1
|
Mlouka R, Boukadida K, Roméro-Ramirez A, Gourves PY, Banni M, Cachot J. Environmental challenges and larval resilience: how copper and heat influence the early life mobility of pure and hybrids of Mytilus sp. MARINE POLLUTION BULLETIN 2025; 217:118041. [PMID: 40334557 DOI: 10.1016/j.marpolbul.2025.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Behavioral biomarkers are widely recognized as sensitive indicators for monitoring environmental pollution. This study investigated the combined effects of heat stress and copper exposure on the early life stages of two mussel species, Mytilus galloprovincialis, and Mytilus edulis, and their hybrids. Key parameters of motility; Acetylcholinesterase (AChE) activity and swimming behavior were investigated. Our results revealed notable changes in maximum and average swimming speeds in D-larvae, with increased circular trajectories and decreased rectilinear trajectories in response to elevated temperatures and/or copper exposure, particularly in pure and hybrid M. edulis larvae. These behavioral changes could be related to the modulation of the neuro-muscular activity. Thus, a significant increase in the AChE activity of the M.galloprovincialis larvae and their hybrids was observed as a consequence of heat stress and/or metals. This study highlights that; M.galloprovincialis species may be more resilient than Mytilus edulis species to environmental threats and climate change events.
Collapse
Affiliation(s)
- Rania Mlouka
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France; Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Khouloud Boukadida
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia.
| | | | | | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
2
|
Singh M, Chadha P. Dose-Dependent Hepatorenal Damage Induced by Erythrosine: A Study of Biochemical, Oxidative Stress, DNA Damage, and Histopathological Effects in Wistar Rats. J Appl Toxicol 2025; 45:884-897. [PMID: 39843243 DOI: 10.1002/jat.4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to provide insights into the hepatorenal toxicity induced by erythrosine, a synthetic red dye commonly used in food and pharmaceuticals, which has raised concerns over its potential health risks. Twenty-four rats were randomly divided into four groups (n = 6). The first group was the control group and the other group received one of three doses of erythrosine based on acceptable daily intake (¼ ADI, ½ ADI, and ADI, 0.1 mg/kg body weight). This study examined biological activity via biochemical enzyme analysis, oxidative stress indices, DNA damage, and histopathology. Compared with the control group, erythrosine administration increased the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein, urea, creatinine, and uric acid at the highest erythrosine dose. The catalase and the superoxide dismutase activity decreased in both tissues at the highest dose. The glutathione-S-transferase activity increased at the ¼ ADI dose and decreased at higher doses in both tissues. In contrast, acetylcholinesterase activity was greater in erythrosine-treated rats than in control rats. Oxidative stress indices indicated increased lipid peroxidation, hydrogen peroxide content, and lactate dehydrogenase activity. The comet assay was used to assess DNA damage, revealing significant damage in the erythrosine-treated groups. Histopathological examination revealed necrotic and degenerative changes in the liver and kidney tissues. The findings underscore dose-dependent hepatorenal toxicity and highlight the novelty of demonstrating a comprehensive link between erythrosine exposure, oxidative stress, and DNA damage. These results emphasize the need for cautious evaluation of synthetic dye consumption due to potential health risks.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Singh M, Chadha P. Erythrosine-Induced Neurotoxicity: Evaluating Enzymatic Dysfunction, Oxidative Damage, DNA Damage, and Histopathological Alterations in Wistar Rats. J Appl Toxicol 2025; 45:576-586. [PMID: 39600142 DOI: 10.1002/jat.4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Erythrosine, a synthetic red dye widely used in food products, has been linked to potential health risks, raising concerns about its safety. This study aimed to evaluate the subacute toxicity of the synthetic food dye erythrosine in the brains of Wistar rats. Twenty-four 6- to 7-week-old female rats were randomly divided into four groups of six (n = 6); the control group and the other three groups, which were established on the basis of erythrosine's acceptable daily intake (ADI, 0.1 mg per kg body weight); 1/4 ADI, 1/2 ADI, and ADI; for 28 days. Significant alterations in the enzymatic activity of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and acetylcholinesterase (AchE) were observed at all erythrosine dosages, with a substantial decline at ADI dosages (p ≤ 0.05). Increased oxidative stress markers, viz., malondialdehyde content and lactate dehydrogenase activity, were observed in ADI-administered rats. The H2O2 content decreased at 1/4 ADI and 1/2 ADI dosages and thereafter increased with increasing dosage. The comet assay demonstrated that the ADI dosage for 28 days resulted in the most significant damage, as evidenced by the increased tail length, tail DNA percentage, and tail moment. Light microscopy revealed various anomalies in brain histology, such as atrophies, vacuolization, shrunken cells, pyknotic nuclei, and reduced cell density. The results of the present study demonstrated that erythrosine disrupts the normal histopathology of the brain, suppresses antioxidative and acetylcholinesterase enzymatic activity, and increases lipid peroxidation and DNA damage, thereby resulting in erythrosine toxicity even at doses lower than the ADI.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
4
|
Sampada MP, David M. Mercuric chloride induced reproductive toxicity associated with oxidative damage in male Wistar albino rat, Rattus norvegicus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03585-8. [PMID: 39738833 DOI: 10.1007/s00210-024-03585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 01/02/2025]
Abstract
In the field of toxicology, male reproductive hazards attributed to metal exposure is a fast-developing issue. Mercury has been identified as an environmental pollutant that causes potential adverse impacts on organisms. This study aimed to assess the reprotoxic consequences of mercuric chloride (HgCl2). Five groups of sexually mature albino rats were given oral mercuric chloride (HgCl2) treatment. (G1) control group received saline treatment; (G2) (5.25 mg/kg of HgCl2 for 30 days); (G3) (5.25 mg/kg of HgCl2 for 60 days); (G4) (10.5 mg/kg of HgCl2 for 30 days); (G5) (10.5 mg/kg of HgCl2 for 60 days). The hormonal levels, sperm count, sperm motility, sperm viability, and reproductive organ weight, including body weight, were substantially reduced, whereas the sperm abnormality rate was enhanced in rat groups treated with HgCl2. The analysis revealed that the effect size (Cohen's d) for sperm parameters, including sperm count, motility and viability, were extremely high across all groups, except for sperm abnormality in group 2 (d = 0.59) and group 3 (d = 0.18), where moderate and small effect sizes were observed respectively, and this suggests a significant impact of the intervention on sperm parameters. The administration of HgCl2 resulted in the induction of oxidative stress in testis that is manifested by substantially enhanced lipid peroxidation (MDA) with a substantial decrease in activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione peroxidase (GPx) in testes of mercury-treated groups. Concomitantly, there was downregulation in the mRNA levels of the genes involved in spermatogenesis, namely Hsp-70, insulin-like growth factor (IGF), glutathione-S-transferase, and p53 in the testis. The expression of antiapoptotic protein B cell lymphoma (Bcl-2) was decreased, and conversely, the expression of cell proliferative protein Ki-67 was increased in a dose- and duration-dependent manner. Histopathological studies showed degenerative changes in the testis, epididymis, prostate gland, and seminal vesicle, compared to the control group. All the evidence suggests that after mercury exposure, there may be an imbalance between the body's defenses against free radicals and antioxidants, making the testis more susceptible to oxidative damage. This imbalance could potentially have a detrimental effect on the function of the male reproductive system.
Collapse
Affiliation(s)
- M P Sampada
- Zoology, Karnataka University, Dharwad, Karnataka, 580003, India
| | - Muniswamy David
- Zoology, Karnataka University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
5
|
Tiddy IC, Cortese D, Munson A, Blewett TA, Killen SS. Impacts of anthropogenic pollutants on social group cohesion and individual sociability in fish: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125017. [PMID: 39341410 DOI: 10.1016/j.envpol.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Anthropogenic pollutants are near-ubiquitous in aquatic systems. Aquatic animals such as fishes are subject to physiological stress induced by pollution present in aquatic systems, which can translate to changes in behaviour. Key adaptive behaviours such as shoaling and schooling may be subject to change as a result of physiological or metabolic stress or neurosensory impacts of pollution. This can result in fitness and ecological impacts such as increased predation risk and reduced foraging success. Here, we conducted a systematic metanalysis of the existing literature, comprising 165 studies, on the effects of anthropogenic pollution on sociability and group cohesion in fish species. Both organic (number of studies = 92, posterior mean (PM) = -0.483, p < 0.01) and inorganic (n = 24, PM = -1.453, p < 0.001) chemical pollutants, as well as light exposure (n = 21, PM = -3.038, p < 0.01) were found to reduce sociability. These pollutants did not reduce group cohesion, indicating that effects may be masked in group settings, though fewer studies were carried out on group cohesion and this is a key area for future research. Mixtures of chemical pollutants (n = 16) were found to reduce cohesion (PM = -43.71, p < 0.01), but increase sociability (PM = 44.27, p < 0.01). Evidence was found that fish may behaviourally acclimate to two forms of pollutant, namely mixed chemical pollutants (PM = -0.668, p < 0.01) and noise exposure (n = 22, PM = -4.043, p < 0.01). While aquatic systems are often subject to pollution from multiple sources and of multiple types, very few studies investigated the effects of multiple stressors concurrently. This review identifies trends in the existing literature, and highlights areas where further research is required in order to understand the behavioural and ecological impacts of anthropogenic pollutants in aquatic systems.
Collapse
Affiliation(s)
- Izzy C Tiddy
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Daphne Cortese
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sete, France
| | - Amelia Munson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2M9
| | - Shaun S Killen
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
6
|
Hafsi D, Sbartai I, Sbartai H. Stress biomarker response in Aporrectodea caliginosa earthworms exposed to single and combined pesticide treatments (Prosaro and Decis). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1180-1192. [PMID: 39379771 DOI: 10.1007/s10646-024-02811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
This study aims to assess the impact of two pesticides commonly used in Algeria (Prosaro XRT and Decis 25 EC), as well as their combinations at recommended doses, on a non-target species bioindicator of soil pollution, the earthworm Aporrectodea caliginosa, using physiological (mortality and growth) and biochemical parameters (proteins, glutathione, catalase activity and glutathione S-transferase, acetylcholine esterase, lipoxygenase). The recommended dose and its double were tested individually and in combination for this. It should be noted that the protocol used and the initial concentrations selected are the same as those used in the field. After 7 and 14 days (7D/14D) of exposure, all dosages were administered. Our findings show that the pesticides tested had no effect on earthworm survival. However, a significant decrease in their growth rates depending on the different concentrations was observed for the different treatments over the entire exposure period of 7 or 14 D. The greatest reductions (31.62%, 35.04%) are reported after 14D for the high concentrations of Decis alone (D2) as well as for the combined treatment Prosaro/Decis (P2/D2). At the same time, an increase in total protein contents (more than 50% after 14D) as well as a decrease in acetylcholine esterase activity were reported for all treatments. We were also able to identify the induction of oxidative stress after xenobiotic exposure, which is more pronounced at the end of the treatment (14D), resulting in the stimulation of the antioxidant system (gluthione, glutathione S-transférase, catalase) as well as the induction of lipoxygenase, which is responsible for the oxidation of polyunsaturated fatty acids as well as the generation of reactive oxygen species (ROS) involved in the inflammatory phenomenon. Finally, it turns out that the species Aporrectodea caliginosa is sensitive to the different concentrations applied, even those used in the open field, and that Decis (deltamethrin) seems to be more toxic than Prosaro and that the combinaison P2/D2 is as toxic as Decis alone (D2).
Collapse
Affiliation(s)
- Djamila Hafsi
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria.
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| |
Collapse
|
7
|
Islam MA, Salvatierra D, González MP, Cordero-de-Castro A, Kholssi R, Moreno-Garrido I, Blasco J, Araújo CVM. Structural and functional alterations under stress conditions by contamination: A multi-species study in a non-forced multi-compartmented mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175849. [PMID: 39209171 DOI: 10.1016/j.scitotenv.2024.175849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Despite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms. Other species, such as Artemia sp. and macroalgae were also introduced into the system as environmental enrichment. All the species were distributed in five interconnected mesocosm compartments containing a copper gradient (0, 1, 10, 100 and 250 μg/L). The mobile fish avoided the copper contaminants from 1 μg/L (24 h-AC50: 4.88 μg/L), while the shrimp avoided from 50 μg/L (24 h-AC50: 136.58 μg/L). This finding suggests interspecies interactions influence habitat selection in contaminated environments, potentially jeopardizing population persistence. Among the non-motile organisms, the growth and chlorophyll content of the microalgae were concentration dependent. The growth of I. galbana was more sensitive (growth inhibition of 50 % at the highest concentration) in contrast to N. gaditana (30 % inhibition at the highest concentration) and T. chuii (25 % inhibition at the last two highest concentrations). In summary, the mesocosm HeMHAS showed how contamination-driven responses can be studied at landscape scales, enhancing the ecological relevance of ecotoxicological research.
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - David Salvatierra
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - María Pilar González
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Andrea Cordero-de-Castro
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Rajaa Kholssi
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain.
| |
Collapse
|
8
|
Singh M, Chadha P. Gastrointestinal toxicity following sub-acute exposure of erythrosine in rats: biochemical, oxidative stress, DNA damage and histopathological studies. J Biochem Mol Toxicol 2024; 38:e70007. [PMID: 39400474 DOI: 10.1002/jbt.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Erythrosine, a synthetic food dye, has been controversial due to its potential health risks. This study examines the effect of erythrosine on activity of antioxidative enzymes, oxidative stress indices, DNA damage through comet assay, and histopathological changes on stomach, intestine, and colon over a period of 28 days in rats. Twenty-four rats were randomly divided into four groups (n = 6). The first is the control group and then one each for three doses of erythrosine based on acceptable daily intake (¼ ADI, ½ ADI, and ADI, 0.1 mg/kg body weight). The results revealed that with increasing dosages the activity of catalase decreased in stomach and intestine but in colon, the catalase activity increased. Superoxide dismutase and glutathione-S-transferase activity decreased in dose-dependent manner in all three tissues. While, in stomach and intestine, the acetylcholinesterase activity showed increment in ¼ ADI dose group and then declined in ½ ADI and ADI dose-administered rats. The oxidative stress indicators showed elevated levels of lipid peroxidation, hydrogen peroxide concentration, and lactate dehydrogenase activity suggesting heightened free radical activity and potential oxidative damage. The comet test was used to evaluate DNA damage, revealing substantial damage in the erythrosine administered groups. Histopathological examination showed inflammatory infiltration and other degenerative changes in gastrointestinal tract, highlighting the dye's adverse effects. The research underscores the need for a comprehensive reevaluation of the safety and toxicity of food dyes like erythrosine, especially considering the inconsistencies in existing studies regarding the dye's safety.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
9
|
Li Y, Li Z, Wang H. Gut dysbiosis of Rana zhenhaiensis tadpoles after lead (Pb) exposure based on integrated analysis of microbiota and gut transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116922. [PMID: 39181079 DOI: 10.1016/j.ecoenv.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lead (Pb) is a ubiquitously detected heavy metal pollutant in aquatic ecosystems. Previous studies focused mainly on the response of gut microbiota to Pb stress, with less emphasis on gene expression in intestine, thereby limiting the information about impacts of Pb on intestinal homeostasis in amphibians. Here, microbial community and transcriptional response of intestines in Rana zhenhaiensis tadpoles to Pb exposure were evaluated. Our results showed that 10 μg/L Pb significantly decreased bacterial diversity compared to the controls by the Simpson index. Additionally, 1000 μg/L Pb exposure resulted in a significant reduction in the abundance of Fusobacteriota phylum and Cetobacterium genus but a significant expansion in Hafnia-Obesumbacterium genus. Moreover, transcriptome analysis revealed that about 90 % of the DEGs (8458 out of 9450 DEGs) were down-regulated in 1000 μg/L Pb group, mainly including genes annotated with biological functions in fatty acid degradation, and oxidative phosphorylation, while up-regulated DEGs involved in metabolism of xenobiotics by cytochrome P450. The expression of Gsto1, Gsta5, Gstt4, and Nadph showed strong correlation with the abundance of genera Serratia, Lactococcus, and Hafnia-Obesumbacterium. The findings of this study provide important insights into understanding the influence of Pb on intestinal homeostasis in amphibians.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Zizhu Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Nobre CR, de Souza Paço M, de Almeida Duarte LF, Dos Santos Barbosa Ortega A, Moreno BB, de Camargo TFT, Parreira LM, da Costa Souza I, Monferrán MV, Wunderlin DA, Fernandes MN, Pereira CDS. Systemic effects of settleable atmospheric particulate matter (SePM) on swamp ghost crab Ucides cordatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173295. [PMID: 38782293 DOI: 10.1016/j.scitotenv.2024.173295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Metallurgical activities are a significant source of settleable atmospheric particulate matter (SePM). The material is exposed to wind action, leading to its deposition throughout terrestrial and aquatic ecosystems, thus promoting contamination by metals and metalloids. However, knowledge of the impacts on biota is scarce. In aquatic coastal zones, evaluating hemolymph in invertebrates makes it possible to have insights into the pre-pathogenic effects and health status of organisms. Our study aimed to evaluate bioaccumulation and the sublethal effects of SePM on the mangrove crab Ucides cordatus by assessing biomarkers of cito-genotoxicity in the hemolymph. Organisms underwent a 30-day experiment with four treatments: control; 0.01 g.L-1, 0.1 g.L-1, 1 g.L-1 of SePM, with hemolymph sampled at 2, 7, 15, and 30 days of exposure to assess lipid peroxidation (LPO), DNA damage (strand break), cholinesterase (ChE) and lysosomal membrane stability (LMS). The results revealed metals' bioaccumulation in soft tissues (Al, Fe+, Fe++, Cu, Zr, Nb) and dose-time-dependent responses for LPO, DNA strand break, ChE, and LMS. Significant correlation was found between LPO and Cu (tissue), reduced LMS and Al and Fe (tissue), and Cu, Zn, Ag, and Bi in water. Hemolymph was related to the toxicokinetic and toxicodynamic of metals and metalloids from SePM in Ucides cordatus. New toxicological evidence was obtained to shed light on the impacts of SePM on the ecological status of coastal zones.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, 11030-100 Santos, São Paulo, Brazil.
| | - Marina de Souza Paço
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, 11030-100 Santos, São Paulo, Brazil
| | - Luis Felipe de Almeida Duarte
- Santa Cecília University: Post Graduate Program in Environmental Science and Technology, 277 Oswaldo Cruz Street, 11045-907 Boqueirão, Santos, São Paulo, Brazil
| | - Andressa Dos Santos Barbosa Ortega
- Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho", Litoral Paulista Campus, Infante Dom Henrique Square, s/n - Parque Bitaru, 11330-900 São Vicente, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, 11030-100 Santos, São Paulo, Brazil
| | - Thiago Felicíssimo Turíbio de Camargo
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, 11030-100 Santos, São Paulo, Brazil
| | - Leticia Malvestio Parreira
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, 11030-100 Santos, São Paulo, Brazil
| | - Iara da Costa Souza
- Department of Physiological Sciences, Federal University of São Carlos (DCF/UFSCar), Washington Luiz Highway, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC: Institute of Food Science and Technology, Córdoba National University, CONICET, Faculty of Chemical Sciences, University City, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC: Institute of Food Science and Technology, Córdoba National University, CONICET, Faculty of Chemical Sciences, University City, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos (DCF/UFSCar), Washington Luiz Highway, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, 11030-100 Santos, São Paulo, Brazil; Santa Cecília University: Post Graduate Program in Environmental Science and Technology, 277 Oswaldo Cruz Street, 11045-907 Boqueirão, Santos, São Paulo, Brazil
| |
Collapse
|
11
|
Zhang Q, Zhou X, Sun Y, Deng Q, Wu Q, Wen Z, Chen H. Harmful effects of microplastics on respiratory system of aquatic animals: A systematic review and meta-analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107003. [PMID: 38901219 DOI: 10.1016/j.aquatox.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The presence of microplastics in the aquatic environment has attracted widespread attention. A large number of studies have assessed the effects of microplastics on the respiratory system of aquatic animals, but the results are not directly comparable across studies due to inconsistent evaluation criteria. Therefore, we adopted an integrated research approach that can integrate and parse complex data to improve reliability, conducted a systematic review and meta-analysis of 35 published studies, and elucidated the mechanisms of microplastic damage to cells. The results showed that PE had the greatest impact on aquatic animals, and fish were the most sensitive to the effects caused by microplastics, with oxidative stress induced by exposure concentrations exceeding 1000 µg/L or exposure times exceeding 28 days, leading to depletion of antioxidant defenses, cellular damage, inflammatory responses, and behavioral abnormalities. As this review is based on existing studies, there may be limitations in terms of literature quality, data availability and timeliness. In conclusion, we suggest to combat microplastic pollution by limiting plastic use, promoting plastic substitution and recycling, and enhancing microplastic capture degradation technologies.
Collapse
Affiliation(s)
- Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Zhirui Wen
- College of Life Sciences, Guizhou Normal University, Guiyang 550001, China; Qiannan Normal College for Nationalities, No.5, Middle Jianjiang Avenue, Duyun 558000, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
12
|
Fernandes IF, Fujiwara GH, Moraes Utsunomiya HS, Souza IC, Monteiro DA, Monferrán MV, Wunderlin DA, Fernandes MN, Carvalho CDS. Oxidative stress and neurotoxicity induced by exposure to settleable atmospheric particulate matter in bullfrog tadpoles, Aquarana catesbeiana, (Shaw, 1802). CHEMOSPHERE 2024; 353:141576. [PMID: 38462180 DOI: 10.1016/j.chemosphere.2024.141576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.
Collapse
Affiliation(s)
- Isabela Ferreira Fernandes
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Gabriel Hiroshi Fujiwara
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Grupo de Mutagênese Ambiental, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000, Córdoba, Argentina; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil; Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil.
| |
Collapse
|
13
|
Henriques MC, Carvalho I, Santos C, Herdeiro MT, Fardilha M, Pavlaki MD, Loureiro S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicol Teratol 2023; 100:107302. [PMID: 37739188 DOI: 10.1016/j.ntt.2023.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Mercury (Hg) is a global contaminant affecting aquatic ecosystems' health. Chronic exposure to Hg has shown that the normal development of zebrafish embryo-larvae is affected. However, the molecular mechanisms behind the toxicity of Hg on fish embryonic development are still poorly understood. This work aimed to investigate the effects of Hg exposure on zebrafish embryo-larvae using a combined approach at individual (mortality, embryo development and locomotor behavior) and biochemical (neurotoxicity and oxidative stress enzymatic activities and protein phosphatase expression) levels. The Fish Embryo Toxicity assay followed the Organization for Economic Cooperation and Development Guideline 236 and used a concentration range between 13 and 401 μg Hg/L. Lethal and developmental endpoints were examined at 24, 48, 72 and 96 hpf. Biochemical markers, including Acetylcholinesterase (AChE), Catalase (CAT), Glutathione Reductase (GR), and Glutathione-S-Transferase (GST) activities and, for the first time, the expression of the protein phosphatase 1 gamma (PP1γ) was assessed after 24, 48, 72 and 96 h of exposure to 10 and 100 μg Hg/L. The behavioral effects of a sublethal range of Hg (from 0.8 to 13 μg Hg/L) were assessed using an automated video tracking system at 120 hpf. Several developmental abnormalities on zebrafish embryos and larvae, including pericardial edema, spin and tail deformities and reduced rate of consumption of the yolk sac, were found after exposure to Hg (LC50 at 96 hpf of 139 μg Hg/L) with EC50 values for total malformations ranging from 22 to 264 μg Hg/L. After 96 hpf, no significant effects were observed in the CAT and GR activities. However, an increase in the GST activity in a concentration and time-dependent manner was found, denoting possible stress-related adaptation of zebrafish embryos to deleterious effects of Hg exposure. The AchE activity showed a response pattern in line with the behavioral responses. At the lowest concentration tested, no significant effects were found for the AChE activity, whereas a decrease in AChE activity was observed at 100 μg Hg/L, suggesting that exposure to Hg induced neurotoxic effects in zebrafish embryos which in turn may explain the lack of equilibrium found in this study (EC50 at 96 hpf of 83 μg Hg/L). Moreover, a decrease in the PP1γ expression was found after 96 h of exposure to 10 and 100 μg Hg/L. Thus, we suggest that Hg may be an inhibitor of PP1γ in zebrafish embryos-larvae and thus, along with the alterations in the enzymatic activity of GST, explain some of the developmental malformations observed, as well as the lack of equilibrium. Hence, in this study, we propose the use of PP1 expression, in combination with apical and biochemical endpoints, as a precursor for assessing Hg's toxic mechanism on embryonic development.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Carvalho
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Cátia Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maria Dimitriou Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Holbert SS, Bryan CE, Korsmeyer KE, Jensen BA. Mercury accumulation and biomarkers of exposure in two popular recreational fishes in Hawaiian waters. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1010-1023. [PMID: 37491684 PMCID: PMC10622350 DOI: 10.1007/s10646-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Mercury (Hg) exposure has not been examined in many recreational nearshore fish species that are commonly consumed around the Hawaiian Islands. Specific gene transcripts, such as metallothionein (MET) and thioredoxin reductase (TrxR), can be used to examine Hg exposure responses in aquatic organisms. This study measured total mercury (THg) in four species from two groups of Hawaiian nearshore fishes: giant trevally (Caranx ignobilis, n = 13), bluefin trevally (C. melampygus, n = 4), sharp jaw bonefish (Albula virgata, n = 2), and round jaw bonefish (A. glossodonta, n = 19). Total Hg accumulation and abundance profiles of MET and TrxR were evaluated for muscle, liver, and kidney tissues. Total Hg in round jaw bonefish and giant trevally tissues accumulated with length and calculated age. In round jaw bonefish tissues, mean THg was greater in kidney (1156 ng/g wet mass (wm)) than liver (339 ng/g wm) and muscle (330 ng/g wm). Giant trevally muscle (187 ng/g wm) and liver (277 ng/g wm) mean THg did not differ significantly. Fish species in this study were compared to commercial and local fish species with state and federal muscle tissue consumption advisories based on THg benchmarks developed by the U.S. Food and Drug Administration (FDA) and Environmental Protection Agency (EPA). Both bonefishes had mean muscle THg that exceeded benchmarks suggesting consumption advisories should be considered. MET transcript in round jaw bonefish kidney tissue and kidney THg exhibited a marginally significant positive correlation, while TrxR transcript in liver tissue negatively correlated with increasing liver THg. These results contribute to our understanding of Hg exposure associated health effects in fish.
Collapse
Affiliation(s)
- Stephanie Shaw Holbert
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI, USA
| | - Colleen E Bryan
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC, USA.
| | - Keith E Korsmeyer
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI, USA
| | - Brenda A Jensen
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI, USA
| |
Collapse
|
15
|
Sujitha SB, Lopez-Hernandez JF, García-Alamilla P, Morales-García SS, Márquez-Rocha FJ. Evaluation of polycyclic aromatic hydrocarbons in sediments of Balsas River Mouth, Pacific Coast, Mexico: Sources, risks, and genotoxicity. CHEMOSPHERE 2023; 332:138898. [PMID: 37169094 DOI: 10.1016/j.chemosphere.2023.138898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were assessed in sediments (n = 7) collected from the mouth of the Balsas River, Pacific Coast, Mexico. The total PAH levels ranged between 142.1 and 3944.07 μg kg-1 in the summer and 137.65-3967.38 μg kg-1 in the winter, probably reflecting the anthropogenic activities of the region. Calculation of the four analytical ratios of [Anthracene/(Anthracene + Phenanthrene)]: [Fluoranthene/(Fluoranthene + Pyrene)], [Fluoranthene/Pyrene: Fluoranthene/(Fluoranthene + Pyrene)], [Indeno [123-cd]Pyrene/(Indeno [123-cd]Pyrene + Benzo [ghi]Perylene)]: [Benzo [a]anthracene/(Benzo [a]Anthracene + Chrysene)], and [Anthracene/Phenanthrene]: [Fluoranthene/(Fluoranthene + Pyrene)] revealed a mixed PAH source, from petroleum and biomass combustion. Significant statistical correlations (r2 = 0.90) between the 4 and 5 ringed PAHs denote that adsorption is the principal mechanism for accumulation in sedimentary archives. Ecotoxicological indices (Mean Effect Range Medium Quotient and Mean Probable Effect Level Quotient) indicated moderate pollution with adverse biological impacts on ambient benthonic organisms. The calculations of Toxicity Equivalent Quotient and Mutagen Equivalent Quotient values proposed that the region is highly polluted by mutagenic and carcinogenic PAH compounds. The genotoxic evaluation of Lutjanus guttatus (Spotted rose snapper) presented significant DNA damage and discrepancies in Ethoxyresorufin-O-Deethylase activity. Based on the toxicological and genotoxicological evaluation of PAHs in sediments, the region was observed to be largely impacted from biological damage.
Collapse
Affiliation(s)
- S B Sujitha
- Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticoman, Instituto Politécnico Nacional (IPN), Calz. Ticomán 600, Delg. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Jenny-Fabiola Lopez-Hernandez
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico
| | - Pedro García-Alamilla
- Divison Académica de Ciencias Agropecuaria, Universidad Autónoma Juárez de Tabasco, Carretera Villahermosa -Teapa Km 25, Ranchería La Huasteca 2da Sección, C.P. 86298 Villahermosa, Tabasco, Mexico
| | - S S Morales-García
- Centro Mexicano para La Producción Más Limpia, Instituto Politécnico Nacional, Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Facundo J Márquez-Rocha
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico.
| |
Collapse
|
16
|
Li LP, Jin YC, Ren D, Wang JJ, Fang L, Li X, Zhang X, Cui DW, Chen X, Liu XH. Deciphering the photolysis products and biological concerns of triclosan under UVC and UVA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114998. [PMID: 37167739 DOI: 10.1016/j.ecoenv.2023.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Triclosan (TCS) is omnipresent in the environment and has drawn increasing attention due to its potential adverse effects on human health. Direct photolysis of TCS readily occurs, especially in the surface layers of waters that receive abundant ultraviolet radiation during the daytime. However, biological concerns and the identification of toxic products during TCS photolysis have been explored limitedly. Therefore, in the present work, the structural characterization of the photolysis products by UVC and UVA were performed based on the mass spectra and fragmental ions. The results displayed that TCS was more readily eliminated by UVC than UVA, and the product species were completely different when TCS was degraded by UVC and UVA, respectively. Two products, m/z 235 and m/z 252, were produced via reductive dechlorination and nucleophilic substitution with UVC, while three dioxin-like isomer products were generated by dechlorination, cyclization and hydroxylation. Furthermore, the results of biological concerns suggested that the elimination of TCS did not represent the disappearance of biological risks. Specifically, more hazardous and photolysis products were formed during TCS photolysis with ultraviolets. For instance, the dioxin-like isomer products were highly microtoxic and genotoxic, and mildly antiestrogenic. The positive findings highlighted the biological concerns of TCS photolysis by ultraviolet radiation in the aquatic environment.
Collapse
Affiliation(s)
- Li-Ping Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Yan-Chao Jin
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Jun-Jian Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le Fang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xin Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ding-Wei Cui
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xi Chen
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xin-Hui Liu
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
17
|
Filice M, Reinero FR, Cerra MC, Faggio C, Leonetti FL, Micarelli P, Giglio G, Sperone E, Barca D, Imbrogno S. Contamination by Trace Elements and Oxidative Stress in the Skeletal Muscle of Scyliorhinus canicula from the Central Tyrrhenian Sea. Antioxidants (Basel) 2023; 12:524. [PMID: 36830082 PMCID: PMC9952106 DOI: 10.3390/antiox12020524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Marine pollution, due to the regular discharge of contaminants by various anthropogenic sources, is a growing problem that imposes detrimental influences on natural species. Sharks, because of a diet based on smaller polluted animals, are exposed to the risk of water contamination and the subsequent bioaccumulation and biomagnification. Trace elements are very diffuse water pollutants and able to induce oxidative stress in a variety of marine organisms. However, to date, studies on sharks are rather scarce and often limited to mercury. In this context, the present study aimed to analyze the accumulation of trace elements and their putative correlation with the onset of an oxidative status in the muscle of the lesser spotted dogfish Scyliorhinus canicula, from the Central Mediterranean Sea. Ecotoxicological analysis detected the presence of Pb, As, Cd, Mn, Zn, Ni, Cu, and Fe; no significant differences were observed between sexes, while a negative correlation was found between Pb and animal length. Analysis of oxidative stress markers showed either positive or negative correlation with respect to the presence of trace elements. Lipid peroxidation (TBARS) positively correlated with Zn, Ni, and Fe; SOD enzyme activity negatively correlated with Cu and Ni; LDH was negatively correlated with Fe and positively correlated with Pb. Moreover, positive correlations between the leukocyte count and Mn and Zn, as well as with LDH activity, were also observed. The data suggested that, in sharks, trace elements accumulation may affect oxidant and antioxidant processes with important outcomes for their physiology and health.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | | | - Primo Micarelli
- Sharks Studies Center—Scientific Institute, 58024 Massa Marittima, Italy
| | - Gianni Giglio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Emilio Sperone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Donatella Barca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
18
|
Xiong F, Liu J, Xu K, Huang J, Wang D, Li F, Wang S, Zhang J, Pu Y, Sun R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120939. [PMID: 36581239 DOI: 10.1016/j.envpol.2022.120939] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) draw international attention owing to their widespread distribution in water ecosystems, but whether MPs cause neurotoxic effects in aquatic animals at environmentally realistic concentrations is still controversial. This meta-analysis recompiled 35 studies to determine whether MPs could change the levels of brain (in vivo) neurotransmitters in aquatic animals at environmentally realistic concentrations (≤1 mg/L, median = 0.100 mg/L). Then, a group comparison was conducted to compare the effects of different factors on the effect size and to explore the significant factors affecting the neurotoxicity of MPs. The results demonstrated that MP exposure could considerably decrease the levels of acetylcholinesterase (AchE) in the brain of aquatic animals by 16.2%. However, the effects of MPs on cholinesterase (CHE), acetylcholine (ACh), dopamine (DA) and γ-aminobutyric acid (GABA) were not statistically significant due to the small number of studies and samples. The neurotoxicity of MPs was closely linked with particle size and exposure time but independent of animal species, MP compositions, MP morphology and MP concentrations. Further literatures review indicated that MP-induced neurotoxicity and behavioral changes are related with multiple biological processes, including nerve damage, oxidative stress, intestinal flora disturbance and metabolic disorder. Furthermore, some factors influencing MP neurotoxicity in the real environment (e.g. the aging of MPs, the release of MP additives, and the co-exposure of MPs and pollutants) were discussed. Overall, this study preliminarily explored whether MPs induced changes in neurotoxicity-related indicators in aquatic animals through meta-analysis and provided scientific evidence for evaluating the health risks and neurotoxicity of MPs at the environmental level.
Collapse
Affiliation(s)
- Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
19
|
Barboza LGA, Otero XL, Fernández EV, Vieira LR, Fernandes JO, Cunha SC, Guilhermino L. Are microplastics contributing to pollution-induced neurotoxicity? A pilot study with wild fish in a real scenario. Heliyon 2023; 9:e13070. [PMID: 36711285 PMCID: PMC9880392 DOI: 10.1016/j.heliyon.2023.e13070] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Pollution-induced neurotoxicity is of high concern. This pilot study investigated the potential relationship between the presence of microplastics (MPs) in the brain of 180 wild fish (Dicentrarchus labrax, Platichthys flesus, Mugil cephalus) from a contaminated estuary and the activity of the acetylcholinesterase (AChE) enzyme. MPs were found in 9 samples (5% of the total), all of them from D. labrax collected in the summer, which represents 45% of the samples of this species collected in that season (20). Seventeen MPs were recovered from brain samples, with sizes ranging from 8 to 96 μm. Polyacrylamide, polyacrylic acid and one biopolymer (zein) were identified by Micro-Raman spectroscopy. Fish with MPs showed lower (p ≤ 0.05) AChE activity than those where MPs were not found. These findings point to the contribution of MPs to the neurotoxicity induced by long-term exposure to pollution, stressing the need of further studies on the topic to increase 'One Health' protection.
Collapse
Affiliation(s)
- Luís Gabriel A. Barboza
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal,ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal,Corresponding author. CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Xosé L. Otero
- CRETUS Institute, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, 15782, Spain,REBUSC, Network of Biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain
| | - Ezequiel V. Fernández
- RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain
| | - Luís R. Vieira
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal,ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lúcia Guilhermino
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal,ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
20
|
Saad E, Hamed M, Elshahawy AM, Abd El-Aal M, Sayed AEDH. Effects of major and trace elements from the El Kahfa ring complex on fish: Geological, physicochemical, and biological approaches. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 10. [DOI: 10.3389/fenvs.2022.1013878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The alkaline rocks are known for enriching rare lithophilic elements, including lithium, uranium, and tin, which negatively impact aquatic life. This study offers an intensive investigation of the influence of alkaline rocks on Nile Tilapia (Oreochromis niloticus). The variation in blood profile, the induction of antioxidant enzymes, morphological erythrocyte, and histological structure have been conducted for the fish after 15 days of exposure to alkaline rocks powder with a dose of 100 μg/L. As a result, there was a pronounced decrease in blood profiles, such as platelets and white blood cell counts. There was a failure in the liver and kidney functions. Moreover, it shows an increase in superoxide dismutase (SOD) and catalase (CAT) activities as antioxidant biomarkers. Also, exposure to alkaline rocks induced DNA mutation and erythrocyte distortion. We concluded that the bulk alkaline rocks induced changes in the hemato-biochemical and antioxidant parameters of Nile tilapia. Additionally, exposure to bulk alkaline rock compounds also caused poikilocytosis and nuclear abnormalities of RBCs. This draws our attention to the seriousness of climatic changes, the erosion of rocks, and their access to water.
Collapse
|
21
|
Porcino N, Bottari T, Mancuso M. Is Wild Marine Biota Affected by Microplastics? Animals (Basel) 2022; 13:147. [PMID: 36611755 PMCID: PMC9817524 DOI: 10.3390/ani13010147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The present review provides detailed information on the adverse effects of MPs on wild marine organisms, including tissue damage, fish condition, oxidative stress, immune toxicity, and genotoxicity. A bibliometric analysis was carried out on CiteSpace (version 6.1.R3) (Drexel University, Philadelphia, PA, USA) to verify how many papers studied the effects on wild marine species. The results showed a total of 395 articles, but only 22 really presented data on the effects or impacts on marine biota, and of these, only 12 articles highlighted negative effects. This review shows that the observed effects in wild organisms were less severe and milder than those found in the experimental conditions. The knowledge of negative effects caused by direct ingestion of microplastics in wild animals is still limited; more efforts are necessary to fully understand the role of MPs and the adverse effects on wild marine organisms, the ecosystem, and human health.
Collapse
Affiliation(s)
- Nunziatina Porcino
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
| | - Teresa Bottari
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| | - Monique Mancuso
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| |
Collapse
|
22
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
23
|
Zhang C, Zhang Y, Shan B. Heavy metal distribution, fractionation, and biotoxicity in sediments around villages in Baiyangdian Lake in North China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:86. [PMID: 36344697 DOI: 10.1007/s10661-022-10689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The effects of human activities on heavy metal distributions and fractionation in sediments from villages around Baiyangdian Lake (BYDL), North China, were assessed. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in sediments from five villages were determined, and the potential ecological risk index, risk assessment code, and Chironomus sp. larvae toxicity assay were used to assess the bioavailabilities and toxicities of the metals. The contribution of Cd to the potential ecological risk was 45.13-89.53%, the highest among the heavy metals investigated. The contributions of Cd, Pb, and Zn in the non-residual fractions to the total concentrations were 66.23-90.57%, 18.31-96.28%, and 8.89-76.84%, respectively, which indicated that these metals had important anthropogenic sources and were very bioavailable. The mean risk assessment codes decreased in the order of Cd (49.82%) > Zn (20.95%) > Cu (9.35%) > Pb (6.88%) > Ni (4.85%) > Cr (0.30%), and the toxicity of Cd and Zn to biota around BYDL is of concern. The mean survival rate of Chironomus sp. larvae in sediments from Dizhuang village was 44.02%, which indicated that there was a high degree of heavy metal toxicity, particularly in waterways around the village. Carboxylesterase and superoxide dismutase analysis results indicated that heavy metals could markedly increase or decrease enzyme activities in Chironomus sp. larvae. Overall, the results indicated that heavy metal pollution in villages around BYDL should be taken into consideration for its ecological management.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
24
|
Li LP, Jin YC, Fang L, Zhang C. Direct photolysis of diclofenac under simulated sunlight: Transformation pathway and biological concerns. CHEMOSPHERE 2022; 307:135775. [PMID: 35868525 DOI: 10.1016/j.chemosphere.2022.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Topical diclofenac gels are frequently applied on human skin and, consequently are exposed to sunlight during outdoor activities. The degradation of diclofenac (DCF) with sunlight exposure is known to occur but the detailed transformation characteristics and biological concerns have not been comprehensively investigated. In the present work, the transformation products during diclofenac photolysis were identified with the aid of ultra-performance liquid chromatography coupled with triple time-of-flight mass spectrometry (UPLC-TripleTOF). Biological concerns, including microtoxicity, genotoxicity, cytotoxicity and antiestrogenicity were examined with multiple in-vitro bioassays. Spearman correlation analysis was conducted to obtain further insight into the contributions of photolysis products to overall biological concerns. The results demonstrated that diclofenac was readily degraded under sunlight to form five main photolysis products via substitution, dechlorination, dehydroxylation, homodimerization and heterodimerization. Products P1, P2 and P5 were reported previously, while two dimer products (P3 and P4) are innovative products and have not been found in prior studies. A significant elevation in the microtoxicity was found during the photolysis of diclofenac, resulting mainly from the carbazole-containing photolysis products P2, P3, P4 and P5. Genotoxicity and antiestrogenicity declined along with the reduction of diclofenac, indicating that no photolysis products were genotoxic or anti-estrogenic. Modest cytotoxicity to the human skin epidermis cell line was observed and attributed to the formation of intermediate species. This outcome highlighted the biological concerns of diclofenac to human health when exposed to sunlight.
Collapse
Affiliation(s)
- Li-Ping Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| | - Yan-Chao Jin
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Le Fang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Cheng Zhang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
25
|
Garnero PL, Ballesteros ML, Monferran MV, Rivetti NG, Bistoni MA. Multi-biomarker Assessment in a Native Species Psalidodon eigenmanniorum Under Inorganic Mercury and Recovery Scenarios. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:142-154. [PMID: 35934735 DOI: 10.1007/s00244-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The increasing contamination of water bodies with mercury raises concerns about its possible effects on aquatic organisms. The combined use of several biomarkers allows researchers to study the impact of a chemical at different levels of biological organization. In the present work, we determined the response of histological (gills and liver), somatic (condition factor and hepato-somatic index), and behavioral (predator-prey relationship, through the presentation of a computer-animated image) biomarkers in the native species Psalidodon eigenmanniorum exposed to 100 µg L-1 of inorganic Hg (IHg) during 96 h. We also assessed whether there was a change in the biomarkers analyzed after 7 days in Hg-free water compared with those exposed to IHg. In exposed fish, IHg caused damage to the gills and liver tissues. The condition factor showed no difference between IHg-exposed organisms and control organisms, while the hepato-somatic index was lower in IHg-exposed fish. As for the behavioral analyses, it was observed that the presentation of a stimulus induced changes in the behavioral responses of fish exposed to IHg, which showed a heightened state of alertness with respect to control. On the other hand, after 7 days in Hg-free water, the organisms generally showed no changes in biomarkers compared with IHg-exposed fish. Our results contribute new data on IHg toxicity in a native species and provide information on the plasticity of damage to reverse itself. Furthermore, this work provides baseline information for environmental assessments in water bodies where mercury is present.
Collapse
Affiliation(s)
- Paola L Garnero
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - María L Ballesteros
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Magdalena V Monferran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia G Rivetti
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María A Bistoni
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
26
|
Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C. Effects of heavy metals on fish physiology - A review. CHEMOSPHERE 2022; 300:134519. [PMID: 35398071 DOI: 10.1016/j.chemosphere.2022.134519] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The pollution by heavy metals poses a serious threat to the aquatic environment and to the organisms if the concentration of heavy metals in the environment exceeds the safe limits. Due to their non-biodegradable and long persistence nature in the environment, heavy metals cause toxicity in fish by producing oxygen reactive species through oxidizing radical production. In this review, we investigated the effects of heavy metals on fish physiology with special emphasis on hemato-biochemical properties, immunological parameters especially hormones and enzymes, histopathology of different major organs and underlying molecular mechanisms. All those parameters are significantly affected by heavy metal exposure and are found to be important bio-monitoring tools to assess heavy metal toxicity. Hematological and biochemical alterations have been documented including cellular and nuclear abnormalities in different fish species exposed to different concentrations of heavy metals. Major fish organs (gills, liver, kidneys) including intestine, muscles showed different types of pathology specific to organs in acute and chronic exposure to different heavy metals. This study also revealed the expression of different genes involved in oxidative stress and detoxification of heavy metals. In a nutshell, this article shades light on the manipulation of fish physiology by the heavy metals and sought attention in the prevention and maintenance of aquatic environments particularly from heavy metals contaminations.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shanon Iffat Alam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S.Agata-Messina, Italy
| |
Collapse
|
27
|
Barathkumar S, Padhi RK, Parida PK, Marigoudar SR. In vivo appraisal of oxidative stress response, cell ultrastructural aberration and accumulation in Juvenile Scylla serrata exposed to uranium. CHEMOSPHERE 2022; 300:134561. [PMID: 35413368 DOI: 10.1016/j.chemosphere.2022.134561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
In vivo studies were performed to evaluate the organ specific tissue accumulation and cellular toxicity of uranium to mud crab Scylla serrata. The specimens were acclimated in natural seawater and the exposure to 50-250 μg/L uranium was investigated up to 60 days. The present study examined the effects of concentration and duration of uranium exposure in the tissue of S. serrata at cellular and subcellular level using scanning electron microscopy and bright field transmission electron microscopy in addition to histological analysis. The results indicated that accumulation of U in S. serrata was organ specific and followed the order gills > hepatopancreas > muscle. The response of key antioxidant enzyme activities such as SOD, GPx and CAT in different organs of crabs indicated oxidative stress due to U in the ambient medium and tissue. At 50 and 100 μg/L of U exposure, individuals were able to acclimate the oxidative stress and withstand the uranium exposure. This acclimation could not be sustained at higher concentrations (250 μg/L), affecting the production of CAT in the tissues. Cellular and subcellular changes were observed in the hemocytes with reduction in their number in consonance with the antioxidant enzymes. Histological aberrations like lamellar disruption of gill, necrosis of hepatopancreas, disruption and rupture of muscle bundles were observed at different concentrations and were severe at higher concentration (250 μg/L). Necrosis was observed in the electron micrographs of tissues shortly after 15 days of exposure. SEM micrograph clearly shows disrupted lamellae, folding of marginal canal and reduction of inter lamellar spaces in the gills of crab exposed to high concentration of uranium. Mitochondrial anomalies are reported for the first time in the present study in addition to the subcellular changes and vacuoles on exposure uranium in the cells of gill and hepatopancreas.
Collapse
Affiliation(s)
- S Barathkumar
- National Centre for Coastal Research, Ministry of Earth Science, Chennai, Tamil Nadu, 600100, India; Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India
| | - R K Padhi
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India.
| | - P K Parida
- Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India
| | - S R Marigoudar
- National Centre for Coastal Research, Ministry of Earth Science, Chennai, Tamil Nadu, 600100, India
| |
Collapse
|
28
|
Santos D, Luzio A, Félix L, Bellas J, Monteiro SM. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109363. [PMID: 35525464 DOI: 10.1016/j.cbpc.2022.109363] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
Fish gills are in direct contact with the surrounding pollutants, and thus, potentially more vulnerable to microplastics (MPs) and heavy metals. The present study aimed to evaluate the long-term exposure effects of MPs and copper (Cu) in the gills of adult zebrafish (Danio rerio). To this end, zebrafish were exposed to MPs (2 mg/L), Cu (Cu25, 25 μg/L) and their mixture (Cu25 + MPs) for 30 days, and then oxidative stress, detoxification, antioxidant, metabolic and neurotoxicity enzymes/genes, as well serotonergic system and apoptosis genes, were evaluated in gills. In the mixture group, ROS levels were increased, while CAT and GPx activities were inhibited, indicating the induction of oxidative stress in zebrafish gills. This was followed by an increase of LPO levels and potential oxidative damage in zebrafish gills. The tryptophan hydroxylase 1a (tph1a) and caspase-3 (casp3) genes were significantly upregulated in Cu25 + MPs group, indicating a potential dysregulation of serotonin synthesis and apoptosis pathways, respectively. Overall, the present study contributes to improving the knowledge about the response of aquatic organisms to MPs and the potential ecological risk that these particles represent to the ecosystems.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| |
Collapse
|
29
|
Chand P, Dutta S, Mukherji S. Characterization and biodegradability assessment of water-soluble fraction of oily sludge using stir bar sorptive extraction and GCxGC-TOF MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119177. [PMID: 35346777 DOI: 10.1016/j.envpol.2022.119177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Percolation of water through oily sludge during storage and handling of the sludge can cause soil and groundwater contamination. In this study, oily sludge from a refinery was equilibrated with water to obtain the water-soluble fraction (WSF) of oily sludge. The WSF had dissolved organic carbon (DOC) of 166 mg/L. Human cell line-based toxicity assay revealed IC50 of 41 mg/L indicating its toxic nature. The predominant compounds in WSF of oily sludge included isomers of methyl, dimethyl and trimethyl quinolines and naphthalenes along with phenol derivatives and other polynuclear aromatic hydrocarbons (PAHs). Biodegradation of WSF of oily sludge was studied using a consortium of Rhodococcus ruber, Bacillus sp. and Bacillus cereus isolated from the refinery sludge. The consortium of the three strains resulted in 70% degradation over 15 days with a first-order degradation rate of 0.161 day-1. Further analysis of the WSF was performed using the stir-bar sorptive extraction (SBSE) followed by GCxGC-TOF MS employing a PDMS Twister. The GCxGC analysis showed that Bacillus cereus was capable of degrading the quinoline, phenol and naphthalene derivatives in WSF of oily sludge at a faster rate compared to pyridine and benzoquinoline derivatives. Quinoline, phenol, biphenyl, naphthalene, pyridine and benzoquinolines derivatives in the WSF of oily sludge were reduced by 87%, 92%, 88%, 77%, 40% and 62%, respectively with respect to the controls. The WSF of oily sludge contained, n-alkanes, ranging from n-C12 to n-C18 which were removed within 2 days of biodegradation.
Collapse
Affiliation(s)
- Priyankar Chand
- Environmental Science and Engineering Department, IIT Bombay, Powai, Mumbai, India
| | - Suryendu Dutta
- Department of Earth Sciences, IIT Bombay, Powai, Mumbai, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department, IIT Bombay, Powai, Mumbai, India.
| |
Collapse
|
30
|
Oliveira HHQ, Reis-Filho JA, Nunes JACC, Dos Santos RM, de F Esteves Santiago E, Aguilar L, de Mello Affonso PRA, da Cruz AL. Gill Histopathological Biomarkers in Fish Exposed to Trace Metals in the Todos os Santos Bay, Brazil. Biol Trace Elem Res 2022; 200:3388-3399. [PMID: 34590237 DOI: 10.1007/s12011-021-02930-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Histopathologies are widely recognized as biomarkers of environmental pollution. In this sense, we evaluated the putative relationship of gill histopathologies and distinct ecological impacts in two regions of Todos os Santos Bay (BTS), Brazil, the largest bay in Northeastern Brazil, South Atlantic. We compared the presence and concentration of metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn) in water, sediments, and gills and gill histopathologies of a demersal fish (Diapterus rhombeus) and a benthic fish (Ogcocephalus vespertilio). As expected, fish and sediment samples from historically contaminated areas (Aratu) showed more remarkable traces of metals than apparently low-impact areas (Jaguaripe). Likewise, the DTC (degree of tissue change) index and the volume densities were higher in fish caught in Aratu. In addition, the Diapterus rhombeus species showed more potential than Ogcocephalus vespertilio for risk assessment as it showed more responses to the environment reflected on more histopathologies. These data support the effectiveness of incorporating functional gill morphology to monitor impacts on estuarine biota that can be used as a reference to improve the management of ecosystems and prevent harm to human health.
Collapse
Affiliation(s)
- Heigon H Queiroz Oliveira
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - José Amorim Reis-Filho
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - José Anchieta C C Nunes
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Renata Melo Dos Santos
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Eunice de F Esteves Santiago
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Letícia Aguilar
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Paulo R A de Mello Affonso
- Departamento de Ciências Biológicas, Universidade Estadual Do Sudoeste da Bahia (UESB), Campus de Jequié, Jequié, BA, 45205-490, Brazil
| | - André Luis da Cruz
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil.
| |
Collapse
|
31
|
Verma S, Batoye S, Jindal R. Protective efficacy of naringenin against cadmium-induced redox imbalance in Labeo rohita: an integrated biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25591-25604. [PMID: 34846652 DOI: 10.1007/s11356-021-17703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The protective efficacy of dietary naringenin (NG) has been investigated against the toxicity caused by cadmium chloride (CdCl2) using biomarkers of oxidative stress in the liver, gills and kidney of Labeo rohita. The fish were exposed to environmentally relevant concentrations of CdCl2 (0.37 and 0.62 mg/L) and simultaneously orally administered with NG (50 mg/kg bw/day) for 60 days. Tissue (gills, liver and kidney) samples were collected on days 15, 30 and 60 of the experiment and analysed for endogenous antioxidants and oxidative stress biomarkers. CdCl2 exposure for 15 and 30 days induced the development of adaptive mechanism as demonstrated by the enhanced activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in all three tissues. However, on the 60th day, CdCl2-induced oxidative damage was stipulated by a decline in the enzyme activities and reduced glutathione (GSH) content significantly (p < 0.05) below control levels along with enhanced levels of lipid peroxidation. Oral administration of NG in toxicant exposed fish significantly restored the altered levels of antioxidants, oxidative enzymes and lipid peroxidation. Besides, integrated biomarker response (IBR) analysis was applied by combining all the biomarkers to indicate the overall stress response index. IBR analysis confirmed the altered levels of biomarkers, the oxidative stress induced by CdCl2 exposure and the ameliorative potential of NG. The present study suggested that NG might have protective role against Cd-induced oxidative insult which might be ascribed to the ability of NG to chelate metals and scavenge free radicals.
Collapse
Affiliation(s)
- Sakshi Verma
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
- Department of Zoology, Hans Raj Mahila Maha Vidyalaya, Jalandhar, 144008, Punjab, India
| | - Smriti Batoye
- Department of Zoology, Maharaja Agrasen University, Baddi, 174103, Himachal Pradesh, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
32
|
Santos D, Perez M, Perez E, Cabecinha E, Luzio A, Félix L, Monteiro SM, Bellas J. Toxicity of microplastics and copper, alone or combined, in blackspot seabream (Pagellus bogaraveo) larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103835. [PMID: 35227885 DOI: 10.1016/j.etap.2022.103835] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Plastics pose serious risks for fish productivity and a potential constraint for food security. Newly hatched blackspot seabream larvae were exposed to microplastics (MPs), copper (Cu, 10-810 µg/L) and their mixtures (Cu+MPs), during 3 and 9 days. Biochemical biomarkers and the expression of antioxidant and neurotoxicity-related genes were evaluated. In the 3-day exposure, catalase and glutathione-S-transferase activities decreased in MPs, Cu and Cu+MPs groups, followed by an increase of lipid peroxidation in the Cu270 and Cu270 +MPs exposed larvae. In the 9-day exposure, ROS levels increased in MPs and Cu30 groups, but no significant oxidative damage was observed, suggesting that the antioxidant system overcome the induced oxidative stress. However, the acetylcholinesterase transcript was downregulated in MPs, Cu and Cu10+MPs groups, indicating that MPs effects in cholinergic neurotransmission may arise after longer exposures. Overall, MPs and Cu can reduce survival, induce oxidative stress, lipid peroxidation, neurotoxicity, and impact negatively fish larvae fitness.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Montse Perez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Evaristo Perez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
33
|
da Silva ETL, Pedreira MM, Dias MLF, Gomes MVT, Soares MA, Pedreira RSF, Schorer M. Mercury chloride toxicity in juveniles Prochilodus argenteus a species from southeastern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21803-21810. [PMID: 34767175 DOI: 10.1007/s11356-021-17205-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to determine the 96-h LC50 (lethal concentration for 50% of the test population in 96 h of observation) of mercury chloride (HgCl2) and evaluated its absorption in the gills, liver, and muscle of juvenile "curimatã-pacu," Prochilodus argenteus. The fish were exposed for 4 days to different concentrations of HgCl2: 0.000, 0.0375, 00.075, 0.150, 0.225, 0.300, and 0.400 mg L-1 to get the 96-h LC50, and the concentration of Hg in the tissues. The fish were exposed to different levels of HgCl2 (0.000, 0.0375, 00.075, 0.150, 0.225, and 0.300 mg L-1), for 4 and 7 days, when different tissues (gills, liver, and muscle) were sampled. The mercury concentration values obtained were compared between tissues, days, and concentration of mercury in the water. The 96-h LC50 for P. argenteus was 0.339 mg L-1 of HgCl2, within the range found for other neotropical and tropical species, showing a medium sensitivity. The concentration of Hg in the tissues increased from the muscle to the gills and liver, and according to the increasing concentration of HgCl2 in the water. The fish liver is the most suitable tissue for environmental monitoring and for the evaluation of the consumed fished. Despite being the tissue that least accumulated mercury, the muscle must be evaluated because it is the part consumed by the population.
Collapse
Affiliation(s)
- Emília Tatiane Lopes da Silva
- Faculty of Agricultural Sciences, Federal University of Vales Do Jequitinhonha and Mucuri, Highway MGT 367 - Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Marcelo Mattos Pedreira
- Laboratory of Aquaculture and Aquatic Ecology, Department of Animal Science, Federal University of Valleys of the Jequitinhonha and Mucuri, Highway MGT 367 - Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Maria Letícia Fernandes Dias
- Laboratory of Aquaculture and Aquatic Ecology, Department of Animal Science, Federal University of Valleys of the Jequitinhonha and Mucuri, Highway MGT 367 - Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Marcos Vinícius Teles Gomes
- Development Company of the São Francisco and Parnaíba Valleys, Hydrobiology and Pisciculture Station of Três Marias, Mailbox 11, Três Marias, MG, 39205-000, Brazil
| | - Marcus Alvarenga Soares
- Faculty of Agricultural Sciences, Federal University of Vales Do Jequitinhonha and Mucuri, Highway MGT 367 - Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Rodrigo Sá Fortes Pedreira
- Laboratory of Aquaculture and Aquatic Ecology, Department of Animal Science, Federal University of Valleys of the Jequitinhonha and Mucuri, Highway MGT 367 - Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Marianne Schorer
- Laboratory of Fish Nutrition (AQUANUT), Department of Animal Science at the State University of Santa Cruz - UESC, Jorge Amado Road, Km 16, - Salobrinho, Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
34
|
Cuenca ALR, Simonato JD, Meletti PC. Acute exposure of embryo, larvae and adults of Danio rerio to fipronil commercial formulation reveals effects on development and motor control. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:114-123. [PMID: 34748160 DOI: 10.1007/s10646-021-02497-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The insecticide fipronil, one of the main pesticides used in Brazil, is often detected in natural aquatic environments, and causes neuronal hyperexcitation by inhibiting GABAergic neurotransmission, leading to putative alterations in behaviour and development. This work sought to analyse the toxicity of formulated Regent® 800WG (80% fipronil) on development (fish embryo toxicity test, FET), morphology, and swimming behaviour of larvae and adults of zebrafish (Danio rerio). FET was performed following OECD236 guidelines at concentrations ranging from 0.002 to 1600 μg.L-1 of formulated Regent® 800WG. Adults were exposed to 0.2, 2 and 20 μg.L-1 of the product for 24 and 96 h, and were submitted to the light-dark, novel tank and swimming endurance tests No lethal parameters were observed in larvae, but in concentrations above 400 µg.L-1, there was shortening of the body axis and decreased swimming behavior. In adults, exposure to the pesticide did not lead to changes in free swimming parameters. However, a marked decrease of swimming endurance was observed at all experimental treatments, although probably not in consequence of energetic depletion, since baseline blood glucose levels and condition factor were similar at all conditions. Furthermore, zebrafish adults did not show their natural preference for the dark environment. The pesticide likely has anxiolytic effects on zebrafish, as well as a compromising effect on locomotor control, illustrating that behavioural changes, which could affect activities on the natural environment, such as escape and predation, may occur even in environmentally relevant concentrations of this pollutant.
Collapse
Affiliation(s)
- André L R Cuenca
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná - Centro Politécnico, 81530-000, Curitiba, PR, Brazil.
| | - Juliana D Simonato
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| | - Paulo C Meletti
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| |
Collapse
|
35
|
Chahouri A, Agnaou M, El Hanaoui M, Yacoubi B, Moukrim A, Banaoui A. Assessment of seasonal and spatial variation responses of integrated biomarkers in two marine sentinel bivalve species: Agadir Bay (Southern of Morocco). MARINE POLLUTION BULLETIN 2022; 174:113179. [PMID: 34844146 DOI: 10.1016/j.marpolbul.2021.113179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to assess the effects of contamination of the Agadir bay coasts using bivalves as a biomonitoring sentinel species. Seasonal variations of biochemical composition in terms of total protein content and oxidative stress biomarkers including glutathione-S-transferase, malondialdehyde, catalase and acetylcholinesterase were evaluated in the soft tissues of Scrobicularia plana and Donax trunculus specimens. The latter were collected from two sites in Agadir bay during two-year span (2018-2020). The Integrated Biomarker Response Index (IBR) was performed to classify the stress response in both species and to assess the level of exposure to xenobiotics. The data showed maximum annual values of acetylcholinesterase and malondialdehyde for Donax trunculus in Agadir beach (AG) with 6.25 nmol/mn/mg and 3 nmol/mg of protein, respectively. Those of catalase and glutathione-S-transferase for Scrobicularia plana in Oued Souss estuary (OS) were of 4.41 μmol/mn/mg and 14.43 nmol/mn/mg of protein, respectively. The studied species are considered good indicators in aquatic ecosystems.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Mustapha Agnaou
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Mohamed El Hanaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Bouchra Yacoubi
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | | | - Ali Banaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
36
|
Hoyo-Alvarez E, Arechavala-Lopez P, Jiménez-García M, Solomando A, Alomar C, Sureda A, Moranta D, Deudero S. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106048. [PMID: 34875488 DOI: 10.1016/j.aquatox.2021.106048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, microplastics (MPs) and adsorbed pollutants are considered a global thread to marine ecosystems. This study describes the effects of pollutants and MPs ingestion on fish brains through the assessment of oxidative stress biomarkers and monoaminergic neurotransmitters using gilthead seabream (Sparus aurata) as fish model. Juveniles were experimentally exposed to three different dietary treatments for 90 days: Control treatment (C) consisted of standard feed; Virgin treatment (V) contained feed enriched with 10% of MPs; and Exposed treatment (E) consisted of feed with 10% of MPs that were exposed to seawater in an anthropogenically impacted area for 2 months in order to enrich the plastic with the pollutants within the water column. Sampling was made at the start of the experiment (T0), at the end of the dietary treatments (T90) and after a posterior detoxification period of 30 days (T120). Results evidenced that a MPs and pollutants enriched diet increases the activity of some of the oxidative stress biomarkers (e.g. CAT and GST), and it was shown for the first time alterations on dopaminergic and serotonergic system activity on seabream brains, indicating potential neurofunctional effects associated to MPs and pollutants ingestion. In addition, results showed a tendency to recover enzymatic and brain monoaminergic neurotransmitter levels after a 30-day detoxification period. In conclusion, MPs and pollutants exposure for 90 days induced oxidative stress and changes on monoaminergic activity in the brain of S. aurata.
Collapse
Affiliation(s)
| | - Pablo Arechavala-Lopez
- Fish Ethology and Welfare Group, Centro de Ciencias do Mar (CCMAR), Faro, Portugal.; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados (IMEDEA-CSIC/UIB), Mallorca, Spain
| | - Manuel Jiménez-García
- Group of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands (UIB)-IUNICS, Palma de Mallorca, Spain. CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, Madrid, Spain
| | - Carmen Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (COB-IEO), Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands (UIB)-IUNICS, Palma de Mallorca, Spain. CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, Madrid, Spain
| | - David Moranta
- Group of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (COB-IEO), Mallorca, Spain
| |
Collapse
|
37
|
Untargeted Metabolomics Reveals a Complex Impact on Different Metabolic Pathways in Scallop Mimachlamys varia (Linnaeus, 1758) after Short-Term Exposure to Copper at Environmental Dose. Metabolites 2021; 11:metabo11120862. [PMID: 34940620 PMCID: PMC8703567 DOI: 10.3390/metabo11120862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Ports are a good example of how coastal environments, gathering a set of diverse ecosystems, are subjected to pollution factors coming from human activities both on land and at sea. Among them, trace element as copper represents a major factor. Abundant in port ecosystem, copper is transported by runoff water and results from diverse port features (corrosion of structures, fuel, anti-fouling products, etc.). The variegated scallop Mimachlamys varia is common in the Atlantic port areas and is likely to be directly influenced by copper pollution, due to its sessile and filtering lifestyle. Thus, the aim of the present study is to investigate the disruption of the variegated scallop metabolism, under a short exposure (48 h) to a copper concentration frequently encountered in the waters of the largest marina in Europe (82 μg/L). For this, we chose a non-targeted metabolomic approach using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS), offering a high level of sensitivity and allowing the study without a priori of the entire metabolome. We described 28 metabolites clearly modulated by copper. They reflected the action of copper on several biological functions such as osmoregulation, oxidative stress, reproduction and energy metabolism.
Collapse
|
38
|
Mendes RC, Henriques MB, Barbieri E. Carbofuran affects behavior and metabolism of the Atlantic Forest lambari Deuterodon iguape, a native species from Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61128-61136. [PMID: 34169417 DOI: 10.1007/s11356-021-15071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
One of the major causes of aquatic biodiversity loss is the contamination of the environment by pesticides. Even though there is a considerable amount of studies on the subject, there are still few that deal with the effects of carbofuran on native species in Brazil. Although carbofuran is widely used in Brazil, its action on native organisms, such as the Atlantic Forest lambari Deuterodon iguape, has not yet been studied. This work aimed to evaluate the effects of exposure to carbofuran on the fish D. iguape, considering the behavior and specific oxygen consumption as end points. Opercular movements, dorsal fin movements, and swimming speed were analyzed as behavioral parameters. To assess specific oxygen consumption, fish were subjected to concentrations of 0.0, 0.05, 0.1, 0.25, and 0.5 mg/L, for 24 h. For behavior analysis, fish remained exposed to carbofuran at concentrations of 0.0, 0.01, 0.05, 0.1, and 0.5 mg/L, in periods of 0, 2, 24, and 48 h. The behavior was studied through filming, analyzed with the free software, Tracker 4.92 (Open Source Physics). The results demonstrate an increase in opercular movements (18% ± 2.65) and a decrease in dorsal fin movements (- 21.2% ± 2.97), as well as in swimming speed (- 58.3% ± 1.83) of the experimental groups compared to the control group. There was an increase in oxygen consumption of 58.4% in fish exposed to the highest concentration of carbofuran. Thus, it is concluded that carbofuran altered D. iguape's behavior and oxygen consumption. The species was sensitive to carbofuran concentrations and can be used as a bioindicator.
Collapse
Affiliation(s)
- Ricardo Claudionor Mendes
- Programa de Pós-Graduação do Instituto de Pesca, Instituto de Pesca - Governo do Estado de São Paulo, APTA, SAA/SP, Caixa Postal 157, Cananéia, SP, 11990-000, Brazil
| | - Marcelo Barbosa Henriques
- Instituto de Pesca - Governo do Estado de São Paulo, Av. Bartolomeu de Gusmão, 192, Ponta da Praia, Santos, SP, 11030-906, Brazil
| | - Edison Barbieri
- Instituto de Pesca - Governo do Estado de São Paulo, Av. Professor Wladimir Besnard, s/n, Caixa Postal 157, Cananéia, SP, 11900-000, Brazil.
| |
Collapse
|
39
|
Obiakor MO, Tighe MK, Pereg L, Taylor AM, Maher W, Krikowa F, Wilson SC. Sensitivity of Freshwater Australian Bass (Macquaria novemaculeata) and Silver Perch (Bidyanus bidyanus) to Waterborne Antimony: Exposure-Dose-Response Characteristics and Ion Homeostasis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:621-636. [PMID: 34562110 DOI: 10.1007/s00244-021-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
We conducted acute toxicity studies using semi-static protocols to examine the lethal responses of Australian bass and silver perch exposed to antimony (Sb) oxidation states in Sb(III) (10.5-30.5 mg L-1) and Sb(V) (95.9-258.7 mg L-1). Bioavailability and the effects of Sb on body ion regulation (Na, Ca, Mg, and K) were also investigated. Antimony species-specific effects were observed with exposure to both Sb oxidation states. Median lethal concentrations (LC50s) for Sb(III) were 13.6 and 18 mg L-1 for Australian bass and silver perch, respectively, and the LC50 for Sb(V) in Australian bass was 165.3 mg L-1. The LC50 could not be calculated for silver perch exposed to Sb(V) as the maximum exposure concentrations produced 40% mortality but a larger-than value of > 258.7 mg L-1 was estimated. Relative median potency values derived from the LC50s were 0.1 Sb(III) and 12.2 and 16.6 Sb(V) for Australian bass and silver perch, respectively, demonstrating greater toxicity of Sb(III) to both fish species. Antimony uptake in fish was observed. Median critical body residue (CBR50) values of 77.7 and 26.6 mg kg-1 for Sb(III) were estimated for Australian bass and silver perch, respectively, and 628.1 mg kg-1 for Sb(V) in Australian bass. Bioconcentration factors (BCFs) for both Sb(III) and Sb(V) did not change with exposure but the greater BCFs for fish exposed to Sb(III) indicate that it is more bioavailable than Sb(V) in acute exposure. No effects on whole-body Na, Ca, Mg, or K ions were observed with fish exposure to either Sb species.
Collapse
Affiliation(s)
| | - Matthew K Tighe
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Anne M Taylor
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
- Centre for Applied Water Science, University of Canberra, Canberra, ACT 2601, Australia
| | - William Maher
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Frank Krikowa
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
40
|
Xu K, Wang H, Li P. The cadmium toxicity in gills of Mytilus coruscus was accentuated by benzo(a)pyrene of higher dose but not lower dose. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109128. [PMID: 34237427 DOI: 10.1016/j.cbpc.2021.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
In natural environment, the existence of interactions of toxic mixtures could induce diverse biochemical pathways and consequently exert different toxicological responses in aquatic organisms. However, little information is available on the effects of combined xenobiotics on lower aquatic invertebrates. Here, we assessed the effects of cadmium (Cd, 0.31 mg/L) as well as the mixture of Cd (0.31 mg/L) and benzo(a)pyrene (Bap, 5 or 50 μg/L) on bioaccumulation, antioxidant, lipid peroxidation (LPO) and metallothionein (MT) responses in gills of thick shell mussel Mytilus coruscus. Upon exposed to single Cd, the metal bioaccumulation, antioxidant enzymes activities, LPO and MT level significantly increased in the gills, suggesting an apparent toxicity to mussels. The interaction of Cd + 5 μg/L Bap did not significantly alter these endpoints compared to single Cd. However, once the dose of Bap elevated to 50 μg/L, the induction of bioaccumulation, antioxidant system and LPO was even more pronounced while the induction of MT was remarkably inhibited, implying an accentuated toxicity. Collectively, the current results demonstrated that 0.31 mg/L Cd exposure resulted in severe toxicity to mussels despite of the induction of MT system to alleviate the metal toxicity. Once the Cd exposure combined with Bap, the lower dose of Bap could not change the Cd toxicity while the higher dose of Bap accentuated the toxicity by inhibiting metallothionein synthesis. These findings might provide some useful clues for elucidation the mechanism of the interaction of combined xenobiotics in molluscs.
Collapse
Affiliation(s)
- Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China.
| | - Haoxue Wang
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| | - Pengfei Li
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Zhejiang Marine Fisheries Research Institute, Zhejiang, Zhoushan 316021, China
| |
Collapse
|
41
|
Subba M, Keough MJ, Kellar C, Long S, Miranda A, Pettigrove VJ. Potamopyrgus antipodarum has the potential to detect effects from various land use activities on a freshwater ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117563. [PMID: 34147782 DOI: 10.1016/j.envpol.2021.117563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Identifying risks to ecosystems from contaminants needs a diversity of bioindicators, to understand the effects of these contaminants on a range of taxa. Molluscs are an ideal bioindicator because they are one of the largest phyla with extremely high ecological and economic importance. The aim of this study was to evaluate if laboratory bred Potamopyrgus antipodarum has the potential to show the impact of contaminants from various land use activities and degree of pollution on a freshwater ecosystem. We assessed the impact of contaminants arising from runoff and direct discharges in Merri Creek by measuring organism level responses (survival, growth, and reproduction), and sub-organism level responses (glutathione S-transferase (GST) activity, lipid peroxidation (LPO) activity and catalase (CAT) activity) in snails after 28-d of deployment at nine sites in Merri Creek and one site in Cardinia Creek. In Merri Creek, the top two sites were reference sites (with low impact from human activities), while the rest were impact sites (impacted by various anthropogenic land uses). Cardinia Creek (an additional reference site) had lower human activity. High concentrations of heavy metals, nutrients, and/or synthetic pyrethroids (bifenthrin) dominated these sites, which are likely to have contributed towards the negative responses observed in the snails. There was little influence from environmental conditions and site location on the endpoints because we found a similar response at an additional reference site compared to the reference sites in Merri Creek. At the organism level, reproduction increased and/or reduced, while CAT was affected at the sub-organism level. Potamopyrgus antipodarum has the potential to be a sensitive bioindicator for Australian conditions because the snails responded to varying concentrations of contaminants across different land use activities and showed similar sensitivity to P. antipodarum found in other regions of the globe and other bioindicators.
Collapse
Affiliation(s)
- Maita Subba
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Keough
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claudette Kellar
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Sara Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Ana Miranda
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Vincent J Pettigrove
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
42
|
Ré A, Rocha AT, Campos I, Marques SM, Keizer JJ, Gonçalves FJM, Pereira JL, Abrantes N. Impacts of wildfires in aquatic organisms: biomarker responses and erythrocyte nuclear abnormalities in Gambusia holbrooki exposed in situ. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51733-51744. [PMID: 33987727 DOI: 10.1007/s11356-021-14377-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Wildfires are an environmental concern due to the loss of forest area and biodiversity, but also because their role as drivers of freshwater systems contamination by metals. In this context, the fish Gambusia holbrooki was used as a model, deployed for in situ exposure in watercourses standing within a recently burnt area and further assessment of toxic effects. The fish were exposed during 4 days at four different sites: one upstream and another downstream the burnt area and two within the burnt area. Biochemical biomarkers for oxidative stress and damage were assessed. The extent of lipoperoxidative damage was monitored by quantifying malondialdehyde and DNA damage evaluated through erythrocyte nuclear abnormalities observation. Chemical analysis revealed higher metal levels within the burnt area, and exposed fish consistently showed pro-oxidative responses therein, particularly an increase of gill glutathione peroxidase and glutathione reductase activity, the records doubling compared to samples from sites in the unburnt area; also the activity of glutathione-S-transferases comparatively increased (by 2-fold in the liver) in samples from the burnt area, and malondialdehyde was produced twice as much therein and in samples downstream the burnt area reflecting oxidative damage. Consistently, the frequency of erythrocyte nuclear abnormalities was higher at sites within and downstream the burnt area. This study supports the use of sensitive oxidative stress and genotoxicity biomarkers for an early detection of potentially noxious ecological effects of wildfires runoff.
Collapse
Affiliation(s)
- Ana Ré
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | - Isabel Campos
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jan Jacob Keizer
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.
- Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
43
|
Sabry MIE, Stino FKR, El-Ghany WAA. Copper: benefits and risks for poultry, livestock, and fish production. Trop Anim Health Prod 2021; 53:487. [PMID: 34590182 DOI: 10.1007/s11250-021-02915-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023]
Abstract
Protein production from animal origin should increase to meet the needs of a growing global population. This article presents an overview on copper (Cu) forms and their importance for animals' physiological functions. Moreover, it will focus on the current and promising nano-Cu applications in poultry, livestock, and fish production systems. Use of Cu as a feed additive directly or indirectly impacts the human food chain and may affect the safety and/or quality of food. Finally, the expected risks and hazards related to the use of nano-Cu that can affect animals, humans, and the environment are described. It is concluded that nano-Cu applications have the potential to provide an efficient solution for reducing the Cu amount in the poultry, livestock, and fish diets, which can help in reducing costs and environmental contamination and increasing animals' productivity. However, concerns over the safety of nano-Cu applications hamper their immediate implementation. Thus, rigorous risk assessments should be conducted to ensure the safety of animal-origin products in the case of supplementation animal diets with nano-copper.
Collapse
Affiliation(s)
- Mohamed I El Sabry
- Animal Production Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Farid K R Stino
- Animal Production Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
44
|
Vieira M, Nunes B. Cholinesterases of marine fish: characterization and sensitivity towards specific chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48595-48609. [PMID: 33913109 DOI: 10.1007/s11356-021-13748-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Inhibition of cholinesterases has been frequently used as a biomarker for contamination of aquatic environments, because these enzymes are frequent targets for toxic effects of contaminants, such as insecticides derived from phosphoric and carbamic acids. However, this enzyme is also responsive to other contaminants, including metals. The use of cholinesterase inhibition as effect criterion in ecotoxicology studies requires the previous characterization of the specific enzymatic forms that can be present in the different tissues and/or organs of species. This work characterized the soluble ChEs present in the brain and dorsal muscle of three marine fish species, namely Scomber scombrus, Sardina pilchardus and Chelidonichthys lucerna. Pesticides (chlorpyrifos) and metals (copper sulphate) in vitro assays were conducted to quantify the effects of these contaminants on cholinesterases activity. The results of this study showed that acetylcholinesterase (AChE) was the predominant form present in the brain tissues of the three species and in the muscle tissue of one species (Sardina pilchardus). For Scomber scombrus and Chelidonichthys lucerna, the cholinesterase form present in the muscle tissue evidenced properties between the classic acetylcholinesterase and those of pseudocholinesterase forms. The results for the metal (copper) and pesticide (chlorpyrifos) showed that this species may be suitable for monitoring contaminations for these types of contaminants.
Collapse
Affiliation(s)
- Madalena Vieira
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Dimitriadi A, Papaefthimiou C, Genizegkini E, Sampsonidis I, Kalogiannis S, Feidantsis K, Bobori DC, Kastrinaki G, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Adverse effects polystyrene microplastics exert on zebrafish heart - Molecular to individual level. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125969. [PMID: 34492880 DOI: 10.1016/j.jhazmat.2021.125969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.
Collapse
Affiliation(s)
| | - Chrisovalantis Papaefthimiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Genizegkini
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
46
|
Chronological Trends and Mercury Bioaccumulation in an Aquatic Semiarid Ecosystem under a Global Climate Change Scenario in the Northeastern Coast of Brazil. Animals (Basel) 2021; 11:ani11082402. [PMID: 34438859 PMCID: PMC8388643 DOI: 10.3390/ani11082402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Managing aquatic systems is becoming increasingly complex due to human impacts, multiple and competing water needs and climate variability. Considering the Hg concentration present in the top layers of sediment (~20 cm around 30 to 40 years) with the outer layers in the tree cores tree rings cores and in the sediment’s cores from Pacoti estuary and the Ceará estuary, overall data indicate an increase in mercury in recent years. A positive and significant correlation (p < 0.05) was revealed between Hg trends in sediments and Hg trends in annular tree rings. This shared Hg pattern reflects local environmental conditions. The results of this work reinforce the indicators previously described in the semiarid NE region of Brazil, showing that global climate change and some anthropogenic factors are key drivers to Hg exposure and biomagnification for wildlife and humans. Possible climate-induced shifts in these aquatic systems highlight the need for accurate and regionally specific metrics of change in the past in response to climate and for improved understanding of response to climate factors. These processes are inducing a greater mobilization of bioavailable Hg, which could allow an acceleration of the biogeochemical transformation of Hg. Abstract Due to global warming, in the northeastern semiarid coastal regions of Brazil, regional and global drivers are responsible for decreasing continental runoff and increasing estuarine water residence time, which promotes a greater mobilization of bioavailable mercury (Hg) and allows increasing fluxes and/or bioavailability of this toxic trace element and an acceleration of biogeochemical transformation of Hg. In this work, an application of dendrochemistry analysis (annular tree rings analysis) was developed for the reconstruction of the historical pattern of mercury contamination in a contaminated area, quantifying chronological Hg contamination trends in a tropical semiarid ecosystem (Ceará River Estuary, northeastern coast of Brazil) through registration of mercury concentration on growth rings in specimens of Rhizophora mangle L. and using the assessment in sediments as a support for the comparison of profiles of contamination. The comparison with sediments from the same place lends credibility to this type of analysis, as well as the relationship to the historical profile of contamination in the region, when compared with local data about industries and ecological situation of sampling sites. In order to evaluate the consequences of the described increase in Hg bioavailability and bioaccumulation in aquatic biota, and to assess the biological significance of Hg concentrations in sediments to fish and wildlife, muscle and liver from a bioindicator fish species, S. testudineus, were also analyzed. The results of this work reinforce the indicators previously described in the semiarid NE region of Brazil, which showed that global climate change and some anthropogenic factors are key drivers of Hg exposure and biomagnification for wildlife and humans. Considering the Hg concentration present in the top layers of sediment (~20 cm around 15 to 20 years) with the outer layers in the tree ring cores and in the sediment’s cores from Pacoti estuary and the Ceará estuary, overall the data indicate an increase in mercury in recent years in the Hg surface sediments, especially associated with the fine sediment fraction, mainly due to the increased capacity of small particles to adsorb Hg. There was revealed a positive and significant correlation (p < 0.05) between Hg trends in sediments and Hg trends in annular tree rings. This shared Hg pattern reflects local environmental conditions. The Hg concentration values in S. testudineus from both study areas are not restrictive to human consumption, being below the legislated European limit for Hg in foodstuffs. The results from S. testudineus muscles analysis suggest a significant and linear increase in Hg burden with increasing fish length, indicating that the specimens are accumulating Hg as they grow. The results from both rivers show an increase in BSAF with fish growth. The [Hg] liver/[Hg] muscles ratio >1, which indicates that the S. testudineus from both study areas are experiencing an increase in Hg bioavailability. Possible climate-induced shifts in these aquatic systems processes are inducing a greater mobilization of bioavailable Hg, which could allow an acceleration of the biogeochemical transformation of Hg.
Collapse
|
47
|
Mamdouh AZ, Zahran E, Mohamed F, Zaki V. Nannochloropsis oculata feed additive alleviates mercuric chloride-induced toxicity in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105936. [PMID: 34388370 DOI: 10.1016/j.aquatox.2021.105936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Using microalgae to alleviate the adverse effects of aquaculture pollutants, including metals, has recently gained much attention. In this context, bioaccumulation, hematological indices, oxidative and antioxidant responses, and histopathological alterations were investigated in Nile tilapia (Oreochromis niloticus) fed with either a control diet or diets containing Nannochloropsis oculata (N. oculata) after exposure to mercuric chloride in order to evaluate the role of this microalgae in protecting against mercury-induced toxicity. Fish exposed to HgCl2 at a dose of ¼ LC50 (0.3 mg/L) (Hg group) for 7-21 days exhibited a significant increase in total mercury concentration with a bioaccumulation pattern of liver>gills>muscle, and a significant decrease in all blood indices except mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), monocyte counts, and neutrophil counts. Malondialdehyde (MDA) levels were significantly increased in the Hg group at all time points relative to the control. Glutathione peroxidase (GPx) activity was significantly increased at days 14 and 21, while catalase (CAT) and GPx activities increased and decreased, respectively, at day 7 compared to the control. Additionally, lysozyme activity and immunoglobulin M (IgM) were significantly decreased in the Hg-exposed group. Severe histopathological alterations were evident in the liver, kidneys, and gills. However, supplementation with N. oculata at a low (5%, 50 g/kg feed) or high (10%, 100 g/kg feed) dose stabilized all parameters and reduced the severity of the histopathological alterations with the high N. oculata diet showing more prominent effects. These results suggest that feeding N. oculata protects Nile tilapia against mercuric chloride-induced toxicity.
Collapse
Affiliation(s)
- Al-Zahraa Mamdouh
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; National institute of Oceanography and Fisheries (NIOF), Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Fatma Mohamed
- National institute of Oceanography and Fisheries (NIOF), Egypt
| | - Viola Zaki
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
48
|
Santos D, Félix L, Luzio A, Parra S, Bellas J, Monteiro SM. Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. CHEMOSPHERE 2021; 277:130262. [PMID: 33773317 DOI: 10.1016/j.chemosphere.2021.130262] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/11/2023]
Abstract
The evaluation of the interaction between microplastics (MPs) and heavy metals is of special importance for risk assessment. In this study, zebrafish (Danio rerio) were exposed to MPs (2 mg/L), two sub-lethal concentrations of copper (Cu, 60 and 125 μg/L) and their mixtures (Cu60 + MPs, Cu125 + MPs), from 2-h post-fertilization (hpf) until 14-days post-fertilization (dpf). Lethal and sublethal endpoints were evaluated, along with a set of biochemical and genetic biomarkers between 2 and 14 dpf. Exposure to MPs and Cu, single or combined, induced high mortality and oxidative stress in zebrafish larvae, with data showing that the antioxidant enzymes were inhibited at 6 dpf, increasing thereafter until 14 dpf, due to the accumulation of reactive oxygen species. MPs and Cu, single or combined, caused neurotoxicity in larvae by inhibiting acetylcholinesterase activity. There was an increased and significant effect of Cu + MPs groups on the evaluated biomarkers, concerning the corresponding Cu groups, suggesting that MPs may have a synergistic effect in relation to Cu. The Integrated Biomarker Response (IBR) evidenced that a higher degree of stress occurred at the larval period. Our findings highlight that MPs can act as a vector for heavy metals, therefore, influencing their bioavailability and toxicity in the organisms.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen, Nº 208, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3s), Universidade Do Porto, Rua Alfredo Allen, Nº 208, 4200-135, Porto, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Susana Parra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
49
|
Mallik A, Xavier KAM, Naidu BC, Nayak BB. Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146433. [PMID: 33743469 DOI: 10.1016/j.scitotenv.2021.146433] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are widely distributed and extensively found within marine ecosystems, and approximately 8 million tons of plastics are being dumped into the sea annually. Once reached the marine environment, plastics tend to get fragmented into smaller particles through photo-degradation, mechanical and biological processes. These MPs have raised concerns globally due to their potential toxic impacts on a wide variety of aquatic fauna and humans. Ingested microplastics can cause severe health implications in fishes, including reduced feeding intensity, improper gill functioning, immuno-suppression, and compromised reproducibility. Several studies were also conducted to scrutinize MPs trophic transfer through the food chain from primary producers to top predators and their bioaccumulation. This paper briefly summarizes all the possible sources, routes, bioavailability, trophic transfer, and consequences of microplastics in fishes. The review article also intended to highlight various mitigation strategies like implementing Four R's concept (refuse, reduce, reuse, and recycle), integrated strategies, ban on single-use plastics, use bioplastics, and create behavioural changes with public awareness.
Collapse
Affiliation(s)
- Abhijit Mallik
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K A Martin Xavier
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
| | - Bejawada Chanikya Naidu
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Binaya Bhusan Nayak
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
50
|
Effects of Vitamin C and Magnesium L-threonate Treatment on Learning and Memory in Lead-poisoned Mice. J Vet Res 2021; 65:217-223. [PMID: 34250307 PMCID: PMC8256468 DOI: 10.2478/jvetres-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction The aim of this study was to investigate the effects of vitamin C (vit C) and magnesium L-threonate (MgT) on the learning ability and memory of mice intoxicated with lead acetate. Material and Methods The experimental male Swiss albinos were divided into five groups of 10 during a 40-day treatment period. One group were untreated controls, one received lead acetate at 90 mg/kg b.w., one additionally vit C at 40 mg/kg b.w., another additionally MgT at 100 mg/kg b.w., and the last was administered MgT without lead acetate. After a 20-day washout period, the animals were trained in the Morris water maze test for 6 days and after a 24-hour interval, were assessed for memory in the same test. At test end the mice were sacrificed and their organs sampled. Results The results of total time and number of entries into the platform zone showed that significantly poorer performances were recorded for the group poisoned with lead acetate alone and significantly lower scores for learning and memory were recorded for the intoxicated and supplemented groups compared to the control group. Catalase activity was significantly reduced in the liver, pancreas and kidney but significantly potentiated in brain tissue by these two supplements compared to the control group. Lead concentration in brain tissue was significantly higher in the presence of vit C than in the control or lead acetate-only groups. Conclusion Lead acetate had adverse effects on learning and memory of mice and also increased catalase activity.
Collapse
|