1
|
Dos Reis RA, da Silva LL, Pieretti JC, Creusot B, Lahouari S, Francius G, da Silva RAG, Clarot I, Boudier A, Seabra AB. Eco-friendly synthesis and biomedical potential of zinc oxide nanoparticles using Mentha piperita aqueous extract: comparative analysis with chemically synthesized and commercial nanoparticles. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03178-6. [PMID: 40411556 DOI: 10.1007/s00449-025-03178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
Phytosynthesis of zinc oxide nanoparticles (ZnO NPs) using Mentha piperita extract offers a sustainable alternative for biomedical applications. This study investigates the synthesis, characterization, and biological properties of biosynthesized ZnO (ZnO Bio NPs) compared to chemically synthesized (ZnO Chem NPs) and commercial ZnO (ZnO Commercial NPs). We explored how peppermint's phytochemicals influence ZnO NP synthesis and biological interactions. Peppermint-derived phytochemicals act as reducing and stabilizing agents while providing antioxidant and anticarcinogenic benefits, potentially enhancing ZnO Bio NPs' therapeutic effects. Our findings reveal that ZnO Bio NPs exhibit superior stability and bioactivity due to plant-based capping agents. ZnO Bio NPs inhibited 52% of DPPH radicals at 15.63 µg/mL, outperforming ZnO Chem and Commercial NPs. In hemocompatibility studies, ZnO Bio NPs showed minimal hemolysis, both with and without protein corona (albumin and fibrinogen), ensuring safer blood interactions. Cytotoxicity assays demonstrated that ZnO Bio NPs had an IC50 of 49.91 µg/mL in human fibroblasts, threefold less cytotoxic than ZnO Commercial NPs. These results highlight the potential of peppermint-extract-based ZnO NPs for biomedical applications, offering lower cytotoxicity and greater biocompatibility while providing an eco-friendly alternative to conventional synthesis methods.
Collapse
Affiliation(s)
- Roberta A Dos Reis
- Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
- Université de Lorraine, CNRS, LRGP, Nancy, France
| | | | - Joana C Pieretti
- Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
| | | | - Sephora Lahouari
- Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
- Université de Lorraine, CNRS, LRGP, Nancy, France
| | | | | | - Igor Clarot
- Université de Lorraine, CNRS, LRGP, Nancy, France
| | - Ariane Boudier
- Université de Lorraine, CNRS, LRGP, Nancy, France
- Institut Universitaire de France (IUF), Nancy, France
| | - Amedea B Seabra
- Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Cetinkaya A, Yayla S, Hurkul MM, Ozkan SA. The Sample Preparation Techniques and Their Application in the Extraction of Bioactive Compounds from Medicinal Plants. Crit Rev Anal Chem 2025:1-36. [PMID: 40387198 DOI: 10.1080/10408347.2025.2503437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
People have used plants for centuries to prevent and treat illness and to maintain good health. Different parts of the plant (root, seed, fruit, flower) are used directly, and extracts are prepared by various methods. Various applications and techniques have been developed to extract bioactive compounds from plants. Extraction aims to obtain chemical compounds from plant tissues most effectively and efficiently. The effectiveness of different extraction techniques (maceration, percolation, decoction, Soxhlet extraction, hydrodistillation, microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), supercritical fluid extraction (SFE), enzyme-assisted extraction (EAE), pressurized hot water extraction (PHWE), pressurized liquid extraction (PLE), ionic liquids extraction (ILs), deep eutectic solvents extraction (DESs), bio-based solvents extraction (BBS), and natural deep eutectic solvents extraction (NADES)), the chemical profile of the resulting bioactive compounds, and their effects on biological activities have been extensively studied. Their effectiveness in extracting various bioactive compounds (flavonoids, phenolic acids, alkaloids, terpenoids, saponins, and essential oils) has been evaluated. This review provides a detailed description of the applications of various traditional extraction methods, modern extraction methods, and green extraction methods in medicinal plants for better understanding. It provides an overview of their potential to help determine their appropriateness and financial feasibility. It also compares the effectiveness, advantages, and disadvantages of different approaches.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
- Department of Analytical Chemistry, Hacettepe University, Ankara, Türkiye
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Ankara University, Ankara, Türkiye
| | - M Mesud Hurkul
- Department of Pharmaceutical Botany, Ankara University, Ankara, Türkiye
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
3
|
Stoyanova M, Milusheva M, Gledacheva V, Todorova M, Kircheva N, Angelova S, Stefanova I, Pencheva M, Vasileva B, Hristova-Panusheva K, Krasteva N, Miloshev G, Tumbarski Y, Georgieva M, Nikolova S. Silver Nanoparticles with Mebeverine in IBS Treatment: DFT Analysis, Spasmolytic, and Anti-Inflammatory Effects. Pharmaceutics 2025; 17:561. [PMID: 40430854 PMCID: PMC12115181 DOI: 10.3390/pharmaceutics17050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Mebeverine hydrochloride (MBH) is an antispasmodic agent used to regulate bowel movements and relax intestinal smooth muscle, but its application is limited by specific side effects; therefore, this study investigates the effects of previously synthesized MBH-loaded silver nanoparticles (AgNPs) on smooth muscle contractile activity and their anti-inflammatory potential as an alternative delivery system. Methods: The interactions of AgNPs with cholinergic inhibitors, selective antagonists, Ca2+ blockers, and key neurotransmitters were analyzed. In vitro, albumin denaturation suppression and ex vivo assays evaluated the anti-inflammatory effects of AgNPs-MBH, validated using a DFT in silico approach. To comprehensively assess the systemic impact and IBS treatment potential of AgNPs-MBH, we also examined in vitro their antimicrobial activity and hepatic cell responses, as the liver is a key organ in evaluating the overall safety and efficacy of nanoparticles. Additionally, the drug-release capabilities of Ag NPs were established. Results: Our findings indicate that AgNPs with MBH do not affect blocked cholinergic receptors, but their effects are more pronounced and distinct in amplitude and character than MBH. MBH-loaded AgNPs showed a lower anti-inflammatory effect than MBH but were still better than diclofenac. They also affected hepatic cell morphology and proliferation, suggesting potential for enhanced therapeutic efficacy. Drug-loaded AgNPs are considered not bactericidal. Conclusions: Based on our results, drug-loaded AgNPs might be a promising medication delivery system for MBH and a useful treatment option for IBS. Future in vivo and preclinical experiments will contribute to the establishment of drug-loaded AgNPs in IBS treatment.
Collapse
Affiliation(s)
- Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
- University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (G.M.); (M.G.)
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.H.-P.); (N.K.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.H.-P.); (N.K.)
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (G.M.); (M.G.)
| | - Yulian Tumbarski
- Department of Microbiology and Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (G.M.); (M.G.)
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
| |
Collapse
|
4
|
Issa KD, Othman HO, Amin HIM, Omar SE, Jihad SS, Rasool DD, Ahmed AS, Ghazali MF, Hussain FHS. Sustainable Antimicrobial and Anticancer Agents: Eco-Friendly Synthesis of Copper Nanoparticles Using Biebersteinia multifida DC. Chem Biodivers 2025:e202402612. [PMID: 40262138 DOI: 10.1002/cbdv.202402612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/12/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Biebersteinia multifida DC. is a wild therapeutic plant, traditionally used for various medicinal applications. The aim of the present study is to extract bioactive constituents from the plants' roots and synthesize copper nanoparticles (CuNPs). Ethanolic extraction of the plant's roots yielded 19 bioactive compounds, recognized through gas chromatography-mass spectroscopy (GC-MS), mainly including citraconic anhydride, γ-sitosterol, and 2-furancarboxaldehyde. The prepared CuNPs have been fully characterized. The biological activity evaluations revealed these CuNPs possess acceptable antibacterial and antifungal activities. Furthermore, the CuNPs displayed significant cytotoxic potency toward "4T1 breast cancer cells" while showing a relatively low cell death rate against the normal "HEK-293 kidney cell". In conclusion, our findings showed that the CuNPs can be synthesized from B. multifida roots with a simple, fast, and eco-friendly procedure. These CuNPs are efficient in antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Kovan Dilawer Issa
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmacy, Tishk International University, Erbil, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Shahnaz Erfan Omar
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Sarya Siraj Jihad
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Danya Dler Rasool
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Abdullah Shahab Ahmed
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Mardin Firsat Ghazali
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| |
Collapse
|
5
|
Mercan DA, Tudorache (Trifa) DI, Niculescu AG, Mogoantă L, Mogoşanu GD, Bîrcă AC, Vasile BȘ, Hudiță A, Voinea IC, Stan MS, Hadibarata T, Mihaiescu DE, Grumezescu AM, Alberts A. Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:637. [PMID: 40358254 PMCID: PMC12073745 DOI: 10.3390/nano15090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and uniform particle formation. The resulting Fe3O4/SA nanostructures were further modified with either silver or copper oxide to form iron oxide nanocomposites with enhanced antimicrobial functionality. These nanocomposites were subsequently integrated into silica aerogel matrices using a dip-coating approach to improve surface dispersion, structural stability, and biocompatibility. The structural and morphological properties of the samples were investigated using XRD, FT-IR, TEM with SAED analysis, and Raman microscopy. In vitro cytotoxicity and antimicrobial assays demonstrated that Fe3O4/SA-Ag and Fe3O4/SA-CuO exhibit potent antibacterial activity and cell type-dependent biocompatibility. In vivo biodistribution studies showed no accumulation in major organs and selective clearance via the spleen, validating the systemic safety of the platform. These findings highlight the potential of the synthesized nanocomposites as biocompatible, antimicrobial coatings for advanced biomedical surfaces.
Collapse
Affiliation(s)
- Doina-Antonia Mercan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (D.-A.M.); (D.-I.T.); (A.-G.N.); (A.C.B.); (T.H.); (A.M.G.)
| | - Dana-Ionela Tudorache (Trifa)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (D.-A.M.); (D.-I.T.); (A.-G.N.); (A.C.B.); (T.H.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (D.-A.M.); (D.-I.T.); (A.-G.N.); (A.C.B.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Laurenţiu Mogoantă
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
- Drug Research Center, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (D.-A.M.); (D.-I.T.); (A.-G.N.); (A.C.B.); (T.H.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania;
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - Ionela Cristina Voinea
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (D.-A.M.); (D.-I.T.); (A.-G.N.); (A.C.B.); (T.H.); (A.M.G.)
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (D.-A.M.); (D.-I.T.); (A.-G.N.); (A.C.B.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
6
|
Oliveira MF, Moraes LC, Figueredo CC. Metal Nanoparticles Produced Using Autotrophs and Their Bioproducts: A Comparative Overview between Photosynthesizing Taxonomic Groups. ACS OMEGA 2025; 10:13763-13779. [PMID: 40256525 PMCID: PMC12004176 DOI: 10.1021/acsomega.4c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Metal nanoparticles (MNPs) exhibit unique properties influenced by their size, shape, and dispersion uniformity. They can be synthesized via chemical methods or green synthesis, commonly using plant or microorganism extracts as reducing and stabilizing agents. This eco-friendly approach is valued, but the literature is unclear about which taxonomic groups should be targeted to obtain certain types of MNPs. Given the ongoing growth of research in this area, this study offers a comparative overview that helps identify patterns and gaps in the current knowledge. This study reviewed 485 articles, describing 652 monometallic and 10 bimetallic nanoparticles synthesized using photosynthesizing organisms' extracts. Angiosperms and cyanobacteria were the most utilized groups. Silver and gold nanoparticles were the most studied MNPs. Gold nanoparticles' size varied with taxonomic groups, but they were smaller than the silver nanoparticles synthesized by the same group. Antimicrobial activity was the most common application, highlighting the potential of green-synthesized MNPs. This study provides valuable insights for optimizing sustainable nanoparticle production since knowledge about the specificities of different photosynthesizing taxa can be useful for directing efforts and enhancing the efficiency and precision of green-synthesized MNPs.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Departamento de Botânica, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Leonardo César Moraes
- Departamento de Botânica, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
7
|
Balciunaitiene A, Zehra SH, Liaudanskas M, Zvikas V, Viskelis J, Nuapia YB, Siukscius A, Singh PK, Janulis V, Viskelis P. Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis. Molecules 2025; 30:1706. [PMID: 40333613 PMCID: PMC12029536 DOI: 10.3390/molecules30081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Silver nanoparticles belong to a highly versatile group of nanomaterials with an appealing range of potential applications. In the realm of antimicrobial and antioxidant application, silver nanoparticles (AgNPs) exhibit auspicious capabilities. This research, for the very first time, endeavors to carry out biosynthesis of AgNPs coupled with fermentation using Medusomyces gisevii and Origanum vulgare L. (O. vulgare) plant species. Fermentation (F) via Medusomyces gisevii is responsible for chemical, physical, biological, and electrochemical processes. During in vitro study of antioxidant activity, fermented O. vulgare herb extract showed strong reductive activity as evaluated by the cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay, with a value of 1.45 ± 0.048 mmol TE/g, 0.95 ± 0.04 mmol TE/g, and 0.59 ± 0.023 mmol TE/g, respectively. The highest antimicrobial activity was shown by Staphylococcus aureus in the inhibition zone, with values of 1.40 ± 0.12 mm of OrV and of 10.30 ± 0.04 mm and 11.54 ± 0.10 mm for OrV-AgNPs and OrV-F-AgNPs, respectively. Analysis of phenolic compounds revealed that the highest total amount of the apigenin, 87.78 µg/g, was detected in OrV-F-AgNPs and the lowest amount, 16.56 µg/g, in OrV-AgNPs. Moreover, in OrV-F-AgNPs, the collective amount of proanthocyanidins, hydroxycinnamic, and flavonoids was prominently high in all cases, i.e., 145.00 ± 0.02 mg EE/g DW, 2.86 ± 0.01 mg CAE/g DW, and 0.55 ± 0.01 mg RE/g DW, respectively, as compared to the original extract (102.1 ± 0.03 mg EE/g DW, 2.78 ± 0.02 mg CAE/g DW, and 0.47 ± 0.01 mg RE/g DW, respectively). During the characterization of biosynthesized nanoparticles by scanning electron microscopy (SEM), AgNPs demonstrated a uniform spherical shape with even distribution. The sample's elemental composition was confirmed with a signal of 3.2 keV using energy-dispersive X-ray spectroscopy (EDS) analysis. Transmission electron microscopy (TEM) analysis showed silver nanoparticles that were round and spherical in shape in both stacked and congested form, with a size range of less than 30 nm. Thus, this green and sustainable synthesis of AgNPs, a blend of Medusomyces gisevii and O. vulgare herbal extract, has adequate potential for increased antimicrobial and antioxidant activity.
Collapse
Affiliation(s)
- Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (S.H.Z.); (J.V.); (P.V.)
| | - Syeda Hijab Zehra
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (S.H.Z.); (J.V.); (P.V.)
| | - Mindaugas Liaudanskas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (M.L.); (V.J.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania;
| | - Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania;
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (S.H.Z.); (J.V.); (P.V.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Yannick Belo Nuapia
- Pharmacy Department, School of Healthcare Sciences, University of Limpopo Campus, Polokwane 0727, South Africa;
| | - Arturas Siukscius
- Veterinary Academy, Institute of Animal Husbandry, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania;
| | - Pradeep Kumar Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, PO Chaumuhan, Mathura 281406, India;
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (M.L.); (V.J.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (S.H.Z.); (J.V.); (P.V.)
| |
Collapse
|
8
|
Jangid H, Kumar G. Ecotoxicity of fungal-synthesized silver nanoparticles: mechanisms, impacts, and sustainable mitigation strategies. 3 Biotech 2025; 15:101. [PMID: 40160431 PMCID: PMC11953517 DOI: 10.1007/s13205-025-04266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
The review investigates the ecotoxicological implications of fungal-synthesized silver nanoparticles (AgNPs), focusing on their behavior, transformations, and impacts across aquatic and terrestrial ecosystems. Advanced techniques, such as Single-Particle ICP-MS and Nanoparticle Tracking Analysis, reveal the persistence and biotransformation of AgNPs, including silver ion (Ag⁺) release and reactive oxygen species (ROS) generation. The review highlights species-specific bio-accumulation pathways in algae, soil microbes, invertebrates, and vertebrates, along with the limited biomagnification potential within trophic levels. Long-term exposure to AgNPs leads to reduced soil fertility, altered microbial communities, and inhibited plant growth, raising significant ecological concerns. Sustainable mitigation strategies, including bioremediation and advanced filtration systems, are proposed to reduce the environmental risks of AgNPs. This comprehensive analysis provides a framework for future ecological studies and regulatory measures, balancing the technological benefits of fungal-synthesized AgNPs with their environmental safety.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
9
|
T L S, Rao KJ, Korumilli T. Natural Biogenic Templates for Nanomaterial Synthesis: Advances, Applications, and Environmental Perspectives. ACS Biomater Sci Eng 2025; 11:1291-1316. [PMID: 39928588 DOI: 10.1021/acsbiomaterials.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
This review explores the use of biogenic templates in nanomaterial synthesis, emphasizing their role in promoting environmentally sustainable nanotechnology. It categorizes various biogenic templates, including agricultural byproducts and microorganisms, stating their suitability for forming nanostructures due to their distinct properties. A comparative analysis of monostep and multistep synthesis methods is provided, focusing on their efficiencies and outcomes when using biogenic templates. Further, this review also highlights how these templates can generate complex nanostructures and hybrid materials with enhanced functionalities. Applications of biogenic templates across biomedicine, biotechnology, environmental science, and energy are discussed along with their utilization scope in agriculture and electronics. Benefits from nanostructures from biotemplates include sustainability, low cost, and reduced toxicity, but challenges like scalability, reproducibility, and regulatory compliance persist. Future research focuses on improving synthesis techniques, discovering new templates, and evaluating environmental and cytotoxic impacts, especially for biomedical uses. In conclusion, the review reaffirms the potential of biogenic templates in sustainable nanomaterial synthesis while highlighting the ongoing challenges that need to be addressed for broader adoption.
Collapse
Affiliation(s)
- Srujana T L
- Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| | - K Jagajjanani Rao
- Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| | - Tarangini Korumilli
- Centre for Biomaterials & Environmental Biotechnology, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| |
Collapse
|
10
|
Motene MV, Maepa C, Sigidi MT. Optimizing the Antimicrobial, Antioxidant, and Cytotoxic Properties of Silver Nanoparticles Synthesized from Elephantorrhiza elephantina (Burch.) Extracts: A Comprehensive Study. PLANTS (BASEL, SWITZERLAND) 2025; 14:822. [PMID: 40094827 PMCID: PMC11902556 DOI: 10.3390/plants14050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
The green synthesis of silver nanoparticles (AgNPs) using Elephantorrhiza elephantina (Burch) bulb extracts and evaluation of their antimicrobial, cytotoxic, and antioxidant properties were investigated. The crude plant extracts were prepared using distilled water, ethanol, and methanol for a comparison. Silver nanoparticles were synthesized and characterized via UV-Visible spectroscopy (UV-VIS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The formation of silver nanoparticles was confirmed using the UV-VIS spectra at 550 nm. The TEM confirmed the nanoparticle morphology as a mixed dispersed sphere, oval, and triangular shapes with a size range of 7.8 nm to 31.3 nm. The secondary metabolites were detected using TLC, DPPH, and LC-MS. Antimicrobial activity was assessed based on agar-well diffusion; cytotoxicity was examined through MTS assays. Various phytochemical constituents were detected through TLC and LC-MS. The crude extracts and methanol-extract-capped AgNP were able to scavenge free radicals, as shown by the developments of inhibitory bands on the TLC plate. The agar well diffusion test revealed that the AgNP capped methanol extract had potent antimicrobial activity against Gram-positive and Gram-negative multidrug resistant bacteria in comparison with penicillin and neomycin, with inhibition zones ranging between 10 mm and 14 mm for the methanol-extract-capped AgNP. The in vitro MTS assay revealed that methanol crude extracts and methanol-extract-capped AgNP had a less cytotoxic effect on the HEK293 cells in comparison with untreated cells (control). We therefore conclude that methanol was the best reducing solvent with the best overall nanoparticle morphology and performance in antimicrobial and cytotoxicity, in comparison to ethanol and distilled water.
Collapse
Affiliation(s)
- Matshoene V Motene
- Department of Biochemistry and Microbiology, Faculty of Sciences, Agriculture and Engineering, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Charity Maepa
- Laboratory for Microscopy and Microanalysis, Faculty of Natural and Agricultural Sciences, Private Bag X20, Hatfield 0028, South Africa
| | - Muendi T Sigidi
- Department of Biochemistry and Microbiology, Faculty of Sciences, Agriculture and Engineering, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| |
Collapse
|
11
|
Sahu SK, Sahoo PR, Dash S, Mishra SR, Behera PC. Antimicrobial Activity of Silver Nanoparticles Against Common Bovine Mastitis Pathogens: A Comparative Analysis. Curr Microbiol 2025; 82:121. [PMID: 39915291 DOI: 10.1007/s00284-025-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Bovine mastitis is one important metabolic disease in dairy cows caused by S. aureus and E. coli impacting huge economic losses worldwide. Silver Nanoparticles (AgNPs) possess unique electrical, thermal, optical, and biological properties, scrutinizing them as more effective antimicrobial agents. This study aimed to synthesize and evaluate AgNPs as effective antimicrobial compounds against S. aureus and E. coli. In the present work, the extract of citrus limon was analysed with gas chromatography-mass spectrometry (GC-MS) analysis, citric acid was found abundant in methanolic solvent. Synthesis of AgNPs was made by both green and chemical synthesis method, charctererized by UV‒visible spectroscopy, electron microscopy, zeta sizing and infrared spectroscopy. The result confirmed that both green and chemical AgNPs are in nanoscale range with average size ranged from 10 to 20 nm. The zeta potential was found negative and green synthesized AgNPs resulted significantly (P ≤ 0.05) higher antimicrobial activities than chemical synthesized AgNPs and also commercial available antibiotics. The minimum inhibitory concentration (MIC) was also evaluated and green synthesized AgNPs resulted MIC50 value of 46.10 and 49.93 while chemical synthesized AgNPs showed MIC50 value of 77.39 and 86.50 μg mL-1 against S. aureus and E. coli respectively. Additionally, green synthesized AgNPs demonstrated more cell viability (%) against RAW264.7 cells. Therefore, green AgNPs would be a potential antimicrobial agent in place commercially available antibiotics against aforesaid organisms in nearest future.
Collapse
Affiliation(s)
- Santosini Kumari Sahu
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pravas Ranjan Sahoo
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| | - Sashikanta Dash
- Department of Microbiology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Smruti Ranjan Mishra
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Prakash Chandra Behera
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Acharya C, Mishra S, Chaurasia SK, Pandey BK, Dhar R, Pandey JK. Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications. Biometals 2025; 38:21-54. [PMID: 39377881 DOI: 10.1007/s10534-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.
Collapse
Affiliation(s)
- Chinmayee Acharya
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India
| | - Sonam Mishra
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Sandeep Kumar Chaurasia
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| | - Bishnu Kumar Pandey
- Department of Physics, SPM College, University of Allahabad, Prayagraj, 211013, India
| | - Ravindra Dhar
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Jitendra Kumar Pandey
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| |
Collapse
|
13
|
Alex SB, M S S, M S L. Evaluation of antimicrobial, anti-inflammatory and cytotoxic effects of silver nanoparticles synthesised from Cynodon dactylon. Nat Prod Res 2025; 39:779-786. [PMID: 38058172 DOI: 10.1080/14786419.2023.2290154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Plant mediated synthesis of metal nanoparticles (MNPs) has been considered as a reliable green technique for mitigating the involvement of toxic chemicals and which is widely used for desired applications. In the present study, a simple and environment friendly approach for the synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Cynodon dactylon was proposed. The phytochemicals present in C. dactylon acted as the reducing as well as the capping agents during the nanoparticle synthesis. The aqueous extract of C. dactylon added to AgNO3 solution showed a colour change from brown to black at room temperature which confirmed the formation of AgNPs. UV-Vis spectral analysis revealed the surface plasmon resonance band of synthesised AgNPs at around 380 nm, while FT-IR spectroscopy confirmed the role of biomolecules present in the plant extract in the reduction and efficient stabilisation of AgNPs. The X-ray diffraction (XRD) patterns confirmed distinctive peaks corresponding to the crystalline planes of cubic silver. Shape and surface morphology of green AgNPs were examined by SEM. Biosynthesized AgNPs were predominantly cubical and spherical with an average particle size of 30.5 nm approximately as observed through SEM and DLS analysis respectively. The EDS analysis displayed intense signals of silver element. The stability of AgNPs was confirmed by zeta potential analysis. A negative zeta potential value of -17.1 mV indicated the stability and good dispersion of AgNPs. Antimicrobial and anti-inflammatory potentials of green synthesised AgNPs were analysed through in vitro techniques. The cytotoxic effect of green AgNPs on normal fibroblast cells (L929) was studied to analyse its effect on normal cells.
Collapse
Affiliation(s)
- Sheeba Baby Alex
- Department of Chemistry, St.Stephen's College, Pathanapuram, Kerala, India
- Department of Chemistry, Sree Narayana College, Kollam, Kerala, India
| | - Sujamol M S
- Department of Chemistry, St.Stephen's College, Pathanapuram, Kerala, India
| | - Latha M S
- Department of Chemistry, Sree Narayana College, Kollam, Kerala, India
| |
Collapse
|
14
|
Shahzadi S, Fatima S, Ul Ain Q, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv 2025; 15:3858-3903. [PMID: 39917042 PMCID: PMC11800103 DOI: 10.1039/d4ra07519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
A sustainable and viable alternative for conventional chemical and physical approaches is the green production of silver nanoparticles (SNPs) using plant extracts. This review centers on the diverse applications of plant-mediated SNPs in biomedicine, environmental remediation, and photocatalysis. Ocimum sanctum (tulsi), Curcuma longa (turmeric), and Azadirachta indica (neem) and many others are plant extracts that have been used as stabilizing and reducing agents because of their extensive phytochemical profiles. The resulting SNPs have outstanding qualities, such as better photocatalytic degradation of organic dyes like methylene blue, antibacterial efficacy towards multidrug-resistant pathogens, biocompatibility for possible therapeutic applications, and regulated magnitude (10-50 nm), enhanced rigidity, and tunable surface plasmon resonance. Significant effects of plant extract type, amount, and synthesis parameters on the physical and functional characteristics of SNPs are revealed by key findings. Along with highlighting important issues and potential paths forward, this review also underlines the necessity of scalable production, thorough toxicity evaluations, and investigating the incorporation of SNPs into commercial applications. This work highlights how plant-based SNPs can be used to address global environmental and biological concerns by straddling the division between sustainable chemistry and nanotechnology.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Sehrish Fatima
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Qurat Ul Ain
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Zunaira Shafiq
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | | |
Collapse
|
15
|
Ghosh A, Majumdar D, Biswas H, Chowdhury A, Podder S. Nano-biopesticide formulation comprising of silver nanoparticles anchored to Ocimum sanctum: a sustainable approach to pest control in jute farming. Sci Rep 2025; 15:3414. [PMID: 39870801 PMCID: PMC11772576 DOI: 10.1038/s41598-025-87727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed. The characterization studies confirmed significant interactions between the Ag NPs and bioactive components in the nano-biopesticide formulation. The comparative analysis of the aforementioned larval mortality showed better responses in the nano-biopesticide formulation rather than the crude (pure) leaf extract. The LC50 values were calculated both for the nano-biopesticide formulation and pure extract after 24, 48 and 72 h of treatment. The nano-biopesticide formulation was found to exhibit the lowest and much promising LC50 value of 93.21 ppm, 23.38 ppm, 5.96 ppm relative to that of LC50 values of 1590.74 ppm, 459.30 ppm, 102.68 ppm respectively for the crude leaf extract. The synergistic interactions between the components in the nano-biopesticide formulation can be associated with its greater effectiveness as a promising toxicant to the larvae of the jute caterpillar compared to the mere leaf extract, thereby, demonstrating a greener and safer method for effective pest management.
Collapse
Affiliation(s)
- Avirup Ghosh
- Ecology and Allergology Lab, Department of Zoology, Golapbag Campus, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Dipanwita Majumdar
- Department of Chemistry, Chandernagore College, Hooghly, Chandannagar, 712136, West Bengal, India
| | - Himani Biswas
- Post Graduate Department of Zoology, Krishnagar Govt. College, Krishnagar, 741101, West Bengal, India
| | - Anupam Chowdhury
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Sanjoy Podder
- Ecology and Allergology Lab, Department of Zoology, Golapbag Campus, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
16
|
Lima TM, Leal DM, Ferreira ZC, Souza FDJ, de Oliveira DB, Rocha-Vieira E, Martins HR, Pereira AC, Ferreira LF. Development and Optimization of a Cost-Effective Electrochemical Immunosensor for Rapid COVID-19 Diagnosis. BIOSENSORS 2025; 15:67. [PMID: 39996968 PMCID: PMC11853419 DOI: 10.3390/bios15020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
The coronavirus disease (COVID-19) pandemic has created an urgent need for rapid, accurate, and cost-effective diagnostic tools. In this study, an economical electrochemical immunosensor for the rapid diagnosis of COVID-19 was developed and optimized based on charge transfer resistance (Rct) values obtained by electrochemical impedance spectroscopy (EIS) from the interaction between antibodies (anti-SARS-CoV-2) immobilized as a bioreceptor and the virus (SARS-CoV-2). The sensor uses modified pencil graphite electrodes (PGE) coated with poly(4-hydroxybenzoic acid), anti-SARS-CoV-2, and silver nanoparticles. The immobilization of anti-SARS-CoV-2 antibodies was optimized at a concentration of 1:250 for 30 min, followed by blocking the surface with 0.01% bovine serum albumin for 10 min. The optimal conditions for virus detection in clinical samples were a 1:10 dilution with a response time of 20 min. The immunosensor responded linearly in the range of 0.2-2.5 × 106 particles/μL. From the relationship between the obtained signal and the concentration of the analyzed sample, the limit of detection (LOD) and limit of quantification (LOQ) obtained were 1.21 × 106 and 4.04 × 106 particles/μL, respectively. The device did not cross-react with other viruses, including Influenza A and B, HIV, and Vaccinia virus. The relative standard deviation (RSD) of the six immunosensors prepared using the shared-pool sample was 3.87. Decreases of 22.3% and 12.4% were observed in the response values of the ten immunosensors stored at 25 °C and 4.0 °C, respectively. The sensor provides timely and accurate results with high sensitivity and specificity, offering a cost-effective alternative to the existing diagnostic methods.
Collapse
Affiliation(s)
- Thaís Machado Lima
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Daiane Martins Leal
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Zirlane Coelho Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Fernando de Jesus Souza
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Danilo Bretas de Oliveira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Etel Rocha-Vieira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Helen Rodrigues Martins
- Pharmacy Department, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil;
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei 36307-352, Minas Gerais, Brazil;
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| |
Collapse
|
17
|
Huang T, Ma K, Wang Y. Characterization and evaluation of the cytotoxic, antioxidant, and anti-human lung cancer properties of copper nanoparticles green-synthesized by fennel extract following the PI3K/AKT/Mtor signaling pathway. PLoS One 2025; 20:e0309207. [PMID: 39787250 PMCID: PMC11717185 DOI: 10.1371/journal.pone.0309207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 01/12/2025] Open
Abstract
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells. which showed a cytotoxic effect (p<0. 05). Lactate dehydrogenase (LDH) was correspondingly present in a high proportion in the cells, demonstrated upon testing. Together with their cytotoxic properties, CuNPs demonstrated high antioxidative activity. When the concentration of the nano particles was high (100 μg/ml), the ratio of reactive oxygen species (ROS) was reduced as much as 50%, which in turn suggested antioxidant activity. There was plenty of evidence that CuNPs had anti-cancer potential; this has been shown by the effect of the molecules on the PI3K/AKT/mTOR pathway, which was one of the pathways crucial for cancer survival. Western blot analysis and qRT-PCR results indicated a widespread degradation of the proteins in this pathway upon CuNP exposure. Interestingly, there was a declined phosphorylation up to 75% of PI3K, AKT, and mTOR at 100 μg/ml (p<0. 001). In summary, these findings illustrated the mechanisms behind the therapeutic effect of CuNPs, thus making them good targets for the NSCLC treatment. CuNPs have cytotoxic and antioxidant capacity, as well as significant alterations in lung cancers pathway, and therefore they can be considered as anti-cancer candidates.
Collapse
Affiliation(s)
- Tao Huang
- Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China
| | - KaiLi Ma
- Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China
| | - Yihua Wang
- Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Zúñiga-Bustos M, Galaz-Araya C, Poblete H. Unveiling the potential of RADA16-I peptide-coated silver nanoparticles for biomedical uses: a computational study. Phys Chem Chem Phys 2025; 27:1187-1196. [PMID: 39688593 DOI: 10.1039/d4cp03275f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nanomaterials, specifically silver nanoparticles (AgNPs), have demonstrated great potential in biomedical applications due to their unique properties, such as antimicrobial activity and conductivity. One promising strategy to improve their biocompatibility and functional specificity is through the functionalization of AgNPs with peptides. By attaching peptides to the surface of AgNPs, their interaction with biological systems can be enhanced and tailored for specific applications. This computational study uses classical molecular dynamics and enhancement sampling techniques to investigate the interaction between AgNPs and RADA16-I peptides, as well as their derivative CLKRADA16-I. It utilizes classical molecular dynamics and enhanced sampling methods to gain insights into the structural information and details of their interaction. Furthermore, this study addresses the need for a better understanding of the interaction between composite materials made of nanoparticles and peptides. Our results demonstrate that the incorporation of the CLK motif significantly augments both structural stability and the binding affinity of peptides to silver nanoparticles. Through computational simulations, we observed that peptides modified with the CLK motif (CLKRADA16-I) exhibit a higher binding affinity toward a silver surface model, with the adsorption energy increasing by up to 4.2 kcal mol-1 relative to unmodified peptides. This calculated interaction energy boosts adsorption and surface coverage, facilitating a packed and more effective peptide coating on the silver nanoparticles. These findings pave the way for the advancement of AgNPs as versatile agents in nanomedicine, particularly necessitating precise molecular recognition and robust bioactive scaffolding. Our study enhances the understanding of nanoparticle-peptide conjugates and their implications for designing next-generation nanomaterials.
Collapse
Affiliation(s)
- Matías Zúñiga-Bustos
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago, Chile.
| | - Constanza Galaz-Araya
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Horacio Poblete
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.
| |
Collapse
|
19
|
Chauhan V, Pandey A, Mahajan G, Dhiman V, Kanwar SS. Synergistic exploration of Surfactin-capped silver nanoparticles: bioinformatics insights, antibacterial potency, and anticancer activity. 3 Biotech 2025; 15:13. [PMID: 39698304 PMCID: PMC11649612 DOI: 10.1007/s13205-024-04174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Surfactin lipopeptides (LPs) are a compelling class of biosurfactants with notable antimicrobial and anticancer properties. This study presents a novel approach by integrating bioinformatics tools to assess the drug potential of Surfactin, specifically focusing on its antibacterial, antifungal activities, and cancer cell-line toxicity. Silver nanoparticles (AgNPs) were synthesized using Surfactin, a biosurfactant derived from Bacillus subtilis KLP2016, as a capping agent, both in the presence and absence of Surfactin, to evaluate its impact on nanoparticle stability and bioactivity. The Surfactin-capped AgNPs demonstrated enhanced stability, uniformity, and antimicrobial efficacy, confirmed through UV-VIS spectroscopy, FE-SEM, and X-ray diffraction analysis. The bioinformatics approach, including ADMET and PASS analysis, revealed the potential of Surfactin as a potent antimicrobial and anticancer agent. In addition, molecular docking studies further validated the interaction of Surfactin with key microbial cell-wall enzymes and proteins, underscoring its therapeutic potential. These findings suggest that Surfactin-stabilized AgNPs, combined with bioinformatic predictions, could pave the way for innovative antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Vivek Chauhan
- Himachal Pradesh University, Summerhill, Shimla India
| | - Akash Pandey
- Himachal Pradesh University, Summerhill, Shimla India
| | | | - Vivek Dhiman
- Himachal Pradesh University, Summerhill, Shimla India
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan India
| | | |
Collapse
|
20
|
Shahbaz M, Anwar T, Fatima S, Onursal N, Qureshi H, Qureshi WA, Ullah N, Soufan W, Zaman W. Mitigation of salinity stress in sunflower plants ( Helianthus annuus L.) through topical application of salicylic acid and silver nanoparticles. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:27-40. [PMID: 39901956 PMCID: PMC11787077 DOI: 10.1007/s12298-024-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/05/2025]
Abstract
Salinity stress poses a significant threat to sunflower (Helianthus annuus L.) by impairing water and nutrient uptake, disrupting cellular functions, and increasing oxidative damage. This study investigates the impact of Salicylic acid (SA) and silver nanoparticles (AgNPs) on growth, biochemical parameters, and oxidative stress markers in salt-stressed sunflower plants. Experiments were conducted in a controlled greenhouse environment at the Islamia University of Bahawalpur, Pakistan, using sunflower seeds (Orisun 701). AgNPs were synthesized using neem leaf extract and characterized through SEM, FTIR, zeta potential analysis, and XRD. Treatments included foliar application of SA (10 mM) and AgNPs (40 ppm) under 100 mM sodium chloride-induced salt stress. Growth metrics, antioxidant enzyme activities, chlorophyll content, and oxidative stress markers (H₂O₂ and MDA levels) were measured to evaluate treatment effects. The SA and AgNP treatments improved sunflower growth under salt stress, with AgNPs showing a greater impact. SA increased shoot fresh weight by 16.4%, root fresh weight by 6.9%, and chlorophyll content by 12.7%, while AgNPs enhanced shoot fresh weight by 30.5%, root fresh weight by 11.6%, and total chlorophyll by 80%. AgNPs also significantly reduced H₂O₂ by 42.7% and MDA by 34.6%, indicating reduced oxidative damage. Cluster analysis further demonstrated the distinct physiological responses elicited by AgNPs compared to SA. SA and AgNPs enhance sunflower resilience to salinity, with AgNPs showing a particularly strong effect on chlorophyll content and oxidative stress markers. These findings highlight the potential of SA and AgNPs as effective treatments for salt stress, suggesting further research across different crops and environments.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Sammer Fatima
- Department of Botany, University of Gujrat, Gujrat, Punjab, 50700 Pakistan
| | - Nilgün Onursal
- Education Faculty of Department of Mathematics and Science, Siirt University, 56100 Siirt Merkez, Siirt, Türkiye
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800 Pakistan
| | - Waseem Akhtar Qureshi
- Cholistan Institute of Desert Studies (CIDS), The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Naimat Ullah
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan, 29220 Pakistan
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences King, Saud University, 11451 Riyadh, Saudi Arabia
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541 Republic of Korea
| |
Collapse
|
21
|
Girma A, Alamnie G, Bekele T, Mebratie G, Mekuye B, Abera B, Workineh D, Tabor A, Jufar D. Green-synthesised silver nanoparticles: antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: a systematic literature review. GREEN CHEMISTRY LETTERS AND REVIEWS 2024; 17. [DOI: 10.1080/17518253.2024.2412601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/30/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Getachew Alamnie
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Tigabu Bekele
- Department of Chemistry, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Dereba Workineh
- Department of Forensic Science, College of Crime Investigation and Forensic Science, Ethiopian Police University, Sendafa, Ethiopia
| | - Abay Tabor
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| | - Debela Jufar
- Department of Chemistry, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| |
Collapse
|
22
|
Glažar D, Štular D, Jerman I, Simončič B, Tomšič B. Embedment of Biosynthesised Silver Nanoparticles in PolyNIPAAm/Chitosan Hydrogel for Development of Proactive Smart Textiles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:10. [PMID: 39791770 PMCID: PMC11722423 DOI: 10.3390/nano15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO3 and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres. Compared to the pre-functionalised PNCS application method, the in situ functionalisation imparted much higher concentration of Ag NPs on the fibres, colouring the samples brown to brown-green. These samples showed more than 90% reduction in the test bacteria E. coli and S. aureus and provided excellent UV protection. In this case, the PNCS hydrogel acted as a reservoir for Ag NPs, whose release was based on a diffusion-controlled mechanism. Despite the Ag NPs decreasing the responsiveness of the PNCS hydrogel, the moisture management was still preserved in the modified samples. Accordingly, the PNCS hydrogel is a suitable carrier for biosynthesized Ag NPs to tailor the protective smart surface of viscose fibres.
Collapse
Affiliation(s)
- Dominika Glažar
- Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (D.G.); (B.S.)
| | - Danaja Štular
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (I.J.)
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (I.J.)
| | - Barbara Simončič
- Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (D.G.); (B.S.)
| | - Brigita Tomšič
- Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (D.G.); (B.S.)
| |
Collapse
|
23
|
Mukhopadhyay B, Singh S, Singh A. Utilizing nanomaterials for cancer treatment and diagnosis: an overview. DISCOVER NANO 2024; 19:215. [PMID: 39718700 DOI: 10.1186/s11671-024-04128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024]
Abstract
Cancer is a deadly disease with complex pathophysiological nature and is the leading cause of death worldwide. Traditional diagnosis methods often detect cancer at a considerably critical stage and the conventional methods of treatment like chemotherapy, radiation therapy, targeted therapy, and immunotherapy have several limitations, multidrug resistance, cytotoxicity, and lack of specificity are a few examples. These pose substantial challenge for effective and favourable cancer treatment. The advent of nanotechnology has revolutionized the face of cancer diagnosis and treatment. Nanoparticles, which have a size range of 1-100 nm, are biocompatible and have special optical, magnetic, and electrical capabilities, less toxic, more stable, exhibit permeability and retention effect, and are used for precise targeting. There are several classes of nanoparticles each having their own sets of unique properties. NPs have played an important role in the drug delivery system, overcoming the multi-drug resistance, reducing the side-effects as seen in conventional therapeutic methods and hence able to solve the limitations of conventional methods of diagnosis and treatment. This review discusses the four major classes of nanoparticles (Lipid based NPs, Carbon NPs and Metallic NPs and Polymeric NPs): their discovery and introduction in medical field, unique properties and characteristics, advantages and disadvantages, sub-categories and characteristics of these categories, major area of application in Cancer diagnosis and treatment, and latest methodologies where these are used in cancer treatment.
Collapse
Affiliation(s)
- Bageesha Mukhopadhyay
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sudhakar Singh
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), 1888, Adama, Ethiopia.
| |
Collapse
|
24
|
Khandare K, Kumar S, Sharma SC, Goswami S. Green synthesis of silver nanoparticles from supercritical CO 2 mediated Lagerstroemia speciosa extract: Characterization, antimicrobial and antibiofilm activity. Biochem Biophys Res Commun 2024; 739:150967. [PMID: 39541925 DOI: 10.1016/j.bbrc.2024.150967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
In the current study, optimal supercritical fluid extract (SFE) of Lagerstroemia speciosa (LS) leaves at pressure 29.59 MPa (MPa), temperature 89.50 °C and extraction time 53.85 min was used to extract phenolic compounds for the synthesis of silver nanoparticles (AgNPs). The synthesis was studied for 0-20 h. Initially the synthesis of nanoparticles (SFELS-AgNPs) was confirmed using UV -spectroscopy. It demonstrated a maximum surface plasmon resonance at 430 nm. The crystallite dimension of nanoparticles was determined using X-ray diffraction (XRD) (13.47 nm), Transmission electron microscopy (TEM), zeta potential analysis and energy-dispersive X-ray analysis (EDAX) were used to analyze the morphology, surface charge and presence of differential elements in SFELS-AgNPs respectively. Developed nanoparticles revealed antimicrobial activity against 2 g-positive viz. Staphylococcus aureus and Bacillus cereus, and 3 g-negative bacteria viz. Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The nanoparticle showed a minimum inhibitory concentration (MIC) of 64 μg/ml whereas the minimum bactericidal concentration (MBC) 128 μg/ml against K. pneumonia. They significantly inhibited K. pneumonia biofilm formation which was confirmed using scanning electron microscopy (SEM). The results were encouraging compared to the standards drug Chloramphenicol and other controls. The generated nanoparticles have highly effective antimicrobial properties against pathogenic bacteria.
Collapse
Affiliation(s)
- Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India; Department of Biochemistry, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Shekhar Kumar
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Saswata Goswami
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India.
| |
Collapse
|
25
|
Kallakkattil S, Venkataramanappa Y. Fabrication of sulphur-doped graphitic carbon nitride anchored Ag@AgCl electrocatalyst for the sensing of chloramphenicol. ANAL SCI 2024; 40:2225-2240. [PMID: 39242488 DOI: 10.1007/s44211-024-00658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
We have developed sulphur-doped graphitic carbon nitride (S-GCN) anchored Ag@AgCl electrocatalyst through a green technique for the first time for the electrochemical sensing of chloramphenicol. The Ag@AgCl nanoparticles were synthesized using Rhoeo discolor (Tradescantia spathacea) plant extract without the use of any external halide source. As per our knowledge, this is the first time Rhoeo discolor (Tradescantia spathacea) plant extract was used for the synthesis of Ag@AgCl nanoparticles without the use of any external halide source. Using sonochemical technique, the green synthesized nanoparticle was combined with S-GCN to form Ag@AgCl/S-GCN electrocatalyst. The synthesized materials were characterized by suitable techniques such as UV-visible spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and elemental analysis. The electrocatalytic reduction mechanism of chloramphenicol was studied with the help of electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry. The Ag@AgCl/S-GCN modified electrode has shown a linear response in the range of 1 to 650 μM, with a LOD of 420 nM . Further, the practical application of the developed sensor was analyzed using real samples such as milk and honey and satisfactory recovery rates were observed.
Collapse
Affiliation(s)
- Suparna Kallakkattil
- PG Department of Chemistry and Research Centre, NMKRV College for Women, Bengaluru, 560011, India
- UG Department of Chemistry, NMKRV College for Women, Bengaluru, 560011, India
| | | |
Collapse
|
26
|
Mustafa S, Alharbi LM, Abdelraheem MZ, Mobashar M, Qamar W, A Al-Doaiss A, Abbas RZ. Role of Silver Nanoparticles for the Control of Anthelmintic Resistance in Small and Large Ruminants. Biol Trace Elem Res 2024; 202:5502-5521. [PMID: 38436800 DOI: 10.1007/s12011-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Helminths are considered a significant threat to the livestock industry, as they cause substantial economic losses in small and large ruminant farming. Their morbidity and mortality rates are also increasing day by day as they have zoonotic importance. Anthelmintic drugs have been used for controlling these parasites; unfortunately, due to the development of resistance of these drugs in helminths (parasites), especially in three major classes like benzimidazoles, nicotinic agonists, and macrocyclic lactones, their use is becoming very low. Although new anthelmintics are being developed, the process is time-consuming and costly. As a result, nanoparticles are being explored as an alternative to anthelmintics. Nanoparticles enhance drug effectiveness, drug delivery, and target specificity and have no resistance against parasites. Different types of nanoparticles are used, such as organic (chitosan) and inorganic (gold, silver, zinc oxide, iron oxide, and nickel oxide). One of them, silver nanoparticles (AgNPs), has unique properties in various fields, especially parasitology. AgNPs are synthesized from three primary methods: physical, chemical, and biological. Their primary mechanism of action is causing stress through the production of ROS that destroys cells, organs, proteins, and DNA parasites. The present review is about AgNPs, their mode of action, and their role in controlling anthelmintic resistance against small and large ruminants.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Lafi M Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Mona Z Abdelraheem
- The National Institute of Oceanography and Fisheries (NIOF), Aswan, Egypt
| | - Muhammad Mobashar
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
27
|
Eid N, El-Seedi HR, Ahmed HB, Emam HE. Bio-fabrication of biologically active copper nanocomposite. Heliyon 2024; 10:e40202. [PMID: 39584092 PMCID: PMC11585709 DOI: 10.1016/j.heliyon.2024.e40202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Green routes for nucleation of nanostructures are recently applied for the biomedical applications, due to their affinity and feasibility. For instance, copper nanostructures are applicable for inhibition of microbial infections and ulcers. Hereby, this work is aimed at investigation for the possible contribution of Sidr honey (SH) in the formation of copper based-nanocomposites (Cu@SH). The overall results affirmed that, under the optimal experimental conditions, spherical shaped Cu@SH nanocomposites with quite small particle size of 16.2-30.1 nm were successfully clustered. The bio-fabricated Cu@SH nanocomposites showed superior antimicrobial action against all of the examined strains, whereas, the most potent inhibition was obtained against St. aureus (11 mm), E. Coli (17 mm) & C. albicans (14 mm). The nanocomposite that was prepared with higher concentration of copper precursor is exhibited with the highest percentage of cancer cell inhibition (77 %) and highest anti-inflammation action (NO percentage 89 %). In summarization, Cu@SH nanocomposites showed high affinity to be concurrently applicable as therapeutic drugs for the microbial infectious, cancer and inflammation diseases.
Collapse
Affiliation(s)
- Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, 32512, Shebin El-Kom, Egypt
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, 32512, Shebin El-Kom, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang, 212013, China
| | - Hanan B. Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Hossam E. Emam
- Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
28
|
Alwis WHS, Murthy V, Wang H, Khandanlou R, Mandal PK. Green Synthesis of Terminalia ferdinandiana Exell-Mediated Silver Nanoparticles and Evaluation of Antibacterial Performance. Biomolecules 2024; 14:1516. [PMID: 39766223 PMCID: PMC11673889 DOI: 10.3390/biom14121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
This study uses a novel method in which extracts from different parts of a single plant are used to synthesize well-defined silver nanoparticles (AgNPs) to address the lack of capping agents in certain plant extracts. We focused on synthesizing AgNPs with enhanced biomedical activity using aqueous leaves and fruit extracts of Terminalia ferdinandiana Exell, a plant native to northern Australia that is known for its high phenolic content and associated health benefits. The impact of using parameters such as the Ag+ ion-to-extract ratio and pH on AgNP synthesis was examined. The formation of AgNPs was confirmed using UV-visible spectrophotometry, transmission electron microscopy, and dynamic light scattering. The AgNPs synthesized at a pH of 8 and 1:25 Ag+/extract ratio exhibited the lowest particle size and polydispersity index. The AgNPs synthesized with leaf extract (AgKL) were monodisperse and exhibited a smaller hydrodynamic diameter (37 nm) compared to the fruit extract nanoparticles (AgKP), which were polydisperse and larger (147 nm). Phytochemicals in T. ferdinandiana aqueous leaf extract act as effective capping and stabilizing agents, enabling the synthesis of small-sized and homogenous AgNPs, which the fruit extract alone could not achieve. The in vitro bioactivity was evaluated using antioxidant and antibacterial assays and compared with the crude extract. Both the AgNPs and T. ferdinandiana extracts demonstrated strong 2,2 diphenyl-1-picrylhydrazyl radical scavenging activity. However, only AgKL showed excellent antibacterial activity against Gram-negative and Gram-positive bacteria based on minimum inhibitory and bactericidal results. Mixing 50% leaf extract with fruit extract resulted in well-stabilized NPs (AgKPL) with a hydrodynamic diameter of 33.4 nm and superior antibacterial properties. These results indicate that AgKL and AgKPL have significant potential for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- W. Hansi S. Alwis
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia; (W.H.S.A.); (H.W.); (R.K.)
| | - Vinuthaa Murthy
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia; (W.H.S.A.); (H.W.); (R.K.)
| | - Hao Wang
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia; (W.H.S.A.); (H.W.); (R.K.)
| | - Roshanak Khandanlou
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia; (W.H.S.A.); (H.W.); (R.K.)
| | | |
Collapse
|
29
|
Korcoban D, Huang LZY, Elbourne A, Li Q, Wen X, Chen D, Caruso RA. Electroless Ag nanoparticle deposition on TiO 2 nanorod arrays, enhancing photocatalytic and antibacterial properties. J Colloid Interface Sci 2024; 680:146-156. [PMID: 39561642 DOI: 10.1016/j.jcis.2024.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
HYPOTHESIS The small size of the nanoparticles used to obtain high surface area photocatalysts makes their removal from solution difficult. Producing photocatalysts on substrates would alleviate this limitation. Adding heterojunctions to photocatalysts, for example, TiO2/Ag, could improve photocatalytic performance due to Schottky junction formation and introduce antibacterial properties. EXPERIMENTS TiO2 nanorod arrays were synthesised on a substrate via a hydrothermal approach, on which Ag nanoparticles were deposited using an electroless plating technique with varied deposition times and metal precursor concentrations. Photocatalytic performance was evaluated by monitoring Rhodamine B (RhB) degradation under ultraviolet light and antibacterial properties of the films tested using Methicillin-resistant Staphylococcus aureus. FINDINGS The Ag nanoparticle content was controlled by the Ag deposition process. The TiO2/Ag nanorod array containing 6.6 atomic% Ag as nanoparticles of ∼ 25 nm in diameter degraded 88 % of the RhB in 6 h compared to 54 % degradation for bare TiO2 nanorods under the same reaction conditions. Decreased photoluminescence with heterojunction formation would indicate electron transfer from the TiO2 into the Ag nanoparticles, thereby reducing charge carrier recombination. The antibacterial test conducted in the dark revealed enhanced performance for the TiO2/Ag sample compared to TiO2 nanorods against Methicillin-resistant Staphylococcus aureus after 16 h exposure with a death rate of 84 %.
Collapse
Affiliation(s)
- Dilek Korcoban
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Qi Li
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xiaoming Wen
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dehong Chen
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
30
|
Pakzad S, Taghavi R, Hasanzadeh A, Rostamnia S. A biocompatible cellulose gum based CMC/PVA/SBA-15 film as a colloidal antibacterial agent against MRSA. RSC Adv 2024; 14:36246-36252. [PMID: 39539531 PMCID: PMC11559378 DOI: 10.1039/d4ra07129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The development of biocompatible antibacterial films plays a crucial role in the fight against antibiotic-resistant bacteria strains. Here, we developed an SBA-15-NH2 decorated biocompatible CMC/PVA film containing Ag NPs as an antibacterial material against Gram-positive and Gram-negative bacteria strains. The structure of the manufactured film was studied by XRD, SEM, mapping, and TGA analysis showing its formation and firm structure. The prepared film has a flexible structure which makes it suitable for a variety of bio-related applications. The CMC/PVA/SBA-15-NH2@AgNPs film was used as a bactericidal agent against pathogens (especially MRSA; methicillin-resistant Staphylococcus aureus) isolated from surgical site infections, showing promising results.
Collapse
Affiliation(s)
- Shiva Pakzad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
31
|
Ruhul-Amin M, Rahman MA, Khatun N, Hasan I, Kabir SR, Asaduzzaman A. Bioactivity of biogenic silver/silver chloride nanoparticles from Maranta arundinacea rhizome extract: Antibacterial and antioxidant properties with anticancer potential against Ehrlich ascites carcinoma and human breast cancer cell lines. Heliyon 2024; 10:e39493. [PMID: 39502215 PMCID: PMC11535985 DOI: 10.1016/j.heliyon.2024.e39493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study explores the synthesis and characterization of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Maranta arundinacea rhizome extract and evaluates their bioactivities, including antibacterial, antioxidant, and anticancer potentials. Methods The synthesis of Ag/AgCl-NPs was initially confirmed by a color change and a sharp peak at 463 nm in UV-visible spectroscopy. Further characterization was conducted using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). Antibacterial properties were checked against four pathogenic bacteria (Shigella boydii, Escherichia coli, Shigella dysenteriae, and Staphylococcus aureus), and antioxidant activities were assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid) assay. In addition, the anticancer potential was evaluated in vitro using MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) colorimetric assay and in vivo using the mouse models. Finally, toxicity was determined by employing the brine shrimp nauplii lethality assay. Results Ag/AgCl-NPs most effectively inhibited the growth of Staphylococcus aureus, showing maximum zone of inhibition and 7 μg/mL of minimum inhibitory concentration (MIC), and prevented the biofilm formation by Escherichia coli at 40 μg/mL. They displayed antioxidant activities against DPPH and ABTS with IC50 values of 90.65 and 24.34 μg/mL, respectively. In vitro, they inhibited 61.96 % EAC and 49.63 % MCF-7 cells growth at 32 and 128 μg/mL, respectively. Subsequently, inhibition rates of EAC cells growth in mice were measured as 38.30 %, 57.38 %, and 31.81 % after employing 2.5, 5, and 10 mg/kg/day of Ag/AgCl-NPs, respectively. Moreover, Ag/AgCl-NPs treated mice were found to carry more apoptotic EAC cells with distorted morphology. Treated mice showed decreased tumor weight, increased mean survival time, and a lifespan increase of up to 30 %, with improved hematological parameters. Later, Ag/AgCl-NPs exhibited moderate toxicity with an LC50 value of 208.41 μg/mL in brine shrimp nauplii lethality assay. Conclusion The promising antibacterial, antioxidant, and anticancer activities along with mild toxicity suggest the potential biomedical uses of Maranta arundinacea rhizome extract-mediated Ag/AgCl-NPs.
Collapse
Affiliation(s)
- Md. Ruhul-Amin
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, Trust University, Barisal, 8200, Bangladesh
| | - Md. Abdur Rahman
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Nisa Khatun
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A.K.M. Asaduzzaman
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
32
|
Klimov DI, Zharikov AA, Zezina EA, Kotenkova EA, Zaiko EV, Bataeva DS, Semenova AA, Yushina YK, Yaroslavov AA, Zezin AA. Preparation of Antimicrobial Agents: From Interpolyelectrolyte Complexes to Silver-Containing Metal-Polymer Complexes and Nanocomposites. Polymers (Basel) 2024; 16:2842. [PMID: 39408551 PMCID: PMC11478344 DOI: 10.3390/polym16192842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
In order to control pathogenic microorganisms, three polymer compositions were prepared and tested. First, a water-soluble positively charged polycomplex was synthesized via the electrostatic binding of anionic polyacrylic acid to an excess of polyethylenimine to enhance the biocidal activity of the polycation. Second, an aqueous solution of AgNO3 was added to the polycomplex, thus forming a ternary polycation-polyanion-Ag1+ complex with an additional antimicrobial effect. Third, the resulting ternary complex was subjected to UV irradiation, which ensured the conversion of Ag1+ ions into Ag nanoparticles ranging in size mainly from 10 to 20 nm. Aqueous solutions of the polymer compositions were added to suspensions of the Gram-positive bacteria S. aureus and the Gram-negative bacteria P. aeruginosa, with the following main results: (a) Upon the addition of the binary polycomplex, 30% or more of the cells survived after 20 h. (b) The ternary complex killed S. aureus bacteria but was ineffective against P. aeruginosa bacteria. (c) When the ternary complex with Ag nanoparticles was added, the percentage of surviving cells of both types did not exceed 0.03%. The obtained results are valuable for the development of antibacterial formulations.
Collapse
Affiliation(s)
- Dmitry I. Klimov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia; (D.I.K.); (A.A.Z.); (E.A.Z.); (A.A.Y.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Alexey A. Zharikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia; (D.I.K.); (A.A.Z.); (E.A.Z.); (A.A.Y.)
| | - Elena A. Zezina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia; (D.I.K.); (A.A.Z.); (E.A.Z.); (A.A.Y.)
| | - Elena A. Kotenkova
- V.M. Gorbatov Federal Research Center for Food Systems, Talalikhina st., 26, Moscow 109316, Russia; (E.A.K.); (E.V.Z.); (D.S.B.); (A.A.S.); (Y.K.Y.)
| | - Elena V. Zaiko
- V.M. Gorbatov Federal Research Center for Food Systems, Talalikhina st., 26, Moscow 109316, Russia; (E.A.K.); (E.V.Z.); (D.S.B.); (A.A.S.); (Y.K.Y.)
| | - Dagmara S. Bataeva
- V.M. Gorbatov Federal Research Center for Food Systems, Talalikhina st., 26, Moscow 109316, Russia; (E.A.K.); (E.V.Z.); (D.S.B.); (A.A.S.); (Y.K.Y.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems, Talalikhina st., 26, Moscow 109316, Russia; (E.A.K.); (E.V.Z.); (D.S.B.); (A.A.S.); (Y.K.Y.)
| | - Yulia K. Yushina
- V.M. Gorbatov Federal Research Center for Food Systems, Talalikhina st., 26, Moscow 109316, Russia; (E.A.K.); (E.V.Z.); (D.S.B.); (A.A.S.); (Y.K.Y.)
| | - Aleksander A. Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia; (D.I.K.); (A.A.Z.); (E.A.Z.); (A.A.Y.)
| | - Alexey A. Zezin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia; (D.I.K.); (A.A.Z.); (E.A.Z.); (A.A.Y.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| |
Collapse
|
33
|
Farooqi MA, Bae S, Kim S, Bae S, Kausar F, Farooqi HMU, Hyun CG, Kang CU. Eco-friendly synthesis of bioactive silver nanoparticles from black roasted gram (Cicer arietinum) for biomedical applications. Sci Rep 2024; 14:22922. [PMID: 39358402 PMCID: PMC11447251 DOI: 10.1038/s41598-024-72356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Green synthesis leverages biological resources such as plant extracts to produce cost-effectively and environmentally friendly NPs. In our study, silver nanoparticles (AgNPs) are biosynthesized using blank roasted grams (Cicer arietinum) as reducing agents. CA-AgNPs were characterized by a characteristic surface plasmon resonance (SPR) peak at 224 nm in the UV-Vis spectrum. FTIR analysis revealed functional groups with O-H stretching at 3410 cm-1, C-H stretching at 2922 cm-1, and C=O stretching at 1635 cm-1. XRD patterns exhibited sharp peaks at 33.2°, 38.4°, 55.7°, and 66.6°, confirming high crystallinity. Morphological analysis through FESEM indicated spherical CA-AgNPs averaging 500 nm in size, with EDS revealing Ag at 97.51% by weight. Antimicrobial assays showed zones of inhibition of 14 mm against Candida albicans, 18 mm against Escherichia coli., and 12 mm against Propionibacterium acnes. The total phenolic content of CA-AgNPs was 26.17 ± 13.54 mg GAE/g, significantly higher than the 11.85 ± 9.57 mg GAE/g in CA extract. The ABTS assay confirmed the antioxidant potential with a lower IC50 value of 1.73 ± 0.41 µg/mL, indicating enhanced radical scavenging activity. Anti-melanogenesis was validated through tyrosinase, showing inhibition rates of 97.97% at the highest concentrations. The anti-inflammatory was evaluated by western blot, which showed decreased expression of iNOS and COX-2. This study demonstrates the green synthesis of CA-AgNPs and its potential biomedical applications. The results of this study demonstrate that biosynthesized CA-AgNPs have key biological applications.
Collapse
Affiliation(s)
- Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | - Sungmin Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea
| | - Sehui Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sungeun Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea
| | - Farzana Kausar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hafiz Muhammad Umer Farooqi
- Laboratory of Energy Metabolism, Division of Metabolic Disoders, Children's Hospital of Orange County, Los Angeles, CA, USA.
| | - Chang Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea.
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea.
| |
Collapse
|
34
|
Dai JX, Yu Y, You LX, Zhong HL, Li YP, Wang AJ, Chorover J, Feng RW, Alwathnani HA, Herzberg M, Rensing C. Integrated induction of silver resistance determinants and production of extracellular polymeric substances in Cupriavidus metallidurans BS1 in response to silver ions and silver nanoparticles. CHEMOSPHERE 2024; 366:143503. [PMID: 39401671 DOI: 10.1016/j.chemosphere.2024.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 μg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.
Collapse
Affiliation(s)
- Jia-Xin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85719, USA
| | - Ren-Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Solar Materials Biotechnology (SOMA), Helmholtz Centre for Environmental Research GmbH (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
35
|
Hongal AM, Shettar AK, Hoskeri JH, Vedamurthy AB. Silver nanoparticles mediated apoptosis and cell cycle arrest in lung cancer A549. 3 Biotech 2024; 14:238. [PMID: 39310035 PMCID: PMC11415561 DOI: 10.1007/s13205-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The present study was aimed to synthesize the silver nanoparticles from Alangium salvifolium Wang. and evaluating its biomedical applications. The leaves of A. salvifolium collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of A. salvifolium plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.
Collapse
Affiliation(s)
- Annapurneshwari M. Hongal
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| | - Arun K. Shettar
- Division of Pre-Clinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, Karnataka 580031 India
| | - Joy H. Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women’s University, Vijayapura, Karnataka India
| | - A. B. Vedamurthy
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
36
|
SinghDeo S, Naser SS, Nandi A, Sinha A, Shaikh SA, Mohapatra SK, Suar M, Verma SK, Tripathy J. Intrinsic physiochemical insights to green synthesized Ag-decorated GO nanosheet for photoluminescence and in vivo cellular biocompatibility with embryonic zebrafish. Colloids Surf B Biointerfaces 2024; 245:114212. [PMID: 39276757 DOI: 10.1016/j.colsurfb.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The advancement of nanotechnology and their application has intrigued a significant interest in green synthesis and application of organic and inorganic nanomaterials like graphene oxide (GO) and silver nanoparticles (AgNP). This study explores the intrinsic physiochemical properties of silver (Ag)-decorated graphene oxide (GO) nanosheets synthesized via a green approach, focusing on their photoluminescence behaviour and in vivo cellular biocompatibility with embryonic zebrafish. The nanocomposites were characterized using various spectroscopic and microscopic techniques to elucidate their structural and optical properties. Results reveal that the Ag-decorated GO nanosheets exhibit enhanced photoluminescence compared to pristine GO with an SPR at 405 nm and emission at 676 nm, attributed to the synergistic effects of Ag nanoparticles and GO. In addition, in vivo biocompatibility assessments using embryonic zebrafish demonstrate minimal cytotoxicity and high cellular viability upon exposure to the nanocomposites with an LC50 of 38 µg/ml, indicating their potential for biomedical applications. Further investigations into the interactions between the nanomaterials and biological systems provide valuable insights into their safety profile and suggest their suitability for various biomedical and therapeutic applications. Overall, this study offers a comprehensive understanding of the physiochemical characteristics and biological compatibility of Ag-decorated GO nanosheets, contributing to the advancement of nanotechnology in biomedicine and related fields.
Collapse
Affiliation(s)
- Simran SinghDeo
- School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | | | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sufiyan Ahmad Shaikh
- Institute of Chemical Technology - Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Swagat K Mohapatra
- Institute of Chemical Technology - Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Poznan University of Medical Sciences, Poznan 60-512, Poland.
| | | |
Collapse
|
37
|
Yust BG, Sk AR, Kontsos A, George B. Persistent Luminescent Nanoparticle-Loaded Filaments for Identification of Fabrics in the Visible and Infrared. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1414. [PMID: 39269076 PMCID: PMC11397717 DOI: 10.3390/nano14171414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Persistent luminescent materials are those which can store an amount of energy locally and release it slowly in the form of light. In this work, persistent luminescent nanoparticles (PLNPs) were synthesized and incorporated into polypropylene (PP) filaments at various loading percentages. We investigated the optical properties of both the as-prepared PLNPs and the PLNP-loaded filaments, focusing on any changes resulting from the integration into the filaments. Specifically, visible and near-infrared spectroscopy were used to analyze the emission, excitation, and persistent luminescence of the PLNPs and PLNP-loaded filaments. The tensile properties of the extruded filaments were also investigated through breaking tenacity, elongation at break, Young's modulus, and secant modulus. All PLNP-loaded filaments were shown to exhibit persistent luminescence when exposed to ultraviolet light. While there were no significant changes in the elongation at break or Young's modulus for the loading percentages tested, there was a slight increase in breaking tenacity and a decrease in the secant modulus. Finally, the filaments were shown to maintain their optical properties and persistent luminescence even after abrasion testing used to simulate the normal wear and tear that fabric experiences during use. These results show that PLNPs can be successfully incorporated into filaments which can be used in fabrics and will maintain the persistent luminescent properties.
Collapse
Affiliation(s)
- Brian G Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Abdur Rahaman Sk
- Research and Development, Lear Corporation, 1 Penn-Dye St, Pine Grove, PA 17963, USA
| | - Antonios Kontsos
- College of Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Brian George
- School of Design & Engineering, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
38
|
Pavić V, Kovač-Andrić E, Ćorić I, Rebić S, Užarević Z, Gvozdić V. Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr. Molecules 2024; 29:3961. [PMID: 39203038 PMCID: PMC11357466 DOI: 10.3390/molecules29163961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Green synthesis employs environmentally friendly, biodegradable substances for the production of nanomaterials. This study aims to develop an innovative method for synthesizing silver nanoparticles (AgNPs) using a methanolic extract of Fomes fomentarius L. Fr. as the reducing agent and to assess the potential antibacterial properties of the resulting nanoparticles. The successful synthesis of AgNPs was confirmed through characterization techniques such as UV-visible (UV-Vis) spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD). The UV-Vis analysis revealed an absorption peak at 423 nm, while FT-IR identified key phytochemical compounds involved in the reduction process. PXRD analysis indicated a face-centered cubic (fcc) structure with prominent peaks observed at 2θ = 38°, 44.6°, 64.6°, and 78°, confirming the crystalline nature of the AgNPs, with a crystallite diameter of approximately 24 nm, consistent with TEM analysis. The synthesized AgNPs demonstrated significant antibacterial activity, particularly against S. aureus, with higher efficacy against gram-positive bacteria.
Collapse
Affiliation(s)
- Valentina Pavić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia;
| | - Elvira Kovač-Andrić
- Department of Chemistry, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia; (E.K.-A.); (S.R.)
| | - Ivan Ćorić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine in Osijek, University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Stella Rebić
- Department of Chemistry, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia; (E.K.-A.); (S.R.)
| | - Zvonimir Užarević
- Faculty of Education, University of Osijek, Cara Hadrijana 10, 31000 Osijek, Croatia;
| | - Vlatka Gvozdić
- Department of Chemistry, University of Osijek, Cara Hadrijana 8A, 31000 Osijek, Croatia; (E.K.-A.); (S.R.)
| |
Collapse
|
39
|
Khalifa SAM, Shetaia AA, Eid N, Abd El-Wahed AA, Abolibda TZ, El Omri A, Yu Q, Shenashen MA, Hussain H, Salem MF, Guo Z, Alanazi AM, El-Seedi HR. Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications. Bioengineering (Basel) 2024; 11:829. [PMID: 39199787 PMCID: PMC11351265 DOI: 10.3390/bioengineering11080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Aya A. Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar;
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Qiang Yu
- Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China;
| | - Mohamed A. Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi 305-0047, Ibaraki-Ken, Japan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, Sadat City P.O. Box 79, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Abdulaziz M. Alanazi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| |
Collapse
|
40
|
Mohaghegh S, Osouli-Bostanabad K, Nazemiyeh H, Omidi Y, Maleki-Ghaleh H, Barzegar-Jalali M. Stimuli-responsive synthesis of silver nanoparticles applying green and chemical reduction approaches. BIOIMPACTS : BI 2024; 15:30286. [PMID: 40161941 PMCID: PMC11954753 DOI: 10.34172/bi.30286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 04/02/2025]
Abstract
Introduction The current study reports the comparative stimuli-responsive synthesis of silver nanoparticles (AgNPs) with various sizes and morphologies employing Lycium ruthenicum extract and sodium citrate solutions. Methods The morphology and size of AgNPs were regulated by varying the pH values, concentrations of the extract solution, and temperatures in the reaction medium. The prepared AgNPs were assessed via various instrumental analyses, including UV-Vis, FTIR, XRD, TEM, and DLS. Results The L. ruthenicum extract displayed several functional groups that reduced the Ag ions to the AgNPs at different values of pH. However, the primary chemical structure of L. ruthenicum was virtually unaltered at these conditions. Variations in the pH and extract concentration of the reaction medium yielded AgNPs of different sizes and morphologies. Both bio- and chemo-synthesized AgNPs revealed a relatively dispersed sphere-shaped morphology under alkaline conditions (≈ 36 nm). Conclusion This study introduced a simple, valuable, and green technique for stimuli-sensitive AgNPs synthesis employing the L. ruthenicum extract.
Collapse
Affiliation(s)
- Seraj Mohaghegh
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Osouli-Bostanabad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hossein Maleki-Ghaleh
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
41
|
Das U, Saikia S, Biswas R. Highly sensitive biofunctionalized nanostructures for paper-based colorimetric sensing of hydrogen peroxide in raw milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124290. [PMID: 38669984 DOI: 10.1016/j.saa.2024.124290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Hydrogen Peroxide (H2O2) is a highly hazardous, toxic, and carcinogenic chemical compound utilised in various industries-based applications. Despite strict restriction, they are deliberately added to food items such as milk as preservatives to increase its shelf life. Herein, we have formulated a green rapid colorimetric nanosensor for detection of H2O2 in milk using cotton leaves as both reducing and functionalizing agent for synthesis of silver nanoparticles (AgNPs). UV-Vis spectra exhibit a strong plasmonic peak at around 434 nm. X-Ray Diffraction (XRD) analysis was performed to determine the crystallinity of the nanoparticles. Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM) characterizations revealed spherical morphology with size approximately ∼16 nm. This functionalized nanoparticle could colorimetrically sense presence of H2O2 in milk samples both in liquid media and on paper substrates with Limit of Detection (LOD) of 8.46 ppm even in presence of other interfering substances in milk. This inexpensive route will pave the way for in depth research.
Collapse
Affiliation(s)
- Upama Das
- Applied Optics and Photonics Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Simanta Saikia
- Applied Optics and Photonics Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Rajib Biswas
- Applied Optics and Photonics Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
42
|
Kalakonda P, Kathi R, Ligory MG, Dabbeta N, Madipoju N, Mynepally S, Morampudi V, Banne S, Mandal P, Savu RN, Khanam SJ, Banavoth M, Sudarsanam Eve NV, Podila BB. Argyreia nervosa-driven biosynthesis of Cu-Ag bimetallic nanoparticles from plant leaves extract unveils enhanced antibacterial properties. Bioprocess Biosyst Eng 2024; 47:1307-1319. [PMID: 38698218 DOI: 10.1007/s00449-024-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO3) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR). FTIR analysis reveals biofunctional groups and chemical bands, while SEM and XRD analyses provide morphological and structural details. To evaluate the antimicrobial properties of the Cu-Ag BMNPs, we conducted disc diffusion and minimum inhibitory concentration (MIC) assays against Escherichia coli (E. coli), with results compared to the standard gentamicin antibiotic. It is observed that the 2% and 5% CuO concentrations of AN Cu-Ag BMNPs exhibit substantial antibacterial activity in comparison to AN extract when tested on EPEC. Among these, the Cu-Ag BMNPs at a 2% concentration demonstrate higher antibacterial activity, potentially attributed to the enhanced dispersion of BMNPs facilitated by the lower CuO doping concentration. These two assays showcased the improved antimicrobial activity of Cu-Ag BMNPs, highlighting their synergistic effect, characterized by high MIC values and a broad zone of inhibition in the disc diffusion tests against E. coli. These results emphasize the significant antibacterial potential of the synthesized BMNPs, with a medicinal plant AN leaf extract playing a pivotal role in enhancing antibacterial activity.
Collapse
Affiliation(s)
- Parvathalu Kalakonda
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India.
| | - Rajitha Kathi
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | | | - Naveenkumar Dabbeta
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Naveenkumar Madipoju
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Soujanyalakshmi Mynepally
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
- .Joseph's Degree and PG College, Hyderabad, Telangana, 500001, India
| | - Vijay Morampudi
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sreenivas Banne
- Department of Chemistry and Biosciences, Rice University-BRC, Houston, TX, 77005, USA
| | - Pritam Mandal
- Department of Physics, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ramu Naidu Savu
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sarvani Jowhar Khanam
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Murali Banavoth
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Naina Vinodini Sudarsanam Eve
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Bala Bhaskar Podila
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| |
Collapse
|
43
|
Almarashi JQM, Gadallah AS, Shaban M, Ellabban MA, Hbaieb K, Kordy MGM, Zayed M, Mohamed AAH. Quick methylene blue dye elimination via SDS-Ag nanoparticles catalysts. Sci Rep 2024; 14:15227. [PMID: 38956146 PMCID: PMC11220135 DOI: 10.1038/s41598-024-65491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.
Collapse
Affiliation(s)
- Jamal Q M Almarashi
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
| | - A-S Gadallah
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
- Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
| | - M A Ellabban
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Kais Hbaieb
- Mechanical department, College of Engineering, Taibah University, P.O. Box 344, Al-Madinah Al-Munawwara, Kingdom of Saudi Arabia.
| | - Mohamed G M Kordy
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Zayed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abdel-Aleam H Mohamed
- Physics department, College of Science, Taibah University, 30001, Madina, Saudi Arabia.
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
44
|
Chen H, Song Y, Wang Y, Wang H, Ding Z, Fan K. Zno nanoparticles: improving photosynthesis, shoot development, and phyllosphere microbiome composition in tea plants. J Nanobiotechnology 2024; 22:389. [PMID: 38956645 PMCID: PMC11221027 DOI: 10.1186/s12951-024-02667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.
Collapse
Affiliation(s)
- Hao Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yujie Song
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
45
|
Singh D, Sharma P, Pant S, Dave V, Sharma R, Yadav R, Prakash A, Kuila A. Ecofriendly fabrication of cobalt nanoparticles using Azadirachta indica (neem) for effective inhibition of Candida-like fungal infection in medicated nano-coated textile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46575-46590. [PMID: 37286837 DOI: 10.1007/s11356-023-28061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
This study involves the formulation of cobalt nanoparticles by means of ethanolic Azadirachta indica (neem) extract (CoNP@N). Later, the formulated buildup was incorporated into cotton fabric in order to mitigate antifungal infection. Optimization of the formulation was carried out by considering the effect of plant concentration, temperature, and revolutions per minute (rpm) used, through design of the experiment (DOE), response surface methodology (RSM), and ANOVA of the synthetic procedure. Hence, graph was potted with the aid of effecting parameters and the related factors (size of particle and zeta potential). Further characterization of nanoparticles was performed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was considered for the detection of functional groups. The structural property of CoNP@N was calculated with the aid of powder X-ray diffraction (PXRD). The surface property was measured with the use of a surface area analyzer (SAA). The values of Inhibition concentration (IC50) and zone of inhibition (ZOI), were calculated, so as to determine the antifungal property against both the strains (Candida albicans, MTCC 227and Aspergillus niger, MTCC 8652). The further nano-coated cloth was subjected to a durability test, and hence the cloth was washed (through the purpose of time 0; 10; 25; and 50 washing cycles), and then its anti-fungal operation to a couple of strains was retained. Primarily, 51 μg/ml of cobalt nanoparticles incorporated on the cloth was retained but after 50 washing cycles in 500 ml of purified water, the cloth showed more efficiency contrary to C. albicans than towards A. niger.
Collapse
Affiliation(s)
- Devsuni Singh
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Prashansa Sharma
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Home Science, Mahila Mahavidyala, Banaras Hindu University, Varanasi, 221005, India
| | - Suman Pant
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Vivek Dave
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, 824236, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- National Forensic Science University, Tripura Campus, Agartala, 799006, India
| | - Anand Prakash
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| |
Collapse
|
46
|
Li J, Li J, Chen Y, Tai P, Fu P, Chen Z, Yap PS, Nie Z, Lu K, He B. Molybdenum Disulfide-Supported Cuprous Oxide Nanocomposite for Near-Infrared-I Light-Responsive Synergistic Antibacterial Therapy. ACS NANO 2024; 18:16184-16198. [PMID: 38864540 DOI: 10.1021/acsnano.4c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Drug-resistant bacterial infections pose a serious threat to human health; thus, there is an increasingly growing demand for nonantibiotic strategies to overcome drug resistance in bacterial infections. Mild photothermal therapy (PTT), as an attractive antibacterial strategy, shows great potential application due to its good biocompatibility and ability to circumvent drug resistance. However, its efficiency is limited by the heat resistance of bacteria. Herein, Cu2O@MoS2, a nanocomposite, was constructed by the in situ growth of Cu2O nanoparticles (NPs) on the surface of MoS2 nanosheets, which provided a controllable photothermal therapeutic effect of MoS2 and the intrinsic catalytic properties of Cu2O NPs, achieving a synergistic effect to eradicate multidrug-resistant bacteria. Transcriptome sequencing (RNA-seq) results revealed that the antibacterial process was related to disrupting the membrane transport system, phosphorelay signal transduction system, oxidative stress response system, as well as the heat response system. Animal experiments indicated that Cu2O@MoS2 could effectively treat wounds infected with methicillin-resistant Staphylococcus aureus. In addition, satisfactory biocompatibility made Cu2O@MoS2 a promising antibacterial agent. Overall, our results highlight the Cu2O@MoS2 nanocomposite as a promising solution to combating resistant bacteria without inducing the evolution of antimicrobial resistance.
Collapse
Affiliation(s)
- Jiao Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jie Li
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fu Ma Road, Fuzhou, Fujian 350001, China
| | - Yuli Chen
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ping Tai
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Peiwen Fu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhonghao Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
47
|
Sivaraman D, Nagel Y, Siqueira G, Chansoria P, Avaro J, Neels A, Nyström G, Sun Z, Wang J, Pan Z, Iglesias‐Mejuto A, Ardao I, García‐González CA, Li M, Wu T, Lattuada M, Malfait WJ, Zhao S. Additive Manufacturing of Nanocellulose Aerogels with Structure-Oriented Thermal, Mechanical, and Biological Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307921. [PMID: 38477181 PMCID: PMC11580277 DOI: 10.1002/advs.202307921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1 K-1) compared to the transverse direction (24 mW m-1 K-1). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2 g-1) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.
Collapse
Affiliation(s)
- Deeptanshu Sivaraman
- Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
- Department of ChemistryUniversity of FribourgFribourg1700Switzerland
| | - Yannick Nagel
- Cellulose and Wood Materials LaboratorySwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Gilberto Siqueira
- Cellulose and Wood Materials LaboratorySwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Parth Chansoria
- Department of Health Science and TechnologyETH ZürichZürich8092Switzerland
| | - Jonathan Avaro
- Center for X‐ray AnalyticsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Antonia Neels
- Department of ChemistryUniversity of FribourgFribourg1700Switzerland
- Center for X‐ray AnalyticsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Gustav Nyström
- Cellulose and Wood Materials LaboratorySwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
- Department of Health Science and TechnologyETH ZürichZürich8092Switzerland
| | - Zhaoxia Sun
- Institute of Environmental EngineeringETH ZürichZürich8092Switzerland
- School of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510641China
- Laboratory for Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Jing Wang
- Institute of Environmental EngineeringETH ZürichZürich8092Switzerland
- School of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510641China
- Laboratory for Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Zhengyuan Pan
- School of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Ana Iglesias‐Mejuto
- AerogelsLab, I+D Farma Group (GI‐1645), Department of PharmacologyPharmacy and Pharmaceutical TechnologyFaculty of PharmacyiMATUS and Health Research Institute of Santiago de Compostela (IDIS)University of Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Inés Ardao
- BioFarma Research groupDepartment of PharmacologyPharmacy and Pharmaceutical TechnologyInnopharma Drug Screening and Pharmacogenomics PlatformCentro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS)University of Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Carlos A. García‐González
- AerogelsLab, I+D Farma Group (GI‐1645), Department of PharmacologyPharmacy and Pharmaceutical TechnologyFaculty of PharmacyiMATUS and Health Research Institute of Santiago de Compostela (IDIS)University of Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Mengmeng Li
- Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Tingting Wu
- Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Marco Lattuada
- Department of ChemistryUniversity of FribourgFribourg1700Switzerland
| | - Wim J. Malfait
- Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and ComponentsSwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorf8600Switzerland
| |
Collapse
|
48
|
Sadeghi S, Mousavi-Sabet H, Hedayati A, Zargari A, Multisanti CR, Faggio C. Copper-oxide nanoparticles effects on goldfish (Carassius auratus): Lethal toxicity, haematological, and biochemical effects. Vet Res Commun 2024; 48:1611-1620. [PMID: 38413536 DOI: 10.1007/s11259-024-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
The advancement of nanotechnology and the widespread use of nanoparticles (NPs) in various industries have highlighted the importance of studying the potential harmful effects of nanomaterials on organisms. This study aimed to evaluate the lethal toxicity thresholds of Copper Oxide Nanoparticles (CuO-NPs). The investigation focused on examining the sub-lethal toxicity effects of CuO-NPs on blood parameters, as well as their influence on the gill tissue and liver of goldfish (Carassius auratus). Goldfish were exposed to varying concentrations of CuO-NPs (10, 20, 30, 40, 60, 80, and 100 mg/L) for 96 h. The Probit software was employed to determine the LC50 (lethal concentration causing 50% fish mortality) by monitoring and documenting fish deaths at 24, 48, 72, and 96-hour intervals. Subsequently, sub-lethal concentrations of 5% LC50 (T1), 10% LC50 (T2), and 15% LC50 (T3) of CuO-NPs were administered based on the LC50 level to investigate their effects on haematological parameters, encompassing the number of red blood cells and white blood cells, hematocrit and haemoglobin levels, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Additionally, histopathological examinations were conducted on the gill and liver tissues of the studied fish. Results indicated concentration-response of fish mortalities. In general, changes in the blood biochemical parameters of fish exposed to sub-lethal concentrations of CuO-NPs included a significant decrease in leukocyte count and glucose level and an increase in protein and triglyceride levels. Furthermore, an escalation in tissue damage such as gill apical and basal hyperplasia, lamellae attachment, squamous cell swelling, blood cell infiltration, and cellular oedema in gills tissue. and bleeding, increased sinusoidal space, necrosis, lateralization of the nucleus, cell swelling, and water retention in the liver. The findings showed dose-dependent increasing toxicity in goldfish specimens exposed to CuO-NPs.
Collapse
Affiliation(s)
- Saeed Sadeghi
- Faculty of Natural Resources, Guilan University, Rasht, Iran
| | | | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ashkan Zargari
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
49
|
Vidyasagar, Patel RR, Singh SK, Dehari D, Nath G, Singh M. Facile green synthesis of silver nanoparticles derived from the medicinal plant Clerodendrum serratum and its biological activity against Mycobacterium species. Heliyon 2024; 10:e31116. [PMID: 38799742 PMCID: PMC11126841 DOI: 10.1016/j.heliyon.2024.e31116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of multidrug-resistant mycobacterial strains is a significant crisis that has led to higher treatment failure rates and more toxic and expensive medications for tuberculosis (TB). The urgent need to develop novel therapeutics has galvanized research interest towards developing alternative antimicrobials such as silver nanoparticles (AgNPs). The current study focused on the anti-mycobacterial activity of green-synthesized AgNPs and its polyethylene glycol encapsulated derivative (PEG-AgNPs) with improved stability using the leaves extract of Clerodendrum serratum. Different characterization methods were used to analyze them. DLS analysis revealed a lower polydispersity index of PEG-AgNPs, suggesting a more uniform size distribution than that of AgNPs. The HR-TEM results revealed that the AgNPs and PEG-AgNPs have predominantly spherical shapes in the size range of 9-35 nm and 15-60 nm, respectively, while positive values of Zeta potential indicate their stability. FTIR-ATR analysis confirmed the presence of functional groups responsible for reducing and capping the bio-reduced AgNPs, whereas the XRD data established its crystalline nature. Impressively, the PEG-AgNPs exhibited maximum inhibitory activity against different Tubercular and Non-Tuberculous Mycobacterium species i.e., Mycobacterium smegmatis, Mycobacterium fortuitum and Mycobacterium marinum, relative to those of AgNPs and Linezolid. The flow cytometry assay showed that the anti-mycobacterial action was mediated by an increase in cell wall permeability. Notably, the results of AFM confirm their ability to inhibit mycobacterial biofilm significantly. We demonstrated the nontoxic nature of these AgNPs, explicated by the absence of hemolytic activity against human RBCs. Overall, the results suggest that PEG-AgNPs could offer a novel therapeutic approach with potential anti-mycobacterial activity and can overcome the limitations of existing TB therapies.
Collapse
Affiliation(s)
- Vidyasagar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
50
|
Negi P, Chadha J, Harjai K, Gondil VS, Kumari S, Raj K. Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene-Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens. Biomedicines 2024; 12:1104. [PMID: 38791065 PMCID: PMC11117616 DOI: 10.3390/biomedicines12051104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties by inflicting damage to the cell membrane, suppressing virulence, and inhibiting microbial biofilms. Developing alternative therapies for HAIs and addressing AMR can be made easier and more affordable by combining nanoparticles with medicinal plants harboring antimicrobial properties. Hence, this study was undertaken to develop a novel graphene-silver nanocomposite via green synthesis using Trillium govanianum plant extract as a reducing agent. The resulting nanocomposite comprised silver nanoparticles embedded in graphene sheets. The antibacterial and antifungal properties of graphene-silver nanocomposites were investigated against several nosocomial pathogens, namely, Candida auris, Candida glabrata, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nanocomposite displayed broad-range antimicrobial potential against the test pathogens, with minimum inhibitory concentrations (MICs) ranging between 31.25 and 125.0 µg/mL, and biofilm inhibition up to 80-96%. Moreover, nanocomposite-functionalized urinary catheters demonstrated hemocompatibility towards sheep erythrocytes and imparted anti-fouling activity to the biomaterial, while also displaying biocompatibility towards HEK 293 cells. Collectively, this investigation highlights the possible application of green-synthesized GBNs as an effective alternative to conventional antibiotics for combating multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Preeti Negi
- Department of Microbiology, Basic Medical Sciences Block 1, South Campus, Panjab University, Sector-25, Chandigarh 160014, India
| | - Jatin Chadha
- Department of Microbiology, Basic Medical Sciences Block 1, South Campus, Panjab University, Sector-25, Chandigarh 160014, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences Block 1, South Campus, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vijay Singh Gondil
- Department of Microbiology & Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Seema Kumari
- Department of Microbiology, Basic Medical Sciences Block 1, South Campus, Panjab University, Sector-25, Chandigarh 160014, India
| | - Khem Raj
- Department of Microbiology, Basic Medical Sciences Block 1, South Campus, Panjab University, Sector-25, Chandigarh 160014, India
| |
Collapse
|