1
|
Liu P, Chen Z, Guo Y, He Q, Pan C. Recent advances in small molecule inhibitors of deubiquitinating enzymes. Eur J Med Chem 2025; 287:117324. [PMID: 39908798 DOI: 10.1016/j.ejmech.2025.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Proteins play a pivotal role in maintaining cellular homeostasis. Their degradation primarily orchestrated through the ubiquitin-proteasome system (UPS) and cellular autophagy. Dysfunction of the UPS is associated with various human diseases, including cancer, autoimmune disorders, and neurodegenerative conditions. Consequently, the UPS has emerged as a promising therapeutic target. Deubiquitinases (DUBs) have garnered significant attention as potential targets for therapeutic intervention due to their role in modulating protein stability and function. This review focuses on recent advancements of DUBs, particularly their relevance in the UPS and their potential as drug targets. Notably, inhibitors targeting specific DUBs, such as USP1, USP7, USP14, and USP30 have shown promise in preclinical and clinical studies for cancer therapy. Additionally, DUB inhibitors have been involved in novel therapeutic approaches lately, including as targets for proteolysis-targeting chimeras (PROTACs) or as tools in deubiquitinase-targeting chimeras (DUBTACs).
Collapse
Affiliation(s)
- Pengwei Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Zhengyang Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Yiting Guo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Ficarro SB, Marto ZH, Girardi NM, Deng D, Maisonet IJ, Adelmant G, Fleming LE, Sharafi M, Tavares I, Zhao A, Kim H, Seo HS, Dhe-Paganon S, Buhrlage SJ, Marto JA. Open-source electrophilic fragment screening platform to identify chemical starting points for UCHL1 covalent inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100198. [PMID: 39622293 DOI: 10.1016/j.slasd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Target-based screening of covalent fragment libraries with mass spectrometry has emerged as a powerful strategy to identify chemical starting points for small molecule inhibitors or find new binding pockets on proteins of interest. These libraries span diverse chemical space with a modest number of compounds. Screening covalent fragments against purified protein targets reduces the demands on the mass spectrometer with respect to absolute throughput, detection limit, and dynamic range. Given these relaxed analytical requirements, we sought to develop an open-source, medium-throughput mass spectrometry system for target-based covalent fragment screening. Our platform comprises automated, dual LC desalting columns integrated with electrospray ionization for rapid sample introduction and mass spectrometry detection. The system is operated through a simple Python graphical user interface running on commodity microcontroller boards which allow integration with diverse liquid chromatography and mass spectrometry instruments. We provide scripts for fragment pooling, construction of sample batches, along with routines for data processing and visualization. The system enables primary screening of ∼10,000 covalent fragments per day in pooled format. In a proof-of-concept study we executed primary and secondary screens to identify 27 hit fragments against UCHL1, a deubiquitinating enzyme that is emerging as a drug target of interest across multiple clinical indications. We validated and triaged these covalent compounds through a series of orthogonal biochemical and chemoproteomic assays. The most promising chloroacetamide covalent fragment inhibited UCHL1 activity in vitro (IC50 < 5 µM) and exhibited dose-dependent binding along with good selectivity against 57 cellular DUBs as quantified by activity-based protein profiling.
Collapse
Affiliation(s)
- Scott B Ficarro
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zachary H Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas M Girardi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dingyu Deng
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabella Jaen Maisonet
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura E Fleming
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mona Sharafi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Isidoro Tavares
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Zhao
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - HyoJeon Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Qin B, Chen X, Wang F, Wang Y. DUBs in Alzheimer's disease: mechanisms and therapeutic implications. Cell Death Discov 2024; 10:475. [PMID: 39562545 DOI: 10.1038/s41420-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis. DUBs specifically remove ubiquitin tags from proteins marked for degradation, thereby averting their proteasomal breakdown. Several DUBs have demonstrated their capacity to regulate the levels of Aβ and Tau by modulating their degree of ubiquitination, underscoring their potential as therapeutic targets for AD. In this context, we present a comprehensive review of AD-associated DUBs and elucidate their physiological roles. Moreover, we delve into the current advancements in developing inhibitors targeting these DUBs, including the determination of cocrystal structures with their respective targets. Additionally, we assess the therapeutic efficacy of these inhibitors in AD, aiming to establish a theoretical foundation for future AD treatments.
Collapse
Affiliation(s)
- Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaodong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, Hebei, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong, China.
| |
Collapse
|
4
|
Lei H, Xu H, Wu Y. Role of UCHL3 in health and disease. Biochem Biophys Res Commun 2024; 734:150626. [PMID: 39226739 DOI: 10.1016/j.bbrc.2024.150626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Ubiquitin C-terminal hydrolase 3 (UCHL3) is a cysteine protease that plays a crucial role in cell cycle regulation, DNA repair, and apoptosis by carrying out deubiquitination and deneddylation activities. It has emerged as a promising therapeutic target for certain cancers due to its ability to stabilize oncoproteins. The dysregulation of UCHL3 also has been associated with neurodegenerative diseases, underscoring its significance in maintaining protein homeostasis within cells. Research on UCHL3, including studies on Uchl3 knockout mice, has revealed its involvement in learning deficits, cellular stress responses, and retinal degeneration. This review delves into the cellular processes controlled by UCHL3 and its role in health and disease progression, as well as the development of UCHL3 inhibitors. Further investigation into the molecular mechanisms and physiological functions of UCHL3 is crucial for a comprehensive understanding of its impact on health and disease.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Jiao Tong University, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Sch Med, Shanghai 200025, China.
| |
Collapse
|
5
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Collins A, Scott R, Wilson C, Abbate G, Ecclestone GB, Albanese A, Biddles D, White S, French J, Moir J, Alrawashdeh W, Wilson C, Pandanaboyana S, Hammond J, Thakkar R, Oakley F, Mann J, Mann DA, Kenneth NS. UCHL1-dependent control of hypoxia-inducible factor transcriptional activity during liver fibrosis. Biosci Rep 2024; 44:BSR20232147. [PMID: 38808772 PMCID: PMC11182734 DOI: 10.1042/bsr20232147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in most types of chronic liver disease. At the cellular level, liver fibrosis is associated with the activation of hepatic stellate cells (HSCs) which transdifferentiate into a myofibroblast-like phenotype that is contractile, proliferative and profibrogenic. HSC transdifferentiation induces genome-wide changes in gene expression that enable the cell to adopt its profibrogenic functions. We have previously identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation; however, the cellular targets of its deubiquitinating activity are poorly defined. Here, we describe a role for UCHL1 in regulating the levels and activity of hypoxia-inducible factor 1 (HIF1), an oxygen-sensitive transcription factor, during HSC activation and liver fibrosis. HIF1 is elevated during HSC activation and promotes the expression of profibrotic mediator HIF target genes. Increased HIF1α expression correlated with induction of UCHL1 mRNA and protein with HSC activation. Genetic deletion or chemical inhibition of UCHL1 impaired HIF activity through reduction of HIF1α levels. Furthermore, our mechanistic studies have shown that UCHL1 elevates HIF activity through specific cleavage of degradative ubiquitin chains, elevates levels of pro-fibrotic gene expression and increases proliferation rates. As we also show that UCHL1 inhibition blunts fibrogenesis in a pre-clinical 3D human liver slice model of fibrosis, these results demonstrate how small molecule inhibitors of DUBs can exert therapeutic effects through modulation of HIF transcription factors in liver disease. Furthermore, inhibition of HIF activity using UCHL1 inhibitors may represent a therapeutic opportunity with other HIF-related pathologies.
Collapse
Affiliation(s)
- Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Rebecca Scott
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Caroline L. Wilson
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Giuseppe Abbate
- FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, U.K
| | - Gabrielle B. Ecclestone
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology University of Liverpool, U.K
| | - Adam G. Albanese
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology University of Liverpool, U.K
| | - Demi Biddles
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Steven White
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Jeremy French
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - John Moir
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Wasfi Alrawashdeh
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Colin Wilson
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Sanjay Pandanaboyana
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - John S. Hammond
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Rohan Thakkar
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
- FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, U.K
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Niall S. Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology University of Liverpool, U.K
| |
Collapse
|
7
|
Zhang J, Xue M, Huang J, He S, Zhu L, Zhao X, Wang B, Jiang T, Zhang Y, Miao C, Zhou G. Deficiency of UCHL1 results in insufficient decidualization accompanied by impaired dNK modulation and eventually miscarriage. J Transl Med 2024; 22:478. [PMID: 38769534 PMCID: PMC11103838 DOI: 10.1186/s12967-024-05253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown. METHODS With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7-10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome. RESULTS The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-β which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome. CONCLUSIONS UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mingxing Xue
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shan He
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingqiao Zhu
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xiaonan Zhao
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Bei Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingwang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
| | - Yanyun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Kim H. Regulation of Med1 protein by overexpression of BAP1 in breast cancer cells. Mol Cell Oncol 2024; 11:2347827. [PMID: 38708315 PMCID: PMC11067983 DOI: 10.1080/23723556.2024.2347827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Med1 binds to a nuclear receptor and regulates transcription. Elevated Med1 protein expression promotes cancer growth in hormone-dependent breast and prostate cancers. Med1 protein expression was investigated by deubiquitinating enzymes (DUBs) overexpression in breast cancer cell lines. Various DNA constructs of SRT-DUBs were overexpressed in the MCF7 cell line, and Med1 protein expression was investigated by western blotting. The cell growth and in vitro invasion assay were performed in BRCA1-associated protein 1 (BAP1) wild type and mutant (C91A) overexpressed cells. Ubiquitination of the Med1 protein was observed, and Med1 protein expression and transcriptional activity were verified by various DUBs overexpressed. Although Med1 protein expression increased upon the overexpression of BAP1, it was not affected by the overexpression of BAP1 mutant (C91A). BAP1 was increased by the E2 treatment, which has an important effect on the breast cancer growth, and cell growth was decreased by BAP1 C91A overexpression. However, metastatic capacities were decreased by BAP1. In addition, the binding between the Med1 and the BAP1 protein was observed. These data suggested that BAP1 regulated Med1 protein expression in breast cancer cells and involved in cancer cell growth and metastasis by binding to Med1 protein.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| |
Collapse
|
9
|
Imhoff RD, Patel R, Safdar MH, Jones HBL, Pinto-Fernandez A, Vendrell I, Chen H, Muli CS, Krabill AD, Kessler BM, Wendt MK, Das C, Flaherty DP. Covalent Fragment Screening and Optimization Identifies the Chloroacetohydrazide Scaffold as Inhibitors for Ubiquitin C-terminal Hydrolase L1. J Med Chem 2024; 67:4496-4524. [PMID: 38488146 DOI: 10.1021/acs.jmedchem.3c01661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Dysregulation of the ubiquitin-proteasome systems is a hallmark of various disease states including neurodegenerative diseases and cancer. Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is expressed primarily in the central nervous system under normal physiological conditions, however, is considered an oncogene in various cancers, including melanoma, lung, breast, and lymphoma. Thus, UCHL1 inhibitors could serve as a viable treatment strategy against these aggressive cancers. Herein, we describe a covalent fragment screen that identified the chloroacetohydrazide scaffold as a covalent UCHL1 inhibitor. Subsequent optimization provided an improved fragment with single-digit micromolar potency against UCHL1 and selectivity over the closely related UCHL3. The molecule demonstrated efficacy in cellular assays of metastasis. Additionally, we report a ligand-bound crystal structure of the most potent molecule in complex with UCHL1, providing insight into the binding mode and information for future optimization.
Collapse
Affiliation(s)
- Ryan D Imhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
| | - Rishi Patel
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad Hassan Safdar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hannah B L Jones
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Hao Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christine S Muli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Michael K Wendt
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Materozzi M, Resnati M, Facchi C, Trudu M, Orfanelli U, Perini T, Gennari L, Milan E, Cenci S. A novel proteomic signature of osteoclast differentiation unveils the deubiquitinase UCHL1 as a necessary osteoclastogenic driver. Sci Rep 2024; 14:7290. [PMID: 38538704 PMCID: PMC10973525 DOI: 10.1038/s41598-024-57898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Bone destruction, a major source of morbidity, is mediated by heightened differentiation and activity of osteoclasts (OC), highly specialized multinucleated myeloid cells endowed with unique bone-resorptive capacity. The molecular mechanisms regulating OC differentiation in the bone marrow are still partly elusive. Here, we aimed to identify new regulatory circuits and actionable targets by comprehensive proteomic characterization of OCgenesis from mouse bone marrow monocytes, adopting two parallel unbiased comparative proteomic approaches. This work disclosed an unanticipated protein signature of OCgenesis, with most gene products currently unannotated in bone-related functions, revealing broad structural and functional cellular reorganization and divergence from macrophagic immune activity. Moreover, we identified the deubiquitinase UCHL1 as the most upregulated cytosolic protein in differentiating OCs. Functional studies proved it essential, as UCHL1 genetic and pharmacologic inhibition potently suppressed OCgenesis. Furthermore, proteomics and mechanistic dissection showed that UCHL1 supports OC differentiation by restricting the anti-OCgenic activity of NRF2, the transcriptional activator of the canonical antioxidant response, through redox-independent stabilization of the NRF2 inhibitor, KEAP1. Besides offering a valuable experimental framework to dissect OC differentiation, our study discloses the essential role of UCHL1, exerted through KEAP1-dependent containment of NRF2 anti-OCgenic activity, yielding a novel potential actionable pathway against bone loss.
Collapse
Affiliation(s)
- Maria Materozzi
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Massimo Resnati
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cecilia Facchi
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Trudu
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Ugo Orfanelli
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tommaso Perini
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Milan
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Simone Cenci
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
11
|
Liu S, Chai T, Garcia-Marques F, Yin Q, Hsu EC, Shen M, Shaw Toland AM, Bermudez A, Hartono AB, Massey CF, Lee CS, Zheng L, Baron M, Denning CJ, Aslan M, Nguyen HM, Nolley R, Zoubeidi A, Das M, Kunder CA, Howitt BE, Soh HT, Weissman IL, Liss MA, Chin AI, Brooks JD, Corey E, Pitteri SJ, Huang J, Stoyanova T. UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas. Cell Rep Med 2024; 5:101381. [PMID: 38244540 PMCID: PMC10897521 DOI: 10.1016/j.xcrm.2023.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | | | - Qingqing Yin
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Alifiani B Hartono
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher F Massey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chung S Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Caden J Denning
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Millie Das
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | | | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Wu DD, Lau ATY, Xu YM, Reinders-Luinge M, Koncz M, Kiss A, Timens W, Rots MG, Hylkema MN. Targeted epigenetic silencing of UCHL1 expression suppresses collagen-1 production in human lung epithelial cells. Epigenetics 2023; 18:2175522. [PMID: 38016026 PMCID: PMC9980648 DOI: 10.1080/15592294.2023.2175522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression via CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium. Our results show that cigarette smoke extract (CSE) stimulated the expression of UCHL1 in vitro. The methylation status of the UCHL1 gene was negatively associated with UCHL1 transcription in LCM-obtained airway epithelium at specific sites. Treatment with a UCHL1 inhibitor showed that the TGF-β1-induced upregulation of the ECM gene COL1A1 can be prevented by the inhibition of UCHL1 activity in cell lines. Furthermore, upon downregulation of UCHL1 by epigenetic editing using CRISPR/dCas-EZH2, mRNA expression of COL1A1 and fibronectin was reduced. In conclusion, we confirmed higher UCHL1 expression in current smokers compared to non- and ex-smokers, and induced downregulation of UCHL1 by epigenetic editing. The subsequent repression of genes encoding ECM proteins suggest a role for UCHL1 as a therapeutic target in fibrosis-related disease.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, P. R. China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, P. R. China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, P. R. China
| | - Marjan Reinders-Luinge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mihaly Koncz
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Antal Kiss
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Wang S, Dong K, Zhang J, Chen C, Shuai H, Yu X. Raw Inonotus obliquus polysaccharide counteracts Alzheimer's disease in a transgenic mouse model by activating the ubiquitin-proteosome system. Nutr Res Pract 2023; 17:1128-1142. [PMID: 38053824 PMCID: PMC10694425 DOI: 10.4162/nrp.2023.17.6.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Inonotus obliquus has been used as antidiabetic herb around the world, especially in the Russian and Scandinavian countries. Diabetes is widely believed to be a key factor in Alzheimer's disease (AD), which is widely considered to be type III diabetes. To investigate whether I. obliquus can also ameliorate AD, it would be interesting to identify new clues for AD treatment. We tested the anti-AD effects of raw Inonotus obliquus polysaccharide (IOP) in a mouse model of AD (3×Tg-AD transgenic mice). MATERIALS/METHODS SPF-grade 3×Tg-AD mice were randomly divided into three groups (Control, Metformin, and raw IOP groups, n = 5 per group). β-Amyloid deposition in the brain was analyzed using immunohistochemistry for AD characterization. Gene and protein expression of pertinent factors of the ubiquitin-proteasome system (UPS) was determined using real-time quantitative polymerase chain reaction and Western blotting. RESULTS Raw IOP significantly reduced the accumulation of amyloid aggregates and facilitated UPS activity, resulting in a significant reduction in AD-related symptoms in an AD mouse model. The presence of raw IOP significantly enhanced the expression of ubiquitin, E1, and Parkin (E3) at both the mRNA and protein levels in the mouse hippocampus. The mRNA level of ubiquitin carboxyl-terminal hydrolase isozyme L1, a key factor involved in UPS activation, also increased by approximately 50%. CONCLUSIONS Raw IOP could contribute to AD amelioration via the UPS pathway, which could be considered as a new potential strategy for AD treatment, although we could not exclude other mechanisms involved in counteracting AD processing.
Collapse
Affiliation(s)
- Shumin Wang
- School of Basic Medicine, Dali University, Dali 671000, China
| | - Kaiye Dong
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali 671000, China
| | - Ji Zhang
- College of Clinical Medicine, Dali University, Dali 671000, China
| | - Chaochao Chen
- College of Clinical Medicine, Dali University, Dali 671000, China
| | - Hongyan Shuai
- School of Basic Medicine, Dali University, Dali 671000, China
| | - Xin Yu
- School of Basic Medicine, Dali University, Dali 671000, China
| |
Collapse
|
15
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
16
|
Guo C, Liang L, Zheng J, Xie Y, Qiu X, Tan G, Huang J, Wang L. UCHL1 aggravates skin fibrosis through an IGF-1-induced Akt/mTOR/HIF-1α pathway in keloid. FASEB J 2023; 37:e23015. [PMID: 37256780 DOI: 10.1096/fj.202300153rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-β1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Liang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingbin Zheng
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Liang XW, Wang SZ, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Liu H, Wu JC. A review of deubiquitinases and thier roles in tumorigenesis and development. Front Bioeng Biotechnol 2023; 11:1204472. [PMID: 37251574 PMCID: PMC10213685 DOI: 10.3389/fbioe.2023.1204472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Ubiquitin is a small protein that can be added onto target protein for inducing target degradation, thereby modulating the activity and stability of protein. Relatively, deubiquitinases (DUBs), a class catalase that can remove ubiquitin from substrate protein, provide a positive regulation of the protein amount at transcription level, post-translational modification, protein interaction, etc. The reversible and dynamic ubiquitination-deubiquitination process plays an essential role in maintaining protein homeostasis, which is critical to almost all the biological processes. Therefore, the metabolic dysregulation of deubiquitinases often lead to serious consequences, including the growth and metastasis of tumors. Accordingly, deubiquitinases can be served as key drug targets for the treatment of tumors. The small molecule inhibitors targeting deubiquitinases has become one of the hot spots of anti-tumor drug research areas. This review concentrated on the function and mechanism of deubiquitinase system in the proliferation, apoptosis, metastasis and autophagy of tumor cells. The research status of small molecule inhibitors of specific deubiquitinases in tumor treatment is introduced, aiming to provide reference for the development of clinical targeted drugs.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-Ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Hui Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
18
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
19
|
Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun 2022; 13:5950. [PMID: 36216817 PMCID: PMC9549030 DOI: 10.1038/s41467-022-33559-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination regulates protein homeostasis and is tightly controlled by deubiquitinases (DUBs). Loss of the DUB UCHL1 leads to neurodegeneration, and its dysregulation promotes cancer metastasis and invasiveness. Small molecule probes for UCHL1 and DUBs in general could help investigate their function, yet specific inhibitors and structural information are rare. Here we report the potent and non-toxic chemogenomic pair of activity-based probes GK13S and GK16S for UCHL1. Biochemical characterization of GK13S demonstrates its stereoselective inhibition of cellular UCHL1. The crystal structure of UCHL1 in complex with GK13S shows the enzyme locked in a hybrid conformation of apo and Ubiquitin-bound states, which underlies its UCHL1-specificity within the UCH DUB family. Phenocopying a reported inactivating mutation of UCHL1 in mice, GK13S, but not GK16S, leads to reduced levels of monoubiquitin in a human glioblastoma cell line. Collectively, we introduce a set of structurally characterized, chemogenomic probes suitable for the cellular investigation of UCHL1. The deubiquitinase UCHL1 has been linked to cancer invasiveness and neurodegeneration yet its molecular roles have remained poorly defined. Here the authors reveal the structural basis for how UCHL1 can be specifically inhibited and how chemogenomic probes can be used to dissect its functions in living cells.
Collapse
Affiliation(s)
- Christian Grethe
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Mirko Schmidt
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Gian-Marvin Kipka
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Rachel O'Dea
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Kai Gallant
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, Dortmund, Germany
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany. .,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany.
| |
Collapse
|
20
|
Li M, Wang F, Yan L, Lu M, Zhang Y, Peng T. Genetically encoded fluorescent unnatural amino acids and FRET probes for detecting deubiquitinase activities. Chem Commun (Camb) 2022; 58:10186-10189. [PMID: 36000311 DOI: 10.1039/d2cc03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present the genetic encoding of 7-aminocoumarin-based lysine derivatives, ACouK and AFCouK, into proteins in both bacterial and mammalian cells and the characterization of FRET pairs comprising ACouK or AFCouK as the donor and GFP as the acceptor. We further report the application of the FRET pairs to construct fully genetically encoded ratiometric probes for detecting deubiquitinases and screening for inhibitors.
Collapse
Affiliation(s)
- Manjia Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Feifei Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Long Yan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. .,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
21
|
Hafez N, Modather El-Awadly Z, Arafa RK. UCH-L3 structure and function: Insights about a promising drug target. Eur J Med Chem 2022; 227:113970. [PMID: 34752952 DOI: 10.1016/j.ejmech.2021.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/04/2022]
Abstract
In the past few years, researchers have shed light on the immense importance of ubiquitin in numerous regulatory pathways. The post-translational addition of mono or poly-ubiquitin molecules namely "ubiquitinoylation" is therefore pivotal to maintain the cell's vitality, maturation, differentiation, and division. Part of conserving homeostasis stems from maintaining the ubiquitin pool in the vicinity of the cell's intracellular environment; this crucial role is played by deubiquitylating enzymes (DUBs) that cleave ubiquitin molecules from target molecules. To date, they are categorized into 7 families with ubiquitin carboxyl c-terminal de-hydrolase family (UCH) as the most common and well-studied. Ubiquitin C-terminal hydrolase L (UCH-L3) is a significant protein in this family as it has been implicated in many molecular and cellular processes with its mRNA identified in a range of body tissues including the brain. It goes without saying that it manifests in maintaining health and when abnormally regulated in disease. As it is an attractive small molecule drug target, scientists have used high throughput screening (HTS) and other drug discovery methods to discover inhibitors for this enzyme for the treatment of cancer and neurodegenerative diseases. In this review we present an overview of UCH-L3 catalytic mechanism, structure, its role in DNA repair and cancer along with the inhibitors discovered so far to halt its activity.
Collapse
Affiliation(s)
- Noha Hafez
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Zahraa Modather El-Awadly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Reem K Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt; Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Cairo, 12578, Egypt.
| |
Collapse
|
22
|
Cho C, Li SG, Lalonde TJ, Yang KS, Yu G, Qiao Y, Xu S, Ray Liu W. Drug Repurposing for the SARS-CoV-2 Papain-Like Protease. ChemMedChem 2022; 17:e202100455. [PMID: 34423563 PMCID: PMC8653067 DOI: 10.1002/cmdc.202100455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Indexed: 12/22/2022]
Abstract
As the pathogen of COVID-19, SARS-CoV-2 encodes two essential cysteine proteases that process the pathogen's two large polypeptide products pp1a and pp1ab in the human cell host to form 15 functionally important, mature nonstructural proteins. One of the two enzymes is papain-like protease or PLPro . It possesses deubiquitination and deISGylation activities that suppress host innate immune responses toward SARS-CoV-2 infection. To repurpose drugs for PLPro , we experimentally screened libraries of 33 deubiquitinase and 37 cysteine protease inhibitors on their inhibition of PLPro . Our results showed that 15 deubiquitinase and 1 cysteine protease inhibitors exhibit strong inhibition of PLPro at 200 μM. More comprehensive characterizations revealed seven inhibitors GRL0617, SJB2-043, TCID, DUB-IN-1, DUB-IN-3, PR-619, and S130 with an IC50 value below 40 μM and four inhibitors GRL0617, SJB2-043, TCID, and PR-619 with an IC50 value below 10 μM. Among four inhibitors with an IC50 value below 10 μM, SJB2-043 is the most unique in that it does not fully inhibit PLPro but has a noteworthy IC50 value of 0.56 μM. SJB2-043 likely binds to an allosteric site of PLPro to convene its inhibition effect, which needs to be further investigated. As a pilot study, the current work indicates that COVID-19 drug repurposing by targeting PLPro holds promise, but in-depth analysis of repurposed drugs is necessary to avoid omitting critical allosteric inhibitors.
Collapse
Affiliation(s)
- Chia‐Chuan Cho
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Shuhua G. Li
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Tyler J. Lalonde
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Kai S. Yang
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Ge Yu
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Yuchen Qiao
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory Department of ChemistryTexas A&M UniversityCollege StationTX 77843USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences College of MedicineTexas A&M UniversityHoustonTX 77030USA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTX 77843USA
- Department of Molecular and Cellular Medicine College of MedicineTexas A&M UniversityCollege StationTX 77843USA
| |
Collapse
|
23
|
Hewitt CS, Das C, Flaherty DP. Rational Development and Characterization of a Ubiquitin Variant with Selectivity for Ubiquitin C-Terminal Hydrolase L3. Biomolecules 2022; 12:biom12010062. [PMID: 35053210 PMCID: PMC8773573 DOI: 10.3390/biom12010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/12/2023] Open
Abstract
There is currently a lack of reliable methods and strategies to probe the deubiquitinating enzyme UCHL3. Current small molecules reported for this purpose display reduced potency and selectivity in cellular assays. To bridge this gap and provide an alternative approach to probe UCHL3, our group has carried out the rational design of ubiquitin-variant activity-based probes with selectivity for UCHL3 over the closely related UCHL1 and other DUBs. The approach successfully produced a triple-mutant ubiquitin variant activity-based probe, UbVQ40V/T66K/V70F-PRG, that was ultimately 20,000-fold more selective for UCHL3 over UCHL1 when assessed by rate of inactivation assays. This same variant was shown to selectively form covalent adducts with UCHL3 in MDA-MB-231 breast cancer cells and no reactivity toward other DUBs expressed. Overall, this study demonstrates the feasibility of the approach and also provides insight into how this approach may be applied to other DUB targets.
Collapse
Affiliation(s)
- Chad S. Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
24
|
Panyain N, Godinat A, Thawani AR, Lachiondo-Ortega S, Mason K, Elkhalifa S, Smith LM, Harrigan JA, Tate EW. Activity-based protein profiling reveals deubiquitinase and aldehyde dehydrogenase targets of a cyanopyrrolidine probe. RSC Med Chem 2021; 12:1935-1943. [PMID: 34820624 PMCID: PMC8597422 DOI: 10.1039/d1md00218j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme (DUB), is a potential drug target in various cancers, and liver and lung fibrosis. However, bona fide functions and substrates of UCHL1 remain poorly understood. Herein, we report the characterization of UCHL1 covalent inhibitor MT16-001 based on a thiazole cyanopyrrolidine scaffold. In combination with chemical proteomics, a closely related activity-based probe (MT16-205) was used to generate a comprehensive quantitative profile for on- and off-targets at endogenous cellular abundance. Both compounds are selective for UCHL1 over other DUBs in intact cells but also engage a range of other targets with good selectivity over the wider proteome, including aldehyde dehydrogenases, redox-sensitive Parkinson's disease related protein PARK7, and glutamine amidotransferase. Taken together, these results underline the importance of robust profiling of activity-based probes as chemical tools and highlight the cyanopyrrolidine warhead as a versatile platform for liganding diverse classes of protein with reactive cysteine residues which can be used for further inhibitor screening, and as a starting point for inhibitor development.
Collapse
Affiliation(s)
- Nattawadee Panyain
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Aurélien Godinat
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Aditya Raymond Thawani
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Sofía Lachiondo-Ortega
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Katie Mason
- Mission Therapeutics Ltd, The Glenn Berge Building, Babraham Research Campus Babraham Cambridge CB22 3FH UK
| | - Sarah Elkhalifa
- Mission Therapeutics Ltd, The Glenn Berge Building, Babraham Research Campus Babraham Cambridge CB22 3FH UK
| | - Lisa M Smith
- Mission Therapeutics Ltd, The Glenn Berge Building, Babraham Research Campus Babraham Cambridge CB22 3FH UK
| | - Jeanine A Harrigan
- Mission Therapeutics Ltd, The Glenn Berge Building, Babraham Research Campus Babraham Cambridge CB22 3FH UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
- The Francis Crick Institute London NW1 1AT UK
| |
Collapse
|
25
|
Yu J, Yu S, Jia M, Sun PL, Gao H. Ubiquitin C-terminal hydrolase-L1 expression in non-small-cell lung cancer and its association with clinicopathological features and prognosis. Virchows Arch 2021; 480:577-585. [PMID: 34757486 DOI: 10.1007/s00428-021-03199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 11/24/2022]
Abstract
UbiquitinC-terminal hydrolase-L1 (UCH-L1) is a cysteine hydrolase. It functions as a ubiquitin hydrolase, stabilizes the ubiquitin monomer, and affects cell division through cell cycle protein deubiquitination. Abnormal UCH-L1 expression is closely related to the occurrence and development of several tumors. Although some in vitro studies have demonstrated the significance of UCH-L1 in non-small-cell lung cancer (NSCLC), only few clinical studies have focused on the UCH-L1 expression in NSCLC, and the results are controversial and non-uniform. We investigated the UCH-L1 expression in 401 cases of surgically resected NSCLC, including 286 cases of adenocarcinoma (ADC) and 65 cases of squamous cell carcinoma. The associations between the UCH-L1 expression and clinicopathological features, programmed cell death-ligand 1 (PD-L1) expression, and prognostic significance were analyzed. For NSCLC, the UCH-L1 expression is associated with sex, smoking history, tumor size (>3 cm), lymphocyte infiltration, advanced pathological stages, and shortened overall survival (OS; 89.72 vs. 114.55 months; P = 0.005), but not PD-L1 expression. The UCH-L1 expression in ADC is associated with advanced pathological stages, pleural invasion, and shortened OS (90.38 vs. 118.55 months; P = 0.010). Multivariate analysis confirmed that UCH-L1 expression was an independent poor prognostic factor for NSCLC (OS: hazard ratio [HR], 1.854; 95% confidence interval [CI], 1.132-3.038; P = 0.014). Our results suggest that the UCH-L1 expression differs across tumors with different clinicopathological features, and it is related to poor prognosis.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Pathology, the Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, Jilin, 130041, China
| | - Shili Yu
- Department of Pathology, the Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, Jilin, 130041, China
| | - Meng Jia
- Department of Pathology, the Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, Jilin, 130041, China
| | - Ping-Li Sun
- Department of Pathology, the Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, Jilin, 130041, China.
| | - Hongwen Gao
- Department of Pathology, the Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, Jilin, 130041, China.
| |
Collapse
|
26
|
Gutkin S, Gandhesiri S, Brik A, Shabat D. Synthesis and Evaluation of Ubiquitin-Dioxetane Conjugate as a Chemiluminescent Probe for Monitoring Deubiquitinase Activity. Bioconjug Chem 2021; 32:2141-2147. [PMID: 34549948 PMCID: PMC8589252 DOI: 10.1021/acs.bioconjchem.1c00413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/27/2022]
Abstract
The removal of ubiquitin (Ub) from a modified protein or Ub chain is a process that occurs regularly by the ubiquitin-proteasome system. This process is known to be mediated by various deubiquitinating enzymes (DUBs) in order to control the protein's half-life and its expression levels among many other signaling processes. Since the function of DUBs is also involved in numerous human diseases, such as cancer, there is an obvious need for an effective diagnostic probe that can monitor the activity of these enzymes. We have developed the first chemiluminescence probe for detection of DUBs activity. The probe was prepared by conjugation of the chemically synthesized C-terminally activated Ub(1-75) with a Gly-enolether precursor. Subsequent oxidation, under aqueous conditions, of the enolether conjuagate with singlet-oxygen furnished the dioxetane probe Ub-CL. This synthesis provides the first example of a dioxetane-luminophore protein conjugate. The probe's ability to detect deubiquitinating activity was successfully validated with three different DUBs. In order to demonstrate the advantage of our new probe, comparison measurements for detection of DUB UCH-L3 activity were performed between the chemiluminescent probe Ub-CL and the well-known Ub-AMC probe. The obtained data showed significantly higher S/N, for probe Ub-CL (>93-fold) in comparison to that observed for Ub-AMC (1.5-fold). We anticipate that the successful design and synthesis of the turn-ON protein-dioxetane conjugate probe, demonstrated in this work, will provide the insight and motivation for preparation of other relevant protein-dioxetane conjugates.
Collapse
Affiliation(s)
- Sara Gutkin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Satish Gandhesiri
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Zhou XJ, Li R, Liu X, Qu YQ. Advances in deubiquitinating enzymes in lung adenocarcinoma. J Cancer 2021; 12:5573-5582. [PMID: 34405018 PMCID: PMC8364634 DOI: 10.7150/jca.56532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
The process of ubiquitination and deubiquitination is widely present in the human body's protein reactions and plays versatile roles in multiple diseases. Deubiquitinating enzymes (DUBs) are significant regulators of this process, which cleave the ubiquitin (Ub) moiety from various substrates and maintain protein stability. Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer (NSCLC) and remains refractory to treatment. To elucidate the mechanism of LUAD and advance new therapeutic targets, we review the latest research progress on DUBs in LUAD. We summarize the biological capabilities of these DUBs and further highlight those DUBs that may serve as anticancer target candidates for precision treatment. We also discuss deubiquitinase inhibitors, which are expected to play a role in targeted LUAD therapy.
Collapse
Affiliation(s)
- Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University (Jinan 250012, China)
| |
Collapse
|
29
|
Xu D, Wu J, Chen J, Jiang L, Chen J, Bao W, Chen X, Yang Q, Zhang X, Yao L, Su H, Liu J. Cullin 2-RBX1 E3 ligase and USP2 regulate antithrombin ubiquitination and stability. FASEB J 2021; 35:e21800. [PMID: 34324733 DOI: 10.1096/fj.202001146rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
Hemophilia A and B are congenital bleeding disorders caused by a deficiency in pro-coagulant factor VIII or IX that is treated by downregulation of antithrombin. However, the molecular mechanisms that regulate antithrombin expression remain poorly understood. Here, we identified Cullin 2 and USP2 (ubiquitin-specific peptidase-2) as novel regulators of antithrombin expression that act by modulating antithrombin ubiquitination. Inhibition of the proteasome caused accumulation of antithrombin and its ubiquitinated forms in HepG2 and SMMC7721 cells. Notably, inhibition of neddylation with MLN4924 suppressed both ubiquitination and degradation of antithrombin, which is recapitulated by silencing of the neddylation enzymes, NAE1, UBA3, and UBE2M, with small interfering RNA (siRNA). We identified Cullin 2 as the interaction partner of antithrombin, and siRNA-mediated Cullin 2 knockdown reduced antithrombin ubiquitination and increased antithrombin protein. We further found that USP2 interacted with antithrombin and regulated antithrombin expression, showing that overexpression of USP2 inhibits the ubiquitination and proteasomal clearance of antithrombin, whereas pharmacological inhibition or siRNA-mediated knockdown of USP2 downregulates antithrombin. Collectively, these results suggest that Cullin 2 E3 ubiquitin ligase and USP2 coordinately regulate antithrombin ubiquitination and degradation. Thus, targeting Cullin 2 and USP2 could be a potential strategy for treatment of hemophilia.
Collapse
Affiliation(s)
- Dacai Xu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhao Bao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Zhang Z, Liu N, Chen X, Zhang F, Kong T, Tang X, Yang Q, Chen W, Xiong X, Chen X. UCHL1 regulates inflammation via MAPK and NF-κB pathways in LPS-activated macrophages. Cell Biol Int 2021; 45:2107-2117. [PMID: 34288216 DOI: 10.1002/cbin.11662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022]
Abstract
Inflammation is a common pathophysiological process as well as a clinical threat that occurs in various diseases worldwide. It is well-documented that nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways are involved in inflammatory reactions to microbial infections in lipopolysaccharide (LPS)-activated macrophages. The deubiquitinase ubiquitin carboxyl-terminal hydrolase-L1 (UCHL1) has been reported as an oncoprotein to promote the growth and progression of cancer cells. However, the regulatory mechanism of UCHL1 in inflammation is currently unclear. Here, we aimed to assess the effects of UCHL1 on LPS-associated inflammatory response in vitro and in vivo by enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. This study identified that inhibition or knockdown of UCHL1 decreased the amounts of the key pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α in macrophages. Additionally, inhibition of UCHL1 suppressed LPS-induced extracellular signal-regulated protein kinase 1/2 phosphorylation and NF-κB translocation by regulating the inhibitor of NF-κB. Mechanically, UCHL1 interacts with IκBα protein in THP-1. Meanwhile, inhibition of UCHL1 blocked the LPS-induced degradation of IκBα through the ubiquitin-proteasome system. Moreover, in vivo assay showed that suppression of UCHL1 notably reduced the LPS-induced animal death and release of pro-inflammatory cytokines. Overall, the current findings uncover that UCHL1 functions as a crucial regulator for inflammatory response via reversing the degradation of IκBα, representing a potential target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohua Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianyu Kong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Tang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qilin Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiyan Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuming Xiong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Ham SJ, Lee D, Xu WJ, Cho E, Choi S, Min S, Park S, Chung J. Loss of UCHL1 rescues the defects related to Parkinson's disease by suppressing glycolysis. SCIENCE ADVANCES 2021; 7:7/28/eabg4574. [PMID: 34244144 PMCID: PMC8270484 DOI: 10.1126/sciadv.abg4574] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 05/03/2023]
Abstract
The role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1; also called PARK5) in the pathogenesis of Parkinson's disease (PD) has been controversial. Here, we find that the loss of UCHL1 destabilizes pyruvate kinase (PKM) and mitigates the PD-related phenotypes induced by PTEN-induced kinase 1 (PINK1) or Parkin loss-of-function mutations in Drosophila and mammalian cells. In UCHL1 knockout cells, cellular pyruvate production and ATP levels are diminished, and the activity of AMP-activated protein kinase (AMPK) is highly induced. Consequently, the activated AMPK promotes the mitophagy mediated by Unc-51-like kinase 1 (ULK1) and FUN14 domain-containing 1 (FUNDC1), which underlies the effects of UCHL1 deficiency in rescuing PD-related defects. Furthermore, we identify tripartite motif-containing 63 (TRIM63) as a previously unknown E3 ligase of PKM and demonstrate its antagonistic interaction with UCHL1 to regulate PD-related pathologies. These results suggest that UCHL1 is an integrative factor for connecting glycolysis and PD pathology.
Collapse
Affiliation(s)
- Su Jin Ham
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wen Jun Xu
- Department of Manufacturing Pharmacy, Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunjoo Cho
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sekyu Choi
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soohong Min
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghyouk Park
- Department of Manufacturing Pharmacy, Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongkyeong Chung
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
33
|
Shan H, Liu J, Shen J, Dai J, Xu G, Lu K, Han C, Wang Y, Xu X, Tong Y, Xiang H, Ai Z, Zhuang G, Hu J, Zhang Z, Li Y, Pan L, Tan L. Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chem Biol 2021; 28:855-865.e9. [PMID: 33979649 PMCID: PMC8075810 DOI: 10.1016/j.chembiol.2021.04.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
The COVID-19 pandemic has been disastrous to society and effective drugs are urgently needed. The papain-like protease domain (PLpro) of SARS-CoV-2 (SCoV2) is indispensable for viral replication and represents a putative target for pharmacological intervention. In this work, we describe the development of a potent and selective SCoV2 PLpro inhibitor, 19. The inhibitor not only effectively blocks substrate cleavage and immunosuppressive function imparted by PLpro, but also markedly mitigates SCoV2 replication in human cells, with a submicromolar IC50. We further present a convenient and sensitive activity probe, 7, and complementary assays to readily evaluate SCoV2 PLpro inhibitors in vitro or in cells. In addition, we disclose the co-crystal structure of SCoV2 PLpro in complex with a prototype inhibitor, which illuminates their detailed binding mode. Overall, these findings provide promising leads and important tools for drug discovery aiming to target SCoV2 PLpro.
Collapse
Affiliation(s)
- Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiali Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Gang Xu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Kuankuan Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaolong Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhiyuan Ai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China.
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Lifeng Pan
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
34
|
Stasiulewicz A, Maksymiuk AW, Nguyen ML, Bełza B, Sulkowska JI. SARS-CoV-2 Papain-Like Protease Potential Inhibitors-In Silico Quantitative Assessment. Int J Mol Sci 2021; 22:3957. [PMID: 33921228 PMCID: PMC8069282 DOI: 10.3390/ijms22083957] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes the papain-like protease (PLpro). The protein not only plays an essential role in viral replication but also cleaves ubiquitin and ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from host proteins, making it an important target for developing new antiviral drugs. In this study, we searched for novel, noncovalent potential PLpro inhibitors by employing a multistep in silico screening of a 15 million compound library. The selectivity of the best-scored compounds was evaluated by checking their binding affinity to the human ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which, as a deubiquitylating enzyme, exhibits structural and functional similarities to the PLpro. As a result, we identified 387 potential, selective PLpro inhibitors, from which we retrieved the 20 best compounds according to their IC50 values toward PLpro estimated by a multiple linear regression model. The selected candidates display potential activity against the protein with IC50 values in the nanomolar range from approximately 159 to 505 nM and mostly adopt a similar binding mode to the known, noncovalent SARS-CoV-2 PLpro inhibitors. We further propose the six most promising compounds for future in vitro evaluation. The results for the top potential PLpro inhibitors are deposited in the database prepared to facilitate research on anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; (A.S.); (A.W.M.); (M.L.N.); (B.B.)
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Alicja W. Maksymiuk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; (A.S.); (A.W.M.); (M.L.N.); (B.B.)
- School of the Biological Sciences, University of Cambridge, 17 Mill Lane, Cambridge CB2 1RX, UK
| | - Mai Lan Nguyen
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; (A.S.); (A.W.M.); (M.L.N.); (B.B.)
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Barbara Bełza
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; (A.S.); (A.W.M.); (M.L.N.); (B.B.)
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; (A.S.); (A.W.M.); (M.L.N.); (B.B.)
| |
Collapse
|
35
|
Kamseng P, Siriboonpiputtana T, Puavilai T, Chuncharunee S, Paisooksantivatana K, Chareonsirisuthigul T, Junking M, Chiraphapphaiboon W, Yenchitsomanus PT, Rerkamnuaychoke B. Targeting UCHL1 Induces Cell Cycle Arrest in High-Risk Multiple Myeloma with t(4;14). Pathol Oncol Res 2021; 27:606567. [PMID: 34257568 PMCID: PMC8262241 DOI: 10.3389/pore.2021.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022]
Abstract
Multiple myeloma (MM) patients considered to be at high cytogenetic risk commonly fail to respond to standard treatment. A thorough understanding of the molecular mechanism of MM development is, therefore, needed. We endeavored to explore the transcriptional signature among different subgroups of newly diagnosed MM using gene chip-based expression microarray. Bone marrow samples of 15 newly diagnosed Thai MM patients were included. The chromosomal translocation t(4;14) was the most frequently identified genetic alteration in the high-risk subgroup. Cluster analysis from expression profiling demonstrated that high-risk MM have a distinctly different expression pattern compared to standard-risk patients. The most significant differentially expressed gene was UCHL1. Functional enrichment analysis by Gene Set Enrichment Analysis, FUNRICH, and Gene Ontology Panther pathway revealed the gene sets involved in cell cycle control to be enriched in the t(4;14) high-risk group. Interestingly, among the well-established downstream targets of UCHL1, only CCND2 was significantly expressed in the t(4;14) high-risk group. Suppression of UCHL1 protein level by LDN-5744 inhibitor could arrest the cell cycle in G1 phase in cell lines. These findings shed light on the molecular mechanism of UCHL1 in t(4;14) high-risk MM and support the evidence that alteration of the UCHL1 pathway may play a role in the pathogenesis of high-risk MM.
Collapse
Affiliation(s)
- Parin Kamseng
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Teeraya Puavilai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Karan Paisooksantivatana
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Gong Z, Ye Q, Wu JW, Zhou JL, Kong XY, Ma LK. UCHL1 inhibition attenuates cardiac fibrosis via modulation of nuclear factor-κB signaling in fibroblasts. Eur J Pharmacol 2021; 900:174045. [PMID: 33745956 DOI: 10.1016/j.ejphar.2021.174045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an essential role in cellular homeostasis and myocardial function. Ubiquitin carboxy-terminal hydrolase 1 (UCHL1) is involved in cardiac remodeling, but its underlying mechanisms are largely unknown. Here, we observed that the UCHL1 was significantly up-regulated in angiotensin II-infused heart and primary cardiac fibroblast (CF). Systemic administration of the UCHL1 inhibitor LDN57444 significantly ameliorated cardiac fibrosis and improved cardiac function induced by angiotensin II. Also, LDN57444 inhibited CF cell proliferation as well as attenuated collagen I, and CTGF gene expression in the presence of Ang II. Mechanistically, UCHL1 promotes angiotensin II-induced fibrotic responses by way of activating nuclear factor kappa B (NF-κB) signaling. Moreover, suppression of the NF-κB pathway interfered with UCHL1 overexpression-mediated fibrotic responses. Besides, the chromatin immunoprecipitation assay demonstrated that NF-κB can bind to the UCHL1 promoter and trigger its transcription in cardiac fibroblasts. These findings suggest that UCHL1 positively regulates cardiac fibrosis by modulating NF-κB signaling pathway and identify UCHL1 could be a new treatment strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Zheng Gong
- Provincial Hospital of Anhui Medical University, Hefei, 230000, Anhui, PR China
| | - Qing Ye
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Jia-Wei Wu
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Jun-Ling Zhou
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Xiang-Yong Kong
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Li-Kun Ma
- Provincial Hospital of Anhui Medical University, Hefei, 230000, Anhui, PR China; The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China.
| |
Collapse
|
37
|
Krabill AD, Chen H, Hussain S, Hewitt CS, Imhoff RD, Muli CS, Das C, Galardy PJ, Wendt MK, Flaherty DP. Optimization and Anti-Cancer Properties of Fluoromethylketones as Covalent Inhibitors for Ubiquitin C-Terminal Hydrolase L1. Molecules 2021; 26:1227. [PMID: 33668938 PMCID: PMC7956625 DOI: 10.3390/molecules26051227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
The deubiquitinating enzyme (DUB) UCHL1 is implicated in various disease states including neurodegenerative disease and cancer. However, there is a lack of quality probe molecules to gain a better understanding on UCHL1 biology. To this end a study was carried out to fully characterize and optimize the irreversible covalent UCHL1 inhibitor VAEFMK. Structure-activity relationship studies identified modifications to improve activity versus the target and a full cellular characterization was carried out for the first time with this scaffold. The studies produced a new inhibitor, 34, with an IC50 value of 7.7 µM against UCHL1 and no observable activity versus the closest related DUB UCHL3. The molecule was also capable of selectively inhibiting UCHL1 in cells and did not demonstrate any discernible off-target toxicity. Finally, the molecule was used for initial probe studies to assess the role of UCHL1 role in proliferation of myeloma cells and migration behavior in small cell lung cancer cells making 34 a new tool to be used in the biological evaluation of UCHL1.
Collapse
Affiliation(s)
- Aaron D. Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Sajjad Hussain
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. Guggenheim 15, Rochester, MN 55905, USA; (S.H.); (P.J.G.)
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St. Guggenheim 15, Rochester, MN 55905, USA
| | - Chad S. Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Ryan D. Imhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Chittaranjan Das
- Department of Chemistry, College of Science, 560 Oval Dr., West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 University St., West Lafayette, IN 47907, USA
| | - Paul J. Galardy
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. Guggenheim 15, Rochester, MN 55905, USA; (S.H.); (P.J.G.)
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 University St., West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Ln., West Lafayette, IN 47907, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 University St., West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Ln., West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Simwela NV, Hughes KR, Rennie MT, Barrett MP, Waters AP. Mammalian Deubiquitinating Enzyme Inhibitors Display in Vitro and in Vivo Activity against Malaria Parasites and Potentiate Artemisinin Action. ACS Infect Dis 2021; 7:333-346. [PMID: 33400499 DOI: 10.1021/acsinfecdis.0c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) is an emerging drug target in malaria due to its essential role in the parasite's life cycle stages as well its contribution to resistance to artemisinins. Polymorphisms in the Kelch13 gene of Plasmodium falciparum are primary markers of artemisinin resistance and among other things are phenotypically characterized by an overactive UPS. Inhibitors targeting the proteasome, critical components of the UPS, display activity in malaria parasites and synergize artemisinin action. Here we report the activity of small molecule inhibitors targeting mammalian deubiquitinating enzymes, DUBs (upstream UPS components), in malaria parasites. We show that generic DUB inhibitors can block intraerythrocytic development of malaria parasites in vitro and possess antiparasitic activity in vivo and can be used in combination with additive to synergistic effect. We also show that inhibition of these upstream components of the UPS can potentiate the activity of artemisinin in vitro as well as in vivo to the extent that artemisinin resistance can be overcome. Combinations of DUB inhibitors anticipated to target different DUB activities and downstream proteasome inhibitors are even more effective at improving the potency of artemisinins than either inhibitors alone, providing proof that targeting multiple UPS activities simultaneously could be an attractive approach to overcoming artemisinin resistance. These data further validate the parasite UPS as a target to both enhance artemisinin action and potentially overcome resistance. Lastly, we confirm that DUB inhibitors can be developed into in vivo antimalarial drugs with promise for activity against all of human malaria and could thus further exploit their current pursuit as anticancer agents in rapid drug repurposing programs.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Katie R. Hughes
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael T. Rennie
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael P. Barrett
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| |
Collapse
|
39
|
Kooij R, Liu S, Sapmaz A, Xin BT, Janssen GMC, van Veelen PA, Ovaa H, Dijke PT, Geurink PP. Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos. J Am Chem Soc 2020; 142:16825-16841. [PMID: 32886496 PMCID: PMC7530896 DOI: 10.1021/jacs.0c07726] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Many reagents have emerged to study
the function of specific enzymes in vitro. On the
other hand, target specific reagents are
scarce or need improvement, allowing investigations of the function
of individual enzymes in their native cellular context. Here we report
the development of a target-selective fluorescent small-molecule activity-based
DUB probe that is active in live cells and an in vivo animal model. The probe labels active ubiquitin carboxy-terminal
hydrolase L1 (UCHL1), also known as neuron-specific protein PGP9.5
(PGP9.5) and Parkinson disease 5 (PARK5), a DUB active in neurons
that constitutes 1 to 2% of the total brain protein. UCHL1 variants
have been linked with neurodegenerative disorders Parkinson’s
and Alzheimer’s diseases. In addition, high levels of UCHL1
also correlate often with cancer and especially metastasis. The function
of UCHL1 activity or its role in cancer and neurodegenerative disease
is poorly understood and few UCHL1-specific activity tools exist.
We show that the reagents reported here are specific to UCHL1 over
all other DUBs detectable by competitive activity-based protein profiling
and by mass spectrometry. Our cell-penetrable probe, which contains
a cyanimide reactive moiety, binds to the active-site cysteine residue
of UCHL1 in an activity-dependent manner. Its use is demonstrated
by the fluorescent labeling of active UCHL1 both in vitro and in live cells. We furthermore show that this probe can selectively
and spatiotemporally report UCHL1 activity during the development
of zebrafish embryos. Our results indicate that our probe has potential
applications as a diagnostic tool for diseases with perturbed UCHL1
activity.
Collapse
Affiliation(s)
- Raymond Kooij
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Sijia Liu
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Bo-Tao Xin
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
40
|
Hewitt CS, Krabill AD, Das C, Flaherty DP. Development of Ubiquitin Variants with Selectivity for Ubiquitin C-Terminal Hydrolase Deubiquitinases. Biochemistry 2020; 59:3447-3462. [PMID: 32865982 DOI: 10.1021/acs.biochem.9b01076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ubiquitin (Ub) is a highly conserved protein that is covalently attached to substrate proteins as a post-translational modification to regulate signaling pathways such as proteasomal degradation and cell cycle/transcriptional regulation in the eukaryotic cellular environment. Ub signaling is regulated by the homeostasis of substrate protein ubiquitination/deubiquitination by E3 ligases and deubiquitinating enzymes (DUBs) in healthy eukaryotic systems. One such DUB, ubiquitin C-terminal hydrolase L1 (UCHL1), is endogenously expressed in the central nervous system under normal physiological conditions, but overexpression and/or mutation has been linked to various cancers and neurodegenerative diseases. The lack of UCHL1 probing strategies suggests development of a selective Ub variant (UbV) for probing UCHL1's role in these disease states would be beneficial. We describe a computational design approach to investigate UbVs that lend selectivity, both binding and inhibition, to UCHL1 over the close structural homologue UCHL3 and members of other DUB families. A number of UbVs, mainly those containing Thr9 mutations, displayed appreciable binding and inhibition selectivity for UCHL1 over UCHL3, compared to wild-type Ub in in vitro assays. By appending reactive electrophiles to the C-terminus of the UbVs, we created the first activity-based probe (ABP) with demonstrated reaction selectivity for UCH family DUBs over other families in cell lysates. Further kinetic analysis of covalent inhibition by the UbV-ABP with UCHL1 and UCHL3 offers insight into the future design of UCHL1 selective UbV-ABP. These studies serve as a proof of concept of the viability of the in silico design of ubiquitin variants for UCH family DUBs as a step toward the development of macromolecular UCHL1 inhibitors.
Collapse
Affiliation(s)
- Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Alakhdar AA, Saleh AH, Arafa RK. Targeting homologous recombination (HR) repair mechanism for cancer treatment: discovery of new potential UCHL-3 inhibitors via virtual screening, molecular dynamics and binding mode analysis. J Biomol Struct Dyn 2020; 40:276-289. [PMID: 32851933 DOI: 10.1080/07391102.2020.1812432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UCHL3 (ubiquitin C-terminal hydrolase-L3) is a de-ubiquitinating enzyme involved in the homologous recombination repair mechanism of double-strand breaks (DBS) of the DNA. Multiple studies indicated that UCHL3 inhibitors could be used in combination therapy with high therapeutic efficacy against cancer thus highlighting the validity of directing research against UCHL3 as a druggable target in oncology. In this study, a combination of virtual screening methods was utilized to identify new potential UCHL3 inhibitors. A series of UCHL3 ligands were identified by applying a combination of cheminformatics and molecular modeling filtration techniques to a ChemBl database of over two million small molecules viz. Lipinski's Rule of Five, Veber's rule, pharmacophore model, Hierarchical molecular docking, Pan-assay Interference Compounds (PAINS) alerts, toxicity filter, and single-point Molecular mechanics Poisson/Boltzmann surface area (MM/PBSA) docking pose rescoring. This multi-layer filtration strategy led to the identification of twenty-one compounds as potential UCHL3 inhibitors that were subsequently subjected to a 50 ns molecular dynamics (MD) simulations predict the stability of their ligand-protein complexes. Furthermore, MM/PBSA calculations based on MD trajectories were performed, and the energy contribution per residue to the binding energy was calculated. Three compounds, 1, 2 and 3, were finally recognized as having the highest potential of being UCHL3 inhibitors. Therefore, those were used for binding mode analysis to the UCHL3 active site, leading to identification of four residues as key for binding viz. Pro8, Leu55, Val166, and Leu168.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amira A Alakhdar
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Cairo, Egypt
| | - Amr H Saleh
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Cairo, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
42
|
Huang X, Zhang X, Xu J, Wang X, Zhang G, Tang T, Shen X, Liang T, Bai X. Deubiquitinating Enzyme: A Potential Secondary Checkpoint of Cancer Immunity. Front Oncol 2020; 10:1289. [PMID: 32850399 PMCID: PMC7426525 DOI: 10.3389/fonc.2020.01289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of cancer immunotherapy depends on the fine interplay between tumoral immune checkpoints and host immune system. However, the up-to-date clinical performance of checkpoint blockers in cancer therapy revealed that higher-level regulation should be further investigated for better therapeutic outcomes. It is becoming increasingly evident that the expression of immune checkpoints is largely associated to the immunotherapeutic response and consequent prognosis. Deubiquitinating enzymes (DUBs) with their role of cleaving ubiquitin from proteins and other molecules, thus reversing ubiquitination-mediated protein degradation, modulate multiple cellular processes, including, but not limited to, transcriptional regulation, cell cycle progression, tissue development, and antiviral response. Accumulating evidence indicates that DUBs also have the critical influence on anticancer immunity, simply by stabilizing pivotal checkpoints or key regulators of T-cell functions. Therefore, this review summarizes the current knowledge about DUBs, highlights the secondary checkpoint-like role of DUBs in cancer immunity, in particular their direct effects on the stability control of pivotal checkpoints and key regulators of T-cell functions, and suggests the therapeutic potential of DUBs-based strategy in targeted immunotherapy for cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaochao Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
43
|
Panyain N, Godinat A, Lanyon-Hogg T, Lachiondo-Ortega S, Will EJ, Soudy C, Mondal M, Mason K, Elkhalifa S, Smith LM, Harrigan JA, Tate EW. Discovery of a Potent and Selective Covalent Inhibitor and Activity-Based Probe for the Deubiquitylating Enzyme UCHL1, with Antifibrotic Activity. J Am Chem Soc 2020; 142:12020-12026. [PMID: 32579346 PMCID: PMC7366380 DOI: 10.1021/jacs.0c04527] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/22/2022]
Abstract
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a deubiquitylating enzyme that is proposed as a potential therapeutic target in neurodegeneration, cancer, and liver and lung fibrosis. Herein we report the discovery of the most potent and selective UCHL1 probe (IMP-1710) to date based on a covalent inhibitor scaffold and apply this probe to identify and quantify target proteins in intact human cells. IMP-1710 stereoselectively labels the catalytic cysteine of UCHL1 at low nanomolar concentration in cells. We further demonstrate that potent and selective UCHL1 inhibitors block pro-fibrotic responses in a cellular model of idiopathic pulmonary fibrosis, supporting the potential of UCHL1 as a potential therapeutic target in fibrotic diseases.
Collapse
Affiliation(s)
- Nattawadee Panyain
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Aurélien Godinat
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Thomas Lanyon-Hogg
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Sofía Lachiondo-Ortega
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Edward J. Will
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | | | - Milon Mondal
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Katie Mason
- Mission
Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, U.K.
| | - Sarah Elkhalifa
- Mission
Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, U.K.
| | - Lisa M. Smith
- Mission
Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, U.K.
| | - Jeanine A. Harrigan
- Mission
Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, U.K.
| | - Edward W. Tate
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
- The
Francis Crick Institute, London, NW1 1AT, U.K.
| |
Collapse
|
44
|
Lei Q, Yi T, Li H, Yan Z, Lv Z, Li G, Wang Y. Ubiquitin C-terminal hydrolase L1 (UCHL1) regulates post-myocardial infarction cardiac fibrosis through glucose-regulated protein of 78 kDa (GRP78). Sci Rep 2020; 10:10604. [PMID: 32606430 PMCID: PMC7326919 DOI: 10.1038/s41598-020-67746-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal cardiac fibrosis indicates cardiac dysfunction and poor prognosis in myocardial infarction (MI) patients. Many studies have demonstrated that the ubiquitin proteasome system (UPS) plays a significant role in the pathogenesis of fibrosis. Ubiquitin C-terminal hydrolase L1 (UCHL1), a member of the UPS, is related to fibrosis in several heart diseases. However, whether UCHL1 regulates cardiac fibrosis following MI has yet to be determined. In the present study, we found that UCHL1 was dramatically increased in infarct hearts and TGF-β1-stimulated cardiac fibroblasts (CFs). Inhibition of UCHL1 with LDN57444 (LDN) reversed the myocardial fibrosis in post-MI heart and improved cardiac function. Treatment of LDN or UCHL1 siRNA abolished the TGF-β1-induced fibrotic response of CFs. We further identified GRP78 as an interactor of UCHL1 through screening using immunoprecipitation-mass spectrometer. We determined that UCHL1 interacted with glucose-regulated protein of 78 kDa (GRP78) and prompted GRP78 degradation via ubiquitination. Furthermore, we found that GRP78 was upregulated after UCHL1 knockdown and that the GRP78 inhibitor HA15 diminished the antifibrotic function exerted by UCHL1 knockdown in CFs stimulated with TGF-β1. This suggests that UCHL1 regulates cardiac fibrosis post MI through interactions with GRP78. This work identifies that the UCHL1-GRP78 axis is involved in cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Qian Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tao Yi
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhijie Yan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhan Lv
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Gerui Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
45
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
46
|
Gutkin DW, Shurin MR, El Azher MA, Shurin GV, Velikokhatnaya L, Prosser D, Shin N, Modugno F, Stemmer P, Elishaev E, Lokshin A. Novel protein and immune response markers of human serous tubal intraepithelial carcinoma of the ovary. Cancer Biomark 2020; 26:471-479. [PMID: 31658047 DOI: 10.3233/cbm-190528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecologic diseases in the USA and Europe. High-grade serous carcinoma (HGSC) of the ovary, the most aggressive type of ovarian cancer, is typically diagnosed at advanced stages when the 5-year survival is dismal. Since the cure rate for stage I HGSC is high, early detection of localized initial disease may improve patient outcomes. Serous tubal intraepithelial carcinoma (STIC) is considered to be a precursor lesion of HGSC. Discovery of biomarkers associated with STIC could aid in the development of an HGSC screening algorithm. Using immunohistochemical staining, we have demonstrated overexpression of UCHL1, ADAMTS13, and GAPDH in patients' STIC lesions, but not in cancer-free fallopian tubes. We additionally demonstrated a marked increase of T cells in perineoplastic stroma surrounding STIC lesions (largely CD4 + cells), but not in normal fallopian tubes and HGSC. FOXP3 + T regulatory cells are absent in STIC lesions but are present in HGSC. These observations indicate the microenvironment surrounding a STIC lesion may be immune promoting in contrast to the immune suppressive microenvironment of invasive carcinoma. In summary, we have identified UCHL1, ADAMTS13, and GAPDH as novel potentially useful markers associated with early stages of HGSC tumorigenesis and possibly contribute to STIC immunogenicity. The lack of immune suppression in the STIC microenvironment indicates that the immune system can still recognize and keep STIC controlled at this stage of the tumor development.
Collapse
Affiliation(s)
- Dmitriy W Gutkin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Michael R Shurin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mounia Alaoui El Azher
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Galina V Shurin
- Departments of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Liudmila Velikokhatnaya
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Denise Prosser
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Namhee Shin
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Francesmary Modugno
- Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Esther Elishaev
- Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Anna Lokshin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Hao L, Song D, Zhuang M, Shi Y, Yu L, He Y, Wang J, Zhang T, Sun Z. Gene UCHL1 expresses specifically in mouse uterine decidual cells in response to estrogen. Histochem Cell Biol 2020; 154:275-286. [PMID: 32451617 DOI: 10.1007/s00418-020-01880-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
Abstract
UCHL1 is expressed specifically in the brain and gonads of almost all studied model organisms including Drosophila, zebrafish, amphibians, and mammals, suggesting a high degree of evolutionary conservation in its structure and function. Although UCHL1 has been involved in spermatogenesis in mice, its specific expression in mammal placenta remains elusive. Our previous work has revealed that UCHL1 is highly expressed in oocytes, and has been involved in mouse ovarian follicular development. Here, we further examined UCHL1 expression change in endometria during early natural pregnancy, with different stages of the estrous cycle and pseudopregnancy as control. The UCHL1 gene deletion model showed that UCHL1 protein is associated with endometrial development, and its deletion leads to infertility. Notably, we demonstrate evidence showing the distinct expression pattern of UCHL1: weak expression over the uterine endometria, strong expression in decidualized stromal cells at the implantation site with a peak at pregnancy D6, and a shift with primary decidualization to secondary decidualized zones. Using the delayed implantation, the delayed implantation activation, and the artificial decidualization models, we have demonstrated that strong expression of UCHL1 occurred in response to decidualization and estrogen stimulation. These observations suggest that during the early proliferation and differentiation of mouse uterine decidua, UCHL1 expression is up-regulated, and formed an unique intracellular distribution mode. Therefore, we proposed that UCHL1 is involved in decidualization, and possibly in response to estrogen regulation.
Collapse
Affiliation(s)
- Lishuang Hao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.,Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, 200082, China
| | - Di Song
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengfei Zhuang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Yan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lin Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yaping He
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tingting Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
48
|
Affiliation(s)
- Matthew D. Lloyd
- Drug & Target Development, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
49
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
50
|
Bi HL, Zhang XL, Zhang YL, Xie X, Xia YL, Du J, Li HH. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. SCIENCE ADVANCES 2020; 6:eaax4826. [PMID: 32494592 PMCID: PMC7164950 DOI: 10.1126/sciadv.aax4826] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Pathological cardiac hypertrophy leads to heart failure (HF). The ubiquitin-proteasome system (UPS) plays a key role in maintaining protein homeostasis and cardiac function. However, research on the role of deubiquitinating enzymes (DUBs) in cardiac function is limited. Here, we observed that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) was significantly up-regulated in agonist-stimulated primary cardiomyocytes and in hypertrophic and failing hearts. Knockdown of UCHL1 in cardiomyocytes and mouse hearts significantly ameliorated cardiac hypertrophy induced by agonist or pressure overload. Conversely, overexpression of UCHL1 had the opposite effect in cardiomyocytes and rAAV9-UCHL1-treated mice. Mechanistically, UCHL1 bound, deubiquitinated, and stabilized epidermal growth factor receptor (EGFR) and activated its downstream mediators. Systemic administration of the UCHL1 inhibitor LDN-57444 significantly reversed cardiac hypertrophy and remodeling. These findings suggest that UCHL1 positively regulates cardiac hypertrophy by stabilizing EGFR and identify UCHL1 as a target for hypertrophic therapy.
Collapse
Affiliation(s)
- Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xiao-Li Zhang
- Department of Medical Technology, Beijing Health Vocational College, Beijing 101101, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, Beijing 100029, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|