1
|
Atatreh N, Mahgoub RE, Ghattas MA. Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. J Enzyme Inhib Med Chem 2025; 40:2460045. [PMID: 39912405 PMCID: PMC11803818 DOI: 10.1080/14756366.2025.2460045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of Mpro. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of Mpro.
Collapse
Affiliation(s)
- Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Zattoni J, Vottero P, Carena G, Uliveto C, Pozzati G, Morabito B, Gitari E, Tuszynski J, Aminpour M. A comprehensive primer and review of PROTACs and their In Silico design. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108687. [PMID: 40058081 DOI: 10.1016/j.cmpb.2025.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The cutting-edge technique of Proteolysis Targeting Chimeras, or PROTACs, has gained significant attention as a viable approach for specific protein degradation. This innovative technology has vast potential in fields such as cancer therapy and drug development. The development of effective and specific therapies for a range of diseases is within reach with PROTACs, which can target previously "undruggable" proteins while circumventing the off-target effects of conventional small molecule inhibitors. This manuscript aims to discuss the application of in silico techniques to the design of these groundbreaking molecules and develop PROTAC complexes, in order to identify potential PROTAC candidates with favorable drug-like properties. Additionally, this manuscript reviews the strengths and weaknesses of these methods to demonstrate their utility and highlights the challenges and future prospects of in silico PROTAC design. The present review provides a valuable and beginner-friendly resource for researchers and drug developers interested in using in silico methods for PROTAC design, specifically ternary structure prediction.
Collapse
Affiliation(s)
- Jacopo Zattoni
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Gea Carena
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Chiara Uliveto
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Pozzati
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Benedetta Morabito
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ebenezea Gitari
- Department of Biochemistry, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Jack Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, T6G 2M9, Canada
| | - Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada.
| |
Collapse
|
4
|
Janthong A, Utama K, Khamto N, Chawapun P, Siriphong S, Van Doan H, Meerak J, Meepowpan P, Sangthong P. Semi-synthetic flavonoid derivatives from Boesenbergiarotunda induce extrinsic apoptosis pathway via Caspase-3 and Caspase-8 in HCT116 Colon Cancer cell lines. Bioorg Chem 2025; 159:108343. [PMID: 40096806 DOI: 10.1016/j.bioorg.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Colorectal cancer ranks as the second most common cancer and the leading cause of cancer-related deaths globally. Phytochemicals like flavonoids from Boesenbergia rotunda showed potential anti-cancer activities. Chemical structures of the parental compounds of flavonoids were modified by conjugating with an acryloyl group to form semi-synthetic flavonoid derivatives to increasing in anti-colon cancer activities. 7-Acryloyloxypinocembrin (5) showed potential antiproliferative activities of IC50 value of 1.87 ± 0.17 μM in HCT116. In addition, compound 5 showed low cytotoxicity in Vero cells with an IC50 value of 2.84 ± 0.13 μM which is two-fold less cytotoxic than osimertinib. Biological mechanisms studies indicated that compound 5, HCT116 cells demonstrated a two-fold increase in apoptotic cell death. Subsequently, compound 5 upregulated caspase-8 and LC3, triggering the upregulation of caspase-3 and leading to the activation of both the extrinsic apoptosis pathway and the autophagy pathway. Network pharmacology analysis highlighted TNF-α receptor is a key gene associated with the extrinsic apoptosis pathway in HCT116 cells treated with compound 5. Molecular dynamics simulation confirmed the strong interaction between compound 5 and TACE, a crucial element in the EGFR and IL-6 signaling pathway's reduction which may lead to a decline in the survival rate of colon cancer. These findings indicate compound 5 as a promising anti-colon cancer drug candidate.
Collapse
Affiliation(s)
- Atchara Janthong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kraikrit Utama
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornthip Chawapun
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sandanon Siriphong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biochemistry and Biochemical innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Feller F, Weber H, Miranda M, Honin I, Hanl M, Hansen FK. Replacing a Cereblon Ligand by a DDB1 and CUL4 Associated Factor 11 (DCAF11) Recruiter Converts a Selective Histone Deacetylase 6 PROTAC into a Pan-Degrader. ChemMedChem 2025; 20:e202500035. [PMID: 39973224 PMCID: PMC12091851 DOI: 10.1002/cmdc.202500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) have recently gained popularity as targeted protein degradation (TPD) promises to overcome the limitations of occupancy-driven pharmacology. However, most degraders rely on a small number of E3 ligases. In this study, we present the first-in-class histone deacetylase (HDAC) PROTACs recruiting the DDB1- and CUL4- associated factor 11 (DCAF11). We established a synthesis route entirely on solid-phase to prepare a set of eleven degraders. The long and flexible spacer bearing FF2039 (1j) showed significant HDAC1 and 6 degradation in combination with cytotoxicity against the multiple myeloma cell line MM.1S. Further investigations revealed that 1j was also able to degrade HDAC isoforms of class I, IIa and IIb. Compared to our previously published cereblon-recruiting HDAC6 selective PROTAC A6, we succesfully transformed the selective degrader into a pan-HDAC degrader by switching the recruited E3 ligase. A detailed profiling of the anticancer properties of 1j demonstrated its significant antiproliferative activity against both hematological and solid cancer cell lines, driven by cell cycle arrest and apoptosis induction.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Heiko Weber
- Department of Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Irina Honin
- Department of Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
6
|
McPhie KA, Esposito D, Pettinger J, Norman D, Werner T, Mathieson T, Bush JT, Rittinger K. Discovery and optimisation of a covalent ligand for TRIM25 and its application to targeted protein ubiquitination. Chem Sci 2025:d5sc01540e. [PMID: 40365055 PMCID: PMC12067093 DOI: 10.1039/d5sc01540e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The tripartite motif (TRIM) family of RING-type E3 ligases catalyses the formation of many different types of ubiquitin chains, and as such, plays important roles in diverse cellular functions, ranging from immune regulation to cancer signalling pathways. Few ligands have been discovered for TRIM E3 ligases, and these E3s are under-represented in the rapidly expanding field of induced proximity. Here we present the identification of a novel covalent ligand for the PRYSPRY substrate binding domain of TRIM25. We employ covalent fragment screening coupled with high-throughput chemistry direct-to-biology optimisation to efficiently elaborate covalent fragment hits. We demonstrate that our optimised ligand enhances the in vitro auto-ubiquitination activity of TRIM25 and engages TRIM25 in live cells. We also present the X-ray crystal structure of TRIM25 PRYSPRY in complex with this covalent ligand. Finally, we incorporate our optimised ligand into heterobifunctional proximity-inducing compounds and demonstrate the in vitro targeted ubiquitination of a neosubstrate by TRIM25.
Collapse
Affiliation(s)
- Katherine A McPhie
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | - Jonathan Pettinger
- Crick-GSK Biomedical LinkLabs, GSK Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Daniel Norman
- Chemical Biology, GSK Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Thilo Werner
- Cellzome GmbH, a GSK Company Meyerhofstrasse 1 Heidelberg 69117 Germany
| | - Toby Mathieson
- Cellzome GmbH, a GSK Company Meyerhofstrasse 1 Heidelberg 69117 Germany
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| |
Collapse
|
7
|
Kaewkham O, Gleeson D, Fukasem P, Santatiwongchai J, Jones DJL, Britton RG, Gleeson MP. Probing the Effect of Protein and Inhibitor Conformational Flexibility on the Reaction of Rocelitinib-Like Covalent Inhibitors of Epidermal Growth Factor Receptor. A Quantum Mechanics/Molecular Mechanics Study. J Chem Inf Model 2025; 65:3555-3567. [PMID: 40100083 PMCID: PMC12004534 DOI: 10.1021/acs.jcim.4c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase and a validated target for non-small cell lung cancer (NSCLC). Drug discovery efforts on this target initially focused on traditional competitive, reversible ATP-binding site inhibitors; however, irreversible covalent binding EGFR inhibitors have become increasingly more popular. Covalent EGFR inhibitors have been developed using a range of different scaffolds, and unsurprisingly, the incorporation of an electrophilic acrylamide group can result in sizable orientation differences relative to the Cys797 nucleophile and the Asp800 general base. In this work, we report a QM/MM study aiming to better understand the aspects of covalent adduct formation, including the role of protein flexibility on chemical reactivity, the impact of electrophile location within the ATP binding site, and the impact of the acrylamide conformation (s-cis vs s-trans). We focus here on the diaminopyrimidine scaffold, as exemplified by Rocelitinib, where the electrophile is attached to its back pocket binding group. Our goal is to elucidate how electrophilic groups can be incorporated onto different inhibitor scaffolds targeting reactive active site residues. We find that irrespective of the EGFR MD conformation chosen, acrylamide, in both the s-cis or s-trans, can undergo reaction with rate-determining barriers of ∼20 kcal/mol. Interestingly, the nature of the rate-determining step for Rocelitinib-like inhibitors was found to be either direct nucleophilic attack or keto-enol tautomerization, depending on the precise protein and inhibitor conformation.
Collapse
Affiliation(s)
- Orathai Kaewkham
- Department
of Chemistry & Applied Computational Chemistry Research Unit,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Gleeson
- Department
of Chemistry & Applied Computational Chemistry Research Unit,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Poowadon Fukasem
- Department
of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jirapat Santatiwongchai
- Department
of Chemistry & Applied Computational Chemistry Research Unit,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Donald J. L. Jones
- Leicester
Cancer Research Centre, University of Leicester, Leicester, LE1 7RH, U.K.
| | - Robert G. Britton
- Leicester
Cancer Research Centre, University of Leicester, Leicester, LE1 7RH, U.K.
| | - M. Paul Gleeson
- Department
of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
8
|
Wu Q, Zeng Y, Wang W, Liu S, Huang Y, Zhang Y, Chen X, You Z, Zhang C, Wang T, Yang C, Song Y. Profiling Nascent Tumor Extracellular Vesicles via Metabolic Timestamping and Aptamer-Driven Specific Click Chemistry. J Am Chem Soc 2025; 147:10737-10749. [PMID: 40082216 DOI: 10.1021/jacs.5c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Tumor-derived extracellular vesicles (tEVs) are essential mediators of tumor progression and therapeutic resistance, yet their secretion dynamics and cargo composition in response to therapies remain poorly understood. Here, we present STAMP, specific click-tagging driven by aptamer for tEV labeled with a metabolic timestamp, which exploits the unique kinetics and thermodynamics of aptamer to significantly enhance the local concentration of clickable probes on tEVs for their covalent attachment to the timestamp, resulting in the selective microfluidic isolation of nascent tEVs following stimulation. In a PD-L1 antibody-treated model, we demonstrated the feasibility of STAMP and revealed a robust positive correlation between the nascent EpCAM+ EV levels and tumor volume. Proteome profiling of isolated nascent tEVs identified previously unknown upregulated vesicle proteins following immunotherapy, including key regulators of immune activation and suppression, suggesting that tumors orchestrate an intricate dual adaptive response through tEV secretion modulation to simultaneously elicit therapeutic sensitivity and resistance. Notably, among the upregulated proteins, we identified HSP70, whose enhanced presentation on tEVs promotes antitumor immunity and inhibits tumor growth. Thus, STAMP provides an effective gateway for studying EV dynamics with cell-origin accuracy and for identifying potential therapeutic targets based on EV transitions.
Collapse
Affiliation(s)
- Qiuyue Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yinyan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wencheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sinong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yihao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuqian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ximing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhenlong You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Tonghao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
9
|
Chu X, Zhang Z, Xu X, Guan W, Jiang S, Cai S, Yang T, He G, Zhou C, Chen G. Formamidine as an Easy-On and Easy-Off Linker for Reversible Crosslinking of Two Alkyl Amines in Peptide Stapling and Conjugation. Angew Chem Int Ed Engl 2025; 64:e202422844. [PMID: 39792487 DOI: 10.1002/anie.202422844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for ligating two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink or ligate two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts. This linking chemistry exhibits unique hetero-coupling selectivity between primary and secondary alkyl amines. Although the formamidine linkage is stable under pH-neutral buffers and acidic conditions, it can be readily cleaved with ethylenediamine or hydrazine under mild conditions in alcohol solvents or aqueous media, fully restoring the amino groups. This study introduces a rare 'easy-on and easy-off' strategy for connecting two native amines in peptide stapling and biomolecule conjugation.
Collapse
Affiliation(s)
- Xin Chu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhang Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoxi Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuai Jiang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shaokun Cai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianxi Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
10
|
Ge Z, Fan Z, He W, Zhou G, Zhou Y, Zheng M, Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med Chem 2025; 17:693-708. [PMID: 40065567 PMCID: PMC11938967 DOI: 10.1080/17568919.2025.2476387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
RAS (rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy. While RAS was historically considered an "undruggable" target, recent breakthroughs have yielded inhibitors specifically targeting KRASG12C and KRASG12D mutations, which have shown clinical efficacy in patients. However, these inhibitors face limitations due to rapid acquired resistance and the toxic effects of combination therapies in clinical settings. Targeted protein degradation (TPD) strategies, such as PROTACs and molecular glues, provide a novel approach by selectively degrading RAS proteins, or their upstream and downstream regulatory factors, to block aberrant signaling pathways. These degraders offer a promising alternative to traditional inhibitors by potentially circumventing resistance and enhancing therapeutic precision. This review discusses recent advancements in RAS pathway degraders, with an emphasis on targeting RAS mutations as well as their upstream regulators and downstream effectors for potential cancer treatments.
Collapse
Affiliation(s)
- Zhiming Ge
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yidi Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Kang C, Xu W. Leveraging Structural and Computational Biology for Molecular Glue Discovery. J Med Chem 2025; 68:2048-2051. [PMID: 39854250 DOI: 10.1021/acs.jmedchem.5c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The discovery of molecular glues has made significant strides, unlocking new avenues for targeted protein degradation as a therapeutic strategy, thereby expanding the scope of drug discovery into territories previously considered undruggable. Pioneering molecules like thalidomide and its derivatives have paved the way for the development of small molecules that can induce specific protein degradation by hijacking the cellular ubiquitin-proteasome system. Recent advancements have focused on expanding the range of E3 ligases and target proteins that can be modulated by molecular glues. Structural elucidation of E3 ligase in complex with molecular glue and the target of interest, combined with computational modeling, facilitates the understanding of the underlying mechanisms of how molecular glues induce targeted degradation. By leveraging these tools, the next generation of molecular glues are expected to offer unprecedented opportunities for combating a wide range of diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.
Collapse
Affiliation(s)
- Congbao Kang
- Experimental Drug Development Centre, Chromos, Agency for Science, Technology and Research, 10 Biopolis Road, #05-01, Singapore 138670
| | - Weijun Xu
- Experimental Drug Development Centre, Chromos, Agency for Science, Technology and Research, 10 Biopolis Road, #05-01, Singapore 138670
| |
Collapse
|
13
|
Li Y, Wu Y, Gao S, Sun T, Jiang C. PROTAC delivery in tumor immunotherapy: Where are we and where are we going? J Control Release 2025; 378:116-144. [PMID: 39637991 DOI: 10.1016/j.jconrel.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Immunotherapy has emerged as a pioneering therapeutic modality, particularly within the realm of oncology, where Chimeric Antigen Receptor T-cell (CAR-T) therapy has manifested significant efficacy in the treatment of hematological malignancies. Nonetheless, the extension of immunotherapy to solid tumors poses a considerable challenge. This challenge is largely attributed to the intrinsic "cold" characteristics of certain tumors, which are defined by scant T-cell infiltration and a diminished immune response. Additionally, the impediment is exacerbated by the elusive nature of numerous targets within the tumor microenvironment, notably those deemed "undruggable" by small molecule inhibitors. This scenario underscores an acute necessity for the inception of innovative therapeutic strategies aimed at countering the resistance mechanisms underlying immune evasion in cold tumors, thereby amplifying the efficacy of cancer immunotherapy. Among the promising strategies is the deployment of Proteolysis Targeting Chimeras (PROTACs), which facilitate the targeted degradation of proteins. PROTACs present unique advantages and have become indispensable in oncology. However, they concurrently grapple with challenges such as solubility issues, permeability barriers, and the classical Hook effect. Notably, advanced delivery systems have been instrumental in surmounting these obstacles. This review commences with an analysis of the factors contributing to the suboptimal responses to immunotherapy in cold tumors. Subsequently, it delivers a thorough synthesis of immunotherapeutic concepts tailored for these tumors, clarifying the integral role of PROTACs in their management and delineating the trajectory of PROTAC technology from bench-side investigation to clinical utilization, facilitated by drug delivery systems. Ultimately, the review extrapolates the prospective future of this approach, aspiring to present novel insights that could catalyze progress in immunotherapy for the treatment of cold tumors.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yike Wu
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sihan Gao
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Quzhou Fudan Institute, Quzhou 324003, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
14
|
Feller F, Honin I, Miranda M, Weber H, Henze S, Hanl M, Hansen FK. Development of the First-in-Class FEM1B-Recruiting Histone Deacetylase Degraders. J Med Chem 2025; 68:1824-1843. [PMID: 39804678 PMCID: PMC11780399 DOI: 10.1021/acs.jmedchem.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders. A set of 12 proteolysis targeting chimeras (PROTACs) was synthesized using a solid-phase supported parallel synthesis approach utilizing a covalent FEM1B ligand as an E3 ligase warhead. The evaluation of the HDAC degradation efficiency revealed substantial HDAC1 degradation by the top-performing degrader FF2049 (1g: Dmax = 85%; DC50 = 257 nM). Unlike our previously published cereblon-recruiting selective HDAC6 degrader, A6, which uses the same HDAC ligand, the FEM1B-based PROTACs achieved selective HDAC1-3 degradation. This unexpected change in the HDAC isoform degradation profile was accompanied by significant enhancement of the antiproliferative properties.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Irina Honin
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Heiko Weber
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svenja Henze
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
15
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
16
|
Huang J, Fu X, Qiu F, Liang Z, Cao C, Wang Z, Chen H, Yue S, Xie D, Liang Y, Lu A, Liang C. Discovery of a Natural Ent-Kaurene Diterpenoid Oridonin as an E3 Ligase Recruiter for PROTACs. J Am Chem Soc 2025; 147:1920-1937. [PMID: 39736140 DOI: 10.1021/jacs.4c14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters. MDM2 is a single-subunit ligase overexpressed in tumors. Nucleolin (NCL) is an MDM2 partner protein that displays a similar tumor-specific overexpression pattern and nuclear-cytoplasmic shuttling role to MDM2. Furthermore, NCL is selectively translocated on the tumor cell surface, where it acts as an internalization receptor for its binders. We reveal that the NCL-binding Oridonin (Ori), a natural ent-kaurene diterpenoid, is capable of recruiting MDM2 by employing NCL as a molecular bridge. We design Ori-based PROTACs for modulating oncogenic POIs, including BRD4 and EGFR. These PROTACs direct the assembly of MDM2-NCL-PROTAC-POI complexes to induce proteasomal degradation of POIs and tumor shrinkage. In addition to its role as a ligase engaged by PROTACs, MDM2, along with its homologue MDMX, plays a nonredundant function in inhibiting p53 activity. Dual inhibition of MDM2/X is proposed as a promising antitumor strategy. We demonstrate that Ori also recruits MDMX in an NCL-dependent manner. Ori-based homo-PROTACs induce MDM2/X dual degradation and attenuate tumor progression. Our findings prove the feasibility of repurposing the binders of ligase partner proteins as new ligase recruiters in PROTACs and highlight the potential of Ori as an MDM2/X recruiter.
Collapse
Affiliation(s)
- Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zhijian Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yiying Liang
- Shenzhen LingGene Biotech Co., Ltd., Shenzhen 518055, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| |
Collapse
|
17
|
Asmare MM, Dhal AK, Mahapatra RK, Yun SI. Virtual screening of targeted acrylamide warheads for identification of covalent inhibitors of Cryptopain, a cysteine protease of Cryptosporidium parvum. J Biomol Struct Dyn 2025:1-16. [PMID: 39749411 DOI: 10.1080/07391102.2024.2446664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/29/2024] [Indexed: 01/04/2025]
Abstract
Cryptosporidiosis is an infection induced by the single-celled protozoan Cryptosporidium parasite. This parasite commonly infects the intestines of humans and animals, leading to gastrointestinal symptoms such as diarrhea, stomach cramps, nausea, and vomiting. Cryptopain protein, a type of cysteine protease found in the genome of Cryptosporidium parvum plays an important role in cell invasion and its survival. In this study, we mainly focused on the structural validation and reliability of docking aspects of the Cryptopain protein of C. parvum. The best-modeled structure of Cryptopain protein was run in a water environment through a 200 ns Molecular Dynamics (MD) simulation study. We employed a covalent docking scheme to screen suitable inhibitors against our target protein. Furthermore, the reliability of the binding mode for the best possible inhibitors was validated at a 100 ns time frame through a complex MD simulation study. From docking and simulation studies, we found Z3952175270 as a possible inhibitor on the basis of docking score and binding affinity for the possible binding site in the Cryptopain protein. Our findings highlight the potential of targeting Cryptopain protein with specific inhibitors, which could pave the way for the development of novel therapeutic strategies against cryptosporidiosis. This work contributes to the field by providing a deeper understanding of the molecular interactions involved in Cryptopain inhibition, potentially leading to effective treatments for a disease that significantly impacts public health, particularly in immunocompromised individuals and in areas with limited access to clean water.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Soon-Il Yun
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
18
|
Rodríguez-Gimeno A, Galdeano C. Drug Discovery Approaches to Target E3 Ligases. Chembiochem 2025; 26:e202400656. [PMID: 39686906 DOI: 10.1002/cbic.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Targeting E3 ligases is a challenging area in drug discovery. Despite the human genome encoding for more than 600 E3 ubiquitin ligases, only a handful of E3 ligases have been pharmacologically modulated or exploited for targeted protein degradation (TPD) strategies. The main obstacle for hijacking these E3 ligases is the lack of small-molecule ligands. As research into this field advances, the identification of new small molecules capable of binding to E3 ligases has become an essential pursuit. These ligases not only expand the repertoire of druggable targets but also offer the potential for increased specificity and selectivity in protein degradation. The synergy between academia and industry is key, as it combines academic expertise in fundamental research with the industrial capabilities of translating these findings into novel therapeutics. In this review, we provide an overview of the different strategies employed in academia and industry to the discovery of new E3 ligases ligands, showing them with illustrative cases.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Carles Galdeano
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Wenes M, Lepez A, Arinkin V, Maundrell K, Barabas O, Simonetta F, Dutoit V, Romero P, Martinou JC, Migliorini D. A novel mitochondrial pyruvate carrier inhibitor drives stem cell-like memory CAR T cell generation and enhances antitumor efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200897. [PMID: 39559715 PMCID: PMC11570499 DOI: 10.1016/j.omton.2024.200897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Adoptive cell transfer with chimeric antigen receptor (CAR)-expressing T cells can induce remarkable complete responses in cancer patients. Therapeutic success has been correlated with central and stem cell-like memory T cell subsets in the infusion product, which are better able to drive efficient CAR T cell in vivo expansion and long-term persistence. We previously reported that inhibition of the mitochondrial pyruvate carrier (MPC) during mouse CAR T cell culture induces a memory phenotype and enhances antitumor efficacy against melanoma. Here, we use a novel MPC inhibitor, MITO-66, which robustly induces a stem cell-like memory phenotype in CD19-CAR T cells generated from healthy donors and patients with relapsed/refractory B cell malignancies. MITO-66-conditioned CAR T cells were superior in controlling human pre-B cell acute lymphoblastic leukemia in mice. Following adoptive cell transfer, MITO-66-conditioned CAR T cells maintained a memory phenotype and protected cured mice against tumor rechallenge. Furthermore, in an in vivo B cell leukemia stress model, CD19-CAR T cells generated in the presence of MITO-66 largely outperformed clinical-stage AKT and PI-3Kδ inhibitors. Thus, we provide compelling preclinical evidence that MPC inhibition with MITO-66 during CAR T cell manufacturing dramatically enhances their antitumor efficacy, thereby paving the way to clinical translation.
Collapse
Affiliation(s)
- Mathias Wenes
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
- MPC Therapeutics, 1206 Geneva, Switzerland
| | - Anouk Lepez
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir Arinkin
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Kinsey Maundrell
- MPC Therapeutics, 1206 Geneva, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Orsolya Barabas
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Federico Simonetta
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals (HUG), 1206 Geneva, Switzerland
| | - Valérie Dutoit
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
| | - Pedro Romero
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Novigenix SA, 1066 Epalinges, Switzerland
| | - Jean-Claude Martinou
- MPC Therapeutics, 1206 Geneva, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Denis Migliorini
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), 1206 Geneva, Switzerland
| |
Collapse
|
20
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Sikdar B, Mukherjee S, Bhattacharya R, Raj A, Roy A, Banerjee D, Gangopadhyay G, Roy S. The anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract and prediction of the roles of the potent phytocompounds. Microb Pathog 2024; 195:106864. [PMID: 39153575 DOI: 10.1016/j.micpath.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The leaves of Piper betle L., known as betel leaf, have immense medicinal properties. It possesses potent antimicrobial efficacies and can be a valuable tool to combat drug-resistant microorganisms. Quorum sensing (QS) inhibition is one of the best strategies to combat drug resistance. The present study investigates the anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract against two bacterial strains, Chromobacterium violaceum and Pseudomonas aeruginosa. The extract produced substantial QS-inhibition zones in a biosensor strain of C. violaceum (CV026), indicating interference with quorum-sensing signals. The Results demonstrated significant inhibition in biofilm formation and different QS-regulated virulence factors (violacein, exopolysaccharides, pyocyanin, pyoverdine, elastase) in both C. violaceum and P. aeruginosa at sub-MIC concentrations of the extract and tetracycline, an antibiotic with known anti-QS activity. The quantitative real-time PCR (qRT-PCR) revealed decreased gene expression in different QS-related genes in C. violaceum (cviI, cviR, and vioA) and P. aeruginosa (lasI, lasR, lasB, rhlI, rhlR, and rhlA) strains after treatment. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified the significant phytocompounds, mainly derivatives of chavicol and eugenol, in the extract. Of these compounds, chavicol acetate (affinity: -7.00 kcal/mol) and acetoxy chavicol acetate (affinity: -7.87 kcal/mol) showed the highest potential to bind with the CviR and LasR protein, respectively, as evident from the in-silico molecular docking experiment. The findings of this endeavour highlight the promising role of Piper betle L. as a source of natural compounds with anti-quorum sensing properties against pathogenic bacteria, opening avenues for developing novel therapeutic agents to combat bacterial infections.
Collapse
Affiliation(s)
- Bratati Sikdar
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Sourav Mukherjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Rupsa Bhattacharya
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Adarsha Raj
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Alokesh Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Midnapore City College, Kuturiya, Bhadutala, Paschim Medinipore, 721129, West Bengal, India
| | - Debarati Banerjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Gaurab Gangopadhyay
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India.
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
22
|
Scholtes JF, Alhambra C, Carpino PA. Trends in covalent drug discovery: a 2020-23 patent landscape analysis focused on select covalent reacting groups (CRGs) found in FDA-approved drugs. Expert Opin Ther Pat 2024; 34:843-861. [PMID: 39219095 DOI: 10.1080/13543776.2024.2400175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Covalent drugs contain electrophilic groups that can react with nucleophilic amino acids located in the active sites of proteins, particularly enzymes. Recently, there has been considerable interest in using covalent drugs to target non-catalytic amino acids in proteins to modulate difficult targets (i.e. targeted covalent inhibitors). Covalent compounds contain a wide variety of covalent reacting groups (CRGs), but only a few of these CRGs are present in FDA-approved covalent drugs. AREAS COVERED This review summarizes a 2020-23 patent landscape analysis that examined trends in the field of covalent drug discovery around targets and organizations. The analysis focused on patent applications that were submitted to the World International Patent Organization and selected using a combination of keywords and structural searches based on CRGs present in FDA-approved drugs. EXPERT OPINION A total of 707 patent applications from >300 organizations were identified, disclosing compounds that acted at 71 targets. Patent application counts for five targets accounted for ~63% of the total counts (i.e. BTK, EGFR, FGFR, KRAS, and SARS-CoV-2 Mpro). The organization with the largest number of patent counts was an academic institution (Dana-Farber Cancer Institute). For one target, KRAS G12C, the discovery of new drugs was highly competitive (>100 organizations, 186 patent applications).
Collapse
|
23
|
Petri YD, FitzGerald FG, Raines RT. Chemoselective Reagents for the Traceless Bioreversible Modification of Native Proteins. Bioconjug Chem 2024; 35:1300-1308. [PMID: 39206956 PMCID: PMC11600989 DOI: 10.1021/acs.bioconjchem.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nature utilizes bioreversible post-translational modifications (PTMs) to spatiotemporally diversify protein function. Mimicking Nature's approach, chemists have developed a variety of chemoselective regents for traceless, bioreversible modification of native proteins. These strategies have found utility in the development of reversible covalent inhibitors and degraders as well as the synthesis of functional protein conjugates for delivery into cells. This Viewpoint provides a snapshot of such tools, which currently cover Cys, Ser, Thr, Lys, Asp, and Glu residues and the N terminus. Additionally, we explore how bioreversible reagents, originally developed by research communities with differing objectives, can be utilized synergistically. Looking forward, we discuss the need for developing bioreversible reagents for labeling His, Tyr, Arg, Trp, Asn, Gln, and Met residues and the C-terminus as well as the installation of dynamic PTMs. Finally, to broaden the applicability of these tools, we point out the importance of developing modular release scaffolds with tunable release times and responsiveness to multiple endogenous triggers. We anticipate that this Viewpoint will catalyze further research and technological breakthroughs in this rapidly evolving field.
Collapse
Affiliation(s)
- Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Forrest G. FitzGerald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Li S, Ma L, Li X, Jiang Y, Luo Z, Yin F, Zhang Y, Chen Y, Wan S, Zhou H, Kong L, Wang X. Discovery of Covalent MLKL PROTAC Degraders via Optimization of a Theophylline Derivative Ligand for Treating Necroptosis. J Med Chem 2024; 67:15353-15372. [PMID: 39180479 DOI: 10.1021/acs.jmedchem.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) initiates necroptosis and could serve as a therapeutic target related to a series of human diseases. Proteolysis-targeting chimeras (PROTACs) are useful tools for degrading pathological proteins and blocking disease processes. Using computer-aided modeling and molecular dynamics simulations, we developed a series of covalent MLKL PROTACs by linking and optimizing a theophylline derivative that covalently targets MLKL. Via structure-activity relationship studies, MP-11 was identified as a potent MLKL PROTAC degrader. Furthermore, MP-11 showed lower toxicity than the original MLKL ligand, exhibiting nanomolar-scale antinecroptotic activity on human cell lines. Xenograft model studies showed that MP-11 effectively degraded MLKL in vivo. Importantly, our study demonstrates that the covalent binding strategy is an effective approach for designing MLKL-targeting PROTACs, serving as a model for developing PROTACs to treat future necroptosis-related human diseases.
Collapse
Affiliation(s)
- Shang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Liangliang Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xinxin Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yuhan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yonglei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Siyuan Wan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Han Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Del Prete S, Pagano M. Enzyme Inhibitors as Multifaceted Tools in Medicine and Agriculture. Molecules 2024; 29:4314. [PMID: 39339309 PMCID: PMC11433695 DOI: 10.3390/molecules29184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are molecules that play a crucial role in maintaining homeostasis and balance in all living organisms by catalyzing metabolic and cellular processes. If an enzyme's mechanism of action is inhibited, the progression of certain diseases can be slowed or halted, making enzymes a key therapeutic target. Therefore, identifying or developing enzyme inhibitors is essential for treating significant diseases and ensuring plant defense against pathogens. This review aims to compile information on various types of enzyme inhibitors, particularly those that are well studied and beneficial in both human and plant contexts, by analyzing their mechanisms of action and the resulting benefits. Specifically, this review focuses on three different types of enzyme inhibitors that are most studied, recognized, and cited, each with distinct areas of action and potential benefits. For instance, serine enzyme inhibitors in plants help defend against pathogens, while the other two classes-alpha-glucosidase inhibitors and carbonic anhydrase inhibitors-have significant effects on human health. Furthermore, this review is also intended to assist other researchers by providing valuable insights into the biological effects of specific natural or synthetic inhibitors. Based on the current understanding of these enzyme inhibitors, which are among the most extensively studied in the scientific community, future research could explore their use in additional applications or the development of synthetic inhibitors derived from natural ones. Such inhibitors could aid in defending against pathogenic organisms, preventing the onset of diseases in humans, or even slowing the growth of certain pathogenic microorganisms. Notably, carbonic anhydrase inhibitors have shown promising results in potentially replacing antibiotics, thereby addressing the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mario Pagano
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
26
|
Blackner JJ, Schneider OM, Wong WO, Hall DG. Removing Neighboring Ring Influence in Monocyclic B-OH Diazaborines: Properties and Reactivity as Phenolic Bioisosteres with Dynamic Hydroxy Exchange. J Am Chem Soc 2024; 146:19499-19508. [PMID: 38959009 DOI: 10.1021/jacs.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of small molecules with unique geometric profiles or molecular connectivity represents an intriguing yet neglected challenge in modern organic synthesis. This challenge is compounded when emphasis is placed on the preparation of new chemotypes that have distinct and practical functions. To expand the structural diversity of boron-containing heterocycles, we report herein the preparation of novel monocyclic hemiboronic acids, diazaborines. These compounds have enabled the study of a pseudoaromatic boranol-containing (B-OH) ring free of influence from an appended aromatic system. Synthetic and spectroscopic studies have provided insight into the aromatic character, Lewis acidic nature, chemical reactivity, and unique ability of the exocyclic B-OH unit to participate in hydroxy exchange, suggesting their use in organocatalysis and as reversible covalent inhibitors. Moreover, density functional theory and nucleus-independent chemical shift calculations reveal that the aromatic character of the boroheterocyclic ring is increased significantly in comparison to known bicyclic benzodiazaborines (naphthoid congeners), consequently leading to attenuated Lewis acidity. Direct structural comparison to a well-established biaryl isostere, 2-phenylphenol, through X-ray crystallographic analysis reveals that N-aryl derivatives are strikingly similar in size and conformation, with attenuated logP values underscoring the value of the polar BNN unit. Their potential application as low-molecular-weight scaffolds in drug discovery is demonstrated through orthogonal diversification and preliminary antifungal evaluation (Candida albicans), which unveiled analogs with low micromolar inhibitory concentration.
Collapse
Affiliation(s)
- Jake J Blackner
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Olivia M Schneider
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Warren O Wong
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
27
|
Tin G, Cigler M, Hinterndorfer M, Dong KD, Imrichova H, Gygi SP, Winter GE. Discovery of a DCAF11-dependent cyanoacrylamide-containing covalent degrader of BET-proteins. Bioorg Med Chem Lett 2024; 107:129779. [PMID: 38729317 DOI: 10.1016/j.bmcl.2024.129779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11. Here, we disclose a covalent PROTAC that enables DCAF11-dependent degradation, featuring a cyanoacrylamide warhead. Our findings underscore DCAF11 as an interesting candidate with a capacity to accommodate diverse electrophilic chemistries compatible with targeted protein degradation.
Collapse
Affiliation(s)
- Gary Tin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kevin D Dong
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
28
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
29
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
30
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
31
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol Cancer 2024; 23:110. [PMID: 38773495 PMCID: PMC11107062 DOI: 10.1186/s12943-024-02024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) technology has garnered significant attention over the last 10 years, representing a burgeoning therapeutic approach with the potential to address pathogenic proteins that have historically posed challenges for traditional small-molecule inhibitors. PROTACs exploit the endogenous E3 ubiquitin ligases to facilitate degradation of the proteins of interest (POIs) through the ubiquitin-proteasome system (UPS) in a cyclic catalytic manner. Despite recent endeavors to advance the utilization of PROTACs in clinical settings, the majority of PROTACs fail to progress beyond the preclinical phase of drug development. There are multiple factors impeding the market entry of PROTACs, with the insufficiently precise degradation of favorable POIs standing out as one of the most formidable obstacles. Recently, there has been exploration of new-generation advanced PROTACs, including small-molecule PROTAC prodrugs, biomacromolecule-PROTAC conjugates, and nano-PROTACs, to improve the in vivo efficacy of PROTACs. These improved PROTACs possess the capability to mitigate undesirable physicochemical characteristics inherent in traditional PROTACs, thereby enhancing their targetability and reducing off-target side effects. The new-generation of advanced PROTACs will mark a pivotal turning point in the realm of targeted protein degradation. In this comprehensive review, we have meticulously summarized the state-of-the-art advancements achieved by these cutting-edge PROTACs, elucidated their underlying design principles, deliberated upon the prevailing challenges encountered, and provided an insightful outlook on future prospects within this burgeoning field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Alugubelli Y, Xiao J, Khatua K, Kumar S, Sun L, Ma Y, Ma XR, Vulupala VR, Atla S, Blankenship LR, Coleman D, Xie X, Neuman BW, Liu WR, Xu S. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. J Med Chem 2024; 67:6495-6507. [PMID: 38608245 PMCID: PMC11056980 DOI: 10.1021/acs.jmedchem.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.
Collapse
Affiliation(s)
- Yugendar
R. Alugubelli
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Xiao
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sathish Kumar
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Long Sun
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yuying Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Veerabhadra R. Vulupala
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sandeep Atla
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren R. Blankenship
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Demonta Coleman
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuping Xie
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Benjamin W. Neuman
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
- Texas
A&M Global Health Research Complex, Texas A&M University, College
Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
34
|
Zhao Y, Zhao X, Duan L, Hou R, Gu Y, Liu Z, Chen J, Wu F, Yang L, Le XC, Wang Q, Yan X. Reinvent Aliphatic Arsenicals as Reversible Covalent Warheads toward Targeted Kinase Inhibition and Non-acute Promyelocytic Leukemia Cancer Treatment. J Med Chem 2024; 67:5458-5472. [PMID: 38556750 DOI: 10.1021/acs.jmedchem.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyue Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lewei Duan
- Laboratory of Epigenetics at Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai 200032, China
| | - Ruxue Hou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuxin Gu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianbin Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feizhen Wu
- Laboratory of Epigenetics at Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai 200032, China
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
35
|
Singh S, Srivastava P. Targeted Protein Degraders- The Druggability Perspective. J Pharm Sci 2024; 113:539-554. [PMID: 37926234 DOI: 10.1016/j.xphs.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
Targeted Protein degraders (TPDs) show promise in harnessing cellular machinery to eliminate disease-causing proteins, even those previously considered undruggable. Especially if protein turnover is low, targeted protein removal bestows lasting therapeutic effect over typical inhibition. The demonstrated safety and efficacy profile of clinical candidates has fueled the surge in the number of potential candidates across different therapeutic areas. As TPDs often do not comply with Lipinski's rule of five, developing novel TPDs and unlocking their full potential requires overcoming solubility, permeability and oral bioavailability challenges. Tailored in-vitro assays are key to precise profiling and optimization, propelling breakthroughs in targeted protein degradation.
Collapse
|
36
|
Lu X, Jin J, Wu Y, Liu X, Liang X, Lin J, Sun Q, Qin J, Zhang W, Luan X. Progress in RAS-targeted therapeutic strategies: From small molecule inhibitors to proteolysis targeting chimeras. Med Res Rev 2024; 44:812-832. [PMID: 38009264 DOI: 10.1002/med.21993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/14/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
As a widely considerable target in chemical biology and pharmacological research, rat sarcoma (RAS) gene mutations play a critical driving factor in several fatal cancers. Despite the great progress of RAS subtype-specific inhibitors, rapid acquired drug resistance could limit their further clinical applications. Proteolysis targeting chimera (PROTAC) has emerged as a powerful tool to handle "undruggable" targets and exhibited significant therapeutic benefit for the combat of drug resistance. Owing to unique molecular mechanism and binding kinetics, PROTAC is expected to become a feasible strategy to break the bottleneck of classical RAS inhibitors. This review aims to discuss the current advances of RAS inhibitors and especially focus on PROTAC strategy targeting RAS mutations and their downstream effectors for relevant cancer treatment.
Collapse
Affiliation(s)
- Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyan Sun
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jiangjiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Huang J, Ma Z, Peng X, Yang Z, Wu Y, Zhong G, Ouyang T, Chen Z, Liu Y, Wang Q, Chen J, Chen T, Zeng Z. Discovery of Novel Potent and Fast BTK PROTACs for the Treatment of Osteoclasts-Related Inflammatory Diseases. J Med Chem 2024; 67:2438-2465. [PMID: 38321747 DOI: 10.1021/acs.jmedchem.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Bruton's tyrosine kinase (BTK) is an attractive target in inflammatory and autoimmune diseases. However, the effectiveness of BTK inhibitors is limited by side effects and drug resistance. In this study, we report the development of novel BTK proteolysis targeting chimeras (PROTACs) with different classes of BTK-targeting ligands (e.g., spebrutinib) other than ibrutinib. Compound 23 was identified as a potent and fast BTK PROTAC degrader, exhibiting outstanding degradation potency and efficiency in Mino cells (DC50, 4 h = 1.29 ± 0.3 nM, t1/2, 20 nM = 0.59 ± 0.20 h). Furthermore, compound 23 forms a stable ternary complex, as confirmed by the HTRF assay. Notably, 23 down-regulated the BTK-PLCγ2-Ca2+-NFATc1 signaling pathway activated by RANKL, thus inhibiting osteoclastogenesis and attenuating alveolar bone resorption in a mouse periodontitis model. These findings suggest that compound 23 is a potent and promising candidate for osteoclast-related inflammatory diseases, expanding the potential of BTK PROTACs.
Collapse
Affiliation(s)
- Junli Huang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanghong Zhong
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianfeng Ouyang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qirui Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
38
|
Carvalho LAR, Sousa BB, Zaidman D, Kiely-Collins H, Bernardes GJL. Design and Evaluation of PROTACs Targeting Acyl Protein Thioesterase 1. Chembiochem 2024; 25:e202300736. [PMID: 38195841 DOI: 10.1002/cbic.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Indexed: 01/11/2024]
Abstract
PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1. Western blotting analysis revealed efficient degradation of APT1 and activity-based protein profiling showed remarkable selectivity of an alkyl linker-based PROTAC amongst serine hydrolases. Collectively, our data suggests that combining PRosettaC and chemoproteomics can effectively assist in triaging PROTACs for synthesis and providing early data on their potency and selectivity.
Collapse
Affiliation(s)
- Luís A R Carvalho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Bárbara B Sousa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Zaidman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
| | - Hannah Kiely-Collins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
39
|
Peng X, Hu Z, Zeng L, Zhang M, Xu C, Lu B, Tao C, Chen W, Hou W, Cheng K, Bi H, Pan W, Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14:533-578. [PMID: 38322348 PMCID: PMC10840439 DOI: 10.1016/j.apsb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 02/08/2024] Open
Abstract
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Meizhu Zhang
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Congcong Xu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Benyan Lu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Chengpeng Tao
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Weiming Chen
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Wen Hou
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
40
|
Luo Q, Wang Y, Hou Z, Liang H, Tu L, Xing Y, Wan C, Liu J, Wang R, Zhu L, Han W, Wu J, Lu F, Yin F, Li Z. Covalent PROTAC design method based on a sulfonyl pyridone probe. Chem Commun (Camb) 2024; 60:686-689. [PMID: 38054347 DOI: 10.1039/d3cc05127g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Covalent proteolysis-targeting chimeras (PROTACs) offer enhanced selectivity, prolonged action, and increased efficacy against challenging target proteins. The conventional approach relies on covalent ligands, but our study presents an innovative method employing an N-sulfonyl pyridone warhead to selectively target tyrosine (Tyr) residues. The von Hippel-Lindau (VHL) moiety is transferred from the warhead to the exposed Tyr, allowing us to design a STING degrader (DC50 0.53 μM, Dmax 56.65%). This approach showcases the potential of nucleophilic amino acid labeling probes, particularly for proteins lacking easily accessible cysteine residues, opening new possibilities for covalent PROTAC design and targeted protein degradation therapies.
Collapse
Affiliation(s)
- Qinhong Luo
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yaqi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Huiting Liang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Lizhi Zhu
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jianlong Wu
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
41
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
42
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Wang Y, Min J, Deng X, Feng T, Hu H, Guo X, Cheng Y, Xie B, Yang Y, Chen CC, Guo RT, Dong C, Zhou HB. Discovery of novel covalent selective estrogen receptor degraders against endocrine-resistant breast cancer. Acta Pharm Sin B 2023; 13:4963-4982. [PMID: 38045063 PMCID: PMC10692362 DOI: 10.1016/j.apsb.2023.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 12/05/2023] Open
Abstract
Endocrine-resistance remains a major challenge in estrogen receptor α positive (ERα+) breast cancer (BC) treatment and constitutively active somatic mutations in ERα are a common mechanism. There is an urgent need to develop novel drugs with new mode of mechanism to fight endocrine-resistance. Given aberrant ERα activity, we herein report the identification of novel covalent selective estrogen receptor degraders (cSERDs) possessing the advantages of both covalent and degradation strategies. A highly potent cSERD 29c was identified with superior anti-proliferative activity than fulvestrant against a panel of ERα+ breast cancer cell lines including mutant ERα. Crystal structure of ERα‒29c complex alongside intact mass spectrometry revealed that 29c disrupted ERα protein homeostasis through covalent targeting C530 and strong hydrophobic interaction collied on H11, thus enforcing a unique antagonist conformation and driving the ERα degradation. These significant effects of the cSERD on ERα homeostasis, unlike typical ERα degraders that occur directly via long side chains perturbing the morphology of H12, demonstrating a distinct mechanism of action (MoA). In vivo, 29c showed potent antitumor activity in MCF-7 tumor xenograft models and low toxicity. This proof-of-principle study verifies that novel cSERDs offering new opportunities for the development of innovative therapies for endocrine-resistant BC.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangping Deng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tian Feng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hebing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xinyi Guo
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Cheng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Baohua Xie
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chune Dong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
44
|
Danishuddin, Jamal MS, Song KS, Lee KW, Kim JJ, Park YM. Revolutionizing Drug Targeting Strategies: Integrating Artificial Intelligence and Structure-Based Methods in PROTAC Development. Pharmaceuticals (Basel) 2023; 16:1649. [PMID: 38139776 PMCID: PMC10747325 DOI: 10.3390/ph16121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
PROteolysis TArgeting Chimera (PROTAC) is an emerging technology in chemical biology and drug discovery. This technique facilitates the complete removal of the target proteins that are "undruggable" or challenging to target through chemical molecules via the Ubiquitin-Proteasome System (UPS). PROTACs have been widely explored and outperformed not only in cancer but also in other diseases. During the past few decades, several academic institutes and pharma companies have poured more efforts into PROTAC-related technologies, setting the stage for several major degrader trial readouts in clinical phases. Despite their promising results, the formation of robust ternary orientation, off-target activity, poor permeability, and binding affinity are some of the limitations that hinder their development. Recent advancements in computational technologies have facilitated progress in the development of PROTACs. Researchers have been able to utilize these technologies to explore a wider range of E3 ligases and optimize linkers, thereby gaining a better understanding of the effectiveness and safety of PROTACs in clinical settings. In this review, we briefly explore the computational strategies reported to date for the formation of PROTAC components and discuss the key challenges and opportunities for further research in this area.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | - Kyoung-Seob Song
- Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan 49104, Republic of Korea;
| | - Keun-Woo Lee
- Division of Life Science, Department of Bio & Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University, 209, Neugdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
45
|
Csorba N, Ábrányi-Balogh P, Keserű GM. Covalent fragment approaches targeting non-cysteine residues. Trends Pharmacol Sci 2023; 44:802-816. [PMID: 37770315 DOI: 10.1016/j.tips.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.
Collapse
Affiliation(s)
- Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary.
| |
Collapse
|
46
|
Nowak RP, Ragosta L, Huerta F, Liu H, Ficarro SB, Cruite JT, Metivier RJ, Donovan KA, Marto JA, Fischer ES, Zerfas BL, Jones LH. Development of a covalent cereblon-based PROTAC employing a fluorosulfate warhead. RSC Chem Biol 2023; 4:906-912. [PMID: 37920397 PMCID: PMC10619143 DOI: 10.1039/d3cb00103b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023] Open
Abstract
Many cereblon (CRBN) ligands have been used to develop proteolysis targeting chimeras (PROTACs), but all are reversible binders of the E3 ubiquitin ligase. We recently described the use of sulfonyl exchange chemistry to design binders that covalently engage histidine 353 in CRBN for the first time. Here we show that covalent CRBN ligands can be used to develop efficient PROTAC degraders. We demonstrate that the fluorosulfate PROTAC FS-ARV-825 covalently labels CRBN in vitro, and in cells the BRD4 degrader is insensitive to wash-out and competition by potent reversible CRBN ligands, reflecting enhanced pharmacodynamics. We anticipate that covalent CRBN-based PROTACs will enhance degradation efficiencies, thus expanding the scope of addressable targets using the heterobifunctional degrader modality.
Collapse
Affiliation(s)
- Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Leah Ragosta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Fidel Huerta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Hu Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Scott B Ficarro
- Department of Cancer Biology, Department of Oncologic Pathology, and Blais Proteomics Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute Boston MA USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
| | - Justin T Cruite
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Rebecca J Metivier
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Jarrod A Marto
- Department of Cancer Biology, Department of Oncologic Pathology, and Blais Proteomics Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute Boston MA USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
| | - Eric S Fischer
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Breanna L Zerfas
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
47
|
Jiang R, Shen F, Zhang M, Mulati S, Wang J, Tao Y, Zhang W. Evaluating the Anti-Melanoma Effects and Toxicity of Cinnamaldehyde Analogues. Molecules 2023; 28:7309. [PMID: 37959729 PMCID: PMC10647553 DOI: 10.3390/molecules28217309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Cinnamaldehyde (CA) showed potent activity against melanoma in our previous study, and the structure of unsaturated aldehydes is envisaged to play a role. Nevertheless, its limited drug availability restricts its clinical application. Therefore, a series of CA analogues were synthesized to evaluate their anti-melanoma activities across various melanoma cell lines. These compounds were also tested for their toxicity against the different normal cell lines. The compound with the most potential, CAD-14, exhibited potent activity against the A375, A875 and SK-MEL-1 cells, with IC50 values of 0.58, 0.65, and 0.82 µM, respectively. A preliminary molecular mechanism study of CAD-14 indicated that it could inhibit the p38 pathway to induce apoptosis, and suppress tumor growth by inhibiting the expression of ENO1. Furthermore, an acute toxicity study depicted that CAD-14 has better safety and tolerability than CA in vivo. These findings indicate that CAD-14 might be a lead compound for exploring effective anti-melanoma drugs.
Collapse
Affiliation(s)
- Rongsong Jiang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China;
| | - Miaomiao Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Shulipan Mulati
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Jinfeng Wang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Yicun Tao
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Weiyi Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| |
Collapse
|
48
|
Srinivasan B. Non-equilibrium modalities of inhibition: Characterizing irreversible inhibition for the ErbB receptor family members. Methods Enzymol 2023; 690:85-108. [PMID: 37858541 DOI: 10.1016/bs.mie.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Most drug target interactions for clinically approved small-molecules are non-equilibrium slow-onset, tight-binding or irreversible in nature, with pronounced element of time-dependence of inhibition. Analysis of such modality of inhibition requires a continuous enzyme kinetic measurement that can yield complete progress curves and an automated high-throughput analysis pipeline. Given the increasing emphasis on designing non-equilibrium modes of inhibiting an enzyme target (especially irreversible), the above specified pipeline for data generation and analysis is essential for extracting parameters to guide decisions in early drug discovery. In this manuscript, the methodology and data analysis protocol from our irreversible inhibitor characterization campaigns for the ErbB receptor family members is presented. Guidance is provided on the appropriate design of assay to generate quality data, setting up the analysis and estimation of inactivation rate (kinact) and the pseudo-equilibrium binding affinity (KI) constant (or their ratio kinact/KI) in a high-throughput manner for the inhibitor interacting with the protein target of interest.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
49
|
Tallon AM, Xu Y, West GM, am Ende CW, Fox JM. Thiomethyltetrazines Are Reversible Covalent Cysteine Warheads Whose Dynamic Behavior can be "Switched Off" via Bioorthogonal Chemistry Inside Live Cells. J Am Chem Soc 2023; 145:16069-16080. [PMID: 37450839 PMCID: PMC10530612 DOI: 10.1021/jacs.3c04444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Electrophilic small molecules that can reversibly modify proteins are of growing interest in drug discovery. However, the ability to study reversible covalent probes in live cells can be limited by their reversible reactivity after cell lysis and in proteomic workflows, leading to scrambling and signal loss. We describe how thiomethyltetrazines function as reversible covalent warheads for cysteine modification, and this dynamic labeling behavior can be "switched off" via bioorthogonal chemistry inside live cells. Simultaneously, the tetrazine serves as a bioorthogonal reporter enabling the introduction of tags for fluorescent imaging or affinity purification. Thiomethyltetrazines can label isolated proteins, proteins in cellular lysates, and proteins in live cells with second-order rate constants spanning 2 orders of magnitude (k2, 1-100 M-1 s-1). Reversible modification by thiomethyltetrazines can be switched off upon the addition of trans-cyclooctene in live cells, converting the dynamic thiomethyltetrazine tag into a Diels-Alder adduct which is stable to lysis and proteomic workflows. Time-course quenching experiments were used to demonstrate temporal control over electrophilic modification. Moreover, it is shown that "locking in" the tag through Diels-Alder chemistry enables the identification of protein targets that are otherwise lost during sample processing. Three probes were further evaluated to identify unique pathways in a live-cell proteomic study. We anticipate that discovery efforts will be enabled by the trifold function of thiomethyltetrazines as electrophilic warheads, bioorthogonal reporters, and switches for "locking in" stability.
Collapse
Affiliation(s)
- Amanda M. Tallon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yingrong Xu
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Graham M. West
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
50
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|