1
|
Wan S, Wang D, Shi Y, Chen S, Ye C. Liquid PEG and PEGDA as Protective Matrices for TTA-UC Functioning in Air and Their Application in Information Encryption. Chemistry 2025:e202500714. [PMID: 40244067 DOI: 10.1002/chem.202500714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Photochemical deoxygenation offers a promising solution to the oxygen sensitivity issue in Triplet-triplet annihilation upconversion (TTA-UC). This study utilized polyethylene glycol (PEG)-200 and polyethylene glycol diacrylate (PEGDA)-575 as solvents and singlet oxygen scavengers for TTA-UC conducted in air. The upconversion efficiency of Pt(OEP)/DPA in aerated PEG-200 is similar to that in nitrogen-saturated PEG-200. Prolonged 532 nm light irradiation causes a PEGDA-575 solution of Pt(OEP)/DPA to undergo photoinitiated polymerization via homomolecular TTA, leading to a reduction in DPA's upconversion emission and an increase in Pt(OEP)'s phosphorescence. These results enabled the development of a high-level information encryption platform using the direct-writing method with Pt(OEP)/DPA/PEGDA-575 or Pt(OEP)/DPA/PEGDA-575/PEG-200 ink. The information is only readable under certain lighting conditions or at specific times and can be erased by exposure to light.
Collapse
Affiliation(s)
- Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Dongxuan Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
2
|
Lu YD, Hsu CR, Ke SH, Lai KL, Cheng HL, Wang YW, Chen JY. Solution-processable and photo-programmable logic gate realized by organic non-volatile floating-gate photomemory. MATERIALS HORIZONS 2025. [PMID: 40183739 DOI: 10.1039/d5mh00036j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Programmable inverters using non-volatile floating-gate photomemories as basic building blocks instead of field-effect transistors enable the manipulation of threshold voltage by photons, providing an additional degree of freedom for applications in integrated circuits. However, the development of organic photo-controllable inverters is challenging due to issues such as solubility constraints for film stacking and the immaturity of photo-recordable devices. Notably, the development of organic non-volatile floating-gate photomemories (ONVFGPs) with n-type charge-transporting layers still lags behind that of the p-type layers due to the limited availability of suitable solution-processable charge-trapping materials and charge-transporting material pairs. Herein, photo-crosslinkable polystyrene-b-poly(methacrylic acid) (PS-b-PMAA)/5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP), which follows anti-Kasha's rule, is adopted as the charge-trapping layer for ONVFGPs. Both the second and first excited states of ZnTPP participate in photo-induced charge transfer, achieving the state-of-the-art photo-programming time of 0.1 second for ONVFGPs. The transfer curve of the derived photo-programmable inverter can be fine-tuned across a broad spectrum spanning from 405 nm to 830 nm, leading to at least six output states for the same input signal. This research confirms the possibility of integrated organic optoelectronics, opening avenues for solution-processable system-on-chip, neuromorphic computing and organic photonic integrated circuits.
Collapse
Affiliation(s)
- Yu-Dao Lu
- Department of Photonics National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chan-Rung Hsu
- Department of Photonics National Cheng Kung University, Tainan 70101, Taiwan.
| | - Shin-Hau Ke
- Department of Photonics National Cheng Kung University, Tainan 70101, Taiwan.
| | - Kuan-Lin Lai
- Department of Photonics National Cheng Kung University, Tainan 70101, Taiwan.
| | - Horng-Long Cheng
- Department of Photonics National Cheng Kung University, Tainan 70101, Taiwan.
- Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University, Tainan 70101, Taiwan
- Meta-nano Photonics Center National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Wu Wang
- Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan
| | - Jung-Yao Chen
- Department of Photonics National Cheng Kung University, Tainan 70101, Taiwan.
- Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University, Tainan 70101, Taiwan
- Meta-nano Photonics Center National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Wu X, Ehrmann K, Gan CT, Leuschel B, Pashley‐Johnson F, Barner‐Kowollik C. Two Material Properties from One Wavelength-Orthogonal Photoresin Enabled by a Monochromatic Laser Integrated Stereolithographic Apparatus (Mono LISA). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419639. [PMID: 39962842 PMCID: PMC11962704 DOI: 10.1002/adma.202419639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/05/2025] [Indexed: 04/03/2025]
Abstract
Multi-material printing has experienced critical advances in recent years, yet material property differentiation capabilities remain limited both with regard to the accessible properties - typically hard versus soft - and the achievable magnitude of differentiation. To enhance multi-material printing capabilities, precise photochemical control during 3D printing is essential. Wavelength-differentiation is a particularly intriguing concept yet challenging to implement. Notably, dual-wavelength printing to fabricate hard and soft sections within one object has emerged, where one curing process is insensitive to visible light, while UV irradiation inevitably activates the entire resin, limiting true spatio-temporal control of the material properties. Until now, pathway-independent wavelength-orthogonal printing has not been realized, where each wavelength exclusively triggers only one of two possible reactions, independent of the order in which the wavelengths are applied. Herein, a multi-wavelength printing technique is introduced employing a tunable laser to monochromatically deliver light to the printing platform loaded with a fully wavelength-orthogonal resin. Guided by photochemical action plots, two distinct wavelengths - each highly selective toward a specific photocycloaddtion reaction - are utilized to generate distinct networks within the photoresin. Ultimately, together with the printing technique, this orthogonally addressable photoresin allows fabricating multi-material objects with degradable and non-degradable properties, in a single fabrication step.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Katharina Ehrmann
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Institute for Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/163Vienna1060Austria
| | - Ching Thye Gan
- Faculty of EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin Leuschel
- Institut de Science des Matériaux de Mulhouse (IS2M)CNRS – UMR 7361Université de Haute‐Alsace15 rue Jean StarckyMulhouse68057France
| | - Fred Pashley‐Johnson
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent UniversityKrijgslaan 281‐S4Ghent9000Belgium
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
4
|
Zeng W, Zhang Y, Chen H, Huang H, Peng Q. A General Formalism of Excitation-Dependent Luminescence Properties in Triplet-Triplet Annihilation Systems. J Chem Theory Comput 2025; 21:3092-3100. [PMID: 40085027 DOI: 10.1021/acs.jctc.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Triplet-triplet annihilation (TTA) has promising applications in optical functional devices and technologies due to its efficient exciton utilization and up-conversion. Traditionally, the change in the slope of the dual logarithmic relationship curve between emission and excitation light intensity from 2 to 1 has been regarded as evidence of the occurrence of TTA. However, this characteristic change was not observed in many single-component organic TTA systems in recent experiments. In this work, we develop new models for TTA processes by introducing more electronic states and transitions than those considered in the traditional model and derive a general formalism of excitation-dependent luminescence intensity, Iem = N(Ckex + Akex + B - B 2 + 2 AB k e x ). This formalism can be applied not only to typical TTA systems but also to systems whose dynamics cannot be accurately described using traditional models. As kex increases, the slope of log Iem ∼ log kex changes from 1 to n and then back to 1 (where 1 < n ≤ 2) with two distinct turning points, and the corresponding luminescence quantum yield (Φem) increases monotonically until it reaches saturation, which are fully confirmed by the steady-state spectrum experiments. The characteristic change in Φem is a more suitable universal criterion for judging the occurrence of TTA. These findings provide a valuable novel tool for probing the kinetic processes in TTA systems that are challenging to model.
Collapse
Affiliation(s)
- Wenwan Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yincheng Zhang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Chen
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Huang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | |
Collapse
|
5
|
Pfund B, Wenger OS. Excited Organic Radicals in Photoredox Catalysis. JACS AU 2025; 5:426-447. [PMID: 40017739 PMCID: PMC11862960 DOI: 10.1021/jacsau.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
Many important synthetic-oriented works have proposed excited organic radicals as photoactive species, yet mechanistic studies raised doubts about whether they can truly function as photocatalysts. This skepticism originates from the formation of (photo)redox-active degradation products and the picosecond decay of electronically excited radicals, which is considered too short for diffusion-based photoinduced electron transfer reactions. From this perspective, we analyze important synthetic transformations where organic radicals have been proposed as photocatalysts, comparing their theoretical maximum excited state potentials with the potentials required for the observed photocatalytic reactivity. We summarize mechanistic studies of structurally similar photocatalysts indicating different reaction pathways for some catalytic systems, addressing cases where the proposed radical photocatalysts exceed their theoretical maximum reactivity. Additionally, we perform a kinetic analysis to explain the photoinduced electron transfer observed in excited radicals on subpicosecond time scales. We further rationalize the potential anti-Kasha reactivity from higher excited states with femtosecond lifetimes, highlighting how future photocatalysis advancements could unlock new photochemical pathways.
Collapse
Affiliation(s)
- Björn Pfund
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Yang YA, Ni YF, Chakravarthy RD, Wu K, Yeh MY, Lin HC. Engineering Hydrogels with Enhanced Adhesive Strength Through Optimization of Poly(Ethylene Glycol) Molecular Weight. Polymers (Basel) 2025; 17:589. [PMID: 40076083 PMCID: PMC11902555 DOI: 10.3390/polym17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Hydrogels are extensively utilized in biomedical fields because of their remarkable properties, including biocompatibility, high water content, flexibility, and elasticity. However, despite substantial progress in hydrogel research, creating a hydrogel adhesive that integrates high stretchability, fatigue resistance, and reversible adhesion continues to pose significant challenges. In this study, we aimed to address these challenges by preparing hydrogels using a combination of acrylic acid, acrylamide, carboxymethylcellulose methacrylate, thiol-functionalized polyhedral oligomeric silsesquioxane, and poly(ethylene glycol) dimethacrylate (PEGDM). By systematically varying the molecular weight of PEG, we were able to precisely adjust the mechanical and adhesive properties of the hydrogels. Our research revealed that a PEG molecular weight of 2000 (resulting in P1 hydrogel) provided a notable adhesive strength of 717.2 kPa on glass surfaces. This performance is particularly impressive given the challenges associated with achieving high adhesive strength while maintaining other desirable hydrogel properties. Beyond its strong adhesive capabilities, the P1 hydrogel also demonstrated exceptional stretchability, support, and fatigue resistance. These characteristics are crucial for applications where the adhesive needs to endure repeated stress and deformation without losing effectiveness. The successful development of P1 hydrogel underscores its potential as a multifunctional adhesive material with a broad range of applications. The ability to tailor the properties of hydrogels through molecular weight adjustments offers a promising approach to creating advanced adhesive solutions that meet the demanding requirements of modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Yin-An Yang
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; (Y.-A.Y.); (Y.-F.N.)
| | - Yu-Feng Ni
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; (Y.-A.Y.); (Y.-F.N.)
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
| | - Karl Wu
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; (Y.-A.Y.); (Y.-F.N.)
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
7
|
Jin P, Xu X, Yan Y, Hammecke H, Wang C. Luminescent Fe(III) Complex Sensitizes Aerobic Photon Upconversion and Initiates Photocatalytic Radical Polymerization. J Am Chem Soc 2024; 146:35390-35401. [PMID: 39658028 DOI: 10.1021/jacs.4c14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Light energy conversion often relies on photosensitizers with long-lived excited states, which are mostly made of precious metals such as ruthenium or iridium. Photoactive complexes based on highly abundant iron seem attractive for sustainable energy conversion, but this remains very challenging due to the short excited state lifetimes of the current iron complexes. This study shows that a luminescent Fe(III) complex sensitizes triplet-triplet annihilation upconversion with anthracene derivatives via underexplored doublet-triplet energy transfer, which is assisted by preassociation between the photosensitizer and the annihilator. In the presence of an organic mediator, the green-to-blue upconversion efficiency ΦUC with 9,10-diphenylanthracene (DPA) as the annihilator achieves a 6-fold enhancement to ∼0.2% in aerated solution at room temperature. The singlet excited state of DPA, accessed via photon upconversion in the Fe(III)/DPA pair, allows efficient photoredox catalytic radical polymerization of acrylate monomers in a spatially controlled manner, whereas this process is kinetically hindered with the prompt DPA. Our study provides a new strategy of using low-cost iron and low-energy visible light for efficient polymer synthesis, which is a significant step for both fundamental research and future applications.
Collapse
Affiliation(s)
- Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| | - Xinhuan Xu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| |
Collapse
|
8
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
9
|
Arshad A, Castellano FN. Homomolecular Triplet-Triplet Annihilation in Metalloporphyrin Photosensitizers. J Phys Chem A 2024; 128:7648-7656. [PMID: 39229891 DOI: 10.1021/acs.jpca.4c05052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metalloporphyrins are ubiquitous in their applications as triplet photosensitizers, particularly for promoting sensitized photochemical upconversion processes. In this study, bimolecular excited state triplet-triplet quenching kinetics, termed homomolecular triplet-triplet annihilation (HTTA), exhibited by the traditional triplet photosensitizers-zinc(II) tetraphenylporphyrin (ZnTPP), palladium(II) octaethylporphyrin (PdOEP), platinum(II) octaethylporphyrin (PtOEP), and platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP)─were revealed using conventional transient absorption spectroscopy. Nickel(II) tetraphenylporphyrin was used as a control sample as it is known to be rapidly quenched intramolecularly through ligand-field state deactivation and, therefore, cannot result in triplet-triplet annihilation (TTA). The single wavelength transients associated with the metalloporphyrin triplet excited state decay─measured as a function of incident laser pulse energy in toluene─were well modeled using parallel first- and second-order kinetics, consistent with HTTA being operable. The combined transient kinetic data enabled the determination of the first-order rate constants (kT) for excited triplet decay in ZnTPP (4.0 × 103 s-1), PdOEP (3.6 × 103 s-1), PtOEP (1.2 × 104 s-1), and PtTPBP (2.1 × 104 s-1) as well as the second-order rate constant (kTT) for HTTA in ZnTPP (5.5 × 109 M-1 s-1), PdOEP (1.1 × 1010 M-1 s-1), PtOEP (7.1 × 109 M-1 s-1), and PtTPBP (1.6 × 1010 M-1 s-1). In most instances, triplet excited state extinction coefficients are either reported for the first time or have been revised using ultrafast transient absorption spectroscopy and singlet depletion: ZnTPP (78,000 M-1 cm-1) at 470 nm, PdOEP (67,000 M-1 cm-1) at 430 nm, PtOEP (51,000 M-1 cm-1) at 418 nm, and PtTPBP (100,000 M-1 cm-1) at 460 nm. The combined experimental results establish competitive time scales for homo- and heteromolecular TTA rate constants, implying the significance of considering HTTA processes in future research endeavors harnessing TTA photochemistry using common metalloporphyrin photosensitizers.
Collapse
Affiliation(s)
- Azka Arshad
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
10
|
Edo GI, Yousif E, Al-Mashhadani MH. Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydr Res 2024; 542:109199. [PMID: 38944980 DOI: 10.1016/j.carres.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The second and most often utilized natural polymer is chitosan (CS), a naturally existing amino polysaccharide that is produced by deacetylating chitin. Numerous applications have been the subject of in-depth investigation due to its non-hazardous, biologically compatible, and biodegradable qualities. Chitosan's characteristics, such as mucoadhesion, improved permeability, controlled release of drugs, in situ gelation process, and antibacterial activity, depend on its amino (-NH2) and hydroxyl groups (-OH). This study examines the latest findings in chitosan research, including its characteristics, derivatives, preliminary research, toxic effects, pharmaceutical kinetics and chitosan nanoparticles (CS-NPs) based for non-parenteral delivery of drugs. Chitosan and its derivatives have a wide range of physical and chemical properties that make them highly promising for use in the medicinal and pharmaceutical industries. The characteristics and biological activities of chitosan and its derivative-based nanomaterials for the delivery of drugs, therapeutic gene transfer, delivery of vaccine, engineering tissues, evaluations, and other applications in medicine are highlighted in detail in the current review. Together with the techniques for binding medications to nanoparticles, the application of the nanoparticles was also dictated by their physical properties that were classified and specified. The most recent research investigations on delivery of drugs chitosan nanoparticle-based medication delivery methods applied topically, through the skin, and through the eyes were considered.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Wang Z, Min S, Li R, Lin W, Li K, Wang S, Kang L. Constructing cuprous oxide-modified zinc tetraphenylporphyrin ultrathin nanosheets heterojunction for enhanced photocatalytic carbon dioxide reduction to methane. J Colloid Interface Sci 2024; 667:212-222. [PMID: 38636223 DOI: 10.1016/j.jcis.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The application of supermolecular naonostructures in the photocatalytic carbon dioxide reduction reaction (CO2RR) has attracted increasing attentions. However, it still faces significant challenges, such as low selectivity for multi-electron products and poor stability. Here, the cuprous oxide (Cu2O)-modified zinc tetraphenylporphyrin ultrathin nanosheets (ZnTPP NSs) are successfully constructed through the aqueous chemical reaction. Comprehensive characterizations confirm the formation of type-II heterojunction between Cu2O and ZnTPP in Cu2O@ZnTPP, and the electron transfer from Cu2O to ZnTPP through the Zn-O-Cu bond under the static contact. Under the visible-light irradiation (λ > 420 nm), the optimized Cu2O@ZnTPP sample as catalyst for photocatalytic CO2RR exhibits the methane (CH4) evolution rate of 120.9 μmol/g/h, which is ∼ 4 and ∼ 10 times those of individual ZnTPP NSs (28.0 μmol/g/h) and Cu2O (12.8 μmol/g/h), respectively. Meanwhile, the CH4 selectivity of ∼ 98.7 % and excellent stability can be achieved. Further experiments reveal that Cu2O@ZnTPP has higher photocatalytic conversion efficiency than Cu2O and ZnTPP NSs, and the photoinduced electron transfer from ZnTPP to Cu2O can be identified via the path of ZnTPP→ (ZnTPP•ZnTPP)*→ ZnTPP-→ Zn-O-Cu → Cu2O. Consequently, Cu2O@ZnTPP exhibits a shorter electron-hole separation lifetime (3.3 vs. 9.3 ps) and a longer recombination lifetime (23.1 vs. 13.4 ps) than individual ZnTPP NSs. This work provides a strategy to construct the organic nanostructures for photocatalytic CO2RR to multi-electron products.
Collapse
Affiliation(s)
- Zhuoyue Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Shihao Min
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Renfu Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Wenlie Lin
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Kang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Shoufeng Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China
| | - Longtian Kang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; University Chinese Academy of Science, Fujian College, Fuzhou 350002, PR China.
| |
Collapse
|
12
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
13
|
Kawai G, Nagai Y, Tsuji K, Okayasu Y, Abe J, Kobayashi Y. A Nonlinear Photochromic Reaction Based on Sensitizer-Free Triplet-Triplet Annihilation in a Perylene-Substituted Rhodamine Spirolactam. Angew Chem Int Ed Engl 2024; 63:e202404140. [PMID: 38596881 DOI: 10.1002/anie.202404140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Nonlinear photochromic reactions that work with weak incoherent light are important for molecular operations with high spatial resolution and multiple photofunctions based on single molecules. However, nonlinear photochromic compounds generally require complex molecular design, restricting accessibility in various fields. Herein, we report nonlinear photochromic properties in a perylene-substituted rhodamine spirolactam derivative (Rh-Pe), which is synthesized from rhodamine B in facile procedures. Direct excitation of Rh-Pe produces the triplet excited state via the charge-transfer (CT) state. The triplet excited state causes triplet-triplet annihilation to bring the generation of the intensely colored ring-open form with nonlinear behavior. Furthermore, green- and red-light-induced photochromism was achieved in Rh-Pe using triplet sensitizers, although Rh-Pe can be directly excited only by ultraviolet and blue light. Our findings are expected to contribute to the development of photofunctional materials showing nonlinear behavior and low-energy light responsivity.
Collapse
Affiliation(s)
- Genki Kawai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Yuki Nagai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Kanna Tsuji
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Jiro Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, 252-5258, Sagamihara, Kanagawa, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| |
Collapse
|
14
|
Okanishi Y, Takemoto O, Kawahara S, Hayashi S, Takanami T, Yoshimitsu T. Red-Light-Promoted Radical Cascade Reaction to Access Tetralins and Dialins Enabled by Zinc(II)porphyrin, A Light-Flexible Catalyst. Org Lett 2024; 26:3929-3934. [PMID: 38669286 DOI: 10.1021/acs.orglett.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
[5,15-Bis(pentafluorophenyl)-10,20-diphenylporphinato]zinc(II) (1), a metalloporphyrin derivative that was recently reported as an efficient photocatalyst driven by blue LEDs by our group, was found to catalyze a red-light-promoted (630 nm LEDs) radical cascade reaction of N-3-arylpropionyloxyphthalimides with radicophiles including electron-deficient alkenes and alkynes, providing access to a range of functionalized tetralin and dialin derivatives. The radical cascade reaction catalyzed by 1 took place via an oxidative quenching cycle in DMSO, where no sacrificial electron donor was required, uncovering a unique solvent effect capable of promoting the porphyrin catalysis.
Collapse
Affiliation(s)
- Yusuke Okanishi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Otoki Takemoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sanpou Kawahara
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Hayashi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Toshikatsu Takanami
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
15
|
Huang L, Han G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 2024; 8:238-255. [PMID: 38514833 DOI: 10.1038/s41570-024-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet-triplet annihilation upconversion (TTA-UC) stands out - demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.
Collapse
Affiliation(s)
- Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
O’Dea C, Isokuortti J, Comer EE, Roberts ST, Page ZA. Triplet Upconversion under Ambient Conditions Enables Digital Light Processing 3D Printing. ACS CENTRAL SCIENCE 2024; 10:272-282. [PMID: 38435512 PMCID: PMC10906251 DOI: 10.1021/acscentsci.3c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/05/2024]
Abstract
The rapid photochemical conversion of materials from liquid to solid (i.e., curing) has enabled the fabrication of modern plastics used in microelectronics, dentistry, and medicine. However, industrialized photocurables remain restricted to unimolecular bond homolysis reactions (Type I photoinitiations) that are driven by high-energy UV light. This narrow mechanistic scope both challenges the production of high-resolution objects and restricts the materials that can be produced using emergent manufacturing technologies (e.g., 3D printing). Herein we develop a photosystem based on triplet-triplet annihilation upconversion (TTA-UC) that efficiently drives a Type I photocuring process using green light at low power density (<10 mW/cm2) and in the presence of ambient oxygen. This system also exhibits a superlinear dependence of its cure depth on the light exposure intensity, which enhances spatial resolution. This enables for the first-time integration of TTA-UC in an inexpensive, rapid, and high-resolution manufacturing process, digital light processing (DLP) 3D printing. Moreover, relative to traditional Type I and Type II (photoredox) strategies, the present TTA-UC photoinitiation method results in improved cure depth confinement and resin shelf stability. This report provides a user-friendly avenue to utilize TTA-UC in ambient photochemical processes and paves the way toward fabrication of next-generation plastics with improved geometric precision and functionality.
Collapse
Affiliation(s)
- Connor
J. O’Dea
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Jussi Isokuortti
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Emma E. Comer
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Sean T. Roberts
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Zachariah A. Page
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| |
Collapse
|
17
|
Qi F, Feng HJ, Peng Y, Jiang LH, Zeng L, Huang L. New Type Annihilator of π-Expanded Diketopyrrolopyrrole for Robust Photostable NIR-Excitable Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7512-7521. [PMID: 38318769 DOI: 10.1021/acsami.3c17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching. In conjunction with the NIR photosensitizer PdTNP, the upconversion efficiency of π-DPP is as high as 8.9%, which is eight times of the previously reported PdPc/Furan-DPP. Importantly, after polystyrene film encapsulation, less than 10% photobleaching was observed for this PdTNP/π-DPP-based NIR TTA-UC material after four hours of intensive NIR light exposure. These findings provide a type of annihilator with extraordinary photostability, facilitating the development of NIR TTA-UC materials for practical photonics.
Collapse
Affiliation(s)
- Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Peng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
Chen S, Zhou H, Zhou N, He J, Lu W. Programmable photochemical deoxygenation for 2.5D grayscale printing. Chem Commun (Camb) 2024; 60:546-549. [PMID: 38047883 DOI: 10.1039/d3cc04147f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Homomolecular photon upconversion-induced radical polymerization in an aerated DMSO solution occurs where molecular oxygen is depleted by sensitized photochemical deoxygenation and this photoreaction could be programmed into 2.5D grayscale printings by digital light processing.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Hongqi Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Ning Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Jiang He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
19
|
Zhou Q, Wirtz BM, Schloemer TH, Burroughs MC, Hu M, Narayanan P, Lyu J, Gallegos AO, Layton C, Mai DJ, Congreve DN. Spatially Controlled UV Light Generation at Depth using Upconversion Micelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301563. [PMID: 37548335 DOI: 10.1002/adma.202301563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/26/2023] [Indexed: 08/08/2023]
Abstract
UV light can trigger a plethora of useful photochemical reactions for diverse applications, including photocatalysis, photopolymerization, and drug delivery. These applications typically require penetration of high-energy photons deep into materials, yet delivering these photons beyond the surface is extremely challenging due to absorption and scattering effects. Triplet-triplet annihilation upconversion (TTA-UC) shows great promise to circumvent this issue by generating high-energy photons from incident lower-energy photons. However, molecules that facilitate TTA-UC usually have poor water solubility, limiting their deployment in aqueous environments. To address this challenge, a nanoencapsulation method is leveraged to fabricate water-compatible UC micelles, enabling on-demand UV photon generation deep into materials. Two iridium-based complexes are presented for use as TTA-UC sensitizers with increased solubilities that facilitate the formation of highly emissive UV-upconverting micelles. Furthermore, this encapsulation method is shown to be generalizable to nineteen UV-emitting UC systems, accessing a range of upconverted UV emission profiles with wavelengths as low as 350 nm. As a proof-of-principle demonstration of precision photochemistry at depth, UV-emitting UC micelles are used to photolyze a fluorophore at a focal point nearly a centimeter beyond the surface, revealing opportunities for spatially controlled manipulation deep into UV-responsive materials.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Brendan M Wirtz
- Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Tracy H Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Michael C Burroughs
- Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Manchen Hu
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
- Department of Chemistry, Stanford University, Stanford, 94305, CA, USA
| | - Junrui Lyu
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Arynn O Gallegos
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Colette Layton
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
20
|
Lee Y, Ki H, Im D, Eom S, Gu J, Lee S, Kim J, Cha Y, Lee KW, Zerdane S, Levantino M, Ihee H. Cerium Photocatalyst in Action: Structural Dynamics in the Presence of Substrate Visualized via Time-Resolved X-ray Liquidography. J Am Chem Soc 2023; 145:23715-23726. [PMID: 37856865 PMCID: PMC10623567 DOI: 10.1021/jacs.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 10/21/2023]
Abstract
[Ce(III)Cl6]3-, with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl6]3-. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl6]3- has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.
Collapse
Affiliation(s)
- Yunbeom Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donghwan Im
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghwan Eom
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jain Gu
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongjun Cha
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyung Won Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Serhane Zerdane
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Matteo Levantino
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hyotcherl Ihee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Wang C, Wegeberg C, Wenger OS. First-Row d 6 Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light. Angew Chem Int Ed Engl 2023; 62:e202311470. [PMID: 37681516 DOI: 10.1002/anie.202311470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Photosensitizers for sensitized triplet-triplet annihilation upconversion (sTTA-UC) often rely on precious heavy metals, whereas coordination complexes based on abundant first-row transition metals are less common. This is mainly because long-lived triplet excited states are more difficult to obtain for 3d metals, particularly when the d-subshell is only partially filled. Here, we report the first example of sTTA-UC based on a 3d6 metal photosensitizer yielding an upconversion performance competitive with precious metal-based analogues. Using a newly developed Cr0 photosensitizer featuring equally good photophysical properties as an OsII benchmark complex in combination with an acetylene-decorated anthracene annihilator, red-to-blue upconversion is achievable. The upconversion efficiency under optimized conditions is 1.8 %, and the excitation power density threshold to reach the strong annihilation limit is 5.9 W/cm2 . These performance factors, along with high photostability, permit the initiation of acrylamide polymerization by red light, based on radiative energy transfer between delayed annihilator fluorescence and a blue light absorbing photo-initiator. Our study provides the proof-of-concept for photon upconversion with elusive first-row analogues of widely employed precious d6 metal photosensitizers, and for their application in photochemical reactions triggered by excitation wavelengths close to near-infrared.
Collapse
Affiliation(s)
- Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Division of Chemical Physics, Department of Chemistry, Lund University Box 124, 22100, Lund, Sweden
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
22
|
Yamamoto H, Yamaoka K, Shinohara A, Shibata K, Takao KI, Ogura A. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem Sci 2023; 14:11243-11250. [PMID: 37860659 PMCID: PMC10583705 DOI: 10.1039/d3sc03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
In organic chemistry, selecting mild conditions for transformations and saving energy are increasingly important for achieving sustainable development goals. Herein, we describe a red-light-mediated Barton decarboxylation using readily available red-light-emitting diodes as the energy source and zinc tetraphenylporphyrin as the catalyst, avoiding explosive or hazardous reagents or external heating. Mechanistic studies suggest that the reaction probably proceeds via Dexter energy transfer between the activated catalyst and the Barton ester. Furthermore, a one-pot wavelength-selective reaction within the visible light range is developed in combination with a blue-light-mediated photoredox reaction, demonstrating the compatibility of two photochemical transformations based on mechanistic differences. This one-pot process expands the limits of the decarboxylative Giese reaction beyond polarity matching.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kohei Yamaoka
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ann Shinohara
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
23
|
Zeppuhar AN, Falvey DE. Lamp vs Laser: A Visible Light Photoinitiator That Promotes Radical Polymerization at Low Intensities and Cationic Polymerization at High Intensities. J Org Chem 2023. [PMID: 37418315 DOI: 10.1021/acs.joc.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A visible light absorbing anthraquinone derivative 1-tosyloxy-2-methoxy-9,10-anthraquinone (QT) mediates both cationic and radical polymerizations depending on the intensity of visible light used. A previous study showed that this initiator generates para-toluenesulfonic acid through a stepwise, two-photon excitation mechanism. Thus, under high-intensity irradiation, QT generates acid in sufficient quantities to catalyze the cationic ring-opening polymerization of lactones. However, under low-intensity (lamp) conditions, the two-photon process is negligible, and QT photooxidizes DMSO, generating methyl radicals which initiate the RAFT polymerization of acrylates. This dual capability was utilized to switch between radical and cationic polymerizations to synthesize a copolymer using a one-pot procedure.
Collapse
Affiliation(s)
- Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
25
|
Wong J, Wei S, Meir R, Sadaba N, Ballinger NA, Harmon EK, Gao X, Altin-Yavuzarslan G, Pozzo LD, Campos LM, Nelson A. Triplet Fusion Upconversion for Photocuring 3D-Printed Particle-Reinforced Composite Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207673. [PMID: 36594431 DOI: 10.1002/adma.202207673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.
Collapse
Affiliation(s)
- Jitkanya Wong
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Rinat Meir
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Nathan A Ballinger
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth K Harmon
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
26
|
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization. Catalysts 2023. [DOI: 10.3390/catal13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures.
Collapse
|
27
|
Zeng L, Huang L, Lin W, Jiang LH, Han G. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation. Nat Commun 2023; 14:1102. [PMID: 36843133 PMCID: PMC9968713 DOI: 10.1038/s41467-023-36679-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/28/2023] Open
Abstract
Selective photoactivation of inert aryl halides is a fundamental challenge in organic synthesis. Specially, the long-wavelength red light is more desirable than the widely-applied blue light as the excitation source for photoredox catalysis, due to its superior penetration depth. However, the long-wavelength red light-driven photoactivation of inert aryl halides remains a challenge, mainly because of the low energy of the single long-wavelength red photon. Herein, we report the photoreduction of aryl bromides/chlorides with 656 nm LED via triplet-triplet annihilation (TTA) strategy. This method is based on our discovery that the commonly used chromophore of perylene can serve as an efficient and metal-free photocatalyst to enable the photoreduction of inert aryl halides without the conventional need for electronic sacrificial agents. By introducing a red light-absorbing photosensitizer to this perylene system, we accomplish the long-wavelength red light-driven photoreduction of aryl halides via sensitized TTA mechanism. Moreover, the performance of such a TTA-mediated photoreduction can be significantly enhanced when restricting the rotation freedom of phenyl moiety for perylene derivatives to suppress their triplet nonradiative transition, in both small and large-scale reaction settings.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300192, China
| | - Ling Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300192, China
| | - Wenhai Lin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Lin-Han Jiang
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300192, China
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
28
|
Zähringer TJB, Moghtader JA, Bertrams MS, Roy B, Uji M, Yanai N, Kerzig C. Blue-to-UVB Upconversion, Solvent Sensitization and Challenging Bond Activation Enabled by a Benzene-Based Annihilator. Angew Chem Int Ed Engl 2023; 62:e202215340. [PMID: 36398891 PMCID: PMC10108172 DOI: 10.1002/anie.202215340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Several energy-demanding photoreactions require harsh UV light from inefficient light sources. The conversion of low-energy visible light to high-energy singlet states via triplet-triplet annihilation upconversion (TTA-UC) could offer a solution for driving such reactions under mild conditions. We present the first annihilator with an emission maximum in the UVB region that, combined with an organic sensitizer, is suitable for blue-to-UVB upconversion. The annihilator singlet was successfully employed as an energy donor in subsequent FRET activations of aliphatic carbonyls. This hitherto unreported UC-FRET reaction sequence was directly monitored using laser spectroscopy and applied to mechanistic irradiation experiments demonstrating the feasibility of Norrish chemistry. Our results provide clear evidence for a novel blue light-driven substrate or solvent activation strategy, which is important in the context of developing more sustainable light-to-chemical energy conversion systems.
Collapse
Affiliation(s)
- Till J B Zähringer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Julian A Moghtader
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bibhisan Roy
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanori Uji
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
29
|
Huang W, Zhang X, Chen J, Zhang B, Chen B, Zhang G. Organic Photocatalyzed Polyacrylamide without Heterogeneous End Groups: A Mechanistic Study. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wenhuan Huang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | | | | | | | - Biao Chen
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guoqing Zhang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
30
|
Nie C, Lin X, Zhao G, Wu K. Low‐Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angew Chem Int Ed Engl 2022; 61:e202213065. [DOI: 10.1002/anie.202213065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
32
|
Three-dimensional direct-writing via photopolymerization based on triplet—triplet annihilation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Connell TU. The forgotten reagent of photoredox catalysis. Dalton Trans 2022; 51:13176-13188. [PMID: 35997070 DOI: 10.1039/d2dt01491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light powers an ever-expanding suite of reactions to both make and break chemical bonds under otherwise mild conditions. As a reagent in photochemical synthesis, light is obviously critical for reactivity but rarely optimized other than in light/dark controls. This Frontier Article presents an overview of recent research that investigates the unique ways light may be manipulated, and its unusual interactions with homogeneous transition metal and organic photocatalysts.
Collapse
Affiliation(s)
- Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
34
|
Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. Int J Mol Sci 2022; 23:ijms23148041. [PMID: 35887385 PMCID: PMC9323209 DOI: 10.3390/ijms23148041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Triplet–triplet annihilation upconversion (TTA-UC) is a very promising technology that could be used to convert low-energy photons to high-energy ones and has been proven to be of great value in various areas. Porphyrins have the characteristics of high molar absorbance, can form a complex with different metal ions and a high proportion of triplet states as well as tunable structures, and thus they are important sensitizers for TTA-UC. Porphyrin-based TTA-UC plays a pivotal role in the TTA-UC systems and has been widely used in many fields such as solar cells, sensing and circularly polarized luminescence. In recent years, applications of porphyrin-based TTA-UC systems for photoinduced reactions have emerged, but have been paid little attention. As a consequence, this review paid close attention to the recent advances in the photoreactions triggered by porphyrin-based TTA-UC systems. First of all, the photochemistry of porphyrin-based TTA-UC for chemical transformations, such as photoisomerization, photocatalytic synthesis, photopolymerization, photodegradation and photochemical/photoelectrochemical water splitting, was discussed in detail, which revealed the different mechanisms of TTA-UC and methods with which to carry out reasonable molecular innovations and nanoarchitectonics to solve the existing problems in practical application. Subsequently, photoreactions driven by porphyrin-based TTA-UC for biomedical applications were demonstrated. Finally, the future developments of porphyrin-based TTA-UC systems for photoreactions were briefly discussed.
Collapse
|
35
|
Millet A, Cesana PT, Sedillo K, Bird MJ, Schlau-Cohen GS, Doyle AG, MacMillan DWC, Scholes GD. Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Acc Chem Res 2022; 55:1423-1434. [PMID: 35471814 DOI: 10.1021/acs.accounts.2c00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.
Collapse
Affiliation(s)
- Agustin Millet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J. Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - David W. C. MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Fu Q, Rui J, Fang J, Ni Y, Fang L, Lu C, Xu Z. Triplet‐triplet Annihilation Up‐conversion Luminescent Assisted Free‐radical Reactions of Polymers Using Visible Light. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| | - Jiaqiang Rui
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| | - Jiaojiao Fang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| | - Yaru Ni
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| | - Liang Fang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| | - Chunhua Lu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| | - Zhongzi Xu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Materials Science and Engineering Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 210009 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 210009 P.R. China
| |
Collapse
|
37
|
Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M, Gallegos AO, Stokes RC, Congreve DN. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 2022; 604:474-478. [PMID: 35444324 DOI: 10.1038/s41586-022-04485-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1-6, with stereolithography a particularly successful approach4,7-9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7-9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser power required to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10-13 to print volumetrically with less than 4 milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.
Collapse
Affiliation(s)
| | - Tracy H Schloemer
- Rowland Institute at Harvard University, Cambridge, MA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | | | - Michael Seitz
- Rowland Institute at Harvard University, Cambridge, MA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Arynn O Gallegos
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Daniel N Congreve
- Rowland Institute at Harvard University, Cambridge, MA, USA. .,Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Limberg DK, Kang JH, Hayward RC. Triplet-Triplet Annihilation Photopolymerization for High-Resolution 3D Printing. J Am Chem Soc 2022; 144:5226-5232. [PMID: 35285620 DOI: 10.1021/jacs.1c11022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-photon polymerization (TPP) currently offers the highest resolution available in 3D printing (∼100 nm) but requires femtosecond laser pulses at very high peak intensity (∼1 TW/cm2). Here, we demonstrate 3D printing based on triplet-triplet-annihilation photopolymerization (TTAP), which achieves submicron resolution while using a continuous visible LED light source with comparatively low light intensity (∼10 W/cm2). TTAP enables submicrometer feature sizes with exposure times of ∼0.1 s/voxel without requiring a coherent or pulsed light source, opening the door to low-cost fabrication with submicron resolution. This approach enables 3D printing of a diverse array of designs with high resolution and is amenable to future parallelization efforts.
Collapse
Affiliation(s)
- David K Limberg
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ji-Hwan Kang
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Department of Chemical Engineering, California State University Long Beach, Long Beach, California 90804, United States
| | - Ryan C Hayward
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Department of Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| |
Collapse
|
39
|
Luo J, Rong XF, Ye YY, Li WZ, Wang XQ, Wang W. Research Progress on Triarylmethyl Radical-Based High-Efficiency OLED. Molecules 2022; 27:1632. [PMID: 35268732 PMCID: PMC8911689 DOI: 10.3390/molecules27051632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED's internal quantum efficiency (IQE) to 100%. In recent years, research on the luminescent properties of triarylmethyl radicals has attracted increasing attention. In this review, recent developments in these triarylmethyl radicals and their derivatives in OLED devices are introduced.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Qiang Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (J.L.); (X.-F.R.); (Y.-Y.Y.); (W.-Z.L.)
| | - Wenjing Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (J.L.); (X.-F.R.); (Y.-Y.Y.); (W.-Z.L.)
| |
Collapse
|
40
|
Naz M, Rizwan M, Jabeen S, Ghaffar A, Islam A, Gull N, Rasool A, Khan RU, Alshawwa SZ, Iqbal M. Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay. Z PHYS CHEM 2022; 236:227-238. [DOI: 10.1515/zpch-2021-3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Abstract
The chitosan/polyvinyl alcohol/halloysite nanoclay (CS/PVA/HNC) loaded with cephradine drug electrospun nanofibers (NFs) were fabricated and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) techniques. FTIR analysis confirmed the hydrogen bonding between the polymer chain and the developed siloxane linkages. SEM analysis revealed the formation of uniform NFs having beads free and smooth surface with an average diameter in 50–200 nm range. The thermal stability of the NFs was increased by increasing the HNC concentration. The antimicrobial activity was examined against Escherichia
coli and staphylococcus strains and the NFs revealed auspicious antimicrobial potential. The drug release was studied at pH 7.4 (in PBS) at 37 °C. The drug release analysis showed that 90% of the drug was released from NFs in 2 h and 40 min. Hence, the prepared NFs could be used as a potential drug carrier and release in a control manner for biomedical application.
Collapse
Affiliation(s)
- Mahwish Naz
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Abdul Ghaffar
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Atta Rasool
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences , College of Pharmacy, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
41
|
Imperiale CJ, Green PB, Hasham M, Wilson MWB. Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion. Chem Sci 2021; 12:14111-14120. [PMID: 34760195 PMCID: PMC8565365 DOI: 10.1039/d1sc04330g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Photon upconversion is a strategy to generate high-energy excitations from low-energy photon input, enabling advanced architectures for imaging and photochemistry. Here, we show that ultra-small PbS nanocrystals can sensitize red-to-blue triplet-fusion upconversion with a large anti-Stokes shift (ΔE = 1.04 eV), and achieve max-efficiency upconversion at near-solar fluences (I th = 220 mW cm-2) despite endothermic triplet sensitization. This system facilitates the photo-initiated polymerization of methyl methacrylate using only long-wavelength light (λ exc: 637 nm); a demonstration of nanocrystal-sensitized upconversion photochemistry. Time-resolved spectroscopy and kinetic modelling clarify key loss channels, highlighting the benefit of long-lifetime nanocrystal sensitizers, but revealing that many (48%) excitons that reach triplet-extracting carboxyphenylanthracene ligands decay before they can transfer to free-floating acceptors-emphasizing the need to address the reduced lifetimes that we determine for molecular triplets near the nanocrystal surface. Finally, we find that the inferred thermodynamics of triplet sensitization from these ultra-small PbS quantum dots are surprisingly favourable-completing an advantageous suite of properties for upconversion photochemistry-and do not vary significantly across the ensemble, which indicates minimal effects from nanocrystal heterogeneity. Together, our demonstration and study of red-to-blue upconversion using ultra-small PbS nanocrystals in a quasi-equilibrium, mildly endothermic sensitization scheme offer design rules to advance implementations of triplet fusion, especially where large anti-Stokes wavelength shifts are sought.
Collapse
Affiliation(s)
| | - Philippe B Green
- University of Toronto, Department of Chemistry Toronto ON M5S 3H6 Canada
| | - Minhal Hasham
- University of Toronto, Department of Chemistry Toronto ON M5S 3H6 Canada
| | - Mark W B Wilson
- University of Toronto, Department of Chemistry Toronto ON M5S 3H6 Canada
| |
Collapse
|
42
|
Hussain M, El-Zohry AM, Hou Y, Toffoletti A, Zhao J, Barbon A, Mohammed OF. Spin-Orbit Charge-Transfer Intersystem Crossing of Compact Naphthalenediimide-Carbazole Electron-Donor-Acceptor Triads. J Phys Chem B 2021; 125:10813-10831. [PMID: 34542290 DOI: 10.1021/acs.jpcb.1c06498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Compact electron donor-acceptor triads based on carbazole (Cz) and naphthalenediimide (NDI) were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). By variation of the molecular conformation and electron-donating ability of the carbazole moieties, the electronic coupling between the two units was tuned, and as a result charge-transfer (CT) absorption bands with different magnitudes were observed (ε = 4000-18 000 M-1 cm-1). Interestingly, the triads with NDI attached at the 3-C position or with a phenyl spacer at the N position of the Cz moiety, thermally activated delayed fluorescence (TADF) was observed. Femtosecond transient absorption (fs-TA) spectroscopy indicated fast electron transfer (0.8-1.5 ps) from the Cz to NDI unit, followed by population of the triplet state (150-600 ps). Long-lived triplet states (up to τT = 45-50 μs) were observed for the triads. The solvent-polarity-dependent singlet-oxygen quantum yield (ΦΔ) is 0-26%. Time-resolved electron paramagnetic resonance (TREPR) spectral study of TADF molecules indicated the presence of the 3CT state for NDI-Cz-Ph (zero-field-splitting parameter D = 21 G) and an 3LE state for NDI-Ph-Cz (D = 586 G). The triads were used as triplet photosensitizers in triplet-triplet annihilation upconversion by excitation into the CT absorption band; the upconversion quantum yield was ΦUC = 8.2%, and there was a large anti-Stokes shift of 0.55 eV. Spatially confined photoexcitation is achieved with the upconversion using focusing laser beam excitation, and not the normally used collimated laser beam, i.e., the upconversion was only observed at the focal point of the laser beam. Photo-driven intermolecular electron transfer was demonstrated with reversible formation of the NDI-• radical anion in the presence of the sacrificial electron donor triethanolamine.
Collapse
Affiliation(s)
- Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,NUIST Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, P. R. China
| | - Ahmed M El-Zohry
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Physics - AlbaNova Universitetscentrum, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Antonio Toffoletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Omar F Mohammed
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Wang Z, Hou Y, Huo Z, Liu Q, Xu W, Zhao J. Spatially confined photoexcitation with triplet-triplet annihilation upconversion. Chem Commun (Camb) 2021; 57:9044-9047. [PMID: 34498640 DOI: 10.1039/d1cc03309c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-photon absorption (TPA) has been widely used in confocal microscopy, photo-initiated three-dimensional (3D) polymerization, and 3D-micro/nanofabrication. These applications are based on the spatial confinement of the TPA excitation, due to the quadratic excitation power dependency of the excitation. However, an expensive and high-power femtosecond (fs) pulsed laser has to be used. Herein, we show a new technique as a promising alternative to the TPA to achieve spatially confined excitation, but no fs laser and TPA dyes are required. This new spatially confined excitation with a continuous wave laser is based on triplet-triplet-annihilation upconversion. The potential of the new technique was demonstrated by spatially confined photopolymerization.
Collapse
Affiliation(s)
- Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China.
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China.
| | - Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qiang Liu
- School of Physics, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China.
| |
Collapse
|
44
|
Yang M, Sheykhi S, Zhang Y, Milsmann C, Castellano FN. Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer. Chem Sci 2021; 12:9069-9077. [PMID: 34276936 PMCID: PMC8261719 DOI: 10.1039/d1sc01662h] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr(iv) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA-carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet-triplet energy transfer (TTET) processes (ΔG ∼ -0.19 eV) featured very large Stern-Volmer quenching constants (K SV) approaching or achieving 105 M-1 with bimolecular rate constants between 2 and 3 × 108 M-1 s-1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet-triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern-Volmer metrics support 95% quenching of the Zr(iv) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence (λ ex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting η UC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm-2) below that of solar flux integrated across the Zr(iv) photosensitizer's absorption band (26.7 mW cm-2). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals.
Collapse
Affiliation(s)
- Mo Yang
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Sara Sheykhi
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Yu Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| |
Collapse
|
45
|
Khalique A, Ali S, Khera RA, Asgher M. Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fabric dyed with disperse dyes followed a reduction clearing process (RCP)/chemical clearing process (CCP) to remove the unfixed dye from the fabric. In the clearing process, unfixed dyes and chemicals are discharged into streams. To combat this issue, an environment friendly approaches is explored that is a biological clearing using indigenous fungal strains of white-rot fungi (Pleurotus ostreatus and Ganoderma lucidum). In this context, fabrics dyed with three disperse dyes (Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL) were considered. The fabric cleared with biological clearing process improved the quality of fabric versus chemically cleared fabric and among the tested strains, G. lucidum showed higher efficiency for color strength improvement. However, no significant difference in tensile and tear strength of all fabric samples was observed. The quality of effluents in clearing reduction process for three dyes was assessed and it was observed that water quality parameters including chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), total suspended solids (TSS), pH, dissolved oxygen (DO) and total dissolved solids (TDS) improved significantly and results revealed that the biological clearing approach can substitute chemical reduction clearing process for fabric dyed with dyes, which is greener and eco-friendly versus conventional processes to avoid unfixed dyes discharge in to water bodies.
Collapse
Affiliation(s)
- Abdul Khalique
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Shaukat Ali
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | | | - Muhammad Asgher
- Department of Biochemistry , University of Agriculture , Faisalabad , Pakistan
| |
Collapse
|
46
|
Olesund A, Gray V, Mårtensson J, Albinsson B. Diphenylanthracene Dimers for Triplet-Triplet Annihilation Photon Upconversion: Mechanistic Insights for Intramolecular Pathways and the Importance of Molecular Geometry. J Am Chem Soc 2021; 143:5745-5754. [PMID: 33835789 PMCID: PMC8154513 DOI: 10.1021/jacs.1c00331] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Novel approaches
to modify the spectral output of the sun have
seen a surge in interest recently, with triplet–triplet annihilation
driven photon upconversion (TTA-UC) gaining widespread recognition
due to its ability to function under low-intensity, noncoherent light.
Herein, four diphenylanthracene (DPA) dimers are investigated to explore
how the structure of these dimers affects upconversion efficiency.
Also, the mechanism responsible for intramolecular upconversion is
elucidated. In particular, two models are compared using steady-state
and time-resolved simulations of the TTA-UC emission intensities and
kinetics. All dimers perform TTA-UC efficiently in the presence of
the sensitizer platinum octaethylporphyrin. The meta-coupled dimer
1,3-DPA2 performs best yielding a 21.2% upconversion quantum
yield (out of a 50% maximum), which is close to that of the reference
monomer DPA (24.0%). Its superior performance compared to the other
dimers is primarily ascribed to the longer triplet lifetime of this
dimer (4.7 ms), thus reinforcing the importance of this parameter.
Comparisons between simulations and experiments reveal that the double-sensitization
mechanism is part of the mechanism of intramolecular upconversion
and that this additional pathway could be of great significance under
specific conditions. The results from this study can thus act as a
guide not only in terms of annihilator design but also for the design
of future solid-state systems where intramolecular exciton migration
is anticipated to play a major role.
Collapse
Affiliation(s)
- Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Victor Gray
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.,Department of Chemistry, Ångström Laboratory, Uppsala University, Box 532, 751 20 Uppsala, Sweden
| | - Jerker Mårtensson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
47
|
Qin L, Yang L, Yang J, Weber R, Ranguelova K, Liu X, Lin B, Li C, Zheng M, Liu G. Photoinduced formation of persistent free radicals, hydrogen radicals, and hydroxyl radicals from catechol on atmospheric particulate matter. iScience 2021; 24:102193. [PMID: 33718842 PMCID: PMC7920856 DOI: 10.1016/j.isci.2021.102193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
Catechol is speculated to be a potential precursor of environmentally persistent free radicals (EPFRs) in the atmosphere. EPFRs absorbed on PM2.5 have attracted public attention because their toxicity is similar to cigarette smoke. In this study, we found that catechol could produce EPFRs, which were oxygen-centered phenoxy and semiquinone radicals. These free radical species had half-lives of up to 382 days. CaO, CuO, and Fe2O3 markedly promoted EPFR formation from catechol. The valence states of Cu and Fe changed during the photochemical reactions of catechol but no valence state changed for Ca. Alkaline nature of CaO is possibly the key for promoting the free radical formations through acid-base reactions with catechol. In addition to hydroxyl free radicals, hydrogen free radicals and superoxide anions formed from the photochemical reactions of catechol were first discovered. This is of concern because of the adverse effects of these free radicals on human health. Photochemical mechanism of persistent free radicals from catechol was clarified Significant free radicals were formed via photochemical reactions of catechol •H and O2•− were first discovered from the photochemical reactions of catechol This study is important for better recognizing DNA damage of air inhalation of PM2.5
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ralph Weber
- Bruker BioSpin Corp, Billerica, MA 01821, USA
| | | | - Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
48
|
Nitti A, Martinelli A, Batteux F, Protti S, Fagnoni M, Pasini D. Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polym Chem 2021. [DOI: 10.1039/d1py00928a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The polymerization of a broad range of electron-poor olefins has been achieved under free-radical conditions by using arylazo sulfones as visible light photoinitiators.
Collapse
Affiliation(s)
- Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Angelo Martinelli
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Fabrice Batteux
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|