1
|
Xian ZN, Gong H, Xu Y, Zhu N. Recent advances in occurrence, biotreatment, and integrated insights into bacterial degradation of phthalic acid esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138248. [PMID: 40239513 DOI: 10.1016/j.jhazmat.2025.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Phthalic acid esters (PAEs) are prevalent as emerging contaminants owing to their widespread use as plasticizers in industry. Despite their environmental and health risks, a limited understanding of PAE contamination in aquatic environments hinders the practical implementation of biotreatment strategies for their removal. This paper reviews the advances in occurrence, biotreatment, and relevant integrative analysis of bacterial PAE degradation over the past decade. In various aquatic environments, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the predominant PAE pollutants across different regions, with alarming levels reported in Eastern China. PAEs in water usually inhibit the growth and metabolism of surrounding organisms. Meanwhile, various biotreatment techniques have proven effective in removing PAEs from leachate and wastewater. The treatment efficiency can be further enhanced by incorporating suitable physicochemical processes and optimizing key factors, such as the initial pollutant concentration, PAE type, and reaction time. Additionally, a K-means machine learning algorithm and 16S rRNA gene-based evolutionary analysis were employed to reveal that soil is a preferred source for isolating strains, with Gordonia and Pseudomonas being the dominant genera of PAE-degrading bacteria exhibiting high degradation efficiency. Moreover, most PAE hydrolase genes were discovered in these two genera. Different gene clusters facilitated the subsequent degradation pathways under aerobic or anaerobic conditions. This paper presents the latest updates on PAE biotreatment and offers an integrated analysis of the bacterial degradation involved. Future research should apply these insights to enhance the overall effectiveness of PAE removal in water.
Collapse
Affiliation(s)
- Zhuo-Ning Xian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 20040, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Li C, Liu Q, Mao L, Zhang W, Zhang J, Niu D, Yin D, Taoli H, Ren J. Characterization of modified rape straw biochar in immobilizing Aspergillus sydowii W1 pellets and evaluation on its role as a novel composite for di(2-ethylhexyl) phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137533. [PMID: 39933457 DOI: 10.1016/j.jhazmat.2025.137533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers, which has harmful biological effects and poses a serious threat to ecological environments and human health. In this study, a novel strain Aspergillus sydowii W1 was reported with DEHP degradation ability. Under the optimal conditions of 35°C and pH 6.0, strain W1 degraded 68.48 % of 50 mg/L DEHP within 120 h, while the biochar immobilized W1 can enhance the removal efficiency by 15.33 %. The immobilized W1 also showed excellent performance in DEHP polluted wastewater with concentration of 50 mg/L, and its removal rate reached 85.72 % within 144 h. Interestingly, the fermented broth of strain W1 has the activity of hydrolyzing DEHP, and the highest value of crude enzyme activity was at 35°C and pH 8.5. In addition, nine metabolic products of DEHP degraded by strain W1 were identified by HPLC-MS/MS and GC-MS. In combination with these intermediates and related enzymatic analysis, two possible catabolism pathways of DEHP degradation by strain W1 were concluded. This study confirmed that immobilized W1 is an effective composite for removing DEHP in water environment and also strengthened our understanding on the DEHP degradation process of A. sydowii.
Collapse
Affiliation(s)
- Chunyu Li
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Qian Liu
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Luyao Mao
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Wenfan Zhang
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Jianing Zhang
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Dongmin Yin
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Huhe Taoli
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Jianjun Ren
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China.
| |
Collapse
|
3
|
Zhao K, Zhang X, Wang Y, Du X, Wang S, Shen M. Fate and ecological risk assessment of phthalates in wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125778. [PMID: 40414122 DOI: 10.1016/j.jenvman.2025.125778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/25/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
With the rapid increase in plastics use worldwide, phthalates (PAEs) as an endocrine disruptor, have been receiving attention. It is necessary to investigate the pivotal considerations affecting the degradation of PAEs and the ecological risk assessment in wastewater treatment plants. The presence and spatial distribution patterns of 16 PAEs across three wastewater treatment plants (WWTPs) in northern China were studied by collecting wastewater samples, and by comparing the mechanism of action of AAO and oxidation ditch process on the removal efficiency of long and short chain PAEs, we fill the gap in the study of comprehensive assessment and process-specific removal effect of multiple PAEs. The influent concentration of PAEs and the treatment process were the pivotal considerations in the primary and secondary treatments, respectively. In the primary treatment stage, long-chain PAEs were more readily removed compared to short-chain PAEs. Conversely, during the secondary treatment, short-chain PAEs were removed more effectively than long-chain PAEs, independent of the specific treatment process. Long-chain PAEs were more easily removed during the AAO processes. Furthermore, the ecological risk assessment of the effluent was conducted at each stage of the three WWTPs. The ecological risk assessment results of the three WWTPs for fish and Daphnia showed no risk, while that for green algae showed a low risk. These findings can be used as a model for controlling PAEs and provide important information on the occurrence and distribution of PAEs in WWTP and their ecological risks of effluents.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Ximing Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Yue Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Xinrong Du
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Su Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
| |
Collapse
|
4
|
Hao M, Zuo Q, Zhao X, Shi S, Wu J, Gao H, Lu Y. Multimedia contamination characteristics, risk assessment, and source quantification of phthalates in the Shaying River Basin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:202. [PMID: 40343535 DOI: 10.1007/s10653-025-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Phthalates (PAEs), a class of typical endocrine-disrupting chemicals, have been widely detected in the environment due to their prevalent use as plasticizers in plastic products. This study investigates the multimedia contamination characteristics and potential ecological risks of PAEs in water, soil, and sediments of the Shaying River (SYR) Basin. A Geodetector model (GDM) was employed to identify the key drivers influencing the spatial distribution of PAEs, while factor analysis and the Positive Matrix Factorization (PMF) model were utilized to quantitatively apportion the potential sources of PAEs. Results revealed that the concentrations and spatial variation of PAEs were significantly higher in soil and sediments than in water, with distinct compositional profiles. Water samples exhibited a higher proportion of low-molecular-weight PAEs compared to soil and sediment, where high-molecular-weight PAEs prevailed to a lesser extent. Notably, among the 6 target PAEs, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were uniformly the primary PAEs in water, soil, and sediment of the SYR Basin, posing higher ecological risks to algae, crustaceans, amphibians, and fish compared to the other 4 PAEs. The spatial distribution of PAEs in the SYR Basin was comprehensively influenced by land use, precipitation, human activities, and soil types. Key factors vary across media, but the interaction between popdensity and other variables significantly enhanced the interpretation degree, jointly shaping the PAEs distribution patterns. Primary sources of PAEs in the basin were sewage and wastewater discharges (37.0%), nonpoint industrial sources (36.4%), and domestic sources (25.6%).
Collapse
Affiliation(s)
- Minghui Hao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Qiting Zuo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, China.
| | - Xinna Zhao
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Shujuan Shi
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Junfeng Wu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongbin Gao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yizhen Lu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
5
|
Zhao L, Zhang J, Wang L, Qin Y, Liu Y, Li M, Wang X, Zhang Q, Liu H, Dong S. Hepatotoxic effect of DEP in zebrafish is via oxidative stress, genotoxicity, and modulation of molecular pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125891. [PMID: 39986561 DOI: 10.1016/j.envpol.2025.125891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Diethyl phthalate (DEP) is a commonly used phthalate ester (PAE) plasticizer known for its excellent plasticity and flexibility. Environmental exposure to DEP may have adverse effects on human health. Currently, few studies have focused on the specific effects and mechanisms on aquatic organisms. This study investigated the effects of oxidative stress effects and genotoxicity of DEP on zebrafish liver, as well as molecular interactions with antioxidant enzymes both in vitro and in vivo. The results revealed that exposure to DEP led to changes in the activity of antioxidant enzymes, which may be due to changes in the structure and conformation of antioxidant enzymes induced by DEP. This disruption of redox homeostasis in the liver of adult zebrafish led to oxidative stress, resulting in oxidative damage and genotoxicity in tissues. These damages did not exhibit concentration or time dependence, as indicated by integrated biomarker response (IBR) analysis for zebrafish. This study established a rapid and effective ecological risk assessment model to evaluate the biological toxicity of DEP through animal and molecular experiments, which could provide technical support for the risk management of DEP and the formulation of scientific and rational management strategies. Additionally, it may serve as a scientific reference for preventing and treating diseases caused by DEP.
Collapse
Affiliation(s)
- Lining Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Jing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Linyu Wang
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yue Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Meiyu Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xiaobo Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Qing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Huan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Sijun Dong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
6
|
Li Y, Liu X, Guo S, Wang L, Tang J. The combination of polystyrene microplastics and di (2-ethylhexyl) phthalate promotes the conjugative transfer of antibiotic resistance genes between bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117681. [PMID: 39799916 DOI: 10.1016/j.ecoenv.2025.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now. Here, polystyrene (PS) microplastics and plasticizer di (2-ethylhexyl) phthalate (DEHP) were used for combined treatment experiment and their effects and mechanisms on the transfer of ARGs between bacteria were explored. By increasing cell membrane permeability and the expression of correlated genes, the combined treatment group showed promoting effects on the transfer of ARGs than that of control, with the highest promoting effects observed at 1 mg/L PS and 0.1 mg/L DEHP, which was 3.0 times higher in ARGs transfer rate than that of control. It was found that PS and DEHP treatment alone also led to a higher conjugative transfer frequency, and the frequency of the combined treatment was lower than that of the corresponding single treatment group. This indicated that the effects of DEHP and microplastics on ARGs transfer might be antagonistic. Transcriptome analysis indicated that the transfer of ARGs affects bacterial ion binding, oxidative stress, and energy metabolism processes, while the expression of genes related to cell membrane permeability, DNA repair, bacterial drug resistance, and quorum sensing also increase. This study may provide new insights for explaining the combined effects of various pollutants in the environment on the spread of ARGs.
Collapse
Affiliation(s)
- Yu Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Yang N, Zhang Y, Yang N, Men C, Zuo J. Distribution characteristics and relationship of microplastics, phthalate esters, and bisphenol A in the Beiyun River basin of Beijing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136190. [PMID: 39490169 DOI: 10.1016/j.jhazmat.2024.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin. Polyvinyl chloride (PVC) was the most abundant type of microplastic, while di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most abundant PAEs. MP, PAEs, and BPA in both water and sediment showed positive correlations, with stronger correlations and higher pollution levels in sediment than in water. The tendency for PAE congeners to partition into sediments increased with a higher octanol-water partition coefficient (Kow). There was a significant positive correlation between the distribution tendency of ∑6PAEs and TOC in sediments with a pearson correlation coefficient of 0.717. Rivers with more frequent human activities and higher levels of urbanization in the vicinity had a higher abundance of various pollutants and a greater diversity of MP types.
Collapse
Affiliation(s)
- Nina Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nijuan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Huang J, Cheng F, He L, Lou X, Li H, You J. Effect driven prioritization of contaminants in wastewater treatment plants across China: A data mining-based toxicity screening approach. WATER RESEARCH 2024; 264:122223. [PMID: 39116614 DOI: 10.1016/j.watres.2024.122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
A diversity of contaminants of emerging concern (CECs) are present in wastewater effluent, posing potential threats to receiving waters. It is urgent for a holistic assessment of the occurrence and risk of CECs related to wastewater treatment plants (WWTP) on national and regional scales. A data mining-based risk prioritization method was developed to collect the reported contaminants and their respective concentrations in municipal and industrial WWTPs and their receiving waters across China over the past 20 years. A total of 10,781 chemicals were reported in 8336 publications, of which 1037 contaminants were reported with environmental concentrations. While contaminant categories varied across WWTP types (municipal vs. industrial) and regions, pharmaceuticals and cyclic hydrocarbons were the most studied CECs. Contaminant composition in receiving water was closer to that in municipal than industrial WWTPs. Publications on legacy pesticides and polycyclic aromatic hydrocarbons in WWTP decreased recently compared to the past, while pharmaceuticals and perfluorochemicals have received increasing attention, showing a changing concern over time. Detection frequency, concentration, removal efficiency, and toxicity data were integrated for assessing potential risks and prioritizing CECs on national and regional scales using an environmental health prioritization index (EHPi) approach. Among 666 contaminants in municipal WWTP effluent, trichlorfon and perfluorooctanesulfonic acid were with the highest EHPi scores, while 17ɑ-ethinylestradiol and bisphenol A had the highest EHPi scores among 304 contaminants in industrial WWTPs. The prioritized contaminants varied across regions, suggesting a need for tailoring regional measures of wastewater treatment and control.
Collapse
Affiliation(s)
- Jiehui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Fei Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Liwei He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaohan Lou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
10
|
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, Ruiz-Romera E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174062. [PMID: 38917906 DOI: 10.1016/j.scitotenv.2024.174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Itziar Garrido
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Teresa Acosta
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Uaciquete D, Sawada A, Chiba T, Pythias EM, Iguchi T, Horie Y. Occurrence and ecological risk assessment of 16 plasticizers in the rivers and estuaries in Japan. CHEMOSPHERE 2024; 362:142605. [PMID: 38876327 DOI: 10.1016/j.chemosphere.2024.142605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Owing to growing concerns about the adverse effects of phthalate plasticizers, non-phthalate plasticizers are being increasingly used as their replacement. However, information on the residual environmental concentrations and ecological risks posed by these plasticizers is limited. In this study, we analyzed the environmental contamination of 11 phthalates and 5 non-phthalate plasticizers in Class A and B rivers in Japan. In the considered river water samples, phthalates and non-phthalates were detected in the following order of detection frequency: phthalates (DEHP > DMP > DMEP > BBP > DNPP > DNP > DEEP > DBEP = DNOP) and non-phthalates (ATBC > DEHS > DEHA > TOTM = DIBA). Phthalate plasticizers were the most abundant and included DEHP (157-859 ng/L), DMP (
Collapse
Affiliation(s)
- Dorcas Uaciquete
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| | - Ayaka Sawada
- Faculty of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Takashi Chiba
- College of Agriculture, Food and Environment Sciences, Department of Environmental and Symbiotic Science, Rakuno Gakuen University, Japan
| | - Espino Maria Pythias
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
13
|
Huang C, Gong X, Qin Y, Zhang L, Cai Y, Feng S, Zhang Y, Zhao Z. Risk assessment of China's Eastern Route of the South-to-north Water Diversion Project from the perspective of Phthalate Esters occurrence in the impounded lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134511. [PMID: 38772103 DOI: 10.1016/j.jhazmat.2024.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Phthalate esters (PAEs) are widely utilized and can accumulate in lacustrine ecosystems, posing significant ecological and human health hazards. Most studies on PAEs focus on individual lakes, lacking a comprehensive and systematic perspective. In response, we have focused our investigation on characteristic lakes situated along the Eastern Route of the South-to-north Water Diversion Project (SNWDP-ER) in China. We have detected 16 PAE compounds in the impounded lakes of the SNWDP-ER by collecting surface water samples using solid-phase extraction followed by gas chromatography analysis. The concentration of PAEs were found to between 0.80 to 12.92 μg L-1. Among them, Bis (2-ethylhexyl) phthalate (DEHP) was the most prevalent, with mean concentration of 1.56 ± 0.62 μg L-1 (48.44%), followed by Diisobutyl phthalate (DIBP), 0.64 ± 1.40 μg L-1 (19.87%). Spatial distribution showed an increasing trend in the direction of water flow. Retention of DEHP and DIBP has led to increased environmental risks. DEHP, Dimethyl phthalate (DMP) etc. determined by agriculture and human activities. Additionally, Dibutyl phthalate (DBP) and DIBP mainly related to the use of agricultural products. To mitigate the PAEs risk, focusing on integrated management of the lakes, along with the implementation of stringent regulations to control the use of plasticizes in products.
Collapse
Affiliation(s)
- Chenyu Huang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xionghu Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Qin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Youliang Zhang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
14
|
Zhao K, Wang S, Bai M, Wang S, Li F. Distribution, seasonal variation and ecological risk assessment of phthalates in the Yitong River, a typical urban watercourse located in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172696. [PMID: 38657800 DOI: 10.1016/j.scitotenv.2024.172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Phthalates (PAEs) are a typical class of endocrine disruptors (EEDs). As one of the most commonly used plasticizers, they have received widespread attention due to their wide application in various countries and high detection rates in various environmental media. To be able to clarify the contamination status of PAEs pollutants in a typical northern cold-temperate urban river, 30 water samples from Yitong River in Changchun City, northern China were collected, during the 2023 dry season (March), normal season (May) and wet season (July). Using these samples, a total of 16 target PAEs are investigated. The resulting total PAEs concentrations are: dry season 408 to 1494 ng/L, wet season 491 to 1299 ng/L, and normal season 341 to 780 ng/L. The average concentration of the 16 PAEs over the three seasons is 773 ng/L. Di-2-ethylhexyl phthalate (DEHP) and Dibutyl phthalate (DBP) have the highest concentrations, ranging from 12 to 403 ng/L and 28-680 ng/L respectively. The ecological risks within the Yitong River Basin are evaluated based on the degree of PAEs contamination. DBP and DEHP pose higher risk assessment levels for algae, crustaceans and fish than the other target PAEs. The accurate determination of PAEs provided baseline data on PAEs for the management of the Yitong River, which is of great significance for the prediction of ecological risk assessment and the development of corresponding control measures, supported further research on PAEs in the cold-temperate zone aquatic environments, and shed light on the seasonal variations of PAEs in the Northeast region in the future. Moreover, considering the bioaccumulation and persistence of PAEs, it is necessary to continue to pay attention to the pollution status of cold-temperate zones rivers and the changes in ecological risks in the future.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Shuwei Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Mingxuan Bai
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Su Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
Tian J, Qian Y, He X, Qi R, Lei J, Wang Q, Feng C. Influencing factors and risk assessment of phthalate ester pollution in the agricultural soil on a tropical island. CHEMOSPHERE 2024; 357:142041. [PMID: 38636919 DOI: 10.1016/j.chemosphere.2024.142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 μg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.
Collapse
Affiliation(s)
- Jinfei Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127, Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127, Haikou, PR China
| | - Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ruifang Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
16
|
Tang L, Wang Y, Yan W, Zhang Z, Luo S, Wen Q, Wang S, Zhou N, Chen Q, Xu Y. Exposure to di-2-ethylhexyl phthalate and breast neoplasm incidence: A cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171819. [PMID: 38508268 DOI: 10.1016/j.scitotenv.2024.171819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Phthalates are ubiquitous environmental endocrine disruptors. As the predominant phthalate, di-2-ethylhexyl phthalate (DEHP) has been considered possibly carcinogenic to humans but large-scale longitudinal evidence is needed to further clarify its carcinogenicity. OBJECTIVES To examine the association between DEHP exposure and incidence of breast malignant neoplasm, carcinoma in situ and benign neoplasm. METHODS A total of 273,295 women from UK Biobank cohort were followed up for a median of 13.5 years. Disease information was collected from National Health Service Cancer Registry and National Death Index. Baseline and yearly-average level of DEHP exposure were estimated for each individual by linking chemical monitoring record of European Environment Agency with home address of the participants by Kriging interpolation model. Cox proportional hazard model was employed to estimate the association between DEHP exposure and breast neoplasms. RESULTS The median (IQR) of baseline and yearly-average DEHP concentration were 8000.25 (interquartile range: 6657.85-11,948.83) and 8000.25 (interquartile range: 1819.93-11,359.55) μg/L. The highest quartile of baseline DEHP was associated with 1.11 fold risk of carcinoma in situ (95 % CI, 1.00, 1.23, p < 0.001) and 1.27 fold risk of benign neoplasm (95 % CI, 1.05, 1.54, p < 0.001). As for yearly-average exposure, each quartile of DEHP was positively associated with higher risk of malignant neoplasm (HR, 1.05; 95 % CI, 1.03, 1.07, p < 0.001), carcinoma in situ (HR, 1.08; 95 % CI, 1.04, 1.11, p < 0.001) and benign neoplasm (HR, 1.13; 95 % CI, 1.07, 1.20, p < 0.001). Stratification analysis showed no significant modification effects on the DEHP-neoplasm relationship by menopausal status or ethnicity but a suggestive higher risk in younger women and those who underwent oral contraceptive pill therapy. In sensitivity analysis, the associations remained when excluding the cases diagnosed within 2 years post baseline. CONCLUSIONS Real-world level of DEHP exposure was associated with higher risk of breast neoplasms. Because of the health risks associated with DEHP, its release to the environment should be managed.
Collapse
Affiliation(s)
- Lijuan Tang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yimeng Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenting Yan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siwen Luo
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaorui Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Niya Zhou
- Clinical Research Centre, Women and Children's Hospital of Chongqing Medical University and Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
17
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
18
|
Wang Y, Xiong D, He X, Yu L, Li G, Wang T, Liu C, Liu Z, Li Z, Gao C. Rapid and Comprehensive Analysis of 41 Harmful Substances in Multi-Matrix Products by Gas Chromatography-Mass Spectrometry Using Matrix-Matching Calibration Strategy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2281. [PMID: 38793348 PMCID: PMC11122967 DOI: 10.3390/ma17102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Harmful substances in consumer goods pose serious hazards to human health and the environment. However, due to the vast variety of consumer goods and the complexity of their substrates, it is difficult to simultaneously detect multiple harmful substances in different materials. This paper presents a method for the simultaneous determination of 41 harmful substances comprising 17 phthalates (PAEs), 8 organophosphate flame retardants (OPFRs), and 16 polycyclic aromatic hydrocarbons (PAHs) in five types of products using the matrix-matching calibration strategy. The method employs an efficient ultrasonic extraction procedure using a mixture of dichloromethane and methylbenzene, followed by dissolution-precipitation and analysis through gas chromatography-mass spectrometry. Compared with previous experiments, we established a universal pretreatment method suitable for multi-matrix materials to simultaneously determine multiple harmful substances. To evaluate the effects of the matrix on the experimental results, we compared neat standard solutions and matrix-matching standard solutions. The results demonstrated that all compounds were successfully separated within 30 min with excellent separation efficiency. Additionally, the linear relationships of all analytes showed strong correlation coefficients (R2) of at least 0.995, ranging from 0.02 mg/L to 20 mg/L. The average recoveries of the target compounds (spiked at three concentration levels) were between 73.6 and 124.1%, with a relative standard deviation (n = 6) varying from 1.2% to 9.9%. Finally, we tested 40 different materials from consumer products and detected 16 harmful substances in 31 samples. Overall, this method is simple and accurate, and it can be used to simultaneously determine multiple types of hazardous substances in multi-matrix materials by minimizing matrix effects, making it an invaluable tool for ensuring product safety and protecting public health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cuiling Gao
- Shandong Institute for Product Quality Inspection, Jinan 250102, China; (Y.W.); (D.X.); (X.H.); (L.Y.); (G.L.); (T.W.); (C.L.); (Z.L.); (Z.L.)
| |
Collapse
|
19
|
Zhang X, Xu C, Li Y, Chen Z, Xu F, Zhang H, Ding L, Lin Y, Zhao N. Association between phthalate metabolite mixture in neonatal cord serum and birth outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170614. [PMID: 38316308 DOI: 10.1016/j.scitotenv.2024.170614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Prenatal exposure to phthalates (PAEs) is ubiquitous among Chinese neonates. PAEs entering the body will be transformed to various hydrolyzed and oxidated PAE metabolites (mPAEs). PAEs and mPAEs exposure may lead to adverse birth outcomes through disruption of multiple hormone signaling pathways, induction of oxidative stress, and alterations in intracellular signaling processes. In this study, the concentrations of 11 mPAEs in 318 umbilical cord serum samples from neonates in Jinan were quantified with HPLC-ESI-MS. Multiple linear regression, Bayesian kernel machine regression, and quantile g-computation models were utilized to investigate the effects of both individual mPAE and mPAE mixture on birth outcomes. Stratified analysis was performed to explore whether these effects were gender-specific. mPAE mixture was negatively associated with birth length (BL) z-score, birth weight (BW) z-score, head circumference (HC) z-score, and ponderal index (PI). Mono(2-ethylhexyl) phthalate (MEHP) manifested negative associations with BL(z-score), BW(z-score), HC(z-score), and PI, whereas mono(2-carboxymethylhexyl) phthalate (MCMHP) was negatively associated with BW(z-score) and PI within the mPAE mixture. Stratified analysis revealed that the negative associations between mPAE mixture and four birth outcomes were attenuated in female infants, while the positive impact of mono(2-ethyl-5carboxypentyl) phthalate (MECPP) on BL(z-score) and BW(z-score) could be detected only in females. In summary, our findings suggest that prenatal exposure to phthalates may be associated with intrauterine growth restriction, and these effects vary according to the gender of the infant.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Caihong Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yahui Li
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, China
| | - Zhongkai Chen
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, China
| | - Fei Xu
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Haoyu Zhang
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Lei Ding
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
20
|
Liu B, Lv L, Ding L, Gao L, Li J, Ma X, Yu Y. Comparison of phthalate esters (PAEs) in freshwater and marine food webs: Occurrence, bioaccumulation, and trophodynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133534. [PMID: 38241835 DOI: 10.1016/j.jhazmat.2024.133534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Phthalate esters (PAEs) have received widespread attentions due to their ubiquity in various kinds of matrices and potential biotoxicity. This study systematically compared the concentrations, bioaccumulation, trophodynamics and health risk of PAEs in 25 species (n = 225) collected from a marine (Bohai Bay, BHB) and freshwater environment (Songhua River, SHR), China. Results showed that di-(2-ethylhexyl) phthalate and di-n-butyl phthalate were the predominant PAEs in the organisms from the two aquatic environments. The total concentrations of 6 PAEs in algae and fish from SHR were significantly higher than those from BHB. Two food webs were constructed in BHB and SHR based on the abundance of 15N in the organisms. All the PAEs except dimethyl phthalate exhibited trophic dilution with the trophic magnification factors less than 1. Moreover, an obvious biodilution of PAEs was observed in marine food web compared to freshwater food web. A low health risk of PAEs was found in organisms from both BHB and SHR. However, di-(2-ethylhexyl) phthalate exhibited a potential carcinogenic risk by consumption of some benthos in BHB and fish in SHR. This study provides a valuable perspective for understanding the trophodynamics and health risk of PAEs in marine and freshwater environments.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Junjie Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xinyu Ma
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
21
|
Xu Y, Sun Y, Lei M, Hou J. Phthalates contamination in sediments: A review of sources, influencing factors, benthic toxicity, and removal strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123389. [PMID: 38246215 DOI: 10.1016/j.envpol.2024.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sediments provide habitat and food for benthos, and phthalates (PAEs) have been detected in numerous river and marine sediments as a widely used plastic additive. PAEs in sediments is not only toxic to benthos, but also poses a threat to pelagic fish and human health through the food chain, so it is essential to comprehensively assess the contamination of sediments with PAEs. This paper presents a critical evaluation of PAEs in sediments, which is embodied in the analysis of the sources of PAEs in sediments from multiple perspectives. Biological production is indispensable, while artificial synthesis is the most dominant, thus the focus was on analyzing the industrial and commercial sources of synthetic PAEs. In addition, since the content of PAEs in sediments varies, some factors affecting the content of PAEs in sediments are summarized, such as the properties of PAEs, the properties of plastics, and environmental factors (sediments properties and hydrodynamic conditions). As endocrine disruptors, PAEs can produce toxicity to its direct contacts. Therefore, the effects of PAEs on benthos immunity, endocrinology, reproduction, development, and metabolism were comprehensively analyzed. In addition, we found that reciprocal inhibition and activation of the systems lead to genotoxicity and apoptosis. Finally, the paper discusses the feasible measures to control PAEs in wastewater and leachate from the perspective of source control, and summarizes the in-situ treatment measures for PAEs contamination in sediments. This paper provides a comprehensive review of PAEs contamination in sediments, toxic effects and removal strategies, and provides an important reference for reducing the contamination and toxicity of PAEs to benthos.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ming Lei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
22
|
Zhang S, Wei J, Wu N, Allam AA, Ajarem JS, Maodaa S, Huo Z, Zhu F, Qu R. Assessment of the UV/DCCNa and UV/NaClO oxidation process for the removal of diethyl phthalate (DEP) in the aqueous system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122915. [PMID: 37952917 DOI: 10.1016/j.envpol.2023.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
In this work, the removal and transformation process of diethyl phthalate (DEP) in UV/dichloroisocyanurate (UV/DCCNa) and UV/sodium hypochlorite (UV/NaClO) systems were compared to evaluate the application potential of UV/DCCNa technology. Compared with UV/NaClO, UV/DCCNa process has the advantage of DEP removal and caused a higher degradation efficiency (93.8%) within 45 min of oxidation in ultrapure water due to the sustained release of hypochloric acid (HOCl). Fourteen intermediate products were found by high-resolution mass spectrometry, and the transformation patterns including hydroxylation, hydrolysis, chlorination, cross-coupling, and nitrosation were proposed. The oxidation processes were also performed under quasi-realistic environmental conditions, and it was found that DEP could be effectively removed in both systems, with yields of disinfection byproduct meeting the drinking water disinfection standard (<60.0 μg/L). Comparing the single system, the removal of DEP decreased in the mixed system containing five kinds of PAEs, which could be attributed to the regeneration of DEP and the competitive effect of •OH occurred among the Dimethyl phthalate (DMP), DEP, Dipropyl phthalate (DPrP), Diallyl phthalate (DAP) and Diisobutyl phthalate (DiBP). However, a greater removal performance presented in UV/DCCNa system compared with UV/NaClO system (69.4% > 62.1%). Further, assessment of mutagenicity and developmental toxicity by Toxicity Estimation Software Tool (T.E.S.T) software indicated that UV/DCCNa process has fewer adverse effects on the environment and is a more environmentally friendly chlorination method. This study may provide some guidance for selecting the suitable disinfection technology for drinking water treatment.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
23
|
Dueñas-Moreno J, Vázquez-Tapia I, Mora A, Cervantes-Avilés P, Mahlknecht J, Capparelli MV, Kumar M, Wang C. Occurrence, ecological and health risk assessment of phthalates in a polluted urban river used for agricultural land irrigation in central Mexico. ENVIRONMENTAL RESEARCH 2024; 240:117454. [PMID: 37865321 DOI: 10.1016/j.envres.2023.117454] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The escalating global concern on phthalate esters (PAEs) stems from their status as emerging contaminants, marked by their toxicity and their potential to harm both the environment and human health. Consequently, this study aimed to evaluate the occurrence, spatial distribution, and ecological and health risks associated with PAEs in the Atoyac River, an urban waterway in central Mexico that receives untreated and poorly treated urban and industrial wastewater. Of the 14 PAEs analyzed in surface water samples collected along the river mainstream, nine were detected and quantified by GC-MS. The concentration of each detected PAE ranged from non-detected values to 25.7 μg L-1. Di (2-ethylhexyl) phthalate (DEHP) and di-n-hexyl phthalate (DnHP) were detected in all sampling sites, with concentrations ranging from 8.1 to 19.4 μg L-1 and from 6.3 to 15.6 μg L-1, respectively. The cumulative Σ9PAEs concentrations reached up to 81.1 μg L-1 and 96.0 μg L-1 in sites downstream to high-tech industrial parks, pinpointing industrial wastewater as the primary source of PAEs. Given that the river water is stored in a reservoir and used for cropland irrigation, this study also assessed the ecological and human health risks posed by PAEs. The findings disclosed a high ecological risk to aquatic organisms exposed to di-n-octyl phthalate (DOP), dicyclohexyl phthalate (DCHP), benzyl butyl phthalate (BBP), DEHP, and DnHP. Additionally, a high carcinogenic (CR > 10-4) and noncarcinogenic (HQ > 10) risk for the DEHP exposure through ingestion of crops irrigated with river water was identified for both children and adults. These data on PAEs provide valuable insights for the Mexican government's future strategies in regulating these pollutants in water bodies, thereby minimizing the environmental and human health risks that they pose.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Ivón Vázquez-Tapia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico.
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Maddela NR, Kakarla D, Venkateswarlu K, Megharaj M. Additives of plastics: Entry into the environment and potential risks to human and ecological health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119364. [PMID: 37866190 DOI: 10.1016/j.jenvman.2023.119364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
A steep rise in global plastic production and significant discharge of plastic waste are expected in the near future. Plastics pose a threat to the ecosystem and human health through the generation of particulate plastics that act as carriers for other emerging contaminants, and the release of toxic chemical additives. Since plastic additives are not covalently bound, they can freely leach into the environment. Due to their occurrence in various environmental settings, the additives exert significant ecotoxicity. However, only 25% of plastic additives have been characterized for their potential ecological concern. Despite global market statistics highlighting the substantial environmental burden caused by the unrestricted production and use of plastic additives, information on their ecotoxicity remains incomplete. By focusing on the ecological impacts of plastic additives, the present review aims to provide detailed insights into the following aspects: (i) diversity and occurrence in the environment, (ii) leaching from plastic materials, (iii) trophic transfer, (iv) human exposure, (v) risks to ecosystem and human health, and (vi) legal guidelines and mitigation strategies. These insights are of immense value in restricting the use of toxic additives, searching for eco-friendly alternatives, and establishing or revising guidelines on plastic additives by global health and environmental agencies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, ATC Building, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
25
|
Bhogal S, Grover A, Mohiuddin I. A Review of the Analysis of Phthalates by Gas Chromatography in Aqueous and Food Matrices. Crit Rev Anal Chem 2023; 54:3428-3452. [PMID: 37647342 DOI: 10.1080/10408347.2023.2250876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
As a commonly well-known industrial chemical, phthalates are produced in high volumes to be used in various consumer products (e.g., plasticizers, medical devices, construction materials, and toys) to enhance softness, durability, transparency, and flexibility. Phthalates are generally not chemically bonded to the polymer chain of the plastic in which they are mixed. Thus, they may leach, migrate, or evaporate into indoor/outdoor air, and foodstuffs. In this review, a comprehensive overview of several sample preparation methods coupled with gas chromatography for the analysis of phthalates in various kinds of complex matrices, with a focus on the last 20 years' worth of papers. The review begins by highlighting the environmental significance of phthalate pollution along with the various routes to their exposure to general population. Then, the discussion is extended to cover the pretreatment and extraction techniques for phthalates for their quantitation based on gas chromatographic approach. Finally, the present and future challenges for the detection of phthalates in aqueous and food matrices are discussed.
Collapse
Affiliation(s)
- Shikha Bhogal
- University Centre for Research and Development, Chandigarh University, Mohali, India
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Aman Grover
- Department of Chemistry, Punjabi University, Patiala, India
| | | |
Collapse
|
26
|
Khishdost M, Dobaradaran S, Goudarzi G, Takdastan A, Babaei AA. Contaminant occurrence, distribution and ecological risk assessment of phthalate esters in the Persian Gulf. PLoS One 2023; 18:e0287504. [PMID: 37418450 PMCID: PMC10328224 DOI: 10.1371/journal.pone.0287504] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023] Open
Abstract
Due to the increasing population of the world, the presence of harmful compounds, especially phthalate esters (PAEs), are one of the important problems of environmental pollution. These compounds are known as carcinogenic compounds and Endocrine-disrupting chemicals (EDCs) for humans. In this study, the occurrence of PAEs and the evaluation of its ecological risks were carried out in the Persian Gulf. Water samples were collected from two industrial sites, a rural site and an urban site. Samples were analyzed using magnetic solid phase extraction (MSPE) and gas chromatography-mass spectrometry (GC/MS) technique to measure seven PAEs including Di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), Dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), and Di-iso-butyl phthalate (DIBP). The BBP was not detected in any of the samples. The total concentration of six PAEs (Σ6PAEs) ranged from 7.23 to 23.7 μg/L, with a mean concentration of 13.7μg/L. The potential ecological risk of each target PAEs was evaluated by using the risk quotient (RQ) method in seawater samples, and the relative results declined in the sequence of DEHP >DIBP > DBP > DEP > DMP in examined water samples. DEHP had a high risk to algae, crustaceans and fish at all sites. While DMP and DEP showed lower risk for all mentioned trophic levels. The results of this study will be helpful for the implementation of effective control measures and remedial strategies for PAEs pollution in the Persian Gulf.
Collapse
Affiliation(s)
- Maria Khishdost
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Wang Z, Ma J, Wang T, Qin C, Hu X, Mosa A, Ling W. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review. CHEMOSPHERE 2023; 328:138578. [PMID: 37023900 DOI: 10.1016/j.chemosphere.2023.138578] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
28
|
Wang C, Wang J, Gao W, Ning X, Xu S, Wang X, Chu J, Ma S, Bai Z, Yue G, Wang D, Shao Z, Zhuang X. The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162201. [PMID: 36805063 DOI: 10.1016/j.scitotenv.2023.162201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phthalates (PAEs) are gaining attention and being researched as an endocrine disruptor as global plastic use surge. There is an urgent need to explore the key factors affecting the removal of PAEs from wastewater and the impact of wastewater effluent on receiving water. Here we investigated the levels and distribution patterns of 16 typical PAEs in surface water and five wastewater treatment plants (WWTPs) along the Dongyang River from Yiwu, China, collecting 42 surface water and 31 wastewater samples. We found that influent PAEs concentration and treatment process were the key factors affecting the degradation efficiency of PAEs in primary and secondary treatment, respectively. In primary treatment, long-chain PAEs were more easily removed (and sometimes less likely to accumulate) than short-chain PAEs, regardless of the influent PAEs concentration (a key factor in primary treatment), while in secondary treatment, short-chain PAEs were easily removed regardless of the treatment process (a factor in secondary treatment). This was not the case for long-chain PAEs, which were only more readily removed in the A/A/O process. In addition, by comparing the significant differences between wastewater and surface water, we found that the total PAEs in the treated effluent were significantly lower than in surface water upstream and in built-up urban areas, indicating that wastewater discharges in the study area did not increase PAEs in the receiving water. Finally, river in the city center and artificial treatment facilities in the study area were identified as requiring priority attention. The results of this study can serve as a model for controlling PAEs in other similar developing cities in China and provide valuable information on the fate of endocrine disruptor from wastewater treatment in China and their impact on surface water.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Wei Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Shengjun Xu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwen Chu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gecheng Yue
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Zhiping Shao
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Ren JN, Zhu NZ, Meng XZ, Gao CJ, Li K, Jin LM, Shang TT, Ai FT, Cai MH, Zhao JF. Occurrence and ecological risk assessment of 16 phthalates in surface water of the mainstream of the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66936-66946. [PMID: 37099107 DOI: 10.1007/s11356-023-27203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Phthalic acid esters (PAEs), a class of typical endocrine disruptors, have received considerable attention due to their widespread applications and adverse effects on biological health. In this study, 30 water samples, along the mainstream of the Yangtze River (YR), were collected from Chongqing (upper stream) to Shanghai (estuary) from May to June in 2019. The total concentrations of 16 targeted PAEs ranged from 0.437 to 20.5 μg/L, with an average of 1.93 μg/L, where dibutyl phthalate (DBP, 0.222-20.2 μg/L), bis (2-ethylhexyl) phthalate (DEHP, 0.254-7.03 μg/L), and diisobutyl phthalate (DIBP, 0.0645-0.621 μg/L) were the most abundant PAEs. According to the pollution level in the YR to assess the ecological risk posed by PAEs, the results showed medium risk level of PAEs in the YR, among which DBP and DEHP posed a high ecological risk to aquatic organisms. The optimal solution for DBP and DEHP is found in ten fitting curves. The PNECSSD of them is 2.50 μg/L and 0.34 μg/L, respectively.
Collapse
Affiliation(s)
- Jia-Nan Ren
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ning-Zheng Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China.
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Chong-Jing Gao
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo, 315100, China
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Li-Min Jin
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ting-Ting Shang
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Fang-Ting Ai
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ming-Hong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Jian-Fu Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| |
Collapse
|
30
|
Guo Y, Wang C, Huang P, Li J, Qiu C, Bai Y, Li C, Yu J. A method for simulating spatial fates of chemicals in flowing lake systems: Application to phthalates in a lake. WATER RESEARCH 2023; 232:119715. [PMID: 36796154 DOI: 10.1016/j.watres.2023.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
In order to describe spatio-temporal distribution of chemicals in flowing lake systems, a dynamic multimedia fate model of chemicals with spatial differentiation was constructed by coupling the level IV fugacity model with lake hydrodynamics. It was successfully applied to four phthalates (PAEs) in a lake recharged by reclaimed water and its accuracy was verified. Results show that under the long-term influence of flow field, the distributions of PAEs in both lake water and sediment have significant spatial heterogeneity of 2∼5 orders of magnitude, but present different distribution rules, which was explained by analysis of PAE transfer fluxes. The spatial distribution of PAEs in the water column depends on hydrodynamic conditions and whether the primary source is reclaimed water or atmospheric input. Slow water exchange and flow speed promote the migration of PAEs from water to sediment, causing them to always accumulate in sediments far away from the recharging inlet. Uncertainty and sensitivity analysis show that the PAE concentrations in water phase are mainly affected by emission and physicochemical parameters, while those in sediment phase are also sensitive to environmental parameters. The model can provide important information and accurate data support for the scientific management of chemicals in flowing lake systems.
Collapse
Affiliation(s)
- Yaqi Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Panpan Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300457, China
| | - Jing Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Beijing Branch of North China Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100081, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China
| |
Collapse
|
31
|
Sun S, Wang M, Yang X, Xu L, Wu J, Wang Y, Zhou Z. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil of the Yellow River Delta, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53370-53380. [PMID: 36856996 DOI: 10.1007/s11356-023-26104-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
A total of 100 agricultural soil samples, collected in the Yellow River Delta, China, were analyzed for six U.S. Environmental Protection Agency priority phthalate esters (PAEs), focusing on the characteristics of PAEs contamination and potential health risks. The detection frequencies of ∑6PAEs were 100%, where the concentration ranged from 1.087 to 14.391 mg·kg-1, with a mean value of 4.149 mg·kg-1. The most abundant PAEs were di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP). The areas with higher contents of ∑6PAEs are distributed in the western and central parts of the Yellow River Delta region and around Laizhou Bay. PAEs in the Yellow River Delta agricultural soil were attributed to pollutant emissions from petrochemical industries, plasticizers or additives, fertilizers, and pesticides. The non-carcinogenic risk of human exposure to PAEs in agricultural soils is relatively low, but the non-carcinogenic risk is higher in children than in adults, and children are a sensitive group. Under the dietary route, both DEHP and ∑2PAEs (BBP, and DEHP) pose some degree of carcinogenic risk to both local adults and children. Efforts must be made to enhance the prevention and control of PAEs contamination of agricultural soils in the Yellow River Delta region to reduce the potential risk to humans.
Collapse
Affiliation(s)
- Shu Sun
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengchao Wang
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Yang
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liang Xu
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yajuan Wang
- College of Economics and Management, Ningxia University, Yinchuan, 750021, China
| | - Zhenfeng Zhou
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
32
|
Hou Y, Tu M, Li C, Liu X, Wang J, Wei C, Zheng X, Wu Y. Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. TOXICS 2023; 11:180. [PMID: 36851055 PMCID: PMC9962510 DOI: 10.3390/toxics11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are frequently tracked in water environments worldwide. As a typical class of endocrine disruptor chemicals (EDCs), PAEs posed adverse effects on aquatic organisms at low concentration. Thus, they have attracted wide attention in recent years. In the present study, the concentrations of seven typical PAEs from 30 sampling sites in Baiyangdian Lake were measured, and the environmental exposure data of PAEs were gathered in typical rivers in China. Then, based on the aquatic life criteria (ALCs) derived from the reproductive toxicity data of aquatic organisms, two risk assessment methods, including hazard quotient (HQ) and probabilistic ecological risk assessment (PERA), were adopted to evaluate the ecological risks of PAEs in water. The sediment quality criteria (SQCs) of DEHP, DBP, BBP, DIBP and DEP were deduced based on the equilibrium partitioning method. Combined with the gathered environmental exposure data of seven PAEs in sediments from typical rivers in China, the ecological risk assessments of five PAEs in sediment were conducted only by the HQ method. The results of ecological risk assessment showed that in terms of water, DBP and DIBP posed low risk, while the risk of DEHP in Baiyangdian Lake cannot be ignored and should receive attention. In typical rivers in China, BBP and DEP posed no risk, while DIBP and DBP posed potential risk. Meanwhile, DEHP posed a high ecological risk. As far as sediment is concerned, DBP posed a high risk in some typical rivers in China, and the other rivers had medium risk. DEHP posed a high risk only in a few rivers and low to medium risk in others. This study provides an important reference for the protection of aquatic organisms and the risk management of PAEs in China.
Collapse
Affiliation(s)
- Yin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cheng Li
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| | - Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yihong Wu
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| |
Collapse
|
33
|
Liu C, Fu L, Du H, Sun Y, Wu Y, Li C, Tong J, Liang S. Distribution, Source Apportionment and Risk Assessment of Phthalate Esters in the Overlying Water of Baiyang Lake, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2918. [PMID: 36833614 PMCID: PMC9957158 DOI: 10.3390/ijerph20042918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As a kind of endocrine disruptor compounds, the presence of phthalate esters (PAEs) has become a global concern. In this study, the pollution levels and spatial distribution of sixteen PAEs were investigated. Their potential sources and eco-environmental health risk were discussed in Baiyang Lake and its upstream rivers during different periods. PAEs were detected in all of samples, ranging from 1215 to 3014 ng·L-1 in October 2020 and 1384 to 3399 ng·L-1 in May 2021. Dibutyl phthalate (DBP) and di-isobutyl phthalate (DIBP) were the predominant monomers, with a detection rate of 100% and the highest concentrations in the overlying water. Restricted by multiple factors, the spatial distribution difference between Baiyang Lake and its upstream rivers in October was more significant than in May. The source apportionment revealed that agricultural cultivation and disorderly use and disposal of plastic products were the primary factors for the contamination. The human health risk assessment indicated that eight PAE congeners did not pose significant carcinogenic and non-carcinogenic harms to males, females and children. However, the ecological risks of DBP, DIBP and di (2-ethylhexyl) phthalate to algae, crustaceans and fish species were moderate or high-risk levels. This study provides an appropriate dataset for the assessment of the pollution of PEs to the water ecosystem affected by anthropogenic activities.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Liguo Fu
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hui Du
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yaxue Sun
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yihong Wu
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050037, China
| | - Cheng Li
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050037, China
| | - Jikun Tong
- Baiyangdian Watershed Ecological Environmental Monitoring Center, Baoding 071051, China
| | - Shuxuan Liang
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
34
|
Ateş H, Argun ME. Fate of phthalate esters in landfill leachate under subcritical and supercritical conditions and determination of transformation products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:292-301. [PMID: 36410146 DOI: 10.1016/j.wasman.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| |
Collapse
|
35
|
Wang C, Li J, Qiu C, Wang L, Su X, Huang P, He N, Sun L, Bai Y, Li C, Wang Y. Multimedia fates and ecological risk control strategies of phthalic acid esters in a lake recharged by reclaimed water using the QWASI fugacity model. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Dueñas-Moreno J, Mora A, Cervantes-Avilés P, Mahlknecht J. Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate - A review. ENVIRONMENT INTERNATIONAL 2022; 170:107550. [PMID: 36219908 DOI: 10.1016/j.envint.2022.107550] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) or phthalates and bisphenol A (BPA) are emerging organic contaminants (EOCs) that may harm biota and human health. Humans can be exposed to these contaminants by drinking water consumption from water sources such as groundwater. Before their presence in aquifer systems, phthalates and BPA can be found in many matrices due to anthropogenic activities, which result in long-term transport to groundwater reservoirs by different mechanisms and reaction processes. The worldwide occurrence of phthalates and BPA concentrations in groundwater have ranged from 0.1 × 10-3 to 3 203.33 µg L-1 and from 0.09 × 10-3 to 228.04 µg L-1, respectively. Therefore, the aim of this review is to describe the groundwater contamination pathways of phthalates and BPA from the main environmental sources to groundwater. Overall, this article provides an overview that integrates phthalate and BPA environmental cycling, from their origin to human reception via groundwater consumption. Additionally, in this review, the readers can use the information provided as a principal basis for existing policy ratification and for governments to develop legislation that may incorporate these endocrine disrupting compounds (EDCs) as priority contaminants. Indeed, this may trigger the enactment of regulatory guidelines and public policies that help to reduce the exposure of these EDCs in humans by drinking water consumption.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64149, Nuevo León, Mexico.
| |
Collapse
|
37
|
Yuan L, Liu J, Huang Y, Shen G, Pang S, Wang C, Li Y, Mu X. Integrated toxicity assessment of DEHP and DBP toward aquatic ecosystem based on multiple trophic model assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87402-87412. [PMID: 35804233 DOI: 10.1007/s11356-022-21863-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
To comprehensively understand the toxic risks of phthalates to aquatic ecosystems, we examined the acute toxicity of di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) on multiple trophic models, including algae (Chlorella vulgaris), Daphnia magna and fish (Danio rerio, Pseudorasbora parva). Thus, a 15-day zebrafish exposure was conducted to trace the dynamic changes of phthalate-induced toxic effects. Among the four species, D. magna exhibited the strongest sensitivity to both DEHP and DBP, followed by D. rerio and P. parva. C. vulgaris exhibited the lowest sensitivity to phthalates. The sub-chronic zebrafish assay demonstrated that 1000 μg/L DBP induced significant mortality at 15 days post-exposure (dpe), and DEHP exhibited no lethality at the tested concentrations (10-5000 μg/L). Zebrafish hepatic SOD activity and sod transcription levels were inhibited by DBP from 3 dpe, which was accompanied by increased malondialdehyde level, while zebrafish exposed to DEHP exhibited less oxidative damage. Both DEHP and DBP induced time-dependent alterations on Ache activity in zebrafish brains, thus indicating the potential neurotoxicity toward aquatic organisms. Additionally, 1000 μg/L and higher concentration of DBP caused hepatic DNA damage in zebrafish from 7 dpe. These results provide a better understanding of the health risks of phthalate to water environment.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
38
|
Elaiyaraja A, Mayilsamy M, Vimalkumar K, Nikhil NP, Noorani PM, Bommuraj V, Thajuddin N, Mkandawire M, Rajendran RB. Aquatic and human health risk assessment of Humanogenic Emerging Contaminants (HECs), Phthalate Esters from the Indian Rivers. CHEMOSPHERE 2022; 306:135624. [PMID: 35810861 DOI: 10.1016/j.chemosphere.2022.135624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PEs) one of the widely used plasticizers, and are known for their environmental contamination and endocrine disruption. Hence, it is important to study their distribution in a riverine environment. This study was aimed to determine the Spatio-temporal trends of 16 PEs in surface water, sediment and fish from rivers in southern India, and to assess their environmental health risks. Phthalates were quantified in all matrices with the mean concentrations (∑16PEs) in water, sediment and fish as 35.6 μg/L, 1.25 μg/kg and 17.0 μg/kg, respectively. The Kaveri River is highly loaded with PEs compared to the Thamiraparani and Vellar Rivers. PEs such as DBP, DEHP, DCHP and DiBP were most frequently detected in all matrices, and at elevated concentrations in the dry season. The risk quotient (RQ < 1) suggests that the health risk of PEs from river water and fish to humans is negligible. However, DBP and DEHP from the Kaveri River pose some risk to aquatic organisms (HQ > 1). DEHP from the Vellar River may pose risks to algae and crustaceans. Non-priority phthalate (DiBP) may pose risks to Kaveri and Vellar River fish. The bioaccumulation factor of DCHP and DEHP was found to be very high in Sardinella longiceps and in Centropristis striata, and also exceeded the threshold limit of 5000 suggesting that PEs in the riverine environment may pose some health concerns. This is the first study to assess the spatio-temporal distribution, riverine flux and potential ecological effects of 16 PEs from the southern Indian Rivers.
Collapse
Affiliation(s)
- Arun Elaiyaraja
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Murugasamy Mayilsamy
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Taramani Road (CSIR Road), Chennai, India
| | - Krishnamoorthi Vimalkumar
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nishikant Patil Nikhil
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Peer Muhamed Noorani
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Vijayakumar Bommuraj
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Ramaswamy Babu Rajendran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Research Center for Inland Seas, Kobe University, Kobe, 658-0022, Japan.
| |
Collapse
|
39
|
Wang C, Guo Y, Feng L, Pang W, Yu J, Wang S, Qiu C, Li C, Wang Y. Fate of phthalates in a river receiving wastewater treatment plant effluent based on a multimedia model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2124-2137. [PMID: 36378170 DOI: 10.2166/wst.2022.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) can enter environment media by secondary effluent discharge from wastewater treatment plants (WWTP) into receiving rivers, thus posing a threat to ecosystem health. A level III fugacity model was established to simulate the fate and transfer of four PAEs in a study area in Tianjin, China, and to evaluate the influence of WWTP discharge on PAEs levels in the receiving river. The results show that the logarithmic residuals of most simulated and measured values of PAEs are within one order of magnitude with a good agreement. PAEs in the study area were mainly distributed in soil and sediment phases, which accounted for 84.66%, 50.26%, 71.96% and 99.09% for dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), respectively. The upstream advection accounted for 77.90%, 93.20%, 90.21% and 90.93% of the total source of DMP, DEP, DBP and DEHP in the river water, respectively, while the contribution of secondary effluent discharge was much lower. Sensitivity analysis shows that emission and inflow parameters have greater influences on the multimedia distributions of PAEs than physicochemical and environmental parameters. Monte Carlo analysis quantifies the uncertainties and verifies the reliability of the simulation results.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Lixia Feng
- Tianjin United Environmental Protection Engineering Design Co., Ltd, Tianjin 300191, China
| | - Weiliang Pang
- Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufei Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
40
|
Cao Y, Xu S, Zhang K, Lin H, Wu R, Lao JY, Tao D, Liu M, Leung KMY, Lam PKS. Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119683. [PMID: 35772618 DOI: 10.1016/j.envpol.2022.119683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑15PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑15PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑15PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705-29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, 999078, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
41
|
Ma J, Lu Y, Teng Y, Tan C, Ren W, Cao X. Occurrence and health risk assessment of phthalate esters in tobacco and soils in tobacco-producing areas of Guizhou province, southwest China. CHEMOSPHERE 2022; 303:135193. [PMID: 35679984 DOI: 10.1016/j.chemosphere.2022.135193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Flue-cured tobacco is one of the important sources of national economy in China. However, Phthalic acid esters (PAEs) are ubiquitous contaminants in the cultivation and growth management of flue-cured tobacco, and attracting more and more attention. Here, six priority PAEs were detected in tobacco and soils and their residue characteristics, pollution sources were analyzed, and their exposure risks to the health of farmers were assessed. The concentration of six total PAEs ranged from 0.78 to 4.79 mg/kg in tobacco with the average of 1.75 mg/kg, and 0.84-25.68 mg/kg in soils with the average of 5.40 mg/kg. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) had the highest detection frequency (DF = 100%) both in soil and tobacco samples. DEHP was the most abundant of the total PAEs in soil and tobacco samples, with the mean contribution values of 71.0% and 58.8%, respectively. Principal component analysis (PCA) indicates that the major sources of PAEs in the tobacco-soil system were plastic films, fertilizers and pesticides. Health risk assessment suggests that the non-cancer hazard indexes (NCHI) of dimethyl phthalate (DMP), diethyl phthalate (DEP), DBP and di-n-octyl phthalate (DnOP) in all samples for farmers were at acceptable levels (NCHI < 1), and the average carcinogenic hazard indexes (CHI) of butyl benzyl phthalate (BBP) and DEHP for farmers were 3.79 × 10-13 and 8.54 × 10-11 in soils, respectively, 8.23 × 10-13 and 1.95 × 10-11 in tobacco, respectively, which were considered to be very low level (CHI < 10-6). This study provides data on PAEs in tobacco and soils and their health risks which may provide valuable information to aid the management of tobacco cultivation and risk avoidance.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China; College of Materials and Chemistry, Tongren University, Tongren, 554300, China.
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, China
| |
Collapse
|
42
|
Li X, Li N, Wang C, Wang A, Kong W, Song P, Wang J. Occurrence of Phthalate Acid Esters (PAEs) in Protected Agriculture Soils and Implications for Human Health Exposure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:548-555. [PMID: 35689130 DOI: 10.1007/s00128-022-03553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study explored occurrence of phthalic acid esters (PAEs) in protected agriculture soils and assessed their potential health risks to humans. Results showed that DEHP and DBP were the most abundant PAEs congeners, with mean concentrations of 318.68 μg/kg and 137.56 μg/kg, respectively. DOP and BBP concentrations were relatively low, and DMP and DEP were not detected in all samples. DBP concentrations were higher than the allowable concentration standard value. Additionally, soil pH and organic matter were key environmental parameters which may play the vital roles to the occurrence of organic pollutants. Heath risk assessment results indicated that dermal contact was the predominant human exposure route under non-dietary conditions, and children obtained higher health risk scores than adults. In summary, the overall health risk scores were at an acceptable level. These results provide insights for assessing soil environmental safety and ecological risks in protected agricultural soil.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China
| | - Anyu Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China
| | - Wenjia Kong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China
| | - Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|
43
|
Bao Y, Li M, Xie Y, Guo J. Investigating the Permeation Mechanism of Typical Phthalic Acid Esters (PAEs) and Membrane Response Using Molecular Dynamics Simulations. MEMBRANES 2022; 12:membranes12060596. [PMID: 35736303 PMCID: PMC9228506 DOI: 10.3390/membranes12060596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022]
Abstract
Phthalic acid esters (PAEs) are typical environmental endocrine disrupters, interfering with the endocrine system of organisms at very low concentrations. The plasma membrane is the first barrier for organic pollutants to enter the organism, so membrane permeability is a key factor affecting their biological toxicity. In this study, based on computational approaches, we investigated the permeation and intramembrane aggregation of typical PAEs (dimethyl phthalate, DMP; dibutyl phthalate, DBP; di-2-ethyl hexyl phthalate, DEHP), as well as their effects on membrane properties, and related molecular mechanisms were uncovered. Our results suggested that PAEs could enter the membrane spontaneously, preferring the headgroup-acyl chain interface of the bilayer, and the longer the side chain (DEHP > DBP > DMP), the deeper the insertion. Compared with the shortest DMP, DEHP apparently increased membrane thickness, order, and rigidity, which might be due to its stronger hydrophobicity. Potential of means force (PMF) analysis revealed the presence of an energy barrier located at the water-membrane interface, with a maximum value of 2.14 kcal mol−1 obtained in the DEHP-system. Therefore, the difficulty of membrane insertion is also positively correlated with the side-chain length or hydrophobicity of PAE molecules. These findings will inspire our understanding of structure-activity relationship between PAEs and their effects on membrane properties, and provide a scientific basis for the formulation of environmental pollution standards and the prevention and control of small molecule pollutants.
Collapse
Affiliation(s)
- Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (M.L.); (Y.X.)
| | - Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (M.L.); (Y.X.)
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (M.L.); (Y.X.)
| | - Jingjing Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (M.L.); (Y.X.)
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Faculty of Applied Science, Macao Polytechnic University, Macao 999078, China
- Correspondence:
| |
Collapse
|
44
|
Le TM, Thi Pham CL, Nu Nguyen HM, Duong TT, Quynh Le TP, Nguyen DT, Vu ND, Minh TB, Tran TM. Distribution and ecological risk assessment of phthalic acid esters in surface sediments of three rivers in Northern Vietnam. ENVIRONMENTAL RESEARCH 2022; 209:112843. [PMID: 35101399 DOI: 10.1016/j.envres.2022.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Pollution status and distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 36 sediment samples collected from three rivers in Northern Vietnam from June to October 2020. The total concentrations of PAEs in sediment samples collected from the To Lich River (n = 9), the Nhue River (n = 12), and the Day River (n = 15) were in ranges of 11,000-125,000 ng/g-dwt (mean/median: 50,000/42,200 ng/g-dwt), 2140-89,900 ng/g-dwt (mean/median: 29,300/20,700 ng/g-dwt), and 1140-43,100 ng/g-dwt (mean/median: 13,800/10,400 ng/g-dwt), respectively. Among ten PAEs studied, di-(2-ethylhexyl) phthalate (DEHP) was found at the highest levels in all samples meanwhile dimethyl phthalate (DMP), diethyl phthalate (DEP), and dipropyl phthalate (DPP) were detected at low frequency and concentration. Significant correlations have existed between the median-chain (C4-C7) PAE pairs in sediment samples. Due to the high accumulation in the sediments, the median-chain PAEs had a higher ecological risk than the short-chain (C1-C3) PAEs. These contaminants may present a longstanding influence on organisms and ecosystems.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Chi Linh Thi Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Ha Tinh University, Cam Vinh commune, Cam Xuyen District, Ha Tinh, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
45
|
A CRITICAL REVIEW ON EXTRACTION AND ANALYTICAL METHODS OF PHTHALATES IN WATER AND BEVERAGES. J Chromatogr A 2022; 1675:463175. [DOI: 10.1016/j.chroma.2022.463175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
|
46
|
Guo W, Li J, Luo M, Mao Y, Yu X, Elskens M, Baeyens W, Gao Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. WATER RESEARCH 2022; 214:118189. [PMID: 35184019 DOI: 10.1016/j.watres.2022.118189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Effluents of sewage treatment plants (STPs) are an important source of estrogenic substances to the receiving water bodies affecting their ecological safety. In this study, steroids, bisphenol A (BPA) and phthalates were assessed in the secondary (SE) and tertiary effluent (TE) of three typical urban STPs in Beijing (China). In addition, the overall estrogenic activity in these effluents was assessed by an in-vitro bioassay (ERE-CALUX). Results showed that the concentrations and activities of estrogenic compounds in TE were lower than those in SE. The residual concentration of 17β-estradiol (E2) was the highest among the detected steroids, accounting for 51.6 ± 5.1% in SE and 57.5 ± 24.8% in TE. The residual level (25.2-41.6 ng/L) of BPA in effluents was significantly higher than that of steroids (0.2-28.8 ng/L). The residual concentration of diethyl phthalate was the highest among the detected phthalates accounting for 47.1 ± 5.1% in SE and 37.6 ± 11.5% in TE. Steroids and BPA had a higher removal rate (83.5% and 96.7%) in secondary and tertiary treatment than phthalates (68.8% and 83.1%). The hydrophobic characteristics of these estrogenic compounds determined the removal mechanism. The removal of steroids, BPA, dimethyl phthalate and diethyl phthalate (LogKow= 1.61-4.15) mainly occurred through biodegradation in the water phase, while the removal of dibutyl phthalate, butylbenzyl phthalate and di(2-ethylhexyl) phthalate (LogKow= 4.27-7.50) mainly occurred in the solid phase after adsorption on and sedimentation of the suspended particulate matter. According to ERE-CALUX, the estrogenic activity in the final STP effluents was 3.2-45.6 ng E2-equivalents/L, which is higher than reported levels in the effluents of European STPs. Calculation of estrogenic equivalents by using substance specific chemical analysis indicated that the dominant contributor was E2 (56.4-88.4%), followed by 17α-ethinylestradiol (EE2) (4.1-34.8%), both also exerting a moderate risk to the aquatic ecosystem. While the upgrade of treatment processes in STPs has efficiently reduced the emission of estrogenic substances, their ecological risk was not yet phased out.
Collapse
Affiliation(s)
- Wei Guo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyue Luo
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yan Mao
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Xiangyi Yu
- Solid Waste and Chemicals Management Center of MEE, Beijing, 100029, China
| | - Marc Elskens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium.
| |
Collapse
|
47
|
Nas B, Ateş H, Dolu T, Yel E, Argun ME, Koyuncu S, Kara M, Dinç S. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. CHEMOSPHERE 2022; 295:133864. [PMID: 35150704 DOI: 10.1016/j.chemosphere.2022.133864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Phthalate Esters (PAEs), detected in high concentrations generally in treated wastewater discharged from wastewater treatment plants (WWTPs), are important pollutants that restrict the reuse of wastewater. Investigating the fate of these endocrine-disrupting chemicals in WWTPs is crucial in order to protect both receiving environments and ecosystems. For this purpose, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) and benzyl butyl phthalate (BBP) in the group of PAEs were monitored in simultaneously both in wastewater and sludge lines of selected two nature-based WWTPs and one advanced biological WWTP. Although it was frequently stated that phthalates were significantly removed in WWTPs in many studies found in literature, negative removal efficiencies of selected phthalates in investigated WWTPs during the sampling period were observed generally in this study. One of the reasons for this concentration increase could be releasing of phthalates from microplastics in wastewater during the treatment process or the desorption of PAEs from treatment sludge. DNOP was the compound with the highest concentration increase at almost each treatment unit of the three WWTPs. On the other hand, total PAEs load was 1997 g d-1 in advanced biological WWTP and adsorption onto sludge of PAEs were determined as 90%. The side-stream total load returned from the decanter supernatant was 0.02% of the total PAEs load coming to advanced biological WWTP from the sewer system. As a result of detailed statistical analysis, the correlation between raw wastewater and primary clarifier (PC) effluent was determined as an increasing linear relation for DEHP and DNOP. On the other hand, moderate and strong correlations were observed both between septic tank and constructed wetland (CW) processes with raw wastewater. In the waste stabilization pond (WSP), while a significant correlation was not found between the sludge line data, homogeneous variance, strong and moderate correlations were obtained in the wastewater line data. However, while mean differences for all investigated PAEs were not significant (p > 0.05) in the wastewater line, mean differences of DEHP (p < 0.05) were significant in the sludge line according to ANOVA analysis.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - S Koyuncu
- Konya Metropolitan Municipality, Environmental Protection and Control Department, Konya, Turkey.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Turkey.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Turkey.
| |
Collapse
|
48
|
Bai C, Liu L, Chen S, Zhao L, Yang H, Guo W, Li M, Liu M, Lai X, Zhang X, Yang L. Urinary phthalate metabolites and arterial stiffness: A panel study. ENVIRONMENTAL RESEARCH 2022; 207:112657. [PMID: 34979126 DOI: 10.1016/j.envres.2021.112657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The link between phthalates exposure and arterial stiffness in adults remains unclear. We aimed to investigate the associations of urinary phthalate metabolites with arterial stiffness in a longitudinal panel study involving 3 repeated visits among 127 Chinese adults. Urine samples were collected once a day for 4 consecutive days and 10 urinary phthalate metabolites were measured by gas chromatography-tandem mass spectrometry (GC-MS/MS). Brachial ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were determined using an oscillometric device (BP-203RPEIII; Omron) in physical examinations during each visit. Linear mixed-effect (LME) models with the adaptive Least Absolute Shrinkage and Selection Operator (LASSO) method were applied to assess the associations between urinary phthalate metabolites and arterial stiffness parameters. The odds ratio (OR) for peripheral arterial disease (PAD) was estimated using generalized estimating equations. For ABI, mono-methyl phthalate (MMP) and mono-n-butyl phthalate (MBP) at lag 0 day were selected by the adaptive LASSO, whereas no phthalates were selected for baPWV. After adjusting for potential covariates and other metabolites, we found ABI reduction was associated with one-unit increase of ln-transformed urinary MBP at lag 0 day [β = 0.013 (SE = 0.006), P = 0.003)]. Stratified analysis revealed that the inverse association was more evident in males (Pinteraction = 0.025). In addition, we observed a borderline risk of PAD in relation to MBP exposure at lag 0 day (P = 0.06). Our data suggested that environmental exposure to MBP may contribute to arterial stiffness, and the effect seems to be sex-specific.
Collapse
Affiliation(s)
- Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
49
|
Zheng Y, Zhou K, Tang J, Liu C, Bai J. Impacts of di-(2-ethylhexyl) phthalate on Folsomia candida (Collembola) assessed with a multi-biomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113251. [PMID: 35121260 DOI: 10.1016/j.ecoenv.2022.113251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is extensively used as an additive to produce plastics, but it may damage non-target organisms in soil. In this study, the effects of DEHP on Folsomia candida in terms of survival, reproduction, enzyme activities, and DNA damage were investigated in spiked artificial soil using a multi-biomarker strategy. The 7-day LC50 (median lethal concentration) and 28-day EC50 (median effect concentration) values of DEHP were 1256.25 and 19.72 mg a.i. (active ingredient) kg-1 dry soil, respectively. Biomarkers involved in antioxidant defense including catalase (CAT-catalase), glutathione S-transferases (GST), detoxifying enzymes including acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and peroxidative damage (LPO-lipid peroxide) were also measured (EC10, EC20, and EC50) after exposure for 2, 4, 7, and 14 days. The Comet assay was also applied to assess the level of genetic damage. The activity of CAT and LPO was drastically enhanced by the highest dose (EC50) of DEHP on day two. The activities of GST and AChE in DEHP treatment groups were found to be blocked. In contrast, the activity of CYP450 was significantly enhanced compared to the respective control groups during the first four days of incubation. The Comet assay in F.candida demonstrated that DEHP (EC50) could induce DNA damage. The obtained multi-biomarker data were analyzed using an integrated biomarker response (IBR) index, indicating that limited-time exposure triggered higher stress than long-term exposure at low concentrations of DEHP. These results demonstrate that DEHP may cause biochemical and genetic toxicity to F. candida, which illustrated the potential risks of DEHP in the soil environment and might affect soil ecosystem processes. Further studies are necessary to elucidate the toxic mechanisms of DEHP on other non-target organisms in soil.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Kedong Zhou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| |
Collapse
|
50
|
Chen CF, Ju YR, Lim YC, Wang MH, Patel AK, Singhania RR, Chen CW, Dong CD. The effect of heavy rainfall on the exposure risks of sedimentary phthalate esters to aquatic organisms. CHEMOSPHERE 2022; 290:133204. [PMID: 34914947 DOI: 10.1016/j.chemosphere.2021.133204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) have known widely being used in plastic products leading to being ubiquitous in the environment by easy to release from those products. This study aims to understand the impact of heavy rainfall on the concentration of PAEs in surface sediments of the Salt River in Kaohsiung, Taiwan, and its potential ecological risks on aquatic organisms. The potential ecological risk assessment of sediment PAEs is based on the total risk quotient (TRQ) method. The total concentration of 10 PAEs (∑PAE10) in sediments of the Salt River is 333-13,615 ng/g dw, with an average of 4212 ± 3753 ng/g dw. Before the rainy season, the ∑PAE10 concentration in sediments at the outlets of domestic sewage in upstream was 9768-13,615 ng/g dw, which were relatively higher than other sites (542-3721 ng/g dw). During the rainy season, the ∑PAE10 concentration was 2820-12,041 ng/g dw, which was 1-11 times higher than that determined before the rainy season. After the rainy season, the ∑PAE10 concentration recorded was 530-6652 ng/g dw, which is 1-11 times lower than the value obtained during the rainy season. PAEs in sediments of the Salt River may have low to moderate potential risks to algae, crustaceans, and fish. Bis(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) are the main PAE that poses a potential risk to algae and crustaceans, and to fish respectively, whose values of risk quotient accounts for 40-69% of the TRQ value. The distribution of TRQ values for these aquatic organisms show a decreasing trend of PAEs level with respect to the rainy season: during the rainy season > after the rainy season > before the rainy season. Heavy rainfall may cause more serious pollution in sediments and increase the exposure risk of PAEs to aquatic organisms.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|