1
|
Xie Y, Liu F, Sun Q, Yu R, Liang Z, Xie Z, Zhang X, Wu Y. Phenyltins may pose a higher health risk to Indo-Pacific finless porpoises than butyltins. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138190. [PMID: 40203761 DOI: 10.1016/j.jhazmat.2025.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Organotin (OT) compounds are commonly used in antifouling paints, but can cause toxic effects in various marine organisms, including gastropods, amphibians, and teleosts. The effects of these chemicals on marine mammals remain largely unknown. We comprehensively investigated the accumulation patterns and health risks of six OTs in Indo-Pacific finless porpoises (Neophocaena phocaenoides) from the Pearl River Estuary (PRE), China, from 2007 to 2020. Six OTs were detected in all the finless porpoise samples, with tributyltin (TPT) and dibutyltin (DBT) being the dominant chemicals in the liver and muscle, respectively. The mean hepatic concentration of TPT (516.1 ng g-1 wet weight) exceeded the levels reported for cetaceans from other regions. Despite the observed decreasing trends of butyltins (BTs) in recent years, which aligns with the global restriction of OT-based antifouling paints since 2008, phenyltins (PTs) have continued to increase in porpoise tissues, suggesting continued deposition of PTs in the PRE. In vitro, the tissue-relative concentrations of TPT, tributyltin, and DBT-induced lipid disruption by activating the finless porpoise peroxisome proliferator-activated receptor α/γ (npPPARα/γ). In silico simulations further revealed a higher toxic potential of PTs than BTs on npPPARα/γ. Our results underscore the urgency for further monitoring and elimination of PTs in China.
Collapse
Affiliation(s)
- Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Qinzhe Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhenrui Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
2
|
Li T, Li L, Liu B, Xing S, Liu L, Li P, Li ZH. TPT disrupts early embryonic development and glucose metabolism of marine medaka in different salinites. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110035. [PMID: 39251012 DOI: 10.1016/j.cbpc.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Triphenyltin (TPT) is an organotin compound frequently detected in coastal estuaries, yet studies on TPT's effects in regions with significant salinity fluctuations, such as coastal estuaries, are currently limited. To investigate the toxic effects of TPT under different salinity conditions, this study focused on marine medaka (Oryzias melastigma) embryos. Through early morphological observations, RNA-seq analysis, biochemical marker assays, and qPCR detection, we explored the impact of TPT exposure on the early embryonic development of marine medaka under varying salinities. The study found that TPT exposure significantly increased embryo mortality at salinities of 0 ppt and 30 ppt. RNA-seq analysis revealed that TPT primarily affects glucose metabolism and glycogen synthesis processes in embryos. Under high salinity conditions, TPT may inhibit glucose metabolism by suppressing glycolysis and promoting gluconeogenesis. Furthermore, TPT exposure under different salinities led to the downregulation of genes associated with the insulin signaling pathway (ins, insra, irs2b, pik3ca, pdk1b, akt1, foxo1a), which may be linked to suppressed glucose metabolism and increased embryonic mortality. In summary, TPT exposure under different salinities affects the early development of marine medaka embryos and inhibits glucose metabolism. This study provides additional data to support research on organotin compounds in coastal estuaries.
Collapse
Affiliation(s)
- Tengzhou Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Luoxin Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
3
|
Chi-Ho Ip J, T Y Leung P, K Y Ho K, Qiu JW, M Y Leung K. Transcriptomic analysis reveals the endocrine toxicity of tributyltin and triphenyltin on the whelk Reishia clavigera and mechanisms of imposex formation. ENVIRONMENT INTERNATIONAL 2024; 190:108867. [PMID: 38968833 DOI: 10.1016/j.envint.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Organotin compounds (OTs) are endocrine disruptors that induce imposex in hundreds of gastropods, but little is known about their underlying molecular mechanisms. This study aimed to investigate the endocrine toxicity and molecular responses to tributyltin (TBT) and triphenyltin (TPT) exposure in the whelk Reishia clavigera, which often serves as a biomonitor for OT contamination. Over a 120-day exposure to environmentally relevant concentrations of TBT (1000 ng L-1) and TPT (500 ng L-1), we observed a significant increase in penis length in both male and female whelks. Notably, TPT exhibited a stronger potency in inducing pseudo-penis development and female sterility, even at a half dose of TBT. Bioaccumulation analysis also revealed higher persistence and accumulation of TPT in whelk tissues compared to TBT. Differential expression analysis identified a substantial number of differentially expressed genes (DEGs), with TPT exposure eliciting more DEGs than TBT. Our results demonstrated that OTs induced xenobiotic metabolism and metabolic dysregulation in the digestive gland, impaired multiple cellular functions and triggered neurotoxicity in the nervous system, and disrupted lipid homeostasis and oxidative stress in the gonads. Furthermore, imposex was possibly associated with disturbances in retinoic acid metabolism, nuclear receptor signaling, and neuropeptide activity. When compared to TBT, TPT exhibited a more pronounced endocrine-disrupting effect, attributable to its higher bioaccumulation and substantial interruption of transcriptional regulation, OT detoxification, and biosynthesis of retinoic acids in R. clavigera. Our results, therefore, highlight the importance of considering the differences in bioaccumulation and molecular toxicity between TBT and TPT in future risk assessments of these contaminants. Overall, our study provided molecular insights into the toxicity and transcriptome profiles in R. clavigera exposed to TBT and TPT, shedding light on the endocrine-disrupting effects and reproductive impairment in female gastropods.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Science Unit, Lingnan University, Hong Kong SAR, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Chen X, Zhu D, Zhang F, Li O, Yang F, Bao Z. Exposure to triphenyltin impairs gut integrity, disturbs gut microbiota, and alters fecal metabolites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115753. [PMID: 38043414 DOI: 10.1016/j.ecoenv.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Triphenyltin is an environmental contaminant widely used in antifouling paints and can cause toxicity in various organs in living organisms. However, its effects on intestinal function and the microbiome of the gut remain unknown. The objective of this study was to explore the intestinal toxicity of triphenyltin in mice by orally administering 0, 1.875, 3.75, and 7.5 mg/Kg to adult male mice for 8 weeks. Results showed that triphenyltin caused ileum tissue damage, induced oxidative stress, upregulated inflammation-related gene expression and increased serum tumor-necrosis factor α (TNF-α) levels in mice. Triphenyltin impaired ileum barrier function by downregulating Muc2, ZO-1, Occludin and their protein levels at 3.75 and 7.5 mg/Kg. TPT exposure led to partial inflammation and decreased mucin mRNA expression in the colon. Triphenyltin altered intestinal micro-ecological balance and fecal metabolome in mice. In conclusion, triphenyltin alters the mouse gut microbiota and fecal metabolome.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| | - Donghui Zhu
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Zhang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| | - Ouyang Li
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Liu F, Yu R, Xie Y, Xie Z, Wu J, Wu Y, Zhang X. Organotins in fish, shrimp, and cephalopods from the Pearl River Estuary, China: Dietary exposure risk to Indo-Pacific humpback dolphin and human. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166634. [PMID: 37643713 DOI: 10.1016/j.scitotenv.2023.166634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Food has regularly been proven to be a key source of exposure to environmental pollutants, drawing attention to the dietary exposure risks of contaminants to mammals with significant daily food intake. Here, the levels of six organotin compounds (OTs) in 18 fish (n = 310), three cephalopods (n = 50), and one shrimp (n = 34) from the Lingdingyang (LDY) and west four region (WFR) of the Pearl River Estuary (PRE) and their dietary exposure risks to Indo-Pacific humpback dolphins and humans were first investigated. Total OT levels ranged from 3.84 to 901. 48 ng/g wet weight (ww) in 22 prey species from the LDY, and from 14.37 to 1364.64 ng/g ww in 19 species from the WFR. The LDY marine species generally accumulated higher butyltin levels but lower phentyltin levels than those in the WFR. All species have a phenyltin degradation index <1 and over 60 % of the sampled species have a butyltin degradation index <1, suggesting the PRE marine species might be exposed to the fresh discharge of OTs. A total of nine marine species exceeded the threshold levels of OT intake for adverse health effects on human juveniles by consumption, all 22 marine species posed high dietary risks to the PRE humpback dolphins. Moreover, probabilistic risk assessment using Monte Carlo simulation revealed that the probabilities of RQ values associated with WFR OT exposure higher than 1 were 18.87 % for human adults, 40.55 % for human juveniles, 100 % for both humpback dolphin adults and humpback dolphin juveniles. Our results highlighted the potentially high dietary exposure risks of OTs to marine mammals and residents in the PRE.
Collapse
Affiliation(s)
- Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
6
|
Ma J, Wang B, Pu C, Chang K, Cheng Y, Sun R, Qi Q, Xu R, Chen J, Zhang C. Protective effects of sulforaphane on inflammation, oxidative stress and intestinal dysbacteriosis induced by triphenyltin in Cyprinus carpio haematopterus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109135. [PMID: 37797869 DOI: 10.1016/j.fsi.2023.109135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The purpose of this experiment was to study the mitigation effect of sulforaphane (SFN) on fish toxicological damage caused by triphenyltin (TPT) pollution. A total of 320 healthy fish (56.9 ± 0.4g) were randomly placed into four groups, each with four duplicates. The control group was fed the basal diet, the TPT group was exposed to 10 ng/L TPT on the basis of the control group, the SFN group was fed a diet supplemented with 10 mg/kg SFN, the SFN + TPT group was exposed to 10 ng/L TPT on the basis of the SFN group. Each tank had 20 fish and the breeding lasted for 8 weeks. The present study found that the antioxidant enzyme activity in the TPT group was significantly lower than that of the control group (P < 0.05). In addition, compared with the control group, the mRNA expression of pro-inflammatory factors (IL-6, TNF-α) were significantly induced, and the anti-inflammatory factor genes (IL-10, TGF) were significantly inhibited (P < 0.05) in TPT group. SFN relieved the changes of inflammatory factors caused by TPT, ameliorated oxidative stress, improved antioxidant enzyme (include SOD, CAT, GSH, GPx) activities (P < 0.05). 16s RNA analysis indicated that exposure to TPT caused changes in intestinal microflora. The results of the study showed that after exposure to TPT, some beneficial genera of bacteria in the gut of Rhizobiaceae, Bdellovibrio and Candidatus Alysiosphaera were decreased. The bacteria associated with intestinal inflammation including Propionibacterium, Rubrobacter, Anaerorhabdus_furcosa_group, Rikenellaceae and Eubacterium_brachy were upregulated. However, the SFN treatment group significantly down-regulated the above five inflammation-related bacteria. The above results indicated that TPT caused oxidative stress and inflammation in fish intestines, changed the intestinal microflora, and dietary SFN could improve antioxidant status, regulate inflammation and intestinal health. Therefore, SFN is a promising diet additive for improving fish damage caused by TPT contamination.
Collapse
Affiliation(s)
- Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, 450044, People's Republic of China
| | - Changchang Pu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kuo Chang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yinfeng Cheng
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruyi Sun
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qian Qi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruiyi Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junliang Chen
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
7
|
Zhou W, Zhang X, Chen X, Wu X, Ye A, Cao J, Hu X. Short-term triphenyltin exposure alters microbial homeostasis in the silkworm (Bombyx mori) midgut. Sci Rep 2023; 13:15183. [PMID: 37704649 PMCID: PMC10499869 DOI: 10.1038/s41598-023-41948-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Triphenyltin (TPT) is a widespread synthetic chemical used in many fields and its potential risk to organisms has been comprehensively investigated using different animal models and species. Currently, little is known about the effects of TPT exposure on microbial midgut diversity, therefore we explored these effects in the lepidopterous silkworm model using 16S rDNA sequencing. In total, 5273 and 5065 operational taxonomic units (OTUs) were identified in control and TPT-exposure group samples, ranging from 424 to 728 OTUs/sample. Alpha-diversity analyses revealed that TPT exposure induced the fluctuations of gut microbial diversity and abundance while beta-diversity analyses identified a distinct impact on major gut microbiota components. In our microbiome analyses, 23 phyla and 353 genera were recognized in the control group, while 20 phyla and 358 genera were recognized in the TPT exposure group. At the genus level, midgut microbiota were composed of several predominant bacterial genera, including Muribaculaceae, Lactobacillus, and UCG-010. In the TPT exposure group, o__Bacillales, f__Bacillaceae, and f__Caldicoprobacteraceae abundance was relatively high, while f__Oscillospiraceae, f__Fusobacteriaceae, and f__SC_I_84 abundance was relatively high in the control group. Gene function analyses in silkworm microbiota after TPT exposure showed that biosynthesis of ansamycins, fructose and mannose metabolism, glycerolipid metabolism, type II diabetes mellitus, glycolysis/gluconeogenesis, lipid metabolism, translation proteins, atrazine degradation, DNA repair and recombination proteins, nicotinate and nicotinamide metabolism were significantly increased. Collectively, our silkworm model identified gut microbial diversity risks and the adverse effects from TPT exposure, which were similar to other aquatic animals. Therefore, TPT levels in environmental samples must be monitored to prevent ecological harm.
Collapse
Affiliation(s)
- Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Liang W, Fu L, Feng M, Wang X, Yun Z, Xu J. Endoplasmic Reticulum Stress and Autophagy Are Involved in Hepatotoxicity Induced by Tributyltin. TOXICS 2023; 11:607. [PMID: 37505572 PMCID: PMC10386594 DOI: 10.3390/toxics11070607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Tributyltin (TBT), a common contaminant in aquatic ecosystems, has severe toxic effects on multiple tissues and organs, especially the liver. Previous toxicogenomic analysis has indicated that the main mechanism of TBT-induced hepatotoxicity is related to the activation of the apoptotic pathway. However, the mechanism of action occurring before the activation of apoptosis is still unclear. Herein, we applied proteomic technology to explore the protein expression profile of TBT-treated HL7702 normal human liver cells. The ultrastructural changes in cells were observed by transmission electron microscopy. After low dose (2 μΜ) TBT treatment, activation of the unfolded protein response and endoplasmic reticulum stress were observed; the expression levels of PERK, ATF6, BiP, and CHOP were significantly elevated, and splicing of XBP1 mRNA was initiated. When the TBT concentration increased to 4 μΜ, the protein levels of Beclin1, Atg3, Atg5, Atg7, and Atg12-Atg5 were significantly elevated, and the protein level of LC3Ⅰ decreased while that of LC3Ⅱ increased, suggesting the activation of autophagy. As the TBT concentration continued to increase, autophagy could not eliminate the damage, and apoptosis eventually occurred. These results indicate novel pathways of hepatotoxicity induced by TBT and provide insights for future studies.
Collapse
Affiliation(s)
- Weiqi Liang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingling Fu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mei Feng
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xiaorong Wang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhaohui Yun
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Qiao Y, Zhou Y, Zhang X, Faulkner S, Liu H, Wang L. Toxic effects of triphenyltin on the development of zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163783. [PMID: 37146813 DOI: 10.1016/j.scitotenv.2023.163783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Triphenyltin (TPT) is known to be an environmental endocrine disruptor and has adverse effects on aquatic animals. In this study, zebrafish embryos were treated with three different concentrations (12.5, 25, 50 nmol/L) based on the LC50 value at 96 h post fertilization (96 hpf), after TPT exposure. The developmental phenotype and hatchability were observed and recorded. Reactive oxygen species (ROS) levels in zebrafish were detected at 72 hpf and 96 hpf using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) as a probe. The number of neutrophils after exposure was observed using transgenic zebrafish Tg (lyz: DsRed). RNA-seq analysis was used to compare the gene expression changes in zebrafish embryos at 96 hpf in the control group and 50 nmol/L TPT exposure group. The data revealed that TPT caused a delay in hatching of zebrafish embryos in a time- and dose-dependent manner, as well as causing pericardial edema, spinal curvature and melanin reduction. ROS levels in embryos exposed to TPT increased, and the number of neutrophils increased after TPT exposure to Tg (lyz: DsRed) in transgenic zebrafish. RNA-seq results were also analyzed, and KEGG enrichment analysis showed that significant differential genes were enriched in the PPAR signaling pathway (P < 0.05), and the PPAR signaling pathway mainly affected genes related to lipid metabolism. The RNA-seq results were verified using real-time fluorescence quantitative PCR (RT-qPCR). Oil red O and Nile red staining showed increased lipid accumulation after TPT exposure. These findings suggest that TPT affects the development of zebrafish embryos even at relatively low concentrations.
Collapse
Affiliation(s)
- Ying Qiao
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW 2035, Australia
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
10
|
Li ZH, Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, You H. Systematic toxicological analysis of the effect of salinity on the physiological stress induced by triphenyltin in Nile tilapia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106441. [PMID: 36848695 DOI: 10.1016/j.aquatox.2023.106441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Triphenyltin (TPT), a synthetic chemical, is prevalent in complex salinity areas, including estuaries and coastal regions. However, current studies on the toxicological effects of TPT relevant to the environment at different salinities are limited. In the study, biochemical, histological, and transcriptional analyses of TPT and salinity alone, or in combination, was performed on the Nile tilapia (Oreochromis niloticus) liver. Nile tilapia exhibited weakened antioxidant defenses and liver damage. Transcriptomic analysis revealed that TPT exposure primarily affected lipid metabolism and immunity; salinity exposure alone particularly affected carbohydrate metabolism; combined exposure primarily immune- and metabolic-related signaling pathways. In addition, the single exposure to TPT or salinity induced inflammatory responses by up-regulating the expression of pro-inflammatory cytokines, whereas combined exposure suppressed inflammation by down-regulating pro-inflammatory cytokine levels. These findings are beneficial to understand the negative effects of TPT exposure in Nile tilapia in the broad salinity zones and its potential defense mechanisms.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
11
|
Lamine I, Elazzaoui A, Ben-Haddad M, Agnaou M, Moukrim A, Ait Alla A. Integrated biomarker responses and metal contamination survey in the wedge clam Donax trunculus from the Atlantic coast of Morocco. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38465-38479. [PMID: 36577824 DOI: 10.1007/s11356-022-24943-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In Morocco, the marine environment has always been a major occupation for socioeconomic activities (industry, tourism, urbanization, etc.). Thus, this work displays a case study of Taghazout coast in the central Atlantic part of the country, which becomes the center of several development projects, such as the touristic resort Taghazout Bay. In the aim to assess the health status of this coastal ecosystem, a multi-indicator approach based on the response of biomarkers in the wedge clam Donax trunculus was adopted during two years (2016/2017). The undertaken investigations on the response of biomarkers (AChE, GST, MDA, and CAT) in the sentinel species D. trunculus showed an activation of defense mechanisms in this bivalve, which would imply exposure to chemical stress in this ecosystem. The monitoring of seasonal bioaccumulation of cadmium (Cd), lead (Pb), and copper (Cu) by D. trunculus indicates that the bivalves collected have been exposed to these metal sources in the study area. In addition, the correlation study has reported a significant effect of environmental parameters on biomarker response. Overall, the multi-indicator approach has clearly revealed the health status of Taghazout coast registered in a coastal urbanization.
Collapse
Affiliation(s)
- Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco.
| | - Ahmed Elazzaoui
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Mustapha Agnaou
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | | | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| |
Collapse
|
12
|
Uc-Peraza RG, Delgado-Blas VH, Osten JRV, Castro ÍB, Carneiro Proietti M, Fillmann G. Organotin contamination in seafood from the Yucatán Peninsula, Mexico: Is there a potential risk for the health of consumers? CHEMOSPHERE 2022; 308:136178. [PMID: 36037943 DOI: 10.1016/j.chemosphere.2022.136178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Since seafood is considered an important source of organotin compounds (OTCs), the present study assessed the potential risk to human health of ingesting butyltins (BTs) and phenyltins (PhTs) along with this type of food. Seafood samples were collected at five fishing sites in the Yucatán Peninsula (Mexico) during February and March 2018. In general, organotins were detected in all samples, suggesting a widespread occurrence of these compounds in the investigated region. The average concentration of total organotins in the muscle of demersal fish (Lutjanus synagris, Lutjanus campechanus, Calamus pennatula, Haemulon plumierii, Rhomboplites aurorubens), pelagic fish (Euthynnus alletteratus, and Opisthonema oglinum), gastropods (Melongena bispinosa and Strombus pugilis), oyster (Crassostrea virginica) and shrimp (Penaeus duorarum) was 146.7 ± 76.2, 93.1 ± 92.6, 61.0 ± 53.0, 76.7 ± 2.6, and 28.8 ± 2.7 ng Sn g-1 dry weight, respectively. Overall, MPhT among PhTs was the dominant compound in fish, while TBT among BTs was the dominant compound in shellfish. Regarding the toxic OTCs, TBT followed by DBT were the predominant compounds in all seafood species, while TPhT was below the quantification limit in most samples. The estimated daily intake values were lower than the tolerable daily intake (TDI) for the sum of organotins established by the European Food Safety Authority (EFSA). Furthermore, the hazard quotients (HQ) and hazard indices (HI) values were all lower than 1, suggesting that daily exposure to these levels of organotins is unlikely to cause any harm to the human health of seafood consumers at the Yucatán Peninsula. Thus, consumers may not be at risk through the inclusion of these investigated seafood species in their normal diet. However, due to the increasing coastal urbanization, maritime activities, and the likely illegal use of tin-based paints in Mexico, additional monitoring is needed to assess organotin levels in other regions along the Mexican coastal zone and using other seafood species.
Collapse
Affiliation(s)
- Russell Giovanni Uc-Peraza
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; PPG em Oceanografia Biológica, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Victor Hugo Delgado-Blas
- División de Ciencias, Ingeniería y Tecnología, Universidad Autónoma del Estado de Quintana Roo (DCI-UQROO), 77010, Chetumal, Quintana Roo, Mexico
| | - Jaime Rendón-von Osten
- Instituto EPOMEX, Universidad Autónoma de Campeche (EPOMEX-UAC), Campus VI, 24030, San Francisco de Campeche, Campeche, Mexico
| | - Ítalo Braga Castro
- PPG em Oceanologia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100, Santos, SP, Brazil
| | - Maíra Carneiro Proietti
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; PPG em Oceanografia Biológica, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; PPG em Oceanologia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
13
|
Chen X, Zhang X, Ye A, Wu X, Cao J, Zhou W. Toxic effects of triphenyltin on the silkworm Bombyx mori as a lepidopterous insect model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114245. [PMID: 36327780 DOI: 10.1016/j.ecoenv.2022.114245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Triphenyltin (TPT) is a widely used reagent in various industries and agriculture, but is also known to accumulate in natural ecosystems and animal tissues. Hence, the aim of this study was to comprehensively assess the toxicity of TPT in the silkworm Bombyx mori as a model insect. The results showed that TPT exposure for the entire 5th instar larval stage significantly reduced the weight of silkworm pupa and inhibited development of the silkworm midgut. Following exposure to 2 μg/kg of TPT for 4 days, differentially expressed genes in midgut were associated with enriched pathways involved in the metabolism of carbohydrates, lipids, and amino acids, as determined by RNA sequencing. Furthermore, the metabolic profiles of the intestinal content of silkworms exposed to 2 μg/kg of TPT for 4 days were markedly altered and differential metabolites produced by metabolism of carbohydrates, lipids, and amino acids were enriched as determined by non-targeted GC-MS/MS metabolomics. This study provides novel insights into the mechanisms underlying the toxicity of TPT and emphasizes the risks posed by such pollutants released into the environment.
Collapse
Affiliation(s)
- Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
14
|
Pu Y, Ticiani E, Pearl S, Martin D, Veiga-Lopez A. The organotin triphenyltin disrupts cholesterol signaling in mammalian ovarian steroidogenic cells through a combination of LXR and RXR modulation. Toxicol Appl Pharmacol 2022; 453:116209. [PMID: 35998708 PMCID: PMC9993406 DOI: 10.1016/j.taap.2022.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Organotins, a chemical family with over 30 congeners to which humans are directly exposed to through food consumption, are a chemical class widely used as stabilizers in polyvinyl chloride, and biocides in antifouling products. Aside from tributyltin (TBT), toxicological information on other organotin congeners, such as triphenyltin (TPT), remains scarce. Our previous work has demonstrated that TBT can interfere with cholesterol trafficking in steroidogenic cells. Given their structural similarities, we hypothesized that TPT, similar to TBT, disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. To test this, human and ovine primary ovarian theca cells were isolated, purified and exposed to TPT at environmentally relevant doses (1 or 10 ng/ml) in pre-luteinized (48 h exposure) or luteinizing cells (72 h exposure). Intracellular cholesterol levels, progesterone, and testosterone secretion and gene expression of nuclear receptors, cholesterol transporters, and steroidogenic enzymes were evaluated. In ovine cells, TPT upregulated StAR, ABCA1, and SREBF1 mRNA and ABCA1 protein in both pre-luteinized and luteinized stages. TPT did not alter intracellular cholesterol or testosterone synthesis, but upregulated progesterone production. Inhibitor and shRNA knockdown approaches were then used to evaluate the role of retinoid X receptor (RXR) and liver X receptor (LXR) on TPT's effects. TPT upregulated ABCA1 and StAR expression was blocked by both LXR and RXR antagonists. TPT's effect on ABCA1 expression was reduced in LXRβ and RXRβ knockdown theca cells. Similar findings were obtained with primary human theca cells. No synergistic effect of TBT and TPT was observed. In conclusion, at an environmentally relevant dose, TPT upregulates theca cell cholesterol transporter ABCA1 expression via RXR and LXR pathways. Similar effects of TPT on human and sheep theca cells supports its conserved mechanism across mammalian theca cells.
Collapse
Affiliation(s)
- Yong Pu
- Department of Pathology, University of Illinois at Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, IL, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Zhang X, Yu R, Xie Y, Yu RQ, Wu Y. Organotins Remain a Serious Threat to the Indo-Pacific Humpback Dolphins in the Pearl River Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13046-13057. [PMID: 36031938 DOI: 10.1021/acs.est.2c02780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Marine mammals often accumulate high levels of environmental contaminants, even those that are globally regulated regarding usage, raising concerns about their health status. Here, we conducted the first investigation of tissue distribution, spatiotemporal trends, and potential risks of six organotin compounds (OTs) in Indo-Pacific humpback dolphins (n = 101) from the northern South China Sea during 2003-2021. We detected the highest level of hepatic triphenyltin in these humpback dolphins compared with the results reported in cetaceans globally, and the liver accumulated the highest OT concentrations than other analyzed tissues. Despite the downward trend of butyltins in humpback dolphins after the global ban on the use of OTs as antifouling paints, levels of phenyltins have continued to increase over the past 20 years, suggesting that the other applications of phenyltins in South China remain prevalent. In vitro and in vivo analyses revealed that tissue-relevant doses of OTs could induce agonistic effects on the dolphin peroxisome proliferator-activated receptor γ as a master regulator of lipid homeostasis and altered the dolphin fatty acid profiles. Our results highlight the lipid-disrupting effects of current OT exposure in humpback dolphins and emphasize the need for further efforts to eliminate OT contamination in South China.
Collapse
Affiliation(s)
- Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
16
|
Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, Chen C, You H, Li ZH. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105736. [PMID: 36049432 DOI: 10.1016/j.marenvres.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.
Collapse
Affiliation(s)
- Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
17
|
Uc-Peraza RG, Delgado-Blas VH, Rendón-von Osten J, Castro ÍB, Proietti MC, Fillmann G. Mexican paradise under threat: The impact of antifouling biocides along the Yucatán Peninsula. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128162. [PMID: 34999408 DOI: 10.1016/j.jhazmat.2021.128162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Levels of booster biocides (Irgarol, diuron, chlorothalonil, dichlofluanid and DCOIT), organotins (TBT, DBT, MBT, TPhT, DPhT and MPhT) and antifouling paint particles (APPs) were assessed in sediments of sites under the influence of maritime activities along the coastal zone of the Yucatán Peninsula, Mexico. Imposex incidence and organotin levels were also evaluated in seven caenogastropod species. The incidence of imposex was detected in five species from sites nearby fishing harbors and marinas, including the first reports to Gemophos tinctus and Melongena bispinosa. Butyltins levels were higher than phenyltins in gastropod tissues, sediments, and APPs. Regarding booster biocides, chlorothalonil was the most frequently detected compound and DCOIT was the most abundant biocide in sediments. DCOIT levels were registered in APPs from fishing harbors and marina areas. In addition, the highest levels of TBT, Irgarol, diuron and DCOIT exceeded the threshold limits set by international sediment quality guidelines, indicating that toxic effects could be expected in some of the studied areas, thus being a potential threat to marine life. Based on such outputs, Mexico urgently needs to adopt restrictive actions aiming at conserving the rich biological heritage of the Yucatán Peninsula.
Collapse
Affiliation(s)
- Russell Giovanni Uc-Peraza
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil; PPG em Oceanografia Biológica, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Victor Hugo Delgado-Blas
- División de Ciencias e Ingeniería, Universidad de Quintana Roo (DCI-UQROO), 77010 Chetumal, Quintana Roo, Mexico
| | - Jaime Rendón-von Osten
- Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México, Universidad Autónoma de Campeche (EPOMEX-UAC), Campus VI de Investigaciones, 24030 San Francisco de Campeche, Campeche, Mexico
| | - Ítalo Braga Castro
- PPG em Oceanologia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Maíra Carneiro Proietti
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil; PPG em Oceanografia Biológica, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil; PPG em Oceanologia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
18
|
Ip JCH, Leung PTY, Qiu JW, Lam PKS, Wong CKC, Chan LL, Leung KMY. Transcriptomics reveal triphenyltin-induced molecular toxicity in the marine mussel Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148040. [PMID: 34091345 DOI: 10.1016/j.scitotenv.2021.148040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Triphenyltin (TPT) is widely used as an active ingredient in antifouling paints and fungicides, and continuous release of this highly toxic endocrine disruptor has caused serious pollution to coastal marine ecosystems and organisms worldwide. Using bioassays and transcriptome sequencing, this study comprehensively investigated the molecular toxicity of TPT chloride (TPTCl) to the marine mussel Perna viridis which is a commercially important species and a common biomonitor for marine pollution in Southeast Asia. Our results indicated that TPTCl was highly toxic to adult P. viridis, with a 96-h LC10 and a 96-h EC10 at 18.7 μg/L and 2.7 μg/L, respectively. A 21-day chronic exposure to 2.7 μg/L TPTCl revealed a strong bioaccumulation of TPT in gills (up to 36.48 μg/g dry weight) and hepatopancreas (71.19 μg/g dry weight) of P. viridis. Transcriptome analysis indicated a time course dependent gene expression pattern in both gills and hepatopancreas. Higher numbers of differentially expressed genes were detected at Day 21 (gills: 1686 genes; hepatopancreas: 1450 genes) and at Day 28 (gills: 628 genes; hepatopancreas: 238 genes) when compared with that at Day 7 (gills: 104 genes, hepatopancreas: 112 genes). Exposure to TPT strongly impaired the endocrine system through targeting on nuclear receptors and putative steroid metabolic genes. Moreover, TPT widely disrupted cellular functions, including lipid metabolism, xenobiotic detoxification, immune response and endoplasmic-reticulum-associated degradation expression, which might have caused the bioaccumulation of TPT in the tissues and aggregation of peptides and proteins in cells that further activated the apoptosis process in P. viridis. Overall, this study has advanced our understanding on both ecotoxicity and molecular toxic mechanisms of TPT to marine mussels, and contributed empirical toxicity data for risk assessment and management of TPT contamination.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Chris K C Wong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
19
|
Ip JCH, Qiu JW, Chan BKK. Genomic insights into the sessile life and biofouling of barnacles (Crustacea: Cirripedia). Heliyon 2021; 7:e07291. [PMID: 34189321 PMCID: PMC8220330 DOI: 10.1016/j.heliyon.2021.e07291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 12/01/2022] Open
Abstract
Members of the infraclass Cirripedia, commonly called barnacles, are unique among the subphylum Crustacea in that they exhibit a biphasic life cycle with a planktonic larval stage and a sessile adult stage. Understanding their unique sessile life and mechanisms of attachment are hampered by the lack of genomic resources. Here, we present a 746 Mb genome assembly of Lepas anserifera – the first sequenced stalked barnacle genome. We estimate that Cirripedia first arose ~495 million years ago (MYA) and further diversified since Mesozoic. A demographic analysis revealed remarkable population changes of the barnacle in relation to sea-level fluctuations in the last 2 MYA. Comparative genomic analyses revealed the expansion of a number of developmental related genes families in barnacle genomes, such as Br–C, PCP20 and Lola, which are potentially important for the evolution of metamorphosis, cuticle development and central nervous system. Phylogenetic analysis and tissue expression profiling showed the possible roles of gene duplication, functional diversification and co-option in shaping the genomic evolution of barnacles. Overall, our study provides not only a valuable draft genome for comparative genomic analysis of crustacean evolution, but also facilitates studies of biofouling control.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology and Hong Kong Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong.,Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong.,Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
20
|
He S, Li P, Li ZH. Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian. CHEMOSPHERE 2021; 269:128711. [PMID: 33121818 DOI: 10.1016/j.chemosphere.2020.128711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) is widely used as a plastic stabilizer, insecticide and the most common fungicide in antifouling coatings. This paper reviewed the main literature evidences on the morphological and physiological changes of animal endocrine system induced by TPT, with emphasis on the research progress of TPT metabolism, neurological and reproductive regulation in animal endocrine system. Similar to tributyltin (TBT), the main effects of TPT on the potential health risks of 25 species of animals, from aquatic animals to mammals, are not only related to exposure dose and time, but also to age, sex and exposed tissue/cells. Moreover, current studies have shown that TPT can directly damage the endocrine glands, interfere with the regulation of neurohormones on endocrine function, and change hormone synthesis and/or the bioavailability (i.e., in the retinoid X receptor and peroxisome proliferator-activated receptor gamma RXR-PPARγ) in target cells. Importantly, TPT can cause biochemical and morphological changes of gonads and abnormal production of steroids, both of which are related to reproductive dysfunction, for example, the imposex of aquatic animals and the irregular estrous cycle of female mammals or spermatogenic disorders of male animals. Therefore, TPT should indeed be regarded as a major endocrine disruptor, which is essential for understanding the main toxic effects on different tissues and their pathogenic effects on endocrine, metabolism, neurological and reproductive dysfunction.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
21
|
Svavarsson J, Guls HD, Sham RC, Leung KMY, Halldórsson HP. Pollutants from shipping - new environmental challenges in the subarctic and the Arctic Ocean. MARINE POLLUTION BULLETIN 2021; 164:112004. [PMID: 33540274 DOI: 10.1016/j.marpolbul.2021.112004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Maritime activities in the subarctic and Arctic Ocean are predicted to substantially increase in the future due to climate change and declining sea ice cover. Inevitably, the consequences will be seen in impacts on marine ecosystems in this region at many different levels, such as increased pollution load due to antifouling biocides, polycyclic aromatic hydrocarbons, metals and pharmaceuticals. Here we discuss the current situation and evaluate the effect of increased shipping on the environmental status of subarctic and Arctic waters, in relation to elevated loads of both legacy and emerging pollutants in the region. It is of high importance to evaluate the current levels of selected pollutants, which will most likely rise in near future. Furthermore, it is important to improve our understanding of the effects of these pollutants on marine organisms at high latitudes, as the pollutants may behave differently in cold environments compared to organisms at lower latitudes, due to dissimilar physiological responses and adaptations of the cold-water organisms. Integrative studies are needed to better understand the impact of pollutants on the marine fauna while monitoring programmes and research should be continued, with an increased capacity for emerging pollutants of concern.
Collapse
Affiliation(s)
- Jörundur Svavarsson
- Department of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland; The University of Iceland's Research Centre in Suðurnes, Garðvegi 1, 245 Suðurnesjabær, Iceland
| | - Hermann Dreki Guls
- The University of Iceland's Research Centre in Suðurnes, Garðvegi 1, 245 Suðurnesjabær, Iceland.
| | - Ronia C Sham
- Department of Science and Environmental Studies, the Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
22
|
da Silva AF, Papai R, Luz MS, Gaubeur I. Analytical extraction procedure combined with atomic and mass spectrometry for the determination of tin in edible oil samples, and the potential application to other chemical elements. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Sham RCT, Ho KKY, Hui TTY, Zhou GJ, Chan JKY, Leung KMY. Tissue distribution of triphenyltin compounds in marine teleost fishes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123426. [PMID: 32763711 DOI: 10.1016/j.jhazmat.2020.123426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/14/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Continuous release of the highly toxic triphenyltin compounds (TPT) from antifouling paints and fungicides has caused serious pollution to urbanized coastal marine environments worldwide since the 1960s. Using gas-chromatography mass-spectrometry (GC-MS), this study investigated the distribution profile of TPT in 15 types of tissues of four marine teleost fish species collected from Hong Kong waters. Concentrations of TPT in various tissues had a significant positive correlation with protein contents in the tissues (r = 0.346, p < 0.001) and, to a lesser extent with lipid contents (r = 0.169, p = 0.020). Highest concentrations of TPT were consistently found in liver, ranging from 1074.9 to 3443.7 ng/g wet weight; whereas fish scales always contained the least concentration of TPT in all species, ranging from 10.4 to 48.5 ng/g wet weight. Through mass balance models and regression analyses, muscle tissues were found to contribute most to the total TPT body burden, and the average TPT concentration of both dorsal and ventral muscles was identified as the best predictor for estimating TPT burden in the entire fish. Hence, further investigations of bioaccumulation and biomagnification of TPT in fishes should adopt this modelling approach in estimating its total body burden in individual fish.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tommy T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Janet K Y Chan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Wu L, Chen H, Ru H, Li Y, Yao F, Ni Z, Zhong L. Sex-specific effects of triphenyltin chloride (TPT) on thyroid disruption and metabolizing enzymes in adult zebrafish (Danio rerio). Toxicol Lett 2020; 331:143-151. [DOI: 10.1016/j.toxlet.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022]
|
25
|
Dos Santos GC, da S Avellar ÃLA, de O Schwaickhardt R, Bandeira NMG, Donato FF, Prestes OD, Zanella R. Effective methods for the determination of triphenyltin residues in surface water and soil samples by high-performance liquid chromatography with tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2323-2330. [PMID: 32930257 DOI: 10.1039/d0ay00329h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monitoring of triphenyltin (TPhT) in the environment, particularly to control its misuse in agriculture, is of great importance because of its high toxicity. In this work, methods for determination of TPhT residues in surface water and soil samples by liquid chromatography with tandem mass spectrometry (LC-MS/MS) were developed and validated. Different sample volumes and pH and elution solvent types and volumes were evaluated for solid phase extraction (SPE) of TPhT in surface water samples. The optimized conditions were 500 mg sorbent Strata C18-E, 100 mL of the sample, pH adjusted to 9.0 and 1 mL of methanol containing acetic acid as the eluent. For a 10 g soil sample, the extraction was established using a modified QuEChERS method with 10 mL of acidified acetonitrile followed by a clean-up step by dispersive solid phase extraction (dSPE) with C18. A full factorial 23 design of experiments was applied to optimize the sample preparation method for soil samples. Practical method limits of quantification were 0.1 μg L-1 and 10 μg kg-1 for surface water and soil samples, respectively. Satisfactory accuracy, with recoveries from 86 to 107% for surface water and 72 to 87% for soil samples, as well as good precision, with an overall relative standard deviation (RSD) from 3 to 8% was observed. The validated methods were applied to real samples and some residues of TPhT were found, especially in soil samples (30 to 190 mg kg-1), indicating the suitability for routine analysis.
Collapse
Affiliation(s)
- Gabriel C Dos Santos
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Ã Llisson A da S Avellar
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Rômulo de O Schwaickhardt
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Nelson M G Bandeira
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Filipe F Donato
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Osmar D Prestes
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Renato Zanella
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Sham RCT, Ho KKY, Zhou GJ, Li Y, Wang X, Leung KMY. Occurrence, ecological and human health risks of phenyltin compounds in the marine environment of Hong Kong. MARINE POLLUTION BULLETIN 2020; 154:111093. [PMID: 32319922 DOI: 10.1016/j.marpolbul.2020.111093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) has been known as one of the most toxic compounds being released into the marine environment by anthropogenic means. This study assessed the contamination statuses of TPT and its two major degradants, i.e., monophenyltin and diphenyltin, in seawater, sediment and biota samples from marine environments of Hong Kong, a highly urbanized and densely populated city, and evaluated their ecological and human health risks. The results showed that the Hong Kong's marine environments were heavily contaminated with these chemicals, especially for TPT. Concentration ranges of TPT in seawater, sediment and biota samples were 3.8-11.7 ng/L, 71.8-91.7 ng/g d.w., and 9.6-1079.9 ng/g w.w., respectively. As reflected by high hazard quotients (1.7-5.3 for seawaters; 46.1-59.0 for sediments), TPT exhibited high ecological and human health risks. Our results are essential for the future management and control of anthropogenic TPT use in antifouling paints and as biocides in agriculture.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin King Yan Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
27
|
Chung SWC, Lau JSY, Lau JPK. Occurrence of organotin compounds in seafood from Hong Kong market. MARINE POLLUTION BULLETIN 2020; 154:111116. [PMID: 32319930 DOI: 10.1016/j.marpolbul.2020.111116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The degree of organotin compounds (OTCs), including dibutyltin, tributyltin, triphenyltin and dioctyltin, contamination in seafood purchased in 2017 and 2018 from Hong Kong market was studied. Edible portions of 341 seafood samples, including fish, crustaceans and molluscs, were used for analysis by gas chromatograph coupled to an inductively coupled plasma mass spectrometry (GC-ICP/MS). The method detection limits and quantification limits of OTCs were below or equal to 0.25 and 1.0 μg Sn kg-1 respectively. Triphenyltin accounted for the majority amongst other OTCs and was detected in 53% of samples. In general, mean total OTCs levels of fish (24 μg Sn kg-1) were higher than crustaceans (14 μg Sn kg-1) and molluscs (15 μg Sn kg-1). The highest detected levels of triphenyltin, tributyltin, dibutyltin and dioctyltin were found to be 480, 24, 4.5 and 0.89 μg Sn kg-1 in a mangrove snapper, noodle fish, coral clam and giant grouper respectively.
Collapse
Affiliation(s)
- Stephen W C Chung
- Food Research Laboratory, Centre for Food Safety, Food and Environmental Hygiene Department, 4/F Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong.
| | - Jason S Y Lau
- Food Research Laboratory, Centre for Food Safety, Food and Environmental Hygiene Department, 4/F Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong
| | - Jasmine P K Lau
- Risk Assessment Section, Centre for Food Safety, Food and Environmental Hygiene Department, 3/F, 4 Hospital Road, Hong Kong
| |
Collapse
|
28
|
Sham RCT, Tao LSR, Mak YKY, Yau JKC, Wai TC, Ho KKY, Zhou GJ, Li Y, Wang X, Leung KMY. Occurrence and trophic magnification profile of triphenyltin compounds in marine mammals and their corresponding food webs. ENVIRONMENT INTERNATIONAL 2020; 137:105567. [PMID: 32087482 DOI: 10.1016/j.envint.2020.105567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
The occurrence of triphenyltin (TPT) compounds, a highly toxic antifouling biocide, has been documented in marine environments and organisms all over the world. While some studies showed that marine mammals can be used as sentinel organisms to evaluate the pollution status of emerging contaminants in the environment because of their long lifespans and high trophic levels, information regarding the contamination status of TPT in marine mammal species has been limited over the past decade. More importantly, the primary bioaccumulation pathway of TPT in these long-lived apex predators and the corresponding marine food web is still uncertain. Therefore, this study aimed to evaluate the contamination statuses of TPT in two marine mammal species, namely the finless porpoise and the Indo-Pacific humpback dolphin, and assess the trophic magnification potential of TPT along the food webs of these two species, using stable isotope analysis, and chemical analysis with gas chromatography-mass spectrometry. The results showed that TPT is the predominant residue in majority of the analyzed individuals of two marine mammals, with concentrations ranging from 426.2 to 3476.6 ng/g wet weight in their muscle tissues. Our results also demonstrated an exponential increase in the concentration of TPT along the marine food web, indicating that trophic magnification occurs in the respective food webs of the two marine mammals. The range of trophic magnification factors of TPT in the food webs of finless porpoise and Indo-Pacific humpback dolphin was 2.51-3.47 and 2.45-3.39, respectively. These results suggest that high trophic organisms may be more vulnerable to the exposure of TPT-contaminated environments due to the high trophic magnification potential, and thus ecological risk of these compounds ought to be assessed with the consideration of their bioaccumulation potentials in these marine mammals.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lily Shi Ru Tao
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yanny King Yan Mak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jason Kin Chung Yau
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Tak Cheung Wai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Kevin King Yan Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
29
|
Ueno T, Oyama K, Hyung YJ, Ueno S, Oyama Y. Triphenyltin disrupts intracellular Zn 2+ homeostasis in rat thymic lymphocytes. Toxicol In Vitro 2020; 65:104782. [PMID: 31982641 DOI: 10.1016/j.tiv.2020.104782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Triphenyltin (TPT), previously used as an agricultural fungicide and industrial antifoulant, is now considered an environmental pollutant. The effect of TPT on human health is concerning due to its presence as a contaminant in seafood. In this study, the changes in intracellular Zn2+ concentration ([Zn2+]i) and cellular content of nonprotein thiols ([NPT]i) induced by triphenyltin chloride (TPTCH), were measured in rat thymic lymphocytes. This was studied by flow-cytometry using the fluorescent probes FluoZin-3-AM and 5-chloromethylfluorescein diacetate (5-CMF-DA). Incubation with TPTCH, at 0.1 μM or more (up to 3 μM), increased [Zn2+]i in a concentration-dependent manner. The TPTCH-induced elevation in [Zn2+]i was due to the increase in membrane Zn2+ permeability and intracellular Zn2+ release. Incubation with TPTCH at 0.3 μM significantly increased [NPT]i levels, whereas the addition of an intracellular Zn2+ chelator had no effect on the same. TPT at higher concentrations (1 or 3 μM) reduced [NPT]i. TPT may disturb intracellular Zn2+ signaling in lymphocytes that disturbs cellular functions.
Collapse
Affiliation(s)
- Toshiya Ueno
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keisuke Oyama
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Youn Jae Hyung
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Shinya Ueno
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
30
|
Yi X, Yu M, Li Z, Chi T, Jing S, Zhang K, Li W, Wu M. Effect of Multi-walled Carbon Nanotubes on the Toxicity of Triphenyltin to the Marine Copepod Tigriopus japonicus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:789-794. [PMID: 30989279 DOI: 10.1007/s00128-019-02608-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Marine organisms are often exposed to a mixture of various pollutants in marine environment (i.e., nanoparticles, organic pollutants). The present study investigated the potential effects of multi-walled carbon nanotubes (MWCNTs) on the toxicity of triphenyltin chloride (TPTCl). The results revealed an antagonistic interaction between MWCNTs and TPTCl on the copepod through 96 h acute exposure, which was attributed to the adsorption of TPTCl to MWCNTs and aggregation of MWCNTs in the test solutions. Results of 21 days' chronic exposure showed that the effect concentration of MWCNTs could be 100 times lower than that of acute exposure. The exposure to binary mixture of MWCNT (1.0 mg/L) and TPTCl (0.3 µg/L) caused a reduction by 94% for the 3rd time spawning and 83% for the total number of hatched nauplii. The ingestion and exterior attachment of MWCNTs to the copepod might be the main reasons causing the adverse effect in reproduction.
Collapse
Affiliation(s)
- Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Mingyue Yu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Zhaochuan Li
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Tongtong Chi
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Siyuan Jing
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Keke Zhang
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Wentao Li
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Minghuo Wu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
31
|
Chen C, Chen L, Li F, Huang Q, Wu L, Zhang W. Urgent caution to trace organometal pollution: Occurrence, distribution and sources of methyltins, butyltins and phenyltins in sediments from South Hangzhou Bay, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:571-577. [PMID: 30597389 DOI: 10.1016/j.envpol.2018.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The concentrations of seven organotin compounds (OTCs) were determined seasonally in 22 sediment samples (brackish, freshwater and shrimp pond sediments) in South Hangzhou Bay, China. For the brackish and freshwater sediments, methyltins of up to 43.0 ng Sn g-1 dw showed no significant variation with seasons or locations (p > 0.05). However, butyltin levels in summer (44.0 ± 30.2 ng Sn g-1 dw) were about two folds higher than those in spring (20.4 ± 18.7 ng Sn g-1 dw) and four folds higher than in autumn or winter (both≈10 ng Sn g-1 dw), which is mainly attributed to the heavy contamination near the shipyard, mariculture and textile plants in summer. Phenyltins in spring reached the peak level of 28.4 ng Sn g-1 dw, about three times of other seasons. Meanwhile, there was a significant variation of phenyltins in summer with high-value sites also in the vicinity of mariculture. Thus, excepting the contribution of agricultural activities to phenyltins, mariculture is likely to be a potential source of butyltins and phenyltins into the marine environment (particularly in summer). This hypothesis has been partly validated by determining adjacent shrimp pond sediments, which showed ubiquitous contamination of butyltins and phenyltins in summer and spring (14.2-44.2 ng Sn g-1 dw and 2.2-16.9 ng Sn g-1 dw), but only one sample had the detectable methyltin levels with 8.8 ng Sn g-1 dw of momomethyl-tin. On the other hand, seven OTCs showed a stronger affinity to brackish sediments than the adjacent freshwater sediments, probably owing to the differences of physicochemical parameters and microbial activities in sediments. Overall, OTC contaminants have become more diversified and complicated in coastal zones, suggesting that future studies should pay attention to other OTC species like phenyltins and methyltins, not only the butyltins.
Collapse
Affiliation(s)
- Chunzhao Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ling Chen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China.
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Lingling Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
32
|
Desorption electrospray ionization-high resolution mass spectrometry for the analysis of unknown materials: The phytosanitary product case. Talanta 2019; 194:350-356. [DOI: 10.1016/j.talanta.2018.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
|
33
|
Chen C, Chen L, Huang Q, Chen Z, Zhang W. Organotin contamination in commercial and wild oysters from China: Increasing occurrence of triphenyltin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2527-2534. [PMID: 30293005 DOI: 10.1016/j.scitotenv.2018.09.310] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Organotin contamination in marine environment has been a public concern for many years due to its adverse impacts on biota and human health. This study investigated levels, distribution and health risks of six organotin compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPhT), diphenyltin (DPhT) and monophenyltin (MPhT) in commercial and wild oysters in China. The total organotin in commercial oysters ranged from 251 to 1949 ng Sn g-1 dw (dry weight) >. Two endocrine disruptors TBT and TPhT were detected in these samples with the highest level of 68.1 ± 20.1 ng Sn g-1 dw and 747 ± 7.3 ng Sn g-1 dw, respectively. For wild oysters, the concentrations of total organotins varied from 33.3 to 2671 ng Sn g-1 dw. Butyltins were dominated by TBT with the mean level of 26.1 ± 30.0 ng Sn·g-1 dw and showed no significant spatial variation between the southern and northern coastal zones (p > 0.05). However, compared with the north, phenyltin levels especially TPhT were much higher in the south coastline (246-1484 ng Sn·g-1 dw) due to the wider use of TPhT-based biocides in local mariculture and agriculture. Health risk assessment indicated that a daily exposure of TPhT-contaminated oysters (including commercial and wild ones) may pose adverse threats to human particularly children as the risk quotients (RQ) were higher than 1. Organotin contamination (e.g., TPhT) still occurs in the South China's coastal zones after the TBT ban, which deserves future research and effective measures to protect the marine ecosystem and human health.
Collapse
Affiliation(s)
- Chunzhao Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ling Chen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Zhaoying Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
34
|
Dixit S, Srivastava MP, Sharma YK. Pesticide and Human Health. ADVANCES IN ENVIRONMENTAL ENGINEERING AND GREEN TECHNOLOGIES 2019. [DOI: 10.4018/978-1-5225-6111-8.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pesticides are known to be one of the extremely useful and incredibly beneficial agents for preventing losses of crops as well as diseases in humans. They are used in a large number of conditions as in farms, orchards, gardens, parks, sports lawn, residences, industrial areas, shops, schools, hospitals, airports, railway lines, drains, on animals, and on people for control of diseases such as scabies and head lice. People are exposed to pesticides in their daily lives through multiple routes of exposure such as occupational or food, water, and air. Many pesticides can be used safely and effectively, but care must be taken while using them. Several pesticides are beneficial in agriculture for killing pests. Yet many times their injurious effects offset the positive ones. Uses of pesticides are apprehension for sustainability of environment and global stability. This chapter aims to discuss pesticides, their types, routes of their exposure, human health concerns related to them, methods to stop using them, and a future scenario of the world after eradicating pesticides.
Collapse
|
35
|
Lin W, Li X, Yang M, Lee K, Chen B, Zhang BH. Brominated Flame Retardants, Microplastics, and Biocides in the Marine Environment: Recent Updates of Occurrence, Analysis, and Impacts. ADVANCES IN MARINE BIOLOGY 2018; 81:167-211. [PMID: 30471656 DOI: 10.1016/bs.amb.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Emerging contaminants (ECs) may pose adverse effects on the marine ecosystem and human health. Based on the analysis of publications filed in recent years, this paper provides a comprehensive overview on three prominent groups of ECs, i.e., brominated flame retardants, microplastics, and biocides. It includes detailed discussions on: (1) the occurrence of ECs in seawater, sediment, and biota; (2) analytical detection and monitoring approaches for these target ECs; and (3) the biological impacts of the ECs on humans and other trophic levels. This review provides a summary of recent advances in the field and remaining knowledge gaps to address, to enable the assessment of risk and support the development of regulations and mitigation technologies for the control of ECs in the marine environment.
Collapse
Affiliation(s)
- Weiyun Lin
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Min Yang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Helen Zhang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| |
Collapse
|
36
|
Intra-axonal Ca 2+ mobilization contributes to triphenyltin-induced facilitation in glycinergic transmission of rat spinal neurons. Toxicol In Vitro 2018; 55:11-14. [PMID: 30439410 DOI: 10.1016/j.tiv.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/12/2018] [Accepted: 11/11/2018] [Indexed: 11/22/2022]
Abstract
Triphenyltin (TPT) is an organotin compound causing environmental hazard to many wild creatures. Our previous findings show that TPT increases of the frequency of spontaneous glycinergic inhibitory postsynaptic currents (sIPSCs) in rat spinal neurons without changing the amplitude and 1/e decay time. In our study, the effects of 2-aminoethoxydiphenyl borate (2-APB), dantrolene sodium, and thapsigargin on sIPSC frequency were examined to reveal the contribution of intra-axonal Ca2+ mobilization by adding TPT. 2-APB considerably attenuated the TPT-induced facilitation of sIPSC frequency while dantrolene almost completely masked the TPT effects, suggesting that the TPT-induced synaptic facilitation results from the activation of both IP3 and ryanodine receptors on endoplasmic reticulum (ER) membrane, though inositol triphosphate (IP3) receptor is less sensitive to TPT. Thapsigargin itself significantly increased the sIPSC frequency without affecting the current amplitude and decay time. Successive addition of TPT could not further increase the sIPSC frequency in the presence of thapsigargin, indicating that thapsigargin completely masked the facilitatory action of TPT. Results suggest that TPT activates the IP3 and ryanodine receptors while TPT inhibits the Ca2+-pump of ER membranes, resulting in the elevation of intra-axonal Ca2+ levels, leading to the increase of spontaneous glycine release from synaptic vesicles.
Collapse
|
37
|
Pankin D, Kolesnikov I, Vasileva A, Pilip A, Zigel V, Manshina A. Raman fingerprints for unambiguous identification of organotin compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:158-163. [PMID: 29929180 DOI: 10.1016/j.saa.2018.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Raman spectra of the different ecotoxicants such as perfluorooctane sulfonate acid, organotin compounds of different families tributyl-, and triphenyl-, as well as chemically close compounds belonging to the same family - such as mono-, di-, and tributyl organotin compounds were analyzed. The comprehensive Raman spectra analysis allowed suggesting the identification scheme for clear recognition of the toxins family and the following intra-group specification. Possibility of unambiguous toxins detection and identification was demonstrated also for complex mixtures of various toxins on a base of control of characteristic peak groups, which can be considered as Raman fingerprints of the listed environmentally hazardous substances.
Collapse
Affiliation(s)
- Dmitrii Pankin
- Center for Optical and Laser Materials Research, Saint Petersburg State University, Uljanovskaya 5, St. Petersburg, Russian Federation
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, Saint Petersburg State University, Uljanovskaya 5, St. Petersburg, Russian Federation.
| | - Anna Vasileva
- Center for Optical and Laser Materials Research, Saint Petersburg State University, Uljanovskaya 5, St. Petersburg, Russian Federation; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, St. Petersburg, Russian Federation
| | - Anna Pilip
- Institution of Russian Academy of Science, Saint-Petersburg Scientific-Research Centre for Ecological Safety RAS, Korpusnaya st, 18, St. Petersburg, Russian Federation
| | - Vladislav Zigel
- Institution of Russian Academy of Science, Saint-Petersburg Scientific-Research Centre for Ecological Safety RAS, Korpusnaya st, 18, St. Petersburg, Russian Federation
| | - Alina Manshina
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, St. Petersburg, Russian Federation
| |
Collapse
|
38
|
de Castro TF, Saalfeld GQ, Varela AS, Padilha FF, Santos KS, Pires DM, Pereira JR, Corcini CD, Colares EP. Triphenyltin exposition induces spermatic parameter alters of Calomys laucha species. CHEMOSPHERE 2018; 211:1176-1182. [PMID: 30223333 DOI: 10.1016/j.chemosphere.2018.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
The present study aims to evaluate the influence of triphenyltin (TPT) exposure on reproductive physiology on Calomys laucha species, since this species inhabits regions susceptible to exposure to this contaminant. Animals exposed to the highest dose (10.0 mg/kg) presented signs of severe intoxication in only 7 days of exposure, demonstrating a higher sensitivity of this species to triphenyltin. The 10.0 mg TPT/kg dose was analyzed separately for short-term exposure and results suggest that exposure to this dose was severely detrimental to sperm activity. Among the main results obtained in the evaluation of sperm kinetics, a reduction in total motility was observed from the 0.5 mg TPT/kg group, accentuated according to the increase in the doses of TPT. In progressive motility, there was a decrease from the dose of 0.5 mg TPT/kg and maintained the plateau until the dose of 5.0 mg TPT/kg. It was also observed an increase in the distances and velocities average path, rectilinear and curvilinear in doses of 2.5 and 5.0 mg/kg. From the flow cytometry, evaluation a decrease in mitochondrial functionality was observed as the dose increased. Increased membrane fluidity was also observed from the 5.0 mg TPT/kg dose and the acrosome reaction presented higher values at doses of 0.5 and 5.0 mg TPT/kg. We can conclude that TPT causes impairment of the sperm activity, reducing it in individuals exposed in the adult phase.
Collapse
Affiliation(s)
- Tiane Ferreira de Castro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Graciela Quintana Saalfeld
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Antonio Sergio Varela
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | | | | | - Diego Martins Pires
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jessica Ribeiro Pereira
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Carine Dahl Corcini
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elton Pinto Colares
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
39
|
Wen J, Cui X, Gibson M, Li Z. Water quality criteria derivation and ecological risk assessment for triphenyltin in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:397-401. [PMID: 29906758 DOI: 10.1016/j.ecoenv.2018.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/25/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Triphenyltin (TPT) is one of the most toxic chemicals artificially discharged into aquatic environment with human activities. Due to its intensive use in antifouling paints and adverse effects on non-target species, TPT has aroused wide concern in both saltwater and freshwater environment. Nevertheless, the water quality criteria (WQC) are not available in China, which impedes the risk assessment for this emerging pollutant. This study aims to establish the WQC of TPT for both freshwater and saltwater ecosystems. With the derived WQC, a four-level tiered ecological risk assessment (ERA) approach was employed to assess the ecological risks of this emerging pollutant in Chinese waters. Through the species sensitivity distribution (SSD) methodology, the freshwater criterion maximum concentration (CMC) and criterion continuous concentration (CCC) were derived as 396 ng Sn L-1 and 5.60 ng Sn L-1, respectively, whereas the saltwater CMC and CCC were 66.5 ng Sn L-1 and 4.11 ng Sn L-1, respectively. The ecological risk assessment for TPT demonstrated that the acute risk was negligible whereas the chronic risk was significant with HQ (Hazard Quotient) values of up to 5.669 and 57.1% of coastal waters in China facing clear risk. TPT contamination in coastal environment, therefore, warrants further concern.
Collapse
Affiliation(s)
- Jingjing Wen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xiaoying Cui
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao 266100, PR China
| | - Mark Gibson
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada B3J 2X4
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao 266100, PR China.
| |
Collapse
|
40
|
Noma K, Akaike H, Kurauchi Y, Katsuki H, Oyama Y, Akaike N. Effects of triphenyltin on glycinergic transmission on rat spinal neurons. ENVIRONMENTAL RESEARCH 2018; 163:186-193. [PMID: 29453030 DOI: 10.1016/j.envres.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Glycine is a fast inhibitory transmitter like γ-aminobutyric acid in the mammalian spinal cord and brainstem, and it is involved in motor reflex, nociception, and neuronal development. Triphenyltin (TPT) is an organometallic compound causing environmental hazard to many wild creatures. Our previous findings show that TPT ultimately induces a drain and/or exhaustion of glutamate in excitatory presynaptic nerve terminals, resulted in blockage of neurotransmission as well as methylmercury. Therefore, we have investigated the neurotoxic mechanism how TPT modulates inhibitory glycinergic transmission in the synaptic bouton preparation of rat isolated spinal neurons using a patch clamp technique. TPT at environmentally relevant concentrations (3-300 nM) significantly increased the number of frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (sIPSC and mIPSC) without affecting the current amplitude and decay time. The TPT effects were also observed in external Ca2+-free solution containing tetrodotoxin (TTX) but removed in Ca2+-free solution with both TTX and BAPTA-AM (Ca2+ chelator). On the other hand, the amplitude of glycinergic evoked inhibitory postsynaptic currents (eIPSCs) increased with decreasing failure rate (Rf) and paired pulse ratio (PPR) in the presence of 300 nM TPT. At a high concentration (1 µM), TPT completely blocked eIPSCs after a transient facilitation. Overall, these results suggest that TPT directly acts transmitter-releasing machinery in glycinergic nerve terminals. Effects of TPT on the nerve terminals releasing fast transmitters were greater in the order of glycinergic > glutamatergic > GABAergic ones. Thus, TPT is supposed to cause a strong synaptic modulations on glycinergic neurotransmission in wild creatures.
Collapse
Affiliation(s)
- Kazuki Noma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuo Oyama
- Laboratory of Bioassessment, Faculty of Bioscience and Bioindustry, Tokushima University, Minami-Josanjima 2-1, Tokushima 770-8501, Japan
| | - Norio Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| |
Collapse
|
41
|
Terán-Baamonde J, Bouchet S, Tessier E, Amouroux D. Development of a large volume injection method using a programmed temperature vaporization injector – gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters. J Chromatogr A 2018; 1547:77-85. [DOI: 10.1016/j.chroma.2018.02.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
|
42
|
Yi X, Leung KMY. Assessing the toxicity of triphenyltin to different life stages of the marine medaka Oryzias melastigma through a series of life-cycle based experiments. MARINE POLLUTION BULLETIN 2017; 124:847-855. [PMID: 28242277 DOI: 10.1016/j.marpolbul.2017.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Toxic effects of triphenyltin (TPT) to different life stages of the marine medaka Oryzias melastigma were investigated through a series of life-cycle based exposure experiments. In embryo stage, TPT exposure could elevate the heartbeat rate at Day 6-8 post-fertilization and increase the expression levels of five heart development related genes (i.e., ATPase, COX2, BMP4, GATA4 and NKX2.5). In larval stage, TPT shortened the body length at ≥10μg/L and suppressed the swimming activity of the fish larvae at Day 1 post-hatching at 50μg/L. In reproductive stage, TPT exposure resulted in a male-biased sex ratio (2μg/L) and reduced the gonadosomatic index (GSI) in females (≥ 0.1μg/L), which might in turn lead to a decline in their population fitness. The reproductive stage of O. melastigma was more sensitive to TPT than other stages, while the GSI of female medaka was the most sensitive endpoint.
Collapse
Affiliation(s)
- Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China.
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Yi X, Bao VWW, Leung KMY. Binary mixture toxicities of triphenyltin with tributyltin or copper to five marine organisms: Implications on environmental risk assessment. MARINE POLLUTION BULLETIN 2017; 124:839-846. [PMID: 28242281 DOI: 10.1016/j.marpolbul.2017.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Triphenyltin (TPT) often coexists with tributyltin (TBT) and Cu in coastal waters worldwide. The combined toxic effect of TPT and TBT has always been assumed to be additive without any scientific proof, and the combined effect of Cu and TPT on marine organisms has not been vigorously studied. This study, therefore, investigated the acute toxicity of binary mixture of TPT/Cu and TPT/TBT to five selected marine species including Thalassiosira pseudonana, Skeletonema costatum, Tigriopus japonicus, Brachionus koreanus and Oryzias melastigma. The interaction between TPT and TBT or Cu was modeled antagonistic based on concentration addition (CA) model, while it was synergistic according to response addition (RA) model. Both model well predicted the toxicity of binary mixtures to the five organisms. As for the environmental risk assessment, CA overestimated the toxicity in most cases and thus is a more conservative model than RA model for assessing the toxicity of these chemical mixtures.
Collapse
Affiliation(s)
- Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin Campus, Panjin, PR China.
| | - Vivien W W Bao
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
44
|
Mattos Y, Stotz WB, Romero MS, Bravo M, Fillmann G, Castro ÍB. Butyltin contamination in Northern Chilean coast: Is there a potential risk for consumers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:209-217. [PMID: 28384577 DOI: 10.1016/j.scitotenv.2017.03.264] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 05/24/2023]
Abstract
Imposex is the superimposition of non-functional male sex organs in gastropod females. This syndrome is a hormonal imbalance induced by tributyltin (TBT) which have been used in antifouling paints formulation. The present study aimed to perform an integrated environmental assessment of imposex and butyltin (BT) contamination using surface sediments and tissues of Thaisella chocolata (an edible gastropod) from northern Chile. The results showed imposex incidence in 11 out of 12 sites. In the most contaminated sites, which are areas under the influence of maritime activities, and also used for fishing and aquaculture, RPLI were over 60 and VDSI over 4 (high incidence of sterile females). Exceptionally high contamination levels and evidences of fresh inputs of tributyltin (TBT) were detected along the studied area. TBT levels above 300 and 90ngSng-1, respectively, were recorded in sediments and edible gastropod tissues of 6 sites. Thus, a daily ingestion of 90 to 173g of T. chocolata foot (4 to 8 organisms) from the most contaminated sites will certainly lead to the consumption of BT exceeding the tolerable daily intake recommended by European Food Safety Authority. It is reasonable to consider that human risk is even higher if daily consumption of additional seafood is considered. Moreover, some contaminated sites were located within the marine reserve "Isla Grande Atacama", indicating that even marine protected areas are under the influence of TBT contamination. These findings suggest that current levels of TBT in the studied area are sufficient to induce harmful effects on the environment and constitutes a potential threat to seafood consumers. Thus, national regulatory actions toward environmental protection and food safety of local populations are still mandatory, even after 8years of the TBT global ban by IMO.
Collapse
Affiliation(s)
- Yasna Mattos
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Wolfgang B Stotz
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - María Soledad Romero
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Manuel Bravo
- Instituto de Química, Pontifícia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Ítalo B Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Av. Almirante Saldanha da Gama, 89, Santos, SP 11030-400, Brazil.
| |
Collapse
|
45
|
André A, Ruivo R, Capitão A, Froufe E, Páscoa I, Costa Castro LF, Santos MM. Cloning and functional characterization of a retinoid X receptor orthologue in Platynereis dumerilii: An evolutionary and toxicological perspective. CHEMOSPHERE 2017; 182:753-761. [PMID: 28535483 DOI: 10.1016/j.chemosphere.2017.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In the present work we provide the first isolation and functional characterization of a RXR orthologue in an annelid species, the Platynereis dumerilii. Using an in vitro luciferase reporter assay we evaluated the annelid receptor ability to respond to ligand 9-cis-retinoic acid, TBT and TPT. Our results show that the annelid RXR responds to 9-cis-retinoic acid and to the organotins by activating reporter gene transcription. The findings suggest a conserved mode of action of the receptor in response to a common signaling molecule and modulation by organotin compounds between vertebrates and Lophotrochozoans.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Ana Capitão
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Inês Páscoa
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
46
|
Pinto PIS, Estêvão MD, Santos S, Andrade A, Power DM. In vitro screening for estrogenic endocrine disrupting compounds using Mozambique tilapia and sea bass scales. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:106-113. [PMID: 28602910 DOI: 10.1016/j.cbpc.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023]
Abstract
A wide range of estrogenic endocrine disruptors (EDCs) are accumulating in the environment and may disrupt the physiology of aquatic organisms. The effects of EDCs on fish have mainly been assessed using reproductive endpoints and in vivo animal experiments. We used a simple non-invasive assay to evaluate the impact of estrogens and EDCs on sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) scales. These were exposed to estradiol (E2), two phytoestrogens and six anthropogenic estrogenic/anti-estrogenic EDCs and activities of enzymes related to mineralized tissue turnover (TRAP, tartrate-resistant acid phosphatase and ALP, alkaline phosphatase) were measured. Semi-quantitative RT-PCR detected the expression of both membrane and nuclear estrogen receptors in the scales of both species, confirming scales as a target for E2 and EDCs through different mechanisms. Changes in TRAP or ALP activities after 30minute and 24h exposure were detected in sea bass and tilapia scales treated with E2 and three EDCs, although compound-, time- and dose-specific responses were observed for the two species. These results support again that the mineralized tissue turnover of fish is regulated by estrogens and reveals that the scales are a mineralized estrogen-responsive tissue that may be affected by some EDCs. The significance of these effects for whole animal physiology needs to be further explored. The in vitro fish scale bioassay is a promising non-invasive screening tool for E2 and EDCs effects, although the low sensitivity of TRAP/ALP quantification limits their utility and indicates that alternative endpoints are required.
Collapse
Affiliation(s)
- Patrícia I S Pinto
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - M Dulce Estêvão
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Av. Dr. Adelino da Palma Carlos, 8000-510 Faro, Portugal
| | - Soraia Santos
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - André Andrade
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
47
|
Liebing P, Husien AA, Fischer A, Nietzschmann E, Edelmann FT. Macromolecular Self-Assembly of Organotin(IV) Squarates and Croconates - Preparation and Crystal Structures of [SnMe 2(H 2O) 2]C 4O 4, [SnMe 3] 2C 4O 4, and [SnMe 3(H 2O)] 2C 5O 5. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Phil Liebing
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| | - Asrial A. Husien
- Chemistry Education Department; Faculty of Teacher Training and Educational Sciences; Jambi University; 36361 Jambi Indonesia
| | - Axel Fischer
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| | - Eckhart Nietzschmann
- Fachbereich Angewandte Biowissenschaften und Prozesstechnik; Hochschule Anhalt; Bernburger Straße 55 06354 Köthen Germany
| | - Frank T. Edelmann
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
48
|
Gao JM, Wu L, Chen YP, Zhou B, Guo JS, Zhang K, Ouyang WJ. Spatiotemporal distribution and risk assessment of organotins in the surface water of the Three Gorges Reservoir Region, China. CHEMOSPHERE 2017; 171:405-414. [PMID: 28033571 DOI: 10.1016/j.chemosphere.2016.12.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 05/29/2023]
Abstract
The water quality security of the Three Gorges Reservoir during different operating periods has been a subject of recent concern. This study is the first to report the spatiotemporal variability of organotins (OTs) in surface water under dynamic water level conditions in the Three Gorges Reservoir Region (TGRR). TGRR surface water was collected during three monitoring campaigns to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry system. Our results showed that TGRR surface water was polluted by BTs and PTs, with mono-OTs being the dominant species. A wide range of BTs and PTs concentrations was observed across the study area, but tributyltin (TBT) displayed extensive spatial distribution, and the highest concentrations consistently occurred in the downstream region of the TGRR study area, with a maximum of 393.35 ng Sn/L in Zigui (S27). The total OTs contamination level decreased over time. The diphenyltin concentration exhibited significant seasonal variation, while other OTs showed seasonal changes only during two monitoring campaigns, with the exception of dibutyltin. An ecological risk assessment indicated that both TBT and triphenyltin posed risks to aquatic organisms in TGRR surface water. We urgently recommend continuous monitoring and further measures to prevent and control OTs pollution in the TGRR.
Collapse
Affiliation(s)
- Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, 400045, China.
| | - Lei Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Bin Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ke Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wen-Juan Ouyang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
49
|
Yong XY, Gu DY, Wu YD, Yan ZY, Zhou J, Wu XY, Wei P, Jia HH, Zheng T, Yong YC. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:178-183. [PMID: 28340989 DOI: 10.1016/j.jhazmat.2016.10.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H2O2 to a maximum of 135.96μmolL-1 at the Fe@Fe2O3(*)/graphite felt composite cathode, which further reacted with leached Fe2+ to produce hydroxyl radicals. While 100μmolL-1 TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32±2.07%, with a rate of 0.775±0.021μmolL-1h-1. This Bio-Electron-Fenton driving TPTC degradation might involve in SnC bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO2. This study provides an energy saving and efficient approach for TPTC degradation.
Collapse
Affiliation(s)
- Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816, China
| | - Dong-Yan Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816, China
| | - Yuan-Dong Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816, China
| | - Zhi-Ying Yan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Nengyuan Road, Guangzhou 510640, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
50
|
Lu J, Feng J, Cai S, Chen Z. Metabolomic responses of Haliotis diversicolor to organotin compounds. CHEMOSPHERE 2017; 168:860-869. [PMID: 27839877 DOI: 10.1016/j.chemosphere.2016.10.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/24/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
Organotin compounds, especially tributyltin (TBT) and triphenyltin (TPT), are a group of hazardous pollutants in marine environments. Haliotis diversicolor is an important marine model organism for environmental science. In this study, 1H NMR spectroscopy together with pattern recognition methods was used to investigate the responses of hepatopancreas and gill of Haliotis diversicolor to TBT and TPT exposure. It was found that obvious gender-, tissue- and compound-specific metabolomic alterations were induced after a 28-day exposure. TBT and TPT exposure not only caused the disturbance in energy metabolism and osmotic balance in hepatopancreas and gill tissues with different mechanisms, but also induced oxidative stresses. These metabolic alterations were highlighted in the accumulation of aspartate, uridine diphosphate-N-acetylglucosamine, uridine diphosphate glucose, guanosine and the depletion of leucine, isoleucine, valine, malonate, homarine, trigonelline in all exposure gills, as well as in the depletion of ATP, AMP, betaine in male exposure gills and pantothenate in male exposure hepatopancreases. The significant decreased aromatic amino acids (AAAs), lysine and glutamate in gills and increased betaine in hepatopancreases for TPT exposure together with increased glutamate and decreased betaine in gills and increased glutamate and glycine in hepatopancreases for TBT exposure demonstrated their specific metabolic characteristics. Among these characteristic metabolites, AAAs, lysine and glutamate in the gill as well as pantothenate in the hepatopancreas might be identified as potential biomarkers for TPT or TBT exposure in Haliotis diversicolor. The results provide a useful insight into the toxicological mechanisms of organotin compounds on Haliotis diversicolor.
Collapse
Affiliation(s)
- Jie Lu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|