1
|
Ye J, Shen Y, Lin Z, Xu L, Wang L, Lin X, Huang B, Ma Z, Yu Z, Lin D, Chen W, Feng S. A CRISPR/Cas12a-Assisted SERS Nanosensor for Highly Sensitive Detection of HPV DNA. ACS Sens 2025. [PMID: 40384639 DOI: 10.1021/acssensors.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The lack of timely and effective screening and diagnosis is a major contributing factor to the high mortality rate of cervical cancer in low-income countries and resource-limited regions. Therefore, the development of a rapid, sensitive, and easily deployable diagnostic tool for HPV DNA is of critical importance. In this study, we present a novel high-sensitivity and high-specificity detection method for HPV16 and HPV18 by integrating the CRISPR/Cas12a system with surface-enhanced Raman scattering (SERS) technology. This method leverages the trans-cleavage activity of the CRISPR/Cas12a system, which cleaves biotin-modified spherical nucleic acids (Biotin-SNA) in the presence of target DNA, releasing free Biotin-DNA. The released Biotin-DNA preferentially binds to streptavidin-modified magnetic beads (SAV-MB), reducing the capture of Biotin-SNA by SAV-MB and thereby significantly enhancing detection sensitivity. This method offers the potential for point-of-care diagnostics as it operates efficiently at 37 °C without the need for thermal cycling. Using standard DNA samples, we demonstrated that this biosensor achieved detection limits as low as 209 copies/μL and 444 copies/μL within 95 min. When combined with recombinase polymerase amplification (RPA), the sensor demonstrated enhanced sensitivity, enabling detection of target DNA at concentrations as low as 1 copy/μL within approximately 50 min. Furthermore, validation with clinical samples confirmed the feasibility and practical applicability of this method. This novel SERS-based sensor offers a new and effective tool in the prevention and detection of cervical cancer.
Collapse
Affiliation(s)
- Jianqing Ye
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Yongshi Shen
- Department of Intensive Care Unit, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Zhizhong Lin
- Department of Radiation Oncology, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Luyun Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Lingna Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Xueliang Lin
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Institute for Photonics Technology, Quanzhou Normal University, Quanzhou 362000, China
| | - Baoxing Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Zhiqing Ma
- Fujian Provincial Normal University Hospital, Fujian Normal University, Fuzhou 350007, PR China
| | - Zongyang Yu
- Pulmonary and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, PLA, Fuzhou 350122, PR China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Wenjuan Chen
- Department of Radiation Oncology, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Institute for Photonics Technology, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
2
|
Chantaraklud A, Rattanabut C, Bamrungsap S, Bora T. Light-driven in situ deposited Au nanoparticles on ZnO substrate with ultrasensitive SERS enhancement for molecular detection. Mikrochim Acta 2025; 192:277. [PMID: 40188415 DOI: 10.1007/s00604-025-07118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/08/2025]
Abstract
Uniform, reproducible and stable SERS substrates with high detection sensitivity are crucial for their successful commercial applications. Here, we introduce a plasmonic SERS substrate based on gold nanoparticles (AuNPs) fabricated by using a straightforward light-driven in-situ method for highly sensitive molecular detection. A dense array of zinc oxide nanorods (ZnO NRs) was used as a support surface for the in-situ growth of Au nanoparticles (AuNPs). The SERS performance of the fabricated Au-ZnO substrates was evaluated by using rhodamine 6G (R6G) dye as a model Raman probe, where the distribution of the AuNPs on the substrate was found to play an important role defining the SERS activities The Au-ZnO substrates exhibited exceptional homogeneity (RSD = 3.95%), a detection limit (LOD) of 9 × 10-11 M, and signal enhancement in the order of 106. Additionally, these substrates demonstrated good stability over a period of 4 weeks when stored under standard room conditions, maintaining more than 80% of the initial Raman signal intensity. When tested for antibiotic residue detection in water using amoxicillin as a model antibiotic, the Au-ZnO substrates revealed LOD in the order of 10-9 M with linear detection over a wide concentration range of amoxicillin in water. The present work offers a straightforward and inexpensive solution-processed fabrication approach for SERS substrates that holds great potential for the development of extremely sensitive and reliable SERS-based detection and sensor systems.
Collapse
Affiliation(s)
- Apichaya Chantaraklud
- Department of Industrial Systems Engineering, School of Engineering and Technology, Bio-Nano Material Science & Engineering, Asian Institute of Technology, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Chanoknan Rattanabut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand.
| | - Tanujjal Bora
- Department of Industrial Systems Engineering, School of Engineering and Technology, Bio-Nano Material Science & Engineering, Asian Institute of Technology, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand.
- Center of Excellence in Nanotechnology, Asian Institute of Technology, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand.
| |
Collapse
|
3
|
Blaha ME, Das A, Belder D. Requirements for fast multianalyte detection and characterisation via electrochemical-assisted SERS in a reusable and easily manufactured flow cell. Anal Bioanal Chem 2025; 417:1847-1861. [PMID: 39899114 PMCID: PMC11914304 DOI: 10.1007/s00216-025-05763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique that captures vibrational spectra of analytes adsorbed to rough coin metal surfaces with remarkable signal intensities. However, its wider application is limited by challenges in substrate range, quantification, and the disposable nature of SERS substrates partly due to irreversible analyte adsorption-commonly referred to as the 'memory effect'. Overcoming these limitations and achieving real-time analysis in flow-through systems remains a key challenge for the advancement of SERS. This study presents a SERS flow cell incorporating an Ag-based SERS substrate and a Pt counter-electrode, enabling the investigation of how electrochemical methods can address existing challenges. Our approach demonstrates that signal intensities can be both enhanced and spectroelectrochemically modified. Additionally, the combination of constant solvent flow and electrochemical potentials enhances the longevity of the SERS substrate, facilitating multianalyte measurements while mitigating the memory effect. Key parameters have been systematically studied, including SERS substrate materials (silver and copper), solvents, buffers, supporting electrolytes, and electrochemical protocols. We achieved consistent and reproducible electrochemical tuning of SERS signals by using halogen-free electrolytes in polar solvents commonly used in techniques like HPLC. The versatility of the system was validated through the analysis of several model compounds and the sequential detection of multiple analytes. We also successfully applied the system to detect and characterise contaminants and pharmaceuticals, highlighting its potential for a wide range of analytical applications.
Collapse
Affiliation(s)
- Maximilian E Blaha
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Anish Das
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Detlev Belder
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Wu JZ, Ghopry SA, Liu B, Shultz A. Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. MICROMACHINES 2023; 14:1393. [PMID: 37512705 PMCID: PMC10386751 DOI: 10.3390/mi14071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Localized surface plasmonic resonance (LSPR) provides a unique scheme for light management and has been demonstrated across a large variety of metallic nanostructures. More recently, non-metallic nanostructures of two-dimensional atomic materials and heterostructures have emerged as a promising, low-cost alternative in order to generate strong LSPR. In this paper, a review of the recent progress made on non-metallic LSPR nanostructures will be provided in comparison with their metallic counterparts. A few applications in optoelectronics and sensors will be highlighted. In addition, the remaining challenges and future perspectives will be discussed.
Collapse
Affiliation(s)
- Judy Z Wu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - Samar Ali Ghopry
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Bo Liu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - Andrew Shultz
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Wang J, Fu J, Chen H, Wang A, Ma Y, Yan H, Li Y, Yu D, Gao F, Li S. Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs. Biosens Bioelectron 2023; 224:115051. [PMID: 36621084 DOI: 10.1016/j.bios.2022.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Accurate quantitative, in situ and temporal tracking imaging of tumor-associated miRNAs in living cells could provide a basis for cancer diagnosis and prognosis. In this strategy, a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-spectral sensor (DSS) was constructed based on the nanoscale photophysical properties of AuNPs, mediated by functionalized DNA, to achieve rapid imaging of FL and accurate SERS quantification of intracellular miRNAs. The dual-spectrum sensor in the strategy is highly sensitive, specific and reproducibly stable. The LOD values of the dual spectra were 3.58 pM (SERS) as well as 11.8 pM (FL) with RSD values less than 2.69%. The bispectral sensor self-assembled into a trimer by the lapidation of Y-type DNA under the excitation of the target, generating a stable enhanced electric field coupling; and selected adenine located in the enhanced electric field as the reporter molecule, simplifying the labeling process and variables of the Raman reporter molecule, distinguishing it from other traditional methods. This strategy successfully achieved accurate tracking and quantification of miR-21 in cancer cells and showed good stability in the cells. The reported probes are potential tools for reliable monitoring of biomolecular dynamics in living cells.
Collapse
Affiliation(s)
- Jiwei Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Jingjing Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Jiangsu, 221116, Xuzhou, China
| | - Han Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, 221004, China
| | - Ali Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Ma
- Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Dehong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; The Affiliated Pizhou Hospital of Xuzhou Medical University, Xuzhou, 221399, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China.
| | - Shibao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Medical Laboratory Department, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, Xuzhou, China.
| |
Collapse
|
6
|
Khosroshahi ME, Patel Y. Reflective FT-NIR and SERS studies of HER-II breast cancer biomarker using plasmonic-active nanostructured thin film immobilized oriented antibody. JOURNAL OF BIOPHOTONICS 2023; 16:e202200252. [PMID: 36177970 DOI: 10.1002/jbio.202200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We describe the fabrication of plasmonic-active nanostructured thin film substrate as a label-free surface-enhanced Raman scattering (SERS)-based biosensor immobilized covalently with monoclonal HER-II antibody (mAb) to detect overexpressed HER-II as a biomarker in breast cancer serum (BCS). Oriented conjugation of mAb via hydrazone linkage to provide higher mAb accessibility was characterized by UV-vis and reflective Fourier transform near-infrared (FT-NIR) spectroscopic techniques. The interaction of BCS with mAb was studied by FT-NIR and nonresonant SERS at 637 nm. The results showed detection of glycoprotein content at different laser powers including a rise in amino acid and glycan content with varying results at higher power. With nonresonant SERS we observed nonlinear behavior of peak intensity. Analysis of variance was implemented to determine the effect of laser power which was found not to be a contributing factor. However, at the nanoscale, factors including the heating effect and aggregation of molecules can contribute to the nonlinearity of peak intensity.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Institute for Advanced Non-Destructive & Diagnostic Technologies (IANDIT), University of Toronto, Toronto, Ontario, Canada
| | - Yesha Patel
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Department of Biochemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Facile synthesis of Ag/GO SERS composite with highly sensitive and stable performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Khosroshahi ME, Patel Y, Chabok R. Non-invasive optical characterization and detection of CA 15-3 breast cancer biomarker in blood serum using monoclonal antibody-conjugated gold nanourchin and surface-enhanced Raman scattering. Lasers Med Sci 2022; 38:24. [PMID: 36571665 DOI: 10.1007/s10103-022-03675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
A proof-of-concept of colloidal surface-enhanced Raman scattering (SERS) substrate for rapid selective detection of overexpressed CA 15-3 biomarker in breast cancer serum (BCS) is suggested using PEGylated gold nanourchins (GNUs) conjugated with anti-CA 15-3 monoclonal antibody (mAb). UV-vis spectroscopy provided conformational information about mAb where the initial aromatic amino acid peak was red-shifted from 271 to 291 nm. The fluorescence peak of tyrosine in mAb was reduced by ≈ 77%, and red-shifted by ≈ 3 nm after incubation in BCS. Fourier transform near-infrared spectroscopy and SERS were used to study the composition and the molecular structure of the mAb and BCS. Some of the most dominant Raman shifts after GNU-PEG-mAb interaction with BCS are 498, 736, 818, 1397, 1484, 2028, 2271, and 3227 cm-1 mainly corresponding to C-N-C in amines, vibrational modes of amino acids, C-H out-of-plane bend, C-O stretching carboxylic acid, the vibrational mode in phospholipids, NH3+ amine salt, C≡N stretching in nitriles, and O-H stretching. The intensity of SERS signals varied per trial due to the statistical behavior of GNU in BCS, agglomeration, laser power, and the heating effect. Despite very small amount of plasmonic heating, the result of the ANOVA test demonstrated that under our experimental conditions, the heating effect on signal variation is negligible and that the differences in the laser power are insignificant for all SERS observations (p > 0.6); thus, other parameters are responsible. The absorbance of mAb-conjugated GNU was decreased after five minutes of irradiation at 8 mW in the BCS.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON, L4B 1B4, Canada.
- Institute for Advanced Non-Destructive & Diagnostic Technologies (IANDIT), University of Toronto, Toronto, M5S 3G8, Canada.
| | - Yesha Patel
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON, L4B 1B4, Canada
- Department of Biochemistry, Faculty of Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Roxana Chabok
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON, L4B 1B4, Canada
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|
9
|
Oliveira de Souza D, Girardon JS, Hoffmann DJ, Berrier E. Dynamics of Citrate Coordination on Gold Nanoparticles Under Low Specific Power Laser-Induced Heating. Chemphyschem 2022; 24:e202200744. [PMID: 36495221 DOI: 10.1002/cphc.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
SERS evolution recorded over a drop-coated coffee-ring pattern of citrate-capped gold colloids was investigated as a function of time under low-specific laser power. Spectral changes caused by plasmon-induced reaction could not be detected, but a long-term transient original spectral profile showing additional lines was observed. We performed deep qualitative and quantitative SERS intensity variation analysis based on the complementary use of extreme deviation and cross-correlation statistics, which provided further insights on the behavior of citrate-capping layers of gold nanoparticles upon laser illumination. More precisely, the cross-correlation analysis made possible to follow the so-called individual events denoting particular resonance structures, in which groups of modes were assigned to an evolution of citrate coordination on gold surface driven by photo-activation. As a consequence, the detection limit was increased and new lines were related to the presence of a very low amount of dicarboxy-acetone (DCA), which was already present in the system.
Collapse
Affiliation(s)
| | | | - David J Hoffmann
- Electrical Engineering Department, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
| | - Elise Berrier
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois - UCCS, Lille, France
| |
Collapse
|
10
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
11
|
Plasmonic coupling in transversely shifted symmetric Au nanocube trimer: New coupling mechanism and plasmonic scaling trend. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mousavi SM, Hashemi SA, Rahmanian V, Kalashgrani MY, Gholami A, Omidifar N, Chiang WH. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. BIOSENSORS 2022; 12:bios12070466. [PMID: 35884269 PMCID: PMC9312648 DOI: 10.3390/bios12070466] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
13
|
Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? LAB ON A CHIP 2022; 22:665-682. [PMID: 35107464 DOI: 10.1039/d1lc01097b] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the continuous development in nanoscience and nanotechnology, analytical techniques like surface-enhanced Raman spectroscopy (SERS) render structural and chemical information of a variety of analyte molecules in ultra-low concentration. Although this technique is making significant progress in various fields, the reproducibility of SERS measurements and sensitivity towards small molecules are still daunting challenges. In this regard, microfluidic surface-enhanced Raman spectroscopy (MF-SERS) is well on its way to join the toolbox of analytical chemists. This review article explains how MF-SERS is becoming a powerful tool in analytical chemistry. We critically present the developments in SERS substrates for microfluidic devices and how these substrates in microfluidic channels can improve the SERS sensitivity, reproducibility, and detection limit. We then introduce the building materials for microfluidic platforms and their types such as droplet, centrifugal, and digital microfluidics. Finally, we enumerate some challenges and future directions in microfluidic SERS. Overall, this article showcases the potential and versatility of microfluidic SERS in overcoming the inherent issues in the SERS technique and also discusses the advantage of adding SERS to the arsenal of microfluidics.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India.
| | - Hasan Sadat
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Eva-Maria Höhn
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Abstract
Recent global warming has resulted in shifting of weather patterns and led to intensification of natural disasters and upsurges in pests and diseases. As a result, global food systems are under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such agrochemicals are harmful for humans and the environment, and consequently need to be monitored. Traditional detection methods currently used are time consuming in terms of sample preparation, are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering (SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection of contaminants relevant to the food industry and environmental monitoring. In this review, the principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following this, their development and applications for agrifood safety is reviewed, with focus on detection of dye molecules, melamine in food products, and the detection of different classes of pesticides such as organophosphate and neonicotinoids.
Collapse
|
15
|
Tálas E, Szőllősi G, Kristyán S, Németh C, Firkala T, Mink J, Mihály J. Surface enhanced Raman spectroscopic (SERS) behavior of phenylpyruvates used in heterogeneous catalytic asymmetric cascade reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119912. [PMID: 34015742 DOI: 10.1016/j.saa.2021.119912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
The strength and geometry of adsorption of substituted phenylpyruvates on silver surface was studied by means of surface enhanced Raman spectroscopy (SERS) using silver sol. 2'-nitrophenylpyruvates were used as starting materials in a newly developed heterogeneous catalytic asymmetric cascade reaction to produce substituted quinoline derivatives. Substituents on the aromatic ring of the starting materials had significant influence on the yield of the desired quinoline derivatives. Product selectivity of the transformation of nitrophenylpyruvates were enhanced by the acid added. The geometry and the strength of the adsorption are assumed to play an important role in the outcome of this reaction, so we have tried to find correlation between the structure of adsorbed phenylpyruvates and their catalytic performance. Based on the results of our spectroscopic measurements, the enol form is predominant in the series of phenylpyruvates in solid form and methanol solutions. Stronger adsorption of phenylpyruvates in acidic media through oxygen atoms was indicated by the increased enhancement in the SERS spectrum. The nitro group of 2'-nitrophenylpyruvates has no direct role in the adsorption on Ag surface. This observation has explained why the hydrogenation of the keto group (presumably via the enol form) occurs preferentially and why the formation of the undesired indole derivatives requiring reduction of the nitro group is suppressed. The SERS behavior has helped to get a closer look on the first step of adsorption of starting materials contributing to a better understanding of the cascade reaction studied, thus providing a better flexibility in catalyst design.
Collapse
Affiliation(s)
- Emília Tálas
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok körútja 2, Hungary.
| | - György Szőllősi
- MTA-SZTE Stereochemistry Research Group, H-6720 Szeged, Dóm tér 8, Hungary
| | - Sándor Kristyán
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Csaba Németh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Tamás Firkala
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - János Mink
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), H-1117 Budapest, Magyar Tudósok körútja 2, Hungary; Department of Chemistry, Eszterházy Károly University, H-3300 Eger, Leányka u. 6, Hungary.
| |
Collapse
|
16
|
Sun Y, Li W, Zhao L, Li F, Xie Y, Yao W, Liu W, Lin Z. Simultaneous SERS detection of illegal food additives rhodamine B and basic orange II based on Au nanorod-incorporated melamine foam. Food Chem 2021; 357:129741. [PMID: 33878584 DOI: 10.1016/j.foodchem.2021.129741] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 01/31/2023]
Abstract
In food safety assessment, surface-enhanced Raman spectroscopy (SERS) is a novel detection method with the advantages of being fast, easy, and of high sensitivity. However, many SERS substrate synthesis methods are complex, and there are only a few studies on the simultaneous detection of multiple substances. In this study, a new, simple, low-cost SERS substrate was synthesised for the first time to simultaneously detect illegal food additives rhodamine B and basic orange II in chilli products. A lightweight, porous, and low-cost material of melamine foam (MF) was employed as the SERS synthesis template. The substrate's SERS effect on, and sensitivity to, rhodamine B and basic orange II were demonstrated. The molecular vibration and SERS enhancement mechanisms of the two target molecules were analysed by density functional theory (DFT) calculations. The results reveal that this fabricated substrate has great application potential for the supervision and testing industry.
Collapse
Affiliation(s)
- Yingying Sun
- Testing Innovation Research Center, Centre Testing International Group Co Ltd, Shenzhen 518000, China; Department of Food Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wan Li
- Testing Innovation Research Center, Centre Testing International Group Co Ltd, Shenzhen 518000, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Zhao
- Department of Food Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Fengyong Li
- Testing Innovation Research Center, Centre Testing International Group Co Ltd, Shenzhen 518000, China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenqiu Liu
- Testing Innovation Research Center, Centre Testing International Group Co Ltd, Shenzhen 518000, China
| | - Zhaosheng Lin
- Testing Innovation Research Center, Centre Testing International Group Co Ltd, Shenzhen 518000, China
| |
Collapse
|
17
|
Green synthesis of Cuminum cyminum silver nanoparticles: Characterizations and cytocompatibility with lapine primary tenocytes. J Biosci 2021. [DOI: 10.1007/s12038-021-00141-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Fathy MM, Nasser L, El-Sokkary G, Rasheedy MS. Combined Chemo-photothermal Therapy of Metastatic Mammary Adenocarcinoma Using Curcumin-Coated Iron Oxide Nanoparticles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Li L, Wang Z, Lu Y, Zhu K, Zong S, Cui Y. DNA-assisted synthesis of Ortho-NanoDimer with sub-nanoscale controllable gap for SERS application. Biosens Bioelectron 2021; 172:112769. [PMID: 33166801 DOI: 10.1016/j.bios.2020.112769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022]
Abstract
Nanostructure with precisely controllable narrow gap width remains a great challenge, especially at the sub-nanoscale level. Here, a versatile strategy named as DNA-assisted synthesis of ortho-nanodimer (DaSON) is proposed to fabricate Ag (Au) nanodimers with a uniform gap width from nanometers to angstroms. In such a strategy, two nanoparticles are constrained by the equilibrium state of the DNA hybridization and electrostatic repulsion to form zipper-like ortho-nanostructures with an extremely uniform gap whose width can be finely adjusted at nanoscale or sub-nanoscale by changing the DNA sequence and the surface charge of nanoparticles. The inherent strong electromagnetic coupling in the uniform sub-nanometer gap can generates an unparalleled SERS enhancement together with an extraordinary reproducibility. Compared with conventional DNA-based nano-gap fabrication strategy, the DaSON strategy enhances the SERS intensity for more than two orders of magnitude with a detection limit of 100 aM for DNA, and significantly improves the reproducibility in both labeled and label-free SERS sensing applications. Moreover, the DaSON strategy holds wide applicability for arbitrary kinds of DNA-modifiable nanoparticles. Therefore, we believe that the DaSON strategy provides an innovative method for the synthesis of nanostructures with controllable nanogaps and has a promising future in multiple fields including nanotechnology, catalysis and photonics.
Collapse
Affiliation(s)
- Lang Li
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Yang Lu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Kai Zhu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
20
|
Zhai W, You T, Ouyang X, Wang M. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Compr Rev Food Sci Food Saf 2021; 20:1887-1909. [PMID: 33410224 DOI: 10.1111/1541-4337.12686] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Mycotoxins are toxic compounds naturally produced by certain types of fungi. The contamination of mycotoxins can occur on numerous foodstuffs, including cereals, nuts, fruits, and spices, and pose a major threat to humans and animals by causing acute and chronic toxic effects. In this regard, reliable techniques for accurate and sensitive detection of mycotoxins in agricultural products and food samples are urgently needed. As an advanced analytical tool, surface-enhanced Raman spectroscopy (SERS), presents several major advantages, such as ultrahigh sensitivity, rapid detection, fingerprint-type information, and miniaturized equipment. Benefiting from these merits, rapid growth has been observed under the topic of SERS-based mycotoxin detection. This review provides a comprehensive overview of the recent achievements in this area. The progress of SERS-based label-free detection, aptasensor, and immunosensor, as well as SERS combined with other techniques, has been summarized, and in-depth discussion of the remaining challenges has been provided, in order to inspire future development of translating the techniques invented in scientific laboratories into easy-to-operate analytic platforms for rapid detection of mycotoxins.
Collapse
Affiliation(s)
- Wenlei Zhai
- Beijing Research Center for Agricultural Standards and Testing, Haidian District, Beijing, P. R. China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xihui Ouyang
- Laboratory of Quality and Safety Risk Assessment for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs/Beijing Municipal Station of Agro-Environmental Monitoring, Beijing, P. R. China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, Haidian District, Beijing, P. R. China
| |
Collapse
|
21
|
Gimenez AV, Kho KW, Keyes TE. Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions. NANOSCALE ADVANCES 2020; 2:4740-4756. [PMID: 36132883 PMCID: PMC9417107 DOI: 10.1039/d0na00527d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 05/17/2023]
Abstract
Plasmonic nanostructures are important across diverse applications from sensing to renewable energy. Periodic porous array structures are particularly attractive because such topography offers a means to encapsulate or capture solution phase species and combines both propagating and localised plasmonic modes offering versatile addressability. However, in analytical spectroscopic applications, periodic pore arrays have typically reported weaker plasmonic signal enhancement compared to particulate structures. This may be addressed by introducing additional nano-structuring into the array to promote plasmonic coupling that promotes electric field-enhancement, whilst retaining pore structure. Introducing nanoparticle structures into the pores is a useful means to promote such coupling. However, current approaches rely on either expensive top-down methods or on bottom-up methods that yield random particle placement and distribution. This report describes a low cost, top-down technique for preparation of nano-sub-structured plasmonic pore arrays in a highly reproducible manner that can be applied to build arrays extending over macroscopic areas of mm2 to cm2. The method exploits oxygen plasma etching, under controlled conditions, of the cavity encapsulated templating polystyrene (PS) spheres used to create the periodic array. Subsequent metal deposition leads to reproducible nano-structuring within the wells of the pore array, coined in-cavity nanoparticles (icNPs). This approach was demonstrated across periodic arrays with pore/sphere diameters ranging from 500 nm to 3 μm and reliably improved the plasmonic properties of the substrate across all array dimensions compared to analogous periodic arrays without the nano-structuring. The enhancement factors achieved for metal enhanced emission and surface enhanced Raman spectroscopy depended on the substrate dimensions, with the best performance achieved for nanostructured 2 μm diameter pore arrays, where a more than 104 improvement over Surface Enhanced Raman Spectroscopy (SERS) and 200-fold improvement over Metal Enhanced Fluorescence (MEF) were observed for these substrates compared with analogous unmodified pore arrays. The experiments were supported by Finite-Difference Time-Domain (FDTD) calculations used to simulate the electric field distribution as a function of pore nano-structuring.
Collapse
Affiliation(s)
- Aurélien V Gimenez
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| | - Kiang W Kho
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| |
Collapse
|
22
|
Huang CC, Cheng CY, Lai YS. Paper-based flexible surface enhanced Raman scattering platforms and their applications to food safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Mazivila SJ, Nogueira HIS, Páscoa RNMJ, Ribeiro DSM, Santos JOLM, Leitão JOMM, Esteves da Silva JCG. Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2407-2421. [PMID: 32930267 DOI: 10.1039/d0ay00693a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper proposes for the first time: (a) a qualitative analytical method based on portable and benchtop backscattering Raman spectrometers coupled to hierarchical cluster analysis (HCA) and multivariate curve resolution - alternating least-squares (MCR-ALS) to identify two polymorphs of antimalarial quinine sulfate in commercial pharmaceutical tablets in their intact forms and (b) a quantitative analytical method based on gold nanoparticles (AuNPs) as active substrates for surface-enhanced Raman scattering (SERS) in combination with MCR-ALS to quantify quinine sulfate in commercial pharmaceutical tablets in solution. The pure concentration and spectral profiles recovered by MCR-ALS proved that both formulations present different polymorphs. These results were also confirmed by two clusters observed in the HCA model, according to their similarities within and among the samples that provided useful information about the homogeneity of different pharmaceutical manufacturing processes. AuNPs-SERS coupled to MCR-ALS was able to quantify quinine sulfate in the calibration range from 150.00 to 200.00 ng mL-1 even with the strong overlapping spectral profile of the background SERS signal, proving that it is a powerful ultrahigh sensitivity analytical method. This reduced linearity was validated throughout a large calibration range from 25.00 to 175.00 μg mL-1 used in a reference analytical method based on high performance liquid chromatography with a diode array detector (HPLC-DAD) coupled to MCR-ALS for analytical validation purposes, even in the presence of a coeluted compound. The analytical methods developed herein are fast, because second-order chromatographic data and first-order SERS spectroscopic data were obtained in less than 6 and 2 min, respectively. Concentrations of quinine sulfate were estimated with low root mean square error of prediction (RMSEP) values and a low relative error of prediction (REP%) in the range 1.8-4.5%.
Collapse
Affiliation(s)
- Sarmento J Mazivila
- Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Research Centre in Chemistry (CIQ-UP), Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Helena I S Nogueira
- Department of Chemistry and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo N M J Páscoa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - David S M Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joà O L M Santos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joà O M M Leitão
- Research Centre in Chemistry (CIQ-UP), Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joaquim C G Esteves da Silva
- Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Research Centre in Chemistry (CIQ-UP), Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|
24
|
Pereira VR, Pereira DR, de Melo Tavares Vieira KC, Ribas VP, Constantino CJL, Antunes PA, Favareto APA. Sperm quality of rats exposed to difenoconazole using classical parameters and surface-enhanced Raman scattering: classification performance by machine learning methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35253-35265. [PMID: 31701422 DOI: 10.1007/s11356-019-06407-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/03/2019] [Indexed: 05/23/2023]
Abstract
Difenoconazole is a fungicide extensively used in agriculture. The aim of this study was to evaluate the effects of difenoconazole fungicide on the sperm quality of rats. Wistar rats were divided into four groups: control and exposed to 5 (D5), 10 (D10), or 50 mg-1 kg bw-1day (D50) of difenoconazole for 30 days, by gavage. Classical sperm parameters and surface-enhanced Raman scattering (SERS) were performed. Progressive motility, acrosomal integrity, and percentage of morphologically normal spermatozoa were reduced in the D10 and D50 groups in comparison with the control group. Sperm viability was reduced only in the D50 group. Sperm number in the testis and caput/corpus epididymis and daily sperm production were reduced in the three exposed groups. SERS measurements showed changes in the spectra of spermatozoa from D50 group, suggesting DNA damage. In addition, machine learning (ML) methods were used to evaluate the performance of three classification algorithms (artificial neural network-ANN, K-nearest neighbors-K-NN, and support vector machine-SVM) in the identification task of the groups exposed to difenoconazole. The results obtained by ML algorithms were very promising with accuracy ≥ 90% and validated the hypothesis of the exposure to difenoconazole reduces sperm quality. In conclusion, exposure of rats to different doses of the fungicide difenoconazole may impair sperm quality, with a recognizable classification pattern of exposure groups.
Collapse
Affiliation(s)
- Viviane Ribas Pereira
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, CEP. 19.067-175, Brazil
| | - Danillo Roberto Pereira
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, CEP. 19.067-175, Brazil
| | - Kátia Cristina de Melo Tavares Vieira
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, CEP. 19.067-175, Brazil
| | - Vitor Pereira Ribas
- College of Science, Letters and Education from Presidente Prudente - FACLEPP, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, CEP. 19.067-175, Brazil
| | - Carlos José Leopoldo Constantino
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Campus Presidente Prudente, Presidente Prudente, SP, Brazil
| | - Patrícia Alexandra Antunes
- College of Science, Letters and Education from Presidente Prudente - FACLEPP, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, CEP. 19.067-175, Brazil
| | - Ana Paula Alves Favareto
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, CEP. 19.067-175, Brazil.
| |
Collapse
|
25
|
Jurasekova Z, Garcia-Leis A, Sanchez-Cortes S, Tinti A, Torreggiani A. Structural analysis of the neuropeptide substance P by using vibrational spectroscopy. Anal Bioanal Chem 2019; 411:7419-7430. [PMID: 31494687 DOI: 10.1007/s00216-019-02097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Substance P (SP) is one of the most studied peptide hormones and knowing the relationship between its structure and function may have important therapeutic applications in the treatment of a variety of stress-related illnesses. In order to obtain a deeper insight into its folding, the effects of different factors, such as pH changes, the presence of Ca2+ ions, and the substitution of the Met-NH2 moiety in the SP structure, was studied by Raman and infrared spectroscopies. SP has a pH-dependent structure. Under acidic-neutral conditions, SP possesses a prevalent β-sheet structure although also other secondary structure elements are present. By increasing pH, a higher orderliness in the SP secondary structure is induced, as well as the formation of strongly bound intermolecular β-strands with a parallel alignment, which favour the self-assembly of SP in β-aggregates. The substitution of the Met-NH2 moiety with the acidic functional group in the SP sequence, giving rise to a not biologically active SP analogue, results in a more disordered folding, where the predominant contribution comes from a random coil. Conversely, the presence of Ca2+ ions affects slightly but sensitively the folding of the polypeptide chain, by favouring the α-helical content and a different alignment of β-strands; these are structural elements, which may favour the SP biological activity. In addition, the capability of SERS spectroscopy to detect SP in its biologically active form was also tested by using different metal nanoparticles. Thanks to the use of silver NPs prepared by reduction of silver nitrate with hydroxylamine hydrochloride, SP can be detected at very low peptide concentration (~ 90 nM). However, the SERS spectra cannot be obtained under alkaline conditions since both the formation of SP aggregates and the lack of ion pairs do not allow a strong enough interaction of SP with silver NPs. Graphical abstract.
Collapse
Affiliation(s)
- Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 040 01, Košice, Slovakia.
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 040 01, Košice, Slovakia.
| | - Adianez Garcia-Leis
- Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006, Madrid, Spain
| | | | - Anna Tinti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126, Bologna, Italy
| | - Armida Torreggiani
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, CNR, Via P. Gobetti No. 101, 40129, Bologna, Italy.
| |
Collapse
|
26
|
Höhn EM, Panneerselvam R, Das A, Belder D. Raman Spectroscopic Detection in Continuous Microflow Using a Chip-Integrated Silver Electrode as an Electrically Regenerable Surface-Enhanced Raman Spectroscopy Substrate. Anal Chem 2019; 91:9844-9851. [DOI: 10.1021/acs.analchem.9b01514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eva-Maria Höhn
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| | | | - Anish Das
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
27
|
Vander Ende E, Bourgeois MR, Henry AI, Chávez JL, Krabacher R, Schatz GC, Van Duyne RP. Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy. Anal Chem 2019; 91:9554-9562. [DOI: 10.1021/acs.analchem.9b00773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emma Vander Ende
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Marc R. Bourgeois
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Anne-Isabelle Henry
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jorge L. Chávez
- 711th Human Performance Wing, Wright-Patterson Air Force Base Air Force Research Laboratories, Dayton, Ohio 45433, United States
| | - Rachel Krabacher
- 711th Human Performance Wing, Wright-Patterson Air Force Base Air Force Research Laboratories, Dayton, Ohio 45433, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Garrido C, Clavijo E, Copaja S, Gómez-Jeria J, Campos-Vallette M. Vibrational and electronic spectroscopic detection and quantification of carminic acid in candies. Food Chem 2019; 283:164-169. [PMID: 30722856 DOI: 10.1016/j.foodchem.2018.12.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/24/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Carminic acid (CA) contained in one kind of gummy candy was detected and quantified by using vibrational and electronic spectroscopy, respectively; the proposed methodology in solution is simple and rapid without sample pretreatment as usually used and reported. The identification of CA in candies was performed through the Raman and surface enhanced Raman scattering (SERS) spectra along with the equivalent spectral data from the natural CA dye. A modified silver colloidal solution was used in order to obtain SERS activity of CA at very low concentration in colloidal aqueous solution. Theoretical calculations allow infer about both the CA/silver surface interaction nature and on the orientation of CA on the surface. The electronic spectroscopic (UV-Vis) data allowed quantify CA in candies; the amount resulted nearly identical to that determined from HPLC traditional measurements. The present results should contribute to the health of children consumers.
Collapse
Affiliation(s)
- Carlos Garrido
- Laboratory of Inorganic Chemistry and Metallic Nanoparticles, Faculty of Basics Sciences, Department of Chemistry, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile; Laboratory of Vibrational Spectroscopy, Faculty of Sciences, Department of Chemistry, Universidad de Chile, Santiago, Chile.
| | - Ernesto Clavijo
- Laboratory of Vibrational Spectroscopy, Faculty of Sciences, Department of Chemistry, Universidad de Chile, Santiago, Chile
| | - Sylvia Copaja
- Laboratory of Organic and Environmental Chemistry, Faculty of Sciences, Department of Chemistry, Universidad de Chile, Santiago, Chile
| | - Juan Gómez-Jeria
- Laboratory of Vibrational Spectroscopy, Faculty of Sciences, Department of Chemistry, Universidad de Chile, Santiago, Chile
| | - Marcelo Campos-Vallette
- Laboratory of Vibrational Spectroscopy, Faculty of Sciences, Department of Chemistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. BIOSENSORS 2019; 9:E57. [PMID: 30999661 PMCID: PMC6627380 DOI: 10.3390/bios9020057] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Collapse
Affiliation(s)
- Roberto Pilot
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Raffaella Signorini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Manjari Bhamidipati
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Francioso O, López-Tobar E, Torreggiani A, Iriarte M, Sanchez-Cortes S. Stimulated Adsorption of Humic Acids on Capped Plasmonic Ag Nanoparticles Investigated by Surface-Enhanced Optical Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4518-4526. [PMID: 30762359 DOI: 10.1021/acs.langmuir.9b00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The adsorption of humic substances on Ag nanoparticles (AgNPs) is of crucial environmental importance and determines the toxicity of these NPs and the structure of adsorbed organic matter. In this work, the adsorption of two standard soil and leonardite International Humic Substances Society humic acids was studied on AgNPs of different sizes, shapes (spherical and star-like), and interfacial chemical compositions. Surface-enhanced optical (Raman and fluorescence) spectroscopies were used to follow the specific chemical groups involved in this adsorption. By means of the latter optical techniques, information regarding the binding mechanism and the macromolecular aggregation can be deduced. The influence of the surface chemical composition induced by the different functionalizations of the interfaces of these NPs is highly important regarding the chemical interactions of these complex organic macromolecules. The surface functionalization with positively charged alkyl diamines led to a large increase in the adsorption as well as a strong structural rearrangement of the macromolecule once adsorbed onto the surface.
Collapse
Affiliation(s)
- Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari , Università di Bologna , 40127 Bologna , Italy
| | - Eduardo López-Tobar
- Instituto de Estructura de la Materia , IEM-CSIC , Serano 121 , 28006 Madrid , Spain
| | - Armida Torreggiani
- ISOF, Consiglio Nazionale delle Ricerche , Via P. Gobetti 101 , 40129 Bologna , Italy
| | - Mercedes Iriarte
- Instituto de Optica, IO-CSIC, Serrano, 121 , 28006 Madrid , Spain
| | | |
Collapse
|
31
|
Lenkavska L, Blascakova L, Jurasekova Z, Macajova M, Bilcik B, Cavarga I, Miskovsky P, Huntosova V. Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo. Photodiagnosis Photodyn Ther 2019; 25:214-224. [DOI: 10.1016/j.pdpdt.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 01/29/2023]
|
32
|
Moeinian A, Gür FN, Gonzalez-Torres J, Zhou L, Murugesan VD, Dashtestani AD, Guo H, Schmidt TL, Strehle S. Highly Localized SERS Measurements Using Single Silicon Nanowires Decorated with DNA Origami-Based SERS Probe. NANO LETTERS 2019; 19:1061-1066. [PMID: 30620200 DOI: 10.1021/acs.nanolett.8b04355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) measurements are conventionally performed using assemblies of metal nanostructures on a macro- to micro-sized substrate or by dispersing colloidal metal nanoparticles directly onto the sample of interest. Despite intense use, these methods allow neither the removal of the nanoparticles after a measurement nor a defined confinement of the SERS measurement position. So far, tip enhanced Raman spectroscopy is still the key technique in this regard but not adequate for various samples mainly due to diminished signal enhancement compared to other techniques, poor device fabrication reproducibility, and cumbersome experimental setup requirements. Here, we demonstrate that a rational combination of only four gold nanoparticles (AuNPs) on a DNA origami template, and single silicon nanowires (SiNWs) yield functional optical amplifier nanoprobes for SERS. These nanoscale SERS devices offer a spatial resolution below the diffraction limit of light and still a high electric field intensity enhancement factor ( EF) of about 105 despite of miniaturization.
Collapse
Affiliation(s)
- Ardeshir Moeinian
- Institute of Electron Devices and Circuits , Ulm University , 89081 Ulm , Germany
| | | | - Julio Gonzalez-Torres
- Área de Física Atómica Molecular Aplicada (FAMA) , CBI, Universidad Autónoma Metropolitana-Azcapotzalco , Av. San Pablo 180, Col. Reynosa Tamaulipas , Mexico, DF , 02200 , Mexico
| | - Linsen Zhou
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | | | | | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | | | - Steffen Strehle
- Institute of Electron Devices and Circuits , Ulm University , 89081 Ulm , Germany
| |
Collapse
|
33
|
Anderson WJ, Nowinska K, Hutter T, Mahajan S, Fischlechner M. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy. NANOSCALE 2018; 10:7138-7146. [PMID: 29616248 DOI: 10.1039/c7nr06656b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.
Collapse
Affiliation(s)
- William J Anderson
- Department of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
34
|
Xu N, Xu N, Liu L, Zhu P, Liang J. Minireview: Recent Advances in Surface-Enhanced Raman Scattering-Based Nucleic Acid Detection with Application to Pathogen Diagnosis. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1392971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nannan Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Ning Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Liu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Panpan Zhu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Liang
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
35
|
Vetterlein C, Vásquez R, Bolaños K, Acosta GA, Guzman F, Albericio F, Celis F, Campos M, Kogan MJ, Araya E. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods. Colloids Surf B Biointerfaces 2018; 166:323-329. [PMID: 29625410 DOI: 10.1016/j.colsurfb.2018.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/01/2018] [Accepted: 03/17/2018] [Indexed: 11/30/2022]
Abstract
We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles.
Collapse
Affiliation(s)
- Claudia Vetterlein
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Rodrigo Vásquez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile; Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Karen Bolaños
- Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile; Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Gerardo A Acosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Scientific Park, Baldiri Reixac 10, Barcelona 08028, Spain; Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso, Av Universidad 330 Curauma, Valparaiso, Chile
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Scientific Park, Baldiri Reixac 10, Barcelona 08028, Spain; Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain; School of Chemistry & Physics, University of Kwazulu-Natal, Durban 4001, South Africa
| | - Freddy Celis
- Departamento de Química y Centro de Estudios Avanzados, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Marcelo Campos
- Department of Chemistry, Faculty of Sciences, University of Chile, POBox 653, Santiago, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile.
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile.
| |
Collapse
|
36
|
Köker T, Tang N, Tian C, Zhang W, Wang X, Martel R, Pinaud F. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat Commun 2018; 9:607. [PMID: 29426856 PMCID: PMC5807522 DOI: 10.1038/s41467-018-03046-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/12/2018] [Indexed: 01/28/2023] Open
Abstract
The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.
Collapse
Affiliation(s)
- Tuğba Köker
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA
| | - Nathalie Tang
- Department of Chemistry, University of Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Chao Tian
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Richard Martel
- Department of Chemistry, University of Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
37
|
Colloidal design of plasmonic sensors based on surface enhanced Raman scattering. J Colloid Interface Sci 2018; 512:834-843. [DOI: 10.1016/j.jcis.2017.10.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
|
38
|
Szekeres GP, Kneipp J. Different binding sites of serum albumins in the protein corona of gold nanoparticles. Analyst 2018; 143:6061-6068. [DOI: 10.1039/c8an01321g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Binding sites of albumins on gold nanoparticles were characterized by surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Gergo Peter Szekeres
- Humboldt-Universität zu Berlin
- Department of Chemistry
- 12489 Berlin
- Germany
- School of Analytical Sciences Adlershof
| | - Janina Kneipp
- Humboldt-Universität zu Berlin
- Department of Chemistry
- 12489 Berlin
- Germany
- School of Analytical Sciences Adlershof
| |
Collapse
|
39
|
Cailletaud J, De Bleye C, Dumont E, Sacré PY, Netchacovitch L, Gut Y, Boiret M, Ginot YM, Hubert P, Ziemons E. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field. J Pharm Biomed Anal 2018; 147:458-472. [DOI: 10.1016/j.jpba.2017.06.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 11/30/2022]
|
40
|
Chen M, Zhang L, Gao M, Zhang X. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Talanta 2017; 172:176-181. [DOI: 10.1016/j.talanta.2017.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
|
41
|
Drescher D, Traub H, Büchner T, Jakubowski N, Kneipp J. Properties of in situ generated gold nanoparticles in the cellular context. NANOSCALE 2017; 9:11647-11656. [PMID: 28770918 DOI: 10.1039/c7nr04620k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gold nanostructures that serve as probes for nanospectroscopic analysis of eukaryotic cell cultures can be obtained by the in situ reduction of tetrachloroauric acid (HAuCl4). To understand the formation process of such intracellularly grown particles depending on the incubation medium, the reaction was carried out with 3T3 fibroblast cells in three different incubation media, phosphate buffer, Dulbecco's Modified Eagle Medium (DMEM), and standard cell culture medium (DMEM with fetal calf serum). The size, the optical properties, the biomolecular corona, and the localization of the gold nanoparticles formed in situ vary for the different conditions. The combination of surface-enhanced Raman scattering (SERS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) microscopic mapping and transmission electron microscopy (TEM) provides complementary perspectives on plasmonic nanoparticles and non-plasmonic gold compounds inside the cells. While for the incubation with HAuCl4 in PBS, gold particles provide optical signals from the nucleus, the incubation in standard cell culture medium leads to scavenging of the toxic molecules and the formation of spots of high gold concentration in the cytoplasm without formation of SERS-active particles inside the cells. The biomolecular corona of nanoparticles formed in situ after incubation in buffer and DMEM differs, suggesting that different intracellular molecular species serve for reduction and stabilization. Comparison with data obtained from ready-made gold nanoparticles suggests complementary application of in situ and ex situ generated nanostructures for optical probing.
Collapse
Affiliation(s)
- D Drescher
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany. and Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - H Traub
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - T Büchner
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - N Jakubowski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - J Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany. and Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|
42
|
Belej D, Jurasekova Z, Nemergut M, Wagnieres G, Jancura D, Huntosova V. Negligible interaction of [Ru(Phen) 3] 2+ with human serum albumin makes it promising for a reliable invivo assessment of the tissue oxygenation. J Inorg Biochem 2017; 174:37-44. [PMID: 28599130 DOI: 10.1016/j.jinorgbio.2017.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The interaction between a ruthenium - based water soluble oxygen probe ([Ru(Phen)3]2+, phen - phenanthroline) and human serum albumin (HSA) was investigated with the aim of describing the influence of HSA on the [Ru(Phen)3]2+ luminescence properties. Nowadays, several oxygen sensitive luminescent probes are used to determine the oxygen level in different compartments of living organisms. However, they can interact, depending on their hydrophilic/hydrophobic characters, with various serum proteins, and/or lipids, during their utilization for invivo oxygen measurement. Since HSA is the most abundant serum protein in most biological organisms, its presence may affect the spectral properties of the employed probes and, consequently, the determination of the oxygen concentration. Having this in mind, we have applied several spectroscopic and calorimetric techniques to study [Ru(Phen)3]2+ - HSA mixtures. Only a negligible effect of HSA on the absorption and luminescence spectra of [Ru(Phen)3]2+ was observed. In addition, differential scanning calorimetric studies showed that [Ru(Phen)3]2+ does not significantly influence HSA thermal stability. Importantly, [Ru(Phen)3]2+ retained a reliable luminescence lifetime sensitivity to the oxygen concentration in solutions supplemented with HSA and in U87 MG cancer cells. Finally, the biodistribution of [Ru(Phen)3]2+ in the presence of serum proteins in the blood stream of chick embryo's chorioallantoic membrane (CAM) was investigated. Fast [Ru(Phen)3]2+ and similar extravasations were observed in the presence or absence of CAM-serum. We can conclude that HSA-[Ru(Phen)3]2+ complex interaction does not significantly influence the potential of [Ru(Phen)3]2+ to be a suitable candidate for a reliable oxygen probe in living organisms.
Collapse
Affiliation(s)
- Dominik Belej
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia
| | - Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia
| | - Michal Nemergut
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia
| | - Georges Wagnieres
- Laboratory of Organometallic and Medicinal Chemistry, ISIC, EPFL, Station 6, Lausanne CH-1015, Switzerland
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia.
| |
Collapse
|
43
|
Gontero D, Lessard-Viger M, Brouard D, Bracamonte AG, Boudreau D, Veglia AV. Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Fortuni B, Inose T, Uezono S, Toyouchi S, Umemoto K, Sekine S, Fujita Y, Ricci M, Lu G, Masuhara A, Hutchison JA, Latterini L, Uji-i H. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chem Commun (Camb) 2017; 53:11298-11301. [DOI: 10.1039/c7cc05420c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple, fast, one-step fabrication of silver nanoparticles with atomically thin gold coatings on polydimethylsiloxane affords oxidation-resistant and highly sensitive surface enhanced Raman scattering (SERS) substrates.
Collapse
|
45
|
Subaihi A, Muhamadali H, Mutter ST, Blanch E, Ellis DI, Goodacre R. Quantitative detection of codeine in human plasma using surface-enhanced Raman scattering via adaptation of the isotopic labelling principle. Analyst 2017; 142:1099-1105. [DOI: 10.1039/c7an00193b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study surface-enhanced Raman scattering (SERS) combined with the isotopic labelling (IL) principle has been used for the quantification of codeine spiked into both water and human plasma.
Collapse
Affiliation(s)
- Abdu Subaihi
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Howbeer Muhamadali
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Shaun T. Mutter
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | | | - David I. Ellis
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| |
Collapse
|
46
|
Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. NANOSCALE RESEARCH LETTERS 2016; 11:40. [PMID: 26821160 PMCID: PMC4731379 DOI: 10.1186/s11671-016-1257-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan, 609735, South Korea
| | - Kim Seung-Hyun
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea
| | - Govindasamy Rajakumar
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
47
|
Selective and Sensitive Colorimetric Detection of Hg2+ at Wide pH Range Using Green Synthesized Silver Nanoparticles as Probe. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1109-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
De Bleye C, Dumont E, Dispas A, Hubert C, Sacré PY, Netchacovitch L, De Muyt B, Kevers C, Dommes J, Hubert P, Ziemons E. Monitoring of anatabine release by methyl jasmonate elicited BY-2 cells using surface-enhanced Raman scattering. Talanta 2016; 160:754-760. [PMID: 27591672 DOI: 10.1016/j.talanta.2016.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022]
Abstract
A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells.
Collapse
Affiliation(s)
- C De Bleye
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium.
| | - E Dumont
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - A Dispas
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - C Hubert
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - P-Y Sacré
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - L Netchacovitch
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - B De Muyt
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - C Kevers
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - J Dommes
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - Ph Hubert
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - E Ziemons
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| |
Collapse
|
49
|
Kibar G, Topal AE, Dana A, Tuncel A. Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Saleh TA, Al-Shalalfeh MM, Al-Saadi AA. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment. Sci Rep 2016; 6:32185. [PMID: 27572919 PMCID: PMC5004140 DOI: 10.1038/srep32185] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm(-1) were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10(-12) M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.
Collapse
Affiliation(s)
- Tawfik A. Saleh
- Department of Chemistry; King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mutasem M. Al-Shalalfeh
- Department of Chemistry; King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A. Al-Saadi
- Department of Chemistry; King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|