Over the past 2 decades, the field of hepatology has witnessed major developments in diagnostic tools, prognostic models, and treatment options making it one of the most complex medical subspecialties. Through artificial intelligence (AI) and machine learning, computers are now able to learn from complex and diverse clinical datasets to solve real-world medical problems with performance that surpasses that of physicians in certain areas. AI algorithms are currently being implemented in liver imaging, interpretation of liver histopathology, noninvasive tests, prediction models, and more. In this review, we provide a summary of the state of AI in hepatology and discuss current challenges for large-scale implementation including some ethical aspects. We emphasize to the readers that most AI-based algorithms that are discussed in this review are still considered in early development and their utility and impact on patient outcomes still need to be assessed in future large-scale and inclusive studies. Our vision is that the use of AI in hepatology will enhance physician performance, decrease the burden and time spent on documentation, and reestablish the personalized patient-physician relationship that is of utmost importance for obtaining good outcomes.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
| | - Naga Chalasani
- Indiana University School of Medicine and Indiana University Health, Indianapolis, Indiana
| | - Naim Alkhouri
- Arizona Liver Health and University of Arizona, Tucson, Arizona.
| |
Collapse
|
38
|
Tincopa MA, Loomba R. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Lancet Gastroenterol Hepatol 2023; 8:660-670. [PMID: 37060912 DOI: 10.1016/s2468-1253(23)00066-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 04/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent form of chronic liver disease that poses challenges in diagnosis and risk stratification. Non-alcoholic steatohepatitis (NASH), the more progressive form of NAFLD, is particularly challenging to diagnose in the absence of histology. Liver biopsy is infrequently performed due to its invasive nature, potential for sampling error, and lack of inter-rater reliability. Non-invasive tests that can accurately identify patients with at-risk NASH (ie, individuals with biopsy-proven NASH with NAFLD activity score [NAS] ≥4 and fibrosis stage ≥2) are key tools to identify candidates for pharmacologic therapy in registrational trials for the treatment of NASH-related fibrosis. With emerging pharmacotherapy, non-invasive tests are required to track treatment response. Lastly, there is an unmet need for non-invasive tests to assess risk for clinical outcomes including progression to cirrhosis, hepatic decompensation, liver-related mortality, and overall mortality. In this Review we examine advances in non-invasive tests to diagnose and monitor NAFLD and NASH.
Collapse
Affiliation(s)
- Monica A Tincopa
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA; School of Public Health, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Harrison SA, Loomba R, Dubourg J, Ratziu V, Noureddin M. Clinical Trial Landscape in NASH. Clin Gastroenterol Hepatol 2023; 21:2001-2014. [PMID: 37059159 DOI: 10.1016/j.cgh.2023.03.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Nonalcoholic fatty liver disease consists of a spectrum starting from nonalcoholic fatty liver disease that may progress to nonalcoholic steatohepatitis (NASH), which can lead to fibrosis, cirrhosis, hepatocellular carcinoma, or even liver failure. The prevalence of NASH has increased in parallel with the rising rate of obesity and type 2 diabetes. Given the high prevalence and deadly complications of NASH, there have been significant efforts to develop effective treatments. Phase 2A studies have assessed various mechanisms of action across the spectrum of the disease, while phase 3 studies have focused mainly on NASH and fibrosis stage 2 and higher, as these patients have a higher risk of disease morbidity and mortality. The primary efficacy endpoints also vary, by using noninvasive tests in early-phase trials while relying on liver histological endpoints in phase 3 studies as required by regulatory agencies. Despite initial disappointment due to the failure of several drugs, recent phase 2 and 3 studies have shown promising results, with the first Food and Drug Administration-approved drug for NASH expected to be approved in 2023. In this review, we discuss the various drugs under development for NASH, their mechanisms of action, and the results of their clinical trials. We also highlight the potential challenges in developing pharmacological therapies for NASH.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Pinnacle Clinical Research, San Antonio, Texas.
| | - Rohit Loomba
- NAFLD Liver Center, Division of Gastroenterology, University of California San Diego, San Diego California
| | | | - Vlad Ratziu
- Institute for Cardiometabolism and Nutrition, Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
40
|
Sanyal AJ, Castera L, Wong VWS. Noninvasive Assessment of Liver Fibrosis in NAFLD. Clin Gastroenterol Hepatol 2023; 21:2026-2039. [PMID: 37062495 DOI: 10.1016/j.cgh.2023.03.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of liver-related morbidity and mortality worldwide, afflicting approximately a billion individuals. NAFLD is a slowly progressive disease that may evolve in a subset of patients toward cirrhosis, hepatocellular carcinoma, and end-stage liver disease. Liver fibrosis severity is the strongest predictor of clinical outcomes. The emergence of effective therapeutics on the horizon highlights the need to identify among patients with NAFLD, those with severe fibrosis or cirrhosis, who are the most at risk of developing complications and target them for therapy. Liver biopsy has been the reference standard for this purpose. However, it is not suitable for large-scale population evaluation, given its well-known limitations (invasiveness, rare but severe complications, and sampling variability). Thus, there have been major efforts to develop simple noninvasive tools that can be used in routine clinical settings and in drug development. Noninvasive approaches are based on the quantification of biomarkers in serum samples or on the measurement of liver stiffness, using either ultrasound- or magnetic resonance-based elastography techniques. This review provides a roadmap for future development and integration of noninvasive tools in clinical practice and in drug development in NAFLD. We discuss herein the principles for their development and validation, their use in clinical practice, including for diagnosis of NAFLD, risk stratification in primary care and hepatology settings, prediction of long-term liver-related and non-liver-related outcomes, monitoring of fibrosis progression and regression, and response to future treatment.
Collapse
Affiliation(s)
- Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Laurent Castera
- UMR1149 (Center of Research on Inflammation), French Institute of Health and Medical Research, Université Paris Cité, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France.
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China; Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 1024] [Impact Index Per Article: 512.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
42
|
Vilar-Gomez E, Vuppalanchi R, Gawrieh S, Samala N, Chalasani N. CAP and LSM as determined by VCTE are independent predictors of all-cause mortality in the US adult population. Hepatology 2023; 77:1241-1252. [PMID: 36626638 DOI: 10.1097/hep.0000000000000023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Data retrospective cohort studies have shown that liver stiffness measurement (LSM) by transient elastography (TE, FibroScan) can predict mortality in patients with NAFLD, however, its ability to predict mortality at a population level is unknown. We investigated the ability of LSM and controlled-attenuation parameter (CAP) by TE to predict mortality in a prospective US cohort. APPROACH AND RESULTS A total of 4192 US adults aged ≥18 years enrolled in the National Health, and Nutrition Examination Survey (NHANES) (2017-2018) with reliable information on CAP and LSM by TE were included in this analysis. All-specific and cause-specific mortality were ascertained by linkage to National Death Index records through December 31, 2019. Cox models were used to estimate HR and 95% CI. During a mean follow-up of 24.4 months, there were 68 deaths (1.6%). CAP (adjusted HR: 1.01, 95% CI: 1.0-1.05), and LSM (adjusted HR: 1.06, 95% CI: 1.02-1.11) were independently associated with overall mortality. NAFLD by CAP ≥285 had a 2.2-fold (95% CI: 1.0-4.7) increased odds of mortality compared with non-NAFLD. Cumulative mortality rates were significantly higher in participants with LSM of 9.7-13.5 (advanced fibrosis) and LSM ≥13.6 (cirrhosis) as compared with LSM <9.7; p value for trend across groups <0.01. LSM ≥13.6 displayed the highest mortality risk (adjusted HR: 3.2, 95% CI: 1.3-7.8). Compared with LSM <10 [absence of advanced chronic liver disease (ACLD)], LSM 10-19.9 (likely ACLD), and ≥20 kPa (likely ACLD with clinically significant portal hypertension) conferred a 3.4-fold (95% CI: 1.0-13.8) and 5.2-fold (95% CI: 1.2-22.3) increase in hazards of mortality. CONCLUSIONS Our study findings highlight the importance of liver health as a predictor of overall mortality at a population level.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raj Vuppalanchi
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samer Gawrieh
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Health, Indianapolis, Indiana, USA
| |
Collapse
|
43
|
Alnimer L, Noureddin M. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: present and future. Clin Mol Hepatol 2023; 29:394-397. [PMID: 37070265 PMCID: PMC10121292 DOI: 10.3350/cmh.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Affiliation(s)
- Lynna Alnimer
- Division of Gastroenterology, Ascension Providence Hospital, Michigan State University/College of Human Medicine, Southfield, MI, USA
| | | |
Collapse
|
44
|
Ajmera V, Cepin S, Tesfai K, Hofflich H, Cadman K, Lopez S, Madamba E, Bettencourt R, Richards L, Behling C, Sirlin CB, Loomba R. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. J Hepatol 2023; 78:471-478. [PMID: 36410554 PMCID: PMC9975077 DOI: 10.1016/j.jhep.2022.11.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS There are limited prospective data on patients with type 2 diabetes mellitus (T2DM) specifically enrolled and systematically assessed for advanced fibrosis or cirrhosis due to non-alcoholic fatty liver disease (NAFLD). Therefore, we aimed to evaluate the prevalence of advanced fibrosis and cirrhosis in a prospectively recruited cohort of adults with T2DM. METHODS This prospective study enrolled adults aged ≥50 years with T2DM, recruited from primary care or endocrinology clinics. Participants underwent a standardized clinical research visit with MRI-proton density fat fraction (MRI-PDFF), magnetic resonance elastography (MRE), vibration-controlled transient elastography (VCTE) and controlled-attenuation parameter. NAFLD was defined as MRI-PDFF ≥5% after exclusion of other liver diseases. Advanced fibrosis and cirrhosis were defined by established liver stiffness cut-off points on MRE or VCTE if MRE was not available. RESULTS Of 524 patients screened, 501 adults (63% female) with T2DM met eligibility. The mean age and BMI were 64.6 (±8.1) years and 31.4 (±5.9) kg/m2, respectively. The prevalence of NAFLD, advanced fibrosis and cirrhosis was 65%, 14% and 6%, respectively. In multivariable adjusted models, adjusted for age and sex, obesity and insulin use were associated with increased odds of advanced fibrosis (odds ratio 2.50; 95% CI 1.38-4.54; p = 0.003 and odds ratio 2.71; 95% CI 1.33-5.50; p = 0.006, respectively). Among 29 patients with cirrhosis, two were found to have hepatocellular carcinoma and one patient had gallbladder adenocarcinoma. CONCLUSION Utilizing a uniquely well-phenotyped prospective cohort of patients aged ≥50 years with T2DM, we found that the prevalence of advanced fibrosis was 14% and that of cirrhosis was 6%. These data underscore the high risk of advanced fibrosis/cirrhosis in adults aged ≥50 years with T2DM. IMPACT AND IMPLICATIONS Non-alcoholic fatty liver disease (NAFLD) is common in patients with type 2 diabetes (T2DM), however, there are limited prospective data characterizing the prevalence of advanced fibrosis and cirrhosis using the most accurate non-invasive biomarkers of liver fat and fibrosis. We show that 14% of older adults with T2DM have advanced fibrosis and 6% have cirrhosis, which places them at risk for liver failure and liver cancer. Accurate prevalence rates and comparative analysis regarding the diagnostic accuracy of non-invasive tests in this population will guide the optimal screening strategy and future cost-effectiveness analyses. These results will inform future Hepatology and Endocrinology practice guidelines regarding NAFLD screening programs in older adults with T2DM.
Collapse
Affiliation(s)
- Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA; Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Sandra Cepin
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Kaleb Tesfai
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Heather Hofflich
- Division of Endocrinology, University of California at San Diego, La Jolla, CA, USA
| | - Karen Cadman
- Medicine-Primary Care, University of California, San Diego, USA
| | - Scarlett Lopez
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Egbert Madamba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Ricki Bettencourt
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Lisa Richards
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | | | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA; Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA; School of Public Health, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Harrison SA, Allen AM, Dubourg J, Noureddin M, Alkhouri N. Challenges and opportunities in NASH drug development. Nat Med 2023; 29:562-573. [PMID: 36894650 DOI: 10.1038/s41591-023-02242-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 03/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), represent a growing worldwide epidemic and a high unmet medical need, as no licensed drugs have been approved thus far. Currently, histopathological assessment of liver biopsies is mandatory as a primary endpoint for conditional drug approval. This requirement represents one of the main challenges in the field, as there is substantial variability in this invasive histopathological assessment, which leads to dramatically high screen-failure rates in clinical trials. Over the past decades, several non-invasive tests have been developed to correlate with liver histology and, eventually, outcomes to assess disease severity and longitudinal changes non-invasively. However, further data are needed to ensure their endorsement by regulatory authorities as alternatives to histological endpoints in phase 3 trials. This Review describes the challenges of drug development in NAFLD-NASH trials and potential mitigating strategies to move the field forward.
Collapse
Affiliation(s)
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | | | | | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ, USA
| |
Collapse
|
46
|
Jacobson IM, Wong VWS, Castera L, Anstee QM, Noureddin M, Cusi K, Harrison SA, Bugianesi E, Younossi ZM. Expert Panel Consensus on Clinical Assertion Statements Describing Noninvasive Tools for Diagnosing Nonalcoholic Steatohepatitis. J Clin Gastroenterol 2023; 57:253-264. [PMID: 36251413 PMCID: PMC9911115 DOI: 10.1097/mcg.0000000000001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
GOALS AND BACKGROUND A panel of 9 experts in nonalcoholic steatohepatitis gathered to assess multiple components of the diagnostic process. MATERIALS AND METHODS The Clinical Assertion Statements covered screening of patients with type 2 diabetes for high-risk nonalcoholic fatty liver disease, which-if any-noninvasive tests could determine whether to delay or defer biopsy, whether primary care providers and endocrinologists should routinely calculate Fibrosis-4 (FIB-4) scores in patients with nonalcoholic fatty liver disease or those at risk for it, optimal noninvasive tests to stage fibrosis, the need to consider fibrosis in patients with normal transaminase levels, periodic monitoring for progressive fibrosis, whether patients should undergo biopsy before pharmacotherapy, and the clinical utility of genetic testing. RESULTS AND CONCLUSIONS Evidence was presented to support or refute each Clinical Assertion Statement; the panel voted on the nature of the evidence, level of support, and level of agreement with each Statement. Panel level of agreement and rationale of each Clinical Assertion Statement are reported here.
Collapse
Affiliation(s)
- Ira M. Jacobson
- Department of Medicine and Therapeutics, NYU Langone Health, New York, NY
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon (Beaujon Hospital), Assistance Publique-Hôpitaux de Paris, Clichy
- Department of Hepatology, University of Paris, Paris, France
| | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Mazen Noureddin
- Fatty Liver Program, Karsh Division of Gastroenterology and Hepatology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida
- Malcom Randall VAMC, Gainesville, FL
| | | | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, Torino, Italy
| | - Zobair M. Younossi
- Inova Medicine, Inova Health System
- Department of Medicine, Center for Liver Diseases, Inova Fairfax Medical Campus, Falls Church, VA
| |
Collapse
|
47
|
Yu JH, Lee HA, Kim SU. Noninvasive imaging biomarkers for liver fibrosis in nonalcoholic fatty liver disease: current and future. Clin Mol Hepatol 2023; 29:S136-S149. [PMID: 36503205 PMCID: PMC10029967 DOI: 10.3350/cmh.2022.0436] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly prevalent worldwide and becoming a major cause of liver disease-related morbidity and mortality. The presence of liver fibrosis in patients with NAFLD is closely related to prognosis, including the development of hepatocellular carcinoma and other complications of cirrhosis. Therefore, assessment of the presence of significant or advanced liver fibrosis is crucial. Although liver biopsy has been considered the "gold standard" method for evaluating the degree of liver fibrosis, it is not suitable for extensive use in all patients with NAFLD owing to its invasiveness and high cost. Therefore, noninvasive biochemical and imaging biomarkers have been developed to overcome the limitations of liver biopsy. Imaging biomarkers for the stratification of liver fibrosis have been evaluated in patients with NAFLD using different imaging techniques, such as transient elastography, shear wave elastography, and magnetic resonance elastography. Furthermore, artificial intelligence and deep learning methods are increasingly being applied to improve the diagnostic accuracy of imaging techniques and overcome the pitfalls of existing imaging biomarkers. In this review, we describe the usefulness and future prospects of noninvasive imaging biomarkers that have been studied and used to evaluate the degree of liver fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital and School of Medicine, Incheon, Korea
| | - Han Ah Lee
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
48
|
Kaplan JM, Alexis J, Grimaldi G, Islam M, Izard SM, Lee TP. A comparison of magnetic resonance elastography (MRE) to biomarker testing for staging fibrosis in non-alcoholic fatty liver disease (NAFLD). Transl Gastroenterol Hepatol 2023; 8:7. [PMID: 36704653 PMCID: PMC9813653 DOI: 10.21037/tgh-22-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 01/29/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the world's most prevalent chronic liver disease. In advanced stages, it is associated with significant morbidity and mortality. Magnetic resonance elastography (MRE) and scoring panels Fibrosis-4 (FIB-4) and NAFLD Fibrosis Score (NFS) are useful noninvasive alternatives to liver biopsy for fibrosis staging. Our study aimed to determine how well MRE corresponds with both FIB-4 and NFS at different stages of fibrosis. Methods We performed a retrospective chart review of patients age ≥18 with NAFLD as their only known liver disease who underwent MRE within six months of a lab draw. MRE stratified patients into fibrosis stages using kPa values. FIB-4 categorized patients as Advanced Fibrosis Excluded, Further Investigation Needed or Advanced Fibrosis Likely. NFS categorized them as F0-2, Indeterminate or F3-4. MRE fibrosis staging was compared to FIB-4 and NFS for both ruling out advanced fibrosis and identifying advanced fibrosis/cirrhosis. Results Overall, 193 patients met inclusion criteria. Our statistical analysis included calculating positive predictive values (PPVs) and negative predictive values (NPVs), which are the proportions of positive and negative fibrosis screening results that correspond to positive and negative MRE results respectively. NPV for FIB-4 (0.84) and NFS (0.89) in the 'rule out advanced fibrosis' category signify that 84% and 89% of respective biomarker scores correspond to MRE in early stage disease. The PPV for FIB-4 and NFS in the 'identify advanced fibrosis/cirrhosis' category signify 63% and 72% of respective biomarker scores correspond to MRE in late stage disease. Conclusions FIB-4 and NFS scores indicating little to no fibrosis correspond extremely well with MRE, while scores suggesting advanced fibrosis/cirrhosis correspond less convincingly. MRE shows promise as an effective alternative to liver biopsy, however our study suggests FIB-4 and NFS alone may be sufficient for fibrosis staging, particularly in early stage NAFLD.
Collapse
Affiliation(s)
- Joseph M. Kaplan
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jamil Alexis
- Department of Gastroenterology, Yale New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Gregory Grimaldi
- Department of Radiology, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| | - Mohammed Islam
- Department of Medicine, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| | - Stephanie M. Izard
- Department of Medicine, Northwell Health Center for Health Innovations and Outcomes Research, Manhasset, NY, USA
| | - Tai-Ping Lee
- Division of Hepatology, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
49
|
Idilman IS, Karcaaltincaba M. The role of magnetic resonance elastography in the evaluation of nonalcoholic fatty liver disease. HEPATOLOGY FORUM 2023; 4:1-2. [PMID: 36843890 PMCID: PMC9951892 DOI: 10.14744/hf.2023.2023.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Ilkay S. Idilman
- Corresponding author: Ilkay S. Idilman; Hacettepe Universitesi Tip Fakultesi, Radyoloji Anabilim Dali, Ankara, Turkiye Phone: +90 312 305 11 88; e-mail:
| | | |
Collapse
|
50
|
Gidener T, Dierkhising R, Mara KC, Therneau TM, Venkatesh SK, Ehman RL, Yin M, Allen AM. Change in serial liver stiffness measurement by magnetic resonance elastography and outcomes in NAFLD. Hepatology 2023; 77:268-274. [PMID: 35642504 PMCID: PMC9712594 DOI: 10.1002/hep.32594] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The impact of disease progression in NAFLD on liver outcomes remains poorly understood. We aimed to investigate NAFLD progression using longitudinal liver stiffness measurements (LSM) by serial magnetic resonance elastography (MRE) and the association with liver outcomes. APPROACH AND RESULTS All adult patients with NAFLD who underwent at least two serial MREs for clinical evaluation at Mayo Clinic, Rochester, between 2007 and 2019 were identified from the institutional database. Progression and regression were defined based on LSM change of 19% above or below 19% of initial LSM, respectively, based on Quantitative Imaging Biomarker Alliance consensus. The association between change in LSM and liver-related outcomes occurring after the last MRE was examined using time-to-event analysis. A total of 128 participants underwent serial MREs (53% female, median age 59 years). The median time between paired MREs was 3.4 (range 1-10.7) years. NAFLD progression (LSM = +0.61 kPa/year) was identified in 17 patients (13.3%). NAFLD regression (-0.40 kPa/year) occurred in 35 patients (27.3%). Stable LSM was noted in 76 participants (59.4%). In NAFLD without cirrhosis at baseline ( n = 75), cirrhosis development occurred in 14% of LSM progressors and 2.9% of non-progressors ( p = 0.059) over a median 2.7 years of follow-up from the last MRE. Among those with compensated cirrhosis at baseline MRE ( n = 29), decompensation or death occurred in 100% of LSM progressors and 19% of non-progressors ( p < 0.001) over a median 2.5 years of follow-up after the last MRE. CONCLUSIONS Noninvasive monitoring of LSM by conventional MRE is a promising method of longitudinal NAFLD monitoring and risk estimation of liver-related outcomes in NAFLD.
Collapse
Affiliation(s)
- Tolga Gidener
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Ross Dierkhising
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Kristin C. Mara
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Terry M. Therneau
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | | | | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|