1
|
Lai X, Zhang X, Lai J, Zhao W, Song Z, Chen Y, Ud din M, Munawer MF, Jiang H, Liu X, Wang X. Targeted self-assembled anti-NFκB AuNCs-aptamer nanoplatform for precise theranostics via tailored follicle regeneration. Mater Today Bio 2025; 32:101774. [PMID: 40290889 PMCID: PMC12032944 DOI: 10.1016/j.mtbio.2025.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
NFκB is a vital transcription factor for the regulation of hair follicle cycle. As a therapeutic target, NFκB is specifically blocked by RNA aptamer with negligible side effects, but the targeted transmembrane transport of anti-NFκB aptamer remains a challenge due to its negative charge under physiological conditions. In this study, taking advantage of the depilation-induced oxidative stress microenvironment (OSM), it was confirmed for the first time that self-assembled gold nanoclusters and aptamer (AuNCs-Aptamer) complexes formed in the skin and enhanced the therapeutic effect of anti-NFκB aptamer drugs, effectively blocking the NFκB-mediated inflammatory response and inhibiting hair follicle regeneration. The hematoxylin-eosin (HE) staining of tissue section and hematology analysis demonstrated that OSM-responsive self-assembled AuNCs-Aptamer caused no toxicity to the living organism. Moreover, self-assembly occurred only in the oxidative stress-injured skin cells rather than the normal cells, which revealed that this self-assembly was a targeted, safe and effective therapy for hypertrichosis.
Collapse
Affiliation(s)
- Xiangdong Lai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyang Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiejuan Lai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weiwei Zhao
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar, Xinjiang, 843300, China
| | - Zhongquan Song
- Department of Pulmonary and Critical Care Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuanyuan Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Miraj Ud din
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Muhammad Faizan Munawer
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Xiong W, Huang Y, Zhao C, Luo Q, Zhao L, Yu F, Cheng Z. Engineering ultrasmall gold nanoclusters: tailored optical modulation for phototherapeutic and multimodal biomedical applications. Chem Commun (Camb) 2025. [PMID: 40391500 DOI: 10.1039/d5cc02027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Ultrasmall gold nanoclusters (Au NCs) with core sizes below 2 nm exhibit distinctive physicochemical properties and hold remarkable promise in a variety of biomedical applications. Through precise synthesis and surface engineering, Au NCs can be endowed with high quantum yields, excellent stability, and favorable biocompatibility. Recent studies have demonstrated the versatility of Au NCs in imaging modalities-ranging from fluorescence and Raman to photoacoustics-as well as in light-driven therapeutics such as photodynamic therapy (PDT) and photothermal therapy (PTT). This review provides an overview of Au NC design strategies, highlighting ligand-assisted synthesis and supramolecular self-assembly for optimizing optical features and biological performance. Representative biomedical applications in optical imaging, biosensing, and phototherapy are summarized to illustrate the multifaceted benefits of Au NCs in disease diagnosis and treatment. Finally, challenges related to large-scale production, long-term biosafety, and clinical translation are discussed, along with future perspectives on leveraging Au NCs for next-generation theranostic platforms.
Collapse
Affiliation(s)
- Wei Xiong
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Yibao Huang
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Chenxiao Zhao
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Linlu Zhao
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Ziyi Cheng
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
3
|
You H, Xiong J, Gao R, Lou WY, Wu X. Ratiometric fluorescent detection of protease activity in foods based on microwave-assisted synthesized casein-directed gold nanoclusters. Food Chem 2025; 474:143078. [PMID: 39904085 DOI: 10.1016/j.foodchem.2025.143078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Developing a versatile probe for activity detection of protease is of significant importance due to its crucial roles in food processing, disease diagnosis, and pharmaceuticals. However, the sensitivity of probe towards interfering agents especially in complex samples hindered its development. Here, casein-directed gold nanoclusters (casein-AuNCs) were fabricated in a household microwave oven in 30 s, which displayed strong red emission with a large Stokes shift of 310 nm and high storage stability. Conjugation of fluorescein isothiocyanate (FITC) with casein-AuNCs enabled the ratiometric fluorescent detection of protease activity. Mechanistic investigation confirmed that upon protease hydrolysis, aggregation of AuNCs occurred, leading to fluorescence decay. This sensor exhibited good linearity and sensitivity for protease activity detection over a wide pH range, with detection limits of 0.29 U/mL and good anti-interference performance in real sample analysis.
Collapse
Affiliation(s)
- Haoxing You
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
4
|
Gao H, Xie Z, Xu S, Jiang C. MUA-modified Au nanocluster-driven fluorescence sensor for chromatographic test strips-based visual detection of patulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125736. [PMID: 39826168 DOI: 10.1016/j.saa.2025.125736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The relationship between human health and patulin (PAT) in the diet is a complex and intertwined one. The development of a sensing approach for the field detection of patulin is crucial, as the current approach lacks real-time detection capabilities and is costly in terms of material and technology. This paper presents a portable ratiometric fluorescence sensor that can be used to rapidly, accurately, and efficiently detect patulin in food items at the point of origin. The sensor employs a combination of sulfhydryl functionalized gold nanoclusters (MUA-AuNCs) and blue emission carbon dots (B-CDs), which have been engineered to serve as highly effective "on-off" nanoprobes. The modified sulfhydryl (SH) groups present on the gold clusters serve as specific recognition sites for patulin binding. The probes exhibit a discernible shift in hue, from orange-red to blue. The sensitivity detection limit (LOD) for patulin was found to be 0.019 μM, with a substantial linear correlation observed in the range of 0-2.2 μM. The objective of the combined chromatographic test strip and color recognition platform was to facilitate the sensitive, accurate, and real-time detection of patulin in foodstuffs, which is of paramount importance for the prevention of early disease. To facilitate rapid and straightforward preliminary testing of food security, it is anticipated that the integrated chromatographic strip ratiometric fluorescence sensing platform will be developed into portable home detection equipment.
Collapse
Affiliation(s)
- Hongcheng Gao
- Materials and Chemical Engineering, Hefei University, Hefei 230069, China; Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Xie
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
5
|
Raufman B, Aligholizadeh D, Connolly C, Oliver AG, Zhukovskyi M, Qureshi ZS, Topka S, Sajini Devadas M. Unlocking the Photoluminescence and Photostability of Au 11 Clusters through Pt-Mediated Band-Gap Engineering. Chem Asian J 2025; 20:e202401361. [PMID: 39805736 DOI: 10.1002/asia.202401361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Au nanoclusters often demonstrate useful optical properties such as visible/near-infrared photoluminescence, in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e- superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide- and triphenylphosphine-ligated Au11 nanocluster, affording a cluster with a proposed molecular formula PtAu10(PPh3)7Br3. Electrochemical and spectroscopic analysis reveal an expansion of the HOMO-LUMO gap due to the Pt dopant, as well as relatively strong near-infrared (NIR) photoluminescence which is atypical for an M11 cluster (λmax = 700 nm, Φ = 1.88 %). The Pt dopant additionally boosted photostability; more than tenfold. Lastly, we demonstrate the application of the PtAu10 cluster's NIR photoluminescence in the detection of the nitroaromatic compound 2,4-dinitrotoluene, with a limit-of-detection of 9.52 μM (1.74 ppm). The notable ability of a single central Pt dopant to unlock photoluminescence in a non-luminescent nanocluster highlights the advantages of heterometal doping in the tuning of both the optical and thermodynamic properties of Au nanoclusters.
Collapse
Affiliation(s)
- Benjamin Raufman
- Department of Chemistry, Towson University, 8000 York Road, Towson, MD, 21252, USA
| | | | - Catherine Connolly
- Department of Chemistry, Towson University, 8000 York Road, Towson, MD, 21252, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Holy Cross Dr, Notre Dame, IN, 46556, USA
| | - Maksym Zhukovskyi
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zaid S Qureshi
- Department of Chemistry, Towson University, 8000 York Road, Towson, MD, 21252, USA
| | - Samantha Topka
- Department of Chemistry, Towson University, 8000 York Road, Towson, MD, 21252, USA
| | - Mary Sajini Devadas
- Department of Chemistry, Towson University, 8000 York Road, Towson, MD, 21252, USA
| |
Collapse
|
6
|
He S, Wang B, Hou H, Zhang Y, Zhang Z, Zhao F, Su M. Silk fibroin protein-templated gold nanoclusters for in vivo fluorescence imaging. Photochem Photobiol Sci 2025; 24:467-477. [PMID: 40113738 DOI: 10.1007/s43630-025-00699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Protein-templated synthesis has been proved to be an effective approach for building high-performance fluorescent bioimaging agents. Nevertheless, the high cost of proteins has restricted its wide application. Silk fibroin is a low cost natural protein with superior properties, which holds significant application prospects in many biomedical fields. However, its application potential in the biomedical imaging field remains to be explored. Herein, we report a one-pot green synthesis of high performance gold nanoclusters (AuNCs) using silk fibroin as stabilizer. The SF-AuNCs (~ 1.8 nm) shows a red emission around 600 nm with a large Stokes shift of 200 nm and a quantum yield of 5.42% which is comparable with that of fluorescence proteins. Meanwhile, the lifetime is as high as 3.47 μs which is about three magnitude orders higher than that of most molecular dyes and fluorescence proteins. Moreover, the stability is also greatly enhanced than that of the classical GSH-AuNCs. The SF-AuNCs is also well performed in cell labeling and in vivo imaging in zebrafish. This work not only provides a promising high performance protein fluorescence nano agent for bioimaging, but also expands the potential of the silk fibroin application in the biomedical imaging field.
Collapse
Affiliation(s)
- Shanshan He
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Baozhu Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huixin Hou
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yueyue Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhijun Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China.
| | - Feng Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Miao Su
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China.
| |
Collapse
|
7
|
Noreldeen HAA, Zhu CT, Huang KY, Peng HP, Deng HH, Chen W. A double probe-based fluorescence sensor array to detect rare earth element ions. Analyst 2025; 150:612-619. [PMID: 39838937 DOI: 10.1039/d4an01520g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
There is a persistent need for effective sensors to detect rare earth element ions (REEIs) due to their effects on human health and the environment. Thus, a simple and efficient fluorescence-based detection method for REEIs that offers convenience, flexibility, versatility, and efficiency is essential for ensuring environmental safety, food quality, and biomedical applications. In this study, 6-aza-2-thiothymine-gold nanoclusters (ATT-AuNCs) and bovine serum albumin/3-mercaptopropionic acid-AuNCs (BSA/MPA-AuNCs) were utilized to detect 14 REEIs (Sc3+, Gd3+, Lu3+, Y3+, Ce3+, Pr3+, Yb3+, Dy3+, Tm3+, Sm3+, Ho3+, Tb3+, La3+, and Eu3+), resulting in the creation of a simple, sensitive, and multi-target fluorescence sensor array detection platform. We observed that REEIs exert various enhancement or quenching effects on ATT-AuNCs and BSA/MPA-AuNCs. Thus, these two probes function as double signal channels, with the different effects of REEIs serving as signal inputs. Pattern recognition methods, including hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), were used to assess the recognition performance of the constructed sensing system. Beyond the excellent ability to recognize individual REEIs, the platform is also capable of distinguishing mixed REEIs. Also, this approach was validated by applying it to detect REEIs in purified water samples. This method not only minimizes the need for synthesizing and optimizing new probes but also offers a novel approach for the determination and identification of diverse analytes, filling a gap in the detection of a large number of REEIs simultaneously.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Chen-Ting Zhu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
8
|
Lee MJ, Shin JH, Jung SH, Oh BK. Recent Advances in Biosensors Using Enzyme-Stabilized Gold Nanoclusters. BIOSENSORS 2024; 15:2. [PMID: 39852053 PMCID: PMC11763740 DOI: 10.3390/bios15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization by using ligands such as dendrimers, peptides, DNA, and proteins. As a result, the properties of AuNCs and their formation are determined by the ligand, so the selection of the ligand is important. Of the many ligands implemented, enzyme-stabilized gold nanoclusters (enzyme-AuNCs) have attracted increasing attention for biosensor applications because of the excellent optical/electrochemical properties of AuNCs and the highly target-specific reactions of enzymes. In this review, we explore how enzyme-AuNCs are prepared, their properties, and the various types of enzyme-AuNC-based biosensors that use optical and electrochemical detection techniques. Finally, we discuss the current challenges and prospects of enzyme-AuNCs in biosensing applications. We expect this review to provide interdisciplinary knowledge about the application of enzyme-AuNC-based materials within the biomedical and environmental fields.
Collapse
Affiliation(s)
| | | | | | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea; (M.-J.L.); (J.-H.S.); (S.-H.J.)
| |
Collapse
|
9
|
Chen K, Najer A, Charchar P, Saunders C, Thanapongpibul C, Klöckner A, Chami M, Peeler DJ, Silva I, Panariello L, Karu K, Loynachan CN, Frenette LC, Potter M, Tregoning JS, Parkin IP, Edwards AM, Clarke TB, Yarovsky I, Stevens MM. Non-invasive in vivo sensing of bacterial implant infection using catalytically-optimised gold nanocluster-loaded liposomes for urinary readout. Nat Commun 2024; 15:10321. [PMID: 39609415 PMCID: PMC11605077 DOI: 10.1038/s41467-024-53537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments. We subsequently develop a biosensor by encapsulating these optimised AuNCs in bacterial toxin-responsive liposomes, which is extensively studied by various single-particle techniques. Upon exposure to S. aureus toxins, the liposomes rupture, releasing AuNCs that generate a colourimetric signal after kidney-mimetic filtration. The biosensor is further validated in vitro and in vivo using a hyaluronic acid (HA) hydrogel implant infection model. Urine samples collected from mice with bacteria-infected HA hydrogel implants turn blue upon substrate addition, confirming the suitability of the sensor for non-invasive detection of implant-associated infections. This platform has significant potential as a versatile, cost-effective diagnostic tool.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Klöckner
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel, 4058, Switzerland
| | - David J Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Inês Silva
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Luca Panariello
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Colleen N Loynachan
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael Potter
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
10
|
Tan K, Ma H, Mu X, Wang Z, Wang Q, Wang H, Zhang XD. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal Bioanal Chem 2024; 416:5871-5891. [PMID: 38436693 DOI: 10.1007/s00216-024-05220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Gold nanoclusters (Au NCs) exhibit broad fluorescent spectra from visible to near-infrared regions and good enzyme-mimicking catalytic activities. Combined with excellent stability and exceptional biocompatibility, the Au NCs have been widely exploited in biomedicine such as biocatalysis and bioimaging. Especially, the long fluorescence lifetime and large Stokes shift attribute Au NCs to good probes for fluorescence sensing and biological detection. In this review, we systematically summarized the molecular structure and fluorescence properties of Au NCs and highlighted the advances in fluorescence sensing and biological detection. The Au NCs display high sensitivity and specificity in detecting iodine ions, metal ions, and reactive oxygen species, as well as certain diseases based on the fluorescence activities of Au NCs. We also proposed several points to improve the practicability and accelerate the clinical translation of the Au NCs.
Collapse
Affiliation(s)
- Kexin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Chen W, Li J, Guo J, Li L, Wu H. Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes. Adv Colloid Interface Sci 2024; 332:103253. [PMID: 39067260 DOI: 10.1016/j.cis.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.
Collapse
Affiliation(s)
- Wenting Chen
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiahui Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
12
|
Svačinová V, Halili A, Ostruszka R, Pluháček T, Jiráková K, Jirák D, Šišková K. Trimetallic nanocomposites developed for efficient in vivo bimodal imaging via fluorescence and magnetic resonance. J Mater Chem B 2024; 12:8153-8166. [PMID: 39072712 DOI: 10.1039/d4tb00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite several attempts, in vivo bimodal imaging still represents a challenge. Generally, it is accepted that dual-modality in imaging can improve sensitivity and spatial resolution, namely, when exploiting fluorescence (FI) and magnetic resonance imaging (MRI), respectively. Here, a newly developed combination of (i) protein-protected luminescent Au-Ag nanoclusters (LGSN) manifesting themselves by fluorescent emission at 705 nm and (ii) superparamagnetic iron oxide nanoparticles (SPION) embedded within the same protein and creating contrast in MR images, has been investigated in phantoms and applied for in vivo bimodal imaging of a mouse as a proof of principle. Unique LGSN-SPION nanocomposites were synthesized in a specific sequential one-pot green preparation procedure and characterized thoroughly using many physicochemical experimental techniques. The influence of LGSN-SPION samples on the viability of healthy cells (RPE-1) was tested using a calcein assay. Despite the presence of Ag (0.12 mg mL-1), high content of Au (above 0.75 mg mL-1), and moderate concentrations of Fe (0.24 mg mL-1), LGSN-SPION samples (containing approx. 15 mg mL-1 of albumin) were revealed as biocompatible (cell viability above 80%). Simultaneously, these concentration values of all components in the LGSN-SPION nanocomposite were used for achieving both MRI and fluorescence signals in phantoms as well as in a living mouse with sufficiently high resolution. Thus, the LGSN-SPION samples can serve as new efficient bimodal FI and MRI probes for in vivo imaging.
Collapse
Affiliation(s)
- Veronika Svačinová
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
| | - Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Klára Jiráková
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
- Department of Histology and Embryology, The Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
14
|
Kong W, Li J, Yan Y, Tan Q, Kong RM, Xiang M, Zhang E, Zhao Y. Spatially confined dual-emission nanoprobes assembled from silicon nanoparticles and gold nanoclusters for ratiometric biosensing. Mikrochim Acta 2024; 191:450. [PMID: 38970684 DOI: 10.1007/s00604-024-06530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Gold nanoclusters (AuNCs) possess weak intrinsic fluorescence, limiting their sensitivity in biosensing applications. This study addresses these limitations by developing a spatially confined dual-emission nanoprobe composed of silicon nanoparticles (SiNPs) and AuNCs. This amplified and stabilized fluorescence mechanism overcomes the limitations associated with using AuNCs alone, achieving superior sensitivity in the sensing platform. The nanoprobe was successfully employed for ratiometric detection of bleomycin (BLM) in serum samples, operating at an excitation wavelength of 365 nm, with emission wavelengths at 480 nm and 580 nm. The analytical performance of the system is distinguished by a linear detection range of 0-3.5 μM, an impressive limit of detection (LOD) of 35.27 nM, and exceptional recoveries ranging from 96.80 to 105.9%. This innovative approach significantly enhances the applicability and reliability of AuNC-based biosensing in complex biological media, highlighting its superior analytical capabilities.
Collapse
Affiliation(s)
- Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Jiahao Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Yuntian Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Qingqing Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Meihao Xiang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
15
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
16
|
Li N, Xu K, Huang C, Yang Y, Hu X, Zhou Y, Zhang L, Zhong Y. Construction of logic gate computation for the assay of the nerve agent sarin based on an AChE-based dual-channel sensing system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4066-4073. [PMID: 38881395 DOI: 10.1039/d4ay00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Nerve agents have posed a huge threat to national and human security, and their sensitive detection is crucial. Herein, based on the oxidation of Ce4+ and the aggregation-induced emission (AIE) of glutathione-protected gold nanoclusters (GSH-Au NCs), a cascade reaction was designed to prepare oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) and GSH-Au NCs crosslinked by Ce3+ (Ce3+-GSH-Au NCs). oxTMB had a broad UV-visible absorption range (500-700 nm) and was capable of quenching the fluorescence of Ce3+-GSH-Au NCs at 590 nm through the internal filtration effect (IFE). Thiocholine (TCh), the hydrolysis product of acetylthiocholine chloride (ATCl) catalyzed by acetylcholinesterase (AChE), reduced oxTMB completely, resulting in a decrease in the absorption of oxTMB and the recovery of IFE-quenched fluorescence of Ce3+-GSH-Au NCs. Nerve agent sarin (GB) hindered the production of TCh and the reduction of oxTMB by inhibiting the AChE activity, leading to the fluorescence of Ce3+-GSH-Au NCs being quenched again. The dual-output sensing system (AChE + ATCl + oxTMB + Ce3+-GSH-Au NCs) exhibited a low limit of detection to GB (2.46 nM for colorimetry and 1.18 nM for fluorimetry) and excellent selectivity toward common interferences being unable to inhibit AChE. Moreover, the intelligent logic gate constructed based on the sensing system showed promising applications in the field of smart sensing of nerve agents.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | - Kexin Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| |
Collapse
|
17
|
Li T, Li Z, Chen F, Zhu L, Tang H, Wang D, Tang Z. Impact of BSA and Au 3+ concentration on the formation and fluorescence properties of Au nanoclusters. RSC Adv 2024; 14:19284-19293. [PMID: 38887651 PMCID: PMC11181134 DOI: 10.1039/d4ra01140f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Bovine serum albumin-stabilized Au nanoclusters (BSA-Au NCs) have emerged as promising contenders for imaging agents and highly sensitive fluorescence sensors due to their biocompatibility and strong photoluminescence. Optimizing the synthesis conditions of BSA-Au NCs is crucial for enhancing fluorescence imaging and other nanocluster applications. In this study, for the first time, we systematically investigated the effects of BSA concentration and Au3+ on both particle size and optical characteristics of BSA-Au NCs. When the two components achieved a suitable concentration ratio, it was beneficial to form BSA-Au NCs with a high quantum yield (QY = 74.30%) and good fluorescence stability. In contrast, an inappropriate concentration ratio would lead to the formation of gold nanoparticles (Au NPs), and their internal filtration effect (IFE) would attenuate the fluorescence emission of BSA-Au NCs. The BSA-Au NCs were then employed as efficient fluorescence sensors for detecting Hg2+. Furthermore, the growth mechanism of BSA-Au NCs was elucidated by monitoring fluorescence changes during different incubation times. The BSA-Au NCs with a high quantum yield introduce a novel synthetic concept for sensitive fluorescent probes and expanding versatile applications of BSA-Au NCs in catalysis, chemical sensing and biomedicine.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing China
| | - Zhuo Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing China
| | - Fengjiao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Liying Zhu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University Guiyang China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing China
| | - Dan Wang
- Post-Doctoral Research Center, The People's Hospital of Rongchang District Chongqing China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
18
|
Xiong J, Sun B, Zhang S, Wang S, Qin L, Jiang H. Highly efficient dual-mode detection of AFB1 based on the inner filter effect: Donor-acceptor selection and application. Anal Chim Acta 2024; 1298:342384. [PMID: 38462339 DOI: 10.1016/j.aca.2024.342384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The utilization of inner filter effect (IFE) brings more opportunities for construction of fluorescence immunoassays but remains a great challenge, especially how to select best donor in the face of extensive fluorescent nanomaterials. Aflatoxin B1 possesses high toxicity among mycotoxins and is frequently found in agricultural products that may significantly threaten to human health. Therefore, with the help of signal transduction mechanism of IFE to develop a convenient and sensitive approach for AFB1 detection is of great significance in ensuring food safety. RESULTS Herein, the classical alkaline phosphatase (ALP) catalyzes hydrolysis of p-nitrophenylphosphate to produce p-nitrophenol (PNP) was employed as a model reaction, which intends to explore tunable multicolor fluorescence of gold nanoclusters (AuNCs) for matching PNP to maximize IFE efficiency. The luminescent green-emitting AuNCs were selected as an optimal donor in terms of excellent spectral overlap, high photoluminescence, and adequate system adaptability, thus achieving a 22-fold increase in sensitivity improvement compared to colorimetric method for ALP detection. The fluorescence quenching mechanism between PNP and AuNCs was validated as IFE by studying ultraviolet absorption, zeta potentials and fluorescence lifetime. In light of this, we integrated a highly specific antibody-antigen recognition system, efficient enzymatic reaction and excellent optical characteristics of AuNCs to develop dual-mode immunoassay for AFB1 monitoring. The sensitivity of fluorometric immunoassay was lower to 0.06 ng/mL, which obtained a 3.5-fold improvement compared to "gold standard" ELISA. Their practicability and applicability were confirmed in the tap water, corn, wheat and peanuts samples. SIGNIFICANCE This work provides an easy-to-understand screening procedure to select optimal donor-acceptor pairs in IFE analysis. Furthermore, we expect that integration of IFE-based signal conversion strategy into mature immunoassay not only extends the signal types, simplifies signal amplification steps, and reduces the false-positive/false-negative rates, but also provides a simple, convenient, and versatile strategy for monitoring of trace other contaminants.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Guo Y, Li Y, Xiang Y. Advances in Fluorescent Nanosensors for Detection of Vitamin B 12. Crit Rev Anal Chem 2024:1-11. [PMID: 38498177 DOI: 10.1080/10408347.2024.2328104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Vitamin B12 plays a significant role in maintaining human health. Deficiency or excess intake of vitamin B12 may cause some diseases. Therefore, it is significant to fabricate sensors for sensitive assay of vitamin B12. In the past few years, a variety of nanomaterials have been developed for the fluorescence detection of vitamin B12 in tablets, injection, human serum and food. In the review, the assay mechanisms of fluorescent nanomaterials for sensing vitamin B12 were first briefly discussed. And the progress of various nanomaterials for fluorescence detection of vitamin B12 were systematically summarized. Furthermore, the sensing performance of fluorescent nanosensors was compared with fluorescent probes. Lastly, the challenges and perspectives about the topic were presented.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yubin Xiang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
20
|
Luo Y, Guo Y. Nanomaterials for fluorescent detection of vitamin B 2: A review. Anal Biochem 2023; 683:115351. [PMID: 37858879 DOI: 10.1016/j.ab.2023.115351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Vitamin B2 plays vital roles in maintaining human health. It is of tremendous significance to construct sensitive sensors of VB2. In this review, we first briefly presented the sensing mechanisms of fluorescent nanomaterials for sensing VB2. Subsequently, the advances of nanomaterials for fluorescent determination of VB2 were highlighted. And sensing performance of traditional approaches and fluorescent nanosensors was further compared. In last section, the challenges and perspectives concerning the topic were discussed.
Collapse
Affiliation(s)
- Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China
| | - Yongming Guo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
21
|
Juhász Á, Gombár G, Várkonyi EF, Wojnicki M, Ungor D, Csapó E. Thermodynamic Characterization of the Interaction of Biofunctionalized Gold Nanoclusters with Serum Albumin Using Two- and Three-Dimensional Methods. Int J Mol Sci 2023; 24:16760. [PMID: 38069083 PMCID: PMC10706308 DOI: 10.3390/ijms242316760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fluorescent gold nanoclusters have been successfully used as fluorescent markers for imaging of cells and tissues, and their potential role in drug delivery monitoring is coming to the fore. In addition, the development of biosensors using structure-tunable fluorescent nanoclusters is also a prominent research field. In the case of these sensor applications, the typical goal is the selective identification of, e.g., metal ions, small molecules having neuroactive or antioxidant effects, or proteins. During these application-oriented developments, in general, there is not enough time to systematically examine the interaction between nanoclusters and relevant biomolecules/proteins from a thermodynamic viewpoint. In this way, the primary motivation of this article is to carry out a series of tests to partially fill this scientific gap. Besides the well-known fluorescent probes, the mentioned interactions were investigated using such unique measurement methods as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two-dimensional (at the solid/liquid interface) and three-dimensional (in the bulk phase) measuring techniques provide a unique opportunity for the thermodynamic characterization of the interaction between different gold nanoclusters containing various surface functionalizing ligands and bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Gyöngyi Gombár
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Egon F. Várkonyi
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland;
| | - Ditta Ungor
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| |
Collapse
|
22
|
Luo T, Huang W, Chu F, Zhu T, Feng B, Huang S, Hou J, Zhu L, Zhu S, Zeng W. The Dawn of a New Era: Tumor-Targeting Boron Agents for Neutron Capture Therapy. Mol Pharm 2023; 20:4942-4970. [PMID: 37728998 DOI: 10.1021/acs.molpharmaceut.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cancer is widely recognized as one of the most devastating diseases, necessitating the development of intelligent diagnostic techniques, targeted treatments, and early prognosis evaluation to ensure effective and personalized therapy. Conventional treatments, unfortunately, suffer from limitations and an increased risk of severe complications. In light of these challenges, boron neutron capture therapy (BNCT) has emerged as a promising approach for cancer treatment with unprecedented precision to selectively eliminate tumor cells. The distinctive and promising characteristics of BNCT hold the potential to revolutionize the field of oncology. However, the clinical application and advancement of BNCT technology face significant hindrance due to the inherent flaws and limited availability of current clinical drugs, which pose substantial obstacles to the practical implementation and continued progress of BNCT. Consequently, there is an urgent need to develop efficient boron agents with higher boron content and specific tumor-targeting properties. Researchers aim to address this need by integrating tumor-targeting strategies with BNCT, with the ultimate goal of establishing BNCT as an effective, readily available, and cutting-edge treatment modality for cancer. This review delves into the recent advancements in integrating tumor-targeting strategies with BNCT, focusing on the progress made in developing boron agents specifically designed for BNCT. By exploring the current state of BNCT and emphasizing the prospects of tumor-targeting boron agents, this review provides a comprehensive overview of the advancements in BNCT and highlights its potential as a transformative treatment option for cancer.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Liyong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shaihong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
23
|
Wang L, Shrestha B, Brey EM, Tang L. Gold Nanomaterial System That Enables Dual Photothermal and Chemotherapy for Breast Cancer. Pharmaceutics 2023; 15:2198. [PMID: 37765168 PMCID: PMC10534904 DOI: 10.3390/pharmaceutics15092198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
This study involves the fabrication and characterization of a multifunctional therapeutic nanocomposite system, as well as an assessment of its in vitro efficacy for breast cancer treatment. The nanocomposite system combines gold nanorods (GNRs) and gold nanoclusters (GNCs) to enable a combination of photothermal therapy and doxorubicin-based chemotherapy. GNRs of various sizes but exhibiting similar absorbance spectra were synthesized and screened for photothermal efficiency. GNRs exhibiting the highest photothermal efficiency were selected for further experiments. GNCs were synthesized in bovine serum albumin (BSA) and integrated into citrate-capped GNRs using layer-by-layer assembly. Glutaraldehyde crosslinking with the lysine residues in BSA was employed to immobilize the GNCs onto the GNRs, forming a stable "soft gel-like" structure. This structure provided binding sites for doxorubicin through electrostatic interactions and enhanced the overall structural stability of the nanocomposite. Additionally, the presence of GNCs allowed the nanocomposite system to emit robust fluorescence in the range of ~520 nm to 700 nm for self-detection. Hyaluronic acid was functionalized on the exterior surface of the nanocomposite as a targeting moiety for CD44 to improve the cellular internalization and specificity for breast cancer cells. The developed nanocomposite system demonstrated good stability in vitro and exhibited a pH- and near-infrared-responsive drug release behavior. In vitro studies showed the efficient internalization of the nanocomposite system and reduced cellular viability following NIR irradiation in MDA-MB-231 breast cancer cells. Together, these results highlight the potential of this nanocomposite system for targeted breast cancer therapy.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Biomedical Engineering & Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Binita Shrestha
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78705, USA
| | - Eric M. Brey
- Department of Biomedical Engineering & Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Liang Tang
- Department of Biomedical Engineering & Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
24
|
Sahoo K, Gazi TR, Roy S, Chakraborty I. Nanohybrids of atomically precise metal nanoclusters. Commun Chem 2023; 6:157. [PMID: 37495665 PMCID: PMC10372104 DOI: 10.1038/s42004-023-00958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Atomically precise metal nanoclusters (NCs) with molecule-like structures are emerging nanomaterials with fascinating chemical and physical properties. Photoluminescence (PL), catalysis, sensing, etc., are some of the most intriguing and promising properties of NCs, making the metal NCs potentially beneficial in different applications. However, long-term instability under ambient conditions is often considered the primary barrier to translational research in the relevant application fields. Creating nanohybrids between such atomically precise NCs and other stable nanomaterials (0, 1, 2, or 3D) can help expand their applicability. Many such recently reported nanohybrids have gained promising attention as a new class of materials in the application field, exhibiting better stability and exciting properties of interest. This perspective highlights such nanohybrids and briefly explains their exciting properties. These hybrids are categorized based on the interactions between the NCs and other materials, such as metal-ligand covalent interactions, hydrogen-bonding, host-guest, hydrophobic, and electrostatic interactions during the formation of nanohybrids. This perspective will also capture some of the new possibilities with such nanohybrids.
Collapse
Affiliation(s)
- Koustav Sahoo
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapu Raihan Gazi
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumyadip Roy
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
25
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
26
|
Shen Z, Pan Y, Yan D, Wang D, Tang BZ. AIEgen-Based Nanomaterials for Bacterial Imaging and Antimicrobial Applications: Recent Advances and Perspectives. Molecules 2023; 28:2863. [PMID: 36985835 PMCID: PMC10057855 DOI: 10.3390/molecules28062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Microbial infections have always been a thorny problem. Multi-drug resistant (MDR) bacterial infections rendered the antibiotics commonly used in clinical treatment helpless. Nanomaterials based on aggregation-induced emission luminogens (AIEgens) recently made great progress in the fight against microbial infections. As a family of photosensitive antimicrobial materials, AIEgens enable the fluorescent tracing of microorganisms and the production of reactive oxygen (ROS) and/or heat upon light irradiation for photodynamic and photothermal treatments targeting microorganisms. The novel nanomaterials constructed by combining polymers, antibiotics, metal complexes, peptides, and other materials retain the excellent antimicrobial properties of AIEgens while giving other materials excellent properties, further enhancing the antimicrobial effect of the material. This paper reviews the research progress of AIEgen-based nanomaterials in the field of antimicrobial activity, focusing on the materials' preparation and their related antimicrobial strategies. Finally, it concludes with an outlook on some of the problems and challenges still facing the field.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
27
|
Zhu CT, Huang KY, Zhou QL, Zhang XP, Wu GW, Peng HP, Deng HH, Chen W, Noreldeen HAA. Multi-excitation wavelength of gold nanocluster-based fluorescence sensor array for sulfonamides discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122138. [PMID: 36442343 DOI: 10.1016/j.saa.2022.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Sulfonamides (SAs) are widely used in many fields because of their advantages, including low price, wide antibacterial spectrum, and high stability. However, their accumulation in the human body leads to a variety of serious diseases. Therefore, it is necessary to design a convenient, effective, and sensitive method to detect SAs. Moreover, the fluorescence excitation spectrum has rich information characteristics, especially for the interaction between fluorophore and quencher via various mechanisms. However, the excitation wavelength-guided sensor array construction does not draw proper attention. To address these issues, we used BSA-AuNCs as a single probe to construct a sensor array for the detection of five SAs. The selected SAs showed different quenching effects on the fluorescence intensities of BSA-AuNCs. The changes in the fluorescence intensity at different excitation wavelengths (λ = 230, 250, and 280 nm) have been applied to construct our sensor array and address the distinguishability between the selected SAs. With helping of pattern recognition methods, five different SAs have been identified at three different concentrations. Additionally, qualitative analysis at different moral ratios and quantitative analysis at nanogram concentrations have been considered. Moreover, the proposed sensor array was successfully used to distinguish between different SAs in commercial milk with an accuracy of 100 %. This study provides a simple and powerful approach to SAs detection. Also, it shows a broad application prospect in the field of food and drug monitoring.
Collapse
Affiliation(s)
- Chen-Ting Zhu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Qing-Lin Zhou
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Xiang-Ping Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| |
Collapse
|
28
|
Bera N, Kiran Nandi P, Hazra R, Sarkar N. Aggregation induced emission of surface ligand controlled gold nanoclusters employing imidazolium surface active ionic liquid and pH sensitivity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Sahoo K, Chakraborty I. Ligand effects on the photoluminescence of atomically precise silver nanoclusters. NANOSCALE 2023; 15:3120-3129. [PMID: 36723052 DOI: 10.1039/d2nr06619j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photoluminescence (PL) is one of the most exciting properties of atomically precise metal nanoclusters (NCs), making them a prime choice for various applications, from sensing to bio-imaging. While there are several advantages of metal NCs for PL-based applications, their PLQY is significantly low compared to other PL-active nanomaterials or organic dyes. It is essential to understand the PL mechanism in detail to tune the PLQY of NCs. There are numerous reports on gold NCs with a known structure where the origin of PL has been explored, and it was found that ligands play a vital role in their PL properties along with the kernel (core). Reports on understanding the ligand effects on PL properties are also evolving for the case of atomically precise silver NCs. This mini-review will summarize the ligands' role in PL of 29 atom Ag NCs, the most reported NCs with diversity in the silver family. The ligands were classified as primary and secondary, and their effects on tuning the PL properties were explained. The review will also address some of the answers to open questions for AgNCs, such as the origin of PL, dynamics, and the tunability of PLQY using ligand modifications.
Collapse
Affiliation(s)
- Koustav Sahoo
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
30
|
Pavelka O, Dyakov S, Kvakova K, Vesely J, Cigler P, Valenta J. Towards site-specific emission enhancement of gold nanoclusters using plasmonic systems: advantages and limitations. NANOSCALE 2023; 15:3351-3365. [PMID: 36722767 DOI: 10.1039/d2nr06680g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photoluminescent gold nanoclusters are widely seen as a promising candidate for applications in biosensing and bioimaging. Although they have many of the required properties, such as biocompatibility and photostability, the luminescence of near infrared emitting gold nanoclusters is still relatively weak compared to the best available fluorophores. This study contributes to the ongoing debate on the possibilities and limitations of improving the performance of gold nanoclusters by combining them with plasmonic nanostructures. We focus on a detailed description of the emission enhancement and compare it with the excitation enhancement obtained in recent works. We prepared a well-defined series of gold nanoclusters attached to gold nanorods whose plasmonic band is tuned to the emission band of gold nanoclusters. In the resultant single-element hybrid nanostructure, the gold nanorods control the luminescence of gold nanoclusters in terms of its spectral position, polarization and lifetime. We identified a range of parameters which determine the mutual interaction of both particles including the inter-particle distance, plasmon-emission spectral overlap, dimension of gold nanorods and even the specific position of gold nanoclusters attached on their surface. We critically assess the practical and theoretical photoluminescence enhancements achievable using the above strategy. Although the emission enhancement was generally low, the observations and methodology presented in this study can provide a valuable insight into the plasmonic enhancement in general and into the photophysics of gold nanoclusters. We believe that our approach can be largely generalized for other relevant studies on plasmon enhanced luminescence.
Collapse
Affiliation(s)
- Ondrej Pavelka
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czechia.
| | - Sergey Dyakov
- Photonics & Quantum Materials Center, Skolkovo Institute of Science and Technology, Nobel Street 3, Moscow 143025, Russia
| | - Klaudia Kvakova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague, Czechia
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Katerinska 1660/32, Prague 121 08, Czechia
| | - Jozef Vesely
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czechia
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague, Czechia
| | - Jan Valenta
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czechia.
| |
Collapse
|
31
|
Liu L, Liu C, Gao L. Highly Sensitive Detection of Chymotrypsin Based on Metal Organic Frameworks with Peptides Sensors. BIOSENSORS 2023; 13:263. [PMID: 36832029 PMCID: PMC9954530 DOI: 10.3390/bios13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In this study, peptides and composite nanomaterials based on copper nanoclusters (CuNCs) were used to detect chymotrypsin. The peptide was a chymotrypsin-specific cleavage peptide. The amino end of the peptide was covalently bound to CuNCs. The sulfhydryl group at the other end of the peptide can covalently combine with the composite nanomaterials. The fluorescence was quenched by fluorescence resonance energy transfer. The specific site of the peptide was cleaved by chymotrypsin. Therefore, the CuNCs were far away from the surface of the composite nanomaterials, and the intensity of fluorescence was restored. The limit of detection (LOD) using Porous Coordination Network (PCN)@graphene oxide (GO) @ gold nanoparticle (AuNP) sensor was lower than that of using PCN@AuNPs. The LOD based on PCN@GO@AuNPs was reduced from 9.57 pg mL-1 to 3.91 pg mL-1. This method was also used in a real sample. Therefore, it is a promising method in the biomedical field.
Collapse
Affiliation(s)
- Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Cheng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
32
|
Harshita, Park TJ, Kailasa SK. Microwave-assisted synthesis of blue fluorescent molybdenum nanoclusters with maltose-cysteine Schiff base for detection of myoglobin and γ-aminobutyric acid in biofluids. LUMINESCENCE 2023. [PMID: 36758217 DOI: 10.1002/bio.4454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The fabrication of stable fluorescent MoNCs (molybdenum nanoclusters) in aqueous media is quite challenging as it is not much explored yet. Herein, we report a facile and efficient strategy for fabricating MoNCs using 2,3 dialdehyde maltose-cysteine Schiff base (DAM-cysteine) as a ligand for detecting myoglobin and γ-aminobutyric acid (GABA) in biofluids with high selectivity and sensitivity. The DAM-cysteine-MoNCs displayed fluorescence of bright blue color under a UV light at 365 nm with an emission peak at 444 nm after excitation at 370 nm. The synthesized DAM-cysteine-MoNCs were homogeneously distributed with a mean size of 2.01 ± 0.98 nm as confirmed by the high-resolution transmission electron microscopy (HR-TEM). Further, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) techniques were utilized to confirm the elemental oxidation states and surface functional groups of the DAM-cysteine-MoNCs. After the addition of myoglobin and GABA, the emission peak of DAM-cysteine-MoNCs at 444 nm was significantly quenched. This resulted in the development of a quantitative assay for the detection of myoglobin (0.1-0.5 μM) and GABA (0.125-2.5 μM) with the lower limit of detection as 56.48 and 112.75 nM for myoglobin and GABA, respectively.
Collapse
Affiliation(s)
- Harshita
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Tae-Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
33
|
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent Advances in Biomaterials-Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromol Biosci 2023; 23:e2200577. [PMID: 36758541 DOI: 10.1002/mabi.202200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic brain injury (TBI), a major public health problem accompanied with numerous complications, usually leads to serve disability and huge financial burden. The adverse and unfavorable pathological environment triggers a series of secondary injuries, resulting in serious loss of nerve function and huge obstacle of endogenous nerve regeneration. With the advances in adaptive tissue regeneration biomaterials, regulation of detrimental microenvironment to reduce the secondary injury and to promote the neurogenesis becomes possible. The adaptive biomaterials could respond and regulate biochemical, cellular, and physiological events in the secondary injury, including excitotoxicity, oxidative stress, and neuroinflammation, to rebuild circumstances suitable for regeneration. In this review, the development of pathology after TBI is discussed, followed by the introduction of adaptive biomaterials based on various pathological characteristics. The adaptive biomaterials carried with neurotrophic factors and stem cells for TBI treatment are then summarized. Finally, the current drawbacks and future perspective of biomaterials for TBI treatment are suggested.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiping Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
34
|
An Oligopeptide-Protected Ultrasmall Gold Nanocluster with Peroxidase-Mimicking and Cellular-Imaging Capacities. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010070. [PMID: 36615266 PMCID: PMC9822283 DOI: 10.3390/molecules28010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Recent decades have witnessed the rapid progress of nanozymes and their high promising applications in catalysis and bioclinics. However, the comprehensive synthetic procedures and harsh synthetic conditions represent significant challenges for nanozymes. In this study, monodisperse, ultrasmall gold clusters with peroxidase-like activity were prepared via a simple and robust one-pot method. The reaction of clusters with H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) followed the Michaelis-Menton kinetics. In addition, in vitro experiments showed that the prepared clusters had good biocompatibility and cell imaging ability, indicating their future potential as multi-functional materials.
Collapse
|
35
|
Turcsányi Á, Ungor D, Wojnicki M, Csapó E. Protein-stabilized bimetallic Au/Ag nanoclusters as fluorescent reporters: Synthesis, characterization and their interactions with biocolloids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Gold nanoclusters-loaded hydrogel formed by dimeric hydrogen bonds crosslinking: A novel strategy for multidrug-resistant bacteria-infected wound healing. Mater Today Bio 2022; 16:100426. [PMID: 36133795 PMCID: PMC9483737 DOI: 10.1016/j.mtbio.2022.100426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Restoring skin integrity after wound infection remains a tougher health challenge due to the uncontrolled antibiotic-resistant pathogens caused by antibiotic abuse. Herein, an injectable hydrogel with dual antibacterial and anti-inflammatory activities composed of gold nanoclusters (GNCs) and carbomer (CBM) is developed for wound dressing to overcome multidrug-resistant infection. Firstly, both experimental investigations and molecular dynamics simulation validate the protonation state of 6-mercaptohexanoic acid (MHA) ligands play an important role in its antibacterial action of GNCs. The self-organizing GNCs-CBM composite hydrogel is then spontaneously cross-linked by the dimeric hydrogen bonds (H-bonds) between the MHA ligands and the acrylic acid groups of CBM. Benefitting from the dimeric H-bonds, the hydrogel becomes thickening enough as an ideal wound dressing and the GNCs exist in the hydrogel with a high protonation level that contributes to the enhanced bactericidal function. In all, by combining bactericidal and immunomodulatory actions, the GNCs-CBM hydrogel demonstrated excellent synergy in accelerating wound healing in animal infection models. Hence, the dimeric H-bonds strengthening strategy makes the GNCs-CBM hydrogel hold great potential as a safe and effective dressing for treating infected wounds.
Collapse
|
37
|
Wang S, Li Q, Yang S, Yu H, Chai J, Zhu M. H-bond-induced luminescence enhancement in a Pt 1Ag 30 nanocluster and its application in methanol detection. NANOSCALE 2022; 14:16647-16654. [PMID: 36321756 DOI: 10.1039/d2nr03387a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen bonding is an important type of interaction for constructing nanocluster assemblies. In this study, the role of hydrogen bonding interactions in regulating the fluorescence properties of nanoclusters is investigated. A [Pt1Ag30(SAdm)14(Bdpm)4Cl5]3+ (Pt1Ag30 for short) nanocluster containing hydrogen-accepting ligands is synthesized and its structure is determined. By introducing N-containing ligands into nanoclusters, hydrogen bonding interactions between nanoclusters and polar solvents can be established, which can result in a 35-fold enhancement in the fluorescence intensity (in MeOH vs. in DCM). A series of experiments are designed to demonstrate hydrogen bonding interactions between N atoms in the Pt1Ag30 cluster and H in the polar solvent and the results show that fluorescence enhancement is derived from the proton-coupled/uncoupled electron transfer between hydrogen bonds. Furthermore, this Pt1Ag30 is used for the naked-eye detection of MeOH on indicator paper.
Collapse
Affiliation(s)
- Silan Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| |
Collapse
|
38
|
Glutathione-capped gold nanoclusters as near-infrared-emitting efficient contrast agents for confocal fluorescence imaging of tissue-mimicking phantoms. Mikrochim Acta 2022; 189:337. [PMID: 35978146 DOI: 10.1007/s00604-022-05440-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.4 nm and NIR emission quantum yield of 9.9%. Steady-state fluorescence measurements coupled with fluorescence lifetime imaging microscopy (FLIM) assays performed on lyophilized GSH-AuNCs revealed that the obtained GSH-AuNCs exhibit PL emissions at 610 nm (red PL) and, respectively, 800 nm (NIR PL) in both solution and powder solid-state. Time-resolved fluorescence measurements showed that the two PL components are characterized by average lifetimes of 407 ns (red PL) and 1821 ns (NIR PL), respectively. Additionally, due to a partial overlap between the red PL and the absorption of the NIR PL, an energy transfer between the two coexisting emissive centers was discovered and confirmed via steady-state and time-resolved fluorescence measurements. Furthermore, the FLIM analysis performed on powder GSH-AuNCs under 640 nm, an excitation more suitable for bioimaging applications, revealed a homogeneous and photostable NIR PL signal from GSH-AuNCs. Finally, the ability of GSH-AuNCs to operate as reliable NIR-emitting contrast agents inside tissue-mimicking agarose-phantoms was demonstrated here for the first time via complementary FLIM and re-scan confocal fluorescence imaging techniques. In consequence, GSH-AuNCs show great promise for future in vivo imaging applications via confocal fluorescence microscopy.
Collapse
|
39
|
Abstract
Gold nanoclusters (AuNCs) have become a promising material for bioimaging detection because of their tunable photoluminescence, large Stokes shift, low photobleaching, and good biocompatibility. Last decade, great efforts have been made to develop AuNCs for enhanced imaging contrast and multimodal imaging. Herein, an updated overview of recent advances in AuNCs was present for visible fluorescence (FL) imaging, near-infrared fluorescence (NIR-FL) imaging, two-photon near-infrared fluorescence (TP-NIR-FL) imaging, computed tomography (CT) imaging, positron emission tomography (PET) imaging, magnetic resonance imaging (MRI), and photoacoustic (PA) imaging. The justification of AuNCs applied in bioimaging mentioned above applications was discussed, the performance location of different AuNCs were summarized and highlighted in an unified parameter coordinate system of corresponding bioimaging, and the current challenges, research frontiers, and prospects of AuNCs in bioimaging were discussed. This review will bring new insights into the future development of AuNCs in bio-diagnostic imaging.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Wenrui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
40
|
Bhattacharya S, Bhattacharya K, Xavier VJ, Ziarati A, Picard D, Bürgi T. The Atomically Precise Gold/Captopril Nanocluster Au 25(Capt) 18 Gains Anticancer Activity by Inhibiting Mitochondrial Oxidative Phosphorylation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29521-29536. [PMID: 35729793 PMCID: PMC9266621 DOI: 10.1021/acsami.2c05054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials with well-defined molecular structures and unique biophysical properties, rendering them highly attractive for biological applications. We set out to study the impact of different ligand shells of atomically similar nanoclusters on cellular recognition and response. To understand the effects of atomically precise nanoclusters with identical composition on cells, we selected two different water-soluble gold nanoclusters protected with captopril (Capt) and glutathione (GSH): Au25(Capt)18 (CNC) and Au25(GSH)18 (GNC), respectively. We demonstrated that a change of the ligand of the cluster completely changes its biological functions. Whereas both nanoclusters are capable of internalization, only CNC exhibits remarkable cytotoxicity, more specifically on cancer cells. CNC shows enhanced cytotoxicity by inhibiting the OXPHOS of mitochondria, possibly by inhibiting the ATP synthase complex of the electron transport chain (ETC), and by initiating the leakage of electrons into the mitochondrial lumen. The resulting increase in both mitochondrial and total cellular ROS triggers cell death indicated by the appearance of cellular markers of apoptosis. Remarkably, this effect of nanoclusters is independent of any external light source excitation. Our findings point to the prevailing importance of the ligand shell for applications of atomically precise nanoclusters in biology and medicine.
Collapse
Affiliation(s)
- Sarita
Roy Bhattacharya
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Kaushik Bhattacharya
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Vanessa Joanne Xavier
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Abolfazl Ziarati
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Didier Picard
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
Schwartz‐Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105957. [PMID: 35508715 PMCID: PMC9284136 DOI: 10.1002/advs.202105957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.
Collapse
Affiliation(s)
- Aaron S. Schwartz‐Duval
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
| | - Konstantin V. Sokolov
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences6767 Bertner AveHoustonTX77030USA
- Department of BioengineeringRice University6100 Main St.HoustonTX77030USA
- Department of Biomedical EngineeringThe University of Texas at Austin107 W Dean Keeton St.AustinTX78712USA
| |
Collapse
|
42
|
Tang Z, Chen F, Wang D, Xiong D, Yan S, Liu S, Tang H. Fabrication of avidin-stabilized gold nanoclusters with dual emissions and their application in biosensing. J Nanobiotechnology 2022; 20:306. [PMID: 35761380 PMCID: PMC9235210 DOI: 10.1186/s12951-022-01512-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Protein-stabilized gold nanoclusters (Prot-Au NCs) have been widely used in biosensing and cell imaging owing to their excellent optical properties and low biotoxicity. However, several Prot-Au NCs reported in the literature do not retain the biological role of the protein, which greatly limits their ability to directly detect biomarkers. This study demonstrated for the first time the successful synthesis of dual-function avidin-stabilized gold nanoclusters (Av–Au NCs) using a one-pot method. The resulting Av–Au NCs exhibited intense blue and red emissions under 374 nm excitation. Furthermore, the Av–Au NCs retained the native functionality of avidin to bind to biotin. When DNA strands modified with biotin at both ends (i.e., linker chains) were mixed with Av–Au NCs, large polymers were formed, indicating that Av–Au NCs could achieve fluorescence signal amplification by interacting with biotin. Taking advantage of the aforementioned properties, we constructed a novel enzyme-free fluorescent biosensor based on the Av–Au NCs-biotin system to detect DNA. The designed fluorescent biosensor could detect target DNA down to 0.043 nM, with a wide line range from 0.2 nM to 20 µM. Thus, these dual-functional Av–Au NCs were shown to be an excellent fluorescent material for biosensing. Avidin-stabilized gold nanoclusters (Av–Au NCs) were synthesized for the first time by a water-bath method. The synthesized Av–Au NCs not only exhibited intense blue and red emissions under 374 nm excitation, but also retained the native functionality of avidin to bind to biotin. The fluorescent signal amplification system constructed by the interaction of Av–Au NCs with biotin was successfully applied to detect target DNA in vitro.
Collapse
Affiliation(s)
- Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Fengjiao Chen
- Guangshan County People's Hospital, Xinyang, 465450, Henan, China
| | - Dan Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Dongmei Xiong
- Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
43
|
Zhang CX, Wang Y, Duan X, Chen K, Li HW, Wu Y. Development of cytidine 5′-monophosphate-protected gold-nanoclusters to be a direct luminescent substrate via aggregation-induced emission enhancement for ratiometric determination of alkaline phosphatase and inhibitor evaluation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Bio-synthesis of a Functionalized Whey Proteins Theranostic Nanoprobe with Cancer-specific cytotoxicity and as a Live/dead cell imaging probe. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Ostruszka R, Zoppellaro G, Tomanec O, Pinkas D, Filimonenko V, Šišková K. Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging. NANOMATERIALS 2022; 12:nano12091425. [PMID: 35564133 PMCID: PMC9105226 DOI: 10.3390/nano12091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
Bovine serum albumin-embedded Au nanoclusters (BSA-AuNCs) are thoroughly probed by continuous wave electron paramagnetic resonance (CW-EPR), light-induced EPR (LEPR), and sequences of microscopic investigations performed via high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray analysis (EDS). To the best of our knowledge, this is the first report analyzing the BSA-AuNCs by CW-EPR/LEPR technique. Besides the presence of Au(0) and Au(I) oxidation states in BSA-AuNCs, the authors observe a significant amount of Au(II), which may result from a disproportionation event occurring within NCs: 2Au(I) → Au(II) + Au(0). Based on the LEPR experiments, and by comparing the behavior of BSA versus BSA-AuNCs under UV light irradiation (at 325 nm) during light off-on-off cycles, any energy and/or charge transfer event occurring between BSA and AuNCs during photoexcitation can be excluded. According to CW-EPR results, the Au nano assemblies within BSA-AuNCs are estimated to contain 6–8 Au units per fluorescent cluster. Direct observation of BSA-AuNCs by STEM and HR-TEM techniques confirms the presence of such diameters of gold nanoclusters in BSA-AuNCs. Moreover, in situ formation and migration of Au nanostructures are observed and evidenced after application of either a focused electron beam from HR-TEM, or an X-ray from EDS experiments.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| |
Collapse
|
46
|
Chen X, Liu D, Wu H, Ji J, Xue Z, Feng S. Sensitive determination of tobramycin using homocystine capped gold nanoclusters as probe by second-order scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120840. [PMID: 35007909 DOI: 10.1016/j.saa.2021.120840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
A novel photoluminescent Hcy-AuNCs has been developed through one-pot reduction method, to establish a tobramycin sensing by second-order scattering (SOS). Hcy-AuNCs could spontaneously assemble to small-scaled aggregation, resulting in remarkable intensity enhancement of scattered luminescence signals. The luminescence of Hcy-AuNCs could be clearly observed under ultraviolet lamp, when excited at 365 nm, a significant luminescent intensity at 741 nm was monitored in SOS spectra. The introduction of AuNPs would cause large-scaled aggregation of Hcy-AuNCs that was rapidly settled in the solution, resulting in the decrease of SOS intensity. Besides, the non-radiative energy transfer between AuNPs and Hcy-AuNCs would also reduce the luminescent intensity. However, the addition of tobramycin would cause the aggregation of AuNPs due to the electrostatic and covalent bonding between AuNPs and tobramycin, thus eliminating the interference of AuNPs. The luminescence of Hcy-AuNCs reappeared, exhibiting an optical response toward tobramycin. The good linearity was obtained in a wide range from 4 nM to 300 nM with a low detection limit of 0.27 nM. The selectivity was acceptable toward different types of antibiotics. Finally, the proposed method was successfully applied to the widely used tobramycin eye drops.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Huifang Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jiahui Ji
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
47
|
Chen Q, Xu C, Sun Z, Yang J, Chen F, Lin Z, Lin D, Jiang Y, Lin J. Development of S4A-BSA-Au NPs for enhanced anti-tumor therapy of canine breast cancer. NANOSCALE ADVANCES 2022; 4:1808-1814. [PMID: 36132165 PMCID: PMC9419510 DOI: 10.1039/d1na00640a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 06/15/2023]
Abstract
S4A ((1R,2R,3S)-1,2-propanediol acetal-zeylenone) is one of the derivatives of zeylenone and exhibits superior cytotoxicity against the canine breast cancer cell line CIPp. However, its poor aqueous solubility and toxicity to normal tissue limit its clinical application. Therefore, in order to enhance the anticancer effect of S4A, in this article, BSA/BSA-Au-nanocluster-aggregated core/shell nanoparticles (B-BANC-NPs) were prepared by using bovine serum albumin (BSA) and HAuCl4, and then we further synthesized S4A-BSA-Au NPs which were spherical, with a diameter of about 60 nm. In vitro cytotoxicity assessed by using CCK-8 assay demonstrated that the IC50 value of the S4A-BSA-Au NPs was 10.39 μg mL-1, which was not significantly different from that of S4A (10.45 μg mL-1). In vitro apoptosis assay showed that the apoptosis rate of cells treated with S4A-BSA-Au NPs was 20.12%, which was significantly higher than that of the control group treated with S4A (11.3%). Notably, S4A-BSA-Au NPs were shown to effectively accumulate at tumor sites with fluorescence tracing. Besides, the effect of S4A-BSA-Au NPs on SPARC expression was determined by western blotting, and the result showed that 24 h after applying S4A-BSA-Au NPs, SPARC expression in low, middle and high dosage groups was lower than that of the control group, and the tendency showed dose dependence. The results revealed that S4A-BSA-Au NPs could effectively improve the anti-tumor activity of S4A on canine breast cancer, which may be associated with their abilities to effectively accumulate within tumor and to reduce the expression of SPARC.
Collapse
Affiliation(s)
- Qi Chen
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine China
| | - Chengfang Xu
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine China
| | - Zhonghao Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Fan Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Zixiang Lin
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University No. 2, Yuanmingyuan West Road, Haidian District Beijing China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine China
| |
Collapse
|
48
|
Evaluation of noble metal nanostructure-serum albumin interactions in 2D and 3D systems: Thermodynamics and possible mechanisms. Adv Colloid Interface Sci 2022; 301:102616. [PMID: 35184020 DOI: 10.1016/j.cis.2022.102616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
In this review, we clearly highlight the importance of the detailed study of the interactions between noble metal colloids (nanoparticles (NPs) and nanoclusters (NCs)) with serum albumins (SAs) due to their rapidly growing presence in biomedical research. Besides the changes in the structure and optical property of SA, we demonstrate that the characteristic localized surface plasmon resonance (LSPR) feature of the colloidal noble metal NPs and the size- and structure-dependent photoluminescence (PL) property of the sub-nanometer sized NCs are also altered differently because of the interactions between them. Namely, for plasmonic NPs - SA interactions the PL quenching of SA (mainly static) is identified, while the SA cause PL enhancement of the ultra-small NCs after complexation. This review summarizes that the thermodynamic nature and the possible mechanisms of the binding processes are dependent partly on the size, morphology, and type of the noble metals, while the chemical structure as well as the charge of the stabilizing ligands have the most dominant effect on the change in optical features. In addition to the thermodynamic data and proposed binding mechanisms provided by three-dimensional spectroscopic techniques, the quantitative and real-time data of "quasi" two-dimensional sensor apparatus should also be considered to provide a comprehensive evaluation on many aspects of the particle/cluster - SA interactions.
Collapse
|
49
|
Maysinger D, Sanader Maršić Ž, Gran ER, Shobo A, Macairan JR, Zhang I, Perić Bakulić M, Antoine R, Multhaup G, Bonačić-Kouteckỳ V. Insights into the Impact of Gold Nanoclusters Au 10SG 10 on Human Microglia. ACS Chem Neurosci 2022; 13:464-476. [PMID: 35080850 DOI: 10.1021/acschemneuro.1c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of the current study is to uncover the impact of small liganded gold nanoclusters with 10 gold atoms and 10 glutathione ligands (Au10SG10) on several biomarkers in human microglia. We established the links connecting the atomically precise structure of Au10SG10 with their properties and changes in several biomolecules under oxidative stress. Au10SG10 caused the loss of mitochondrial metabolic activity, increased lipid peroxidation and translocation of an alarmin molecule, high mobility group box 1 (HMGB1), from the nucleus to the cytosol. Molecular modeling provided an insight into the location of amino acid interaction sites with Au10SG10 and the nature of bonds participating in these interactions. We show that Au10SG10 can bind directly to the defined sites of reduced, oxidized, and acetylated HMGB1. Further studies with similar complementary approaches merging live-cell analyses, determination of biomarkers, and cell functions could lead to optimized gold nanoclusters best suited for diagnostic and bioimaging purposes in neuroscience.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Republic of Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Evan Rizzel Gran
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, H3A 0C5 Montréal, Canada
| | - Issan Zhang
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Vlasta Bonačić-Kouteckỳ
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
50
|
Pniakowska A, Olesiak-Banska J. Plasmonic Enhancement of Two-Photon Excited Luminescence of Gold Nanoclusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030807. [PMID: 35164072 PMCID: PMC8838299 DOI: 10.3390/molecules27030807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/02/2022]
Abstract
Plasmonic-enhanced luminescence of single molecules enables imaging and detection of low quantities of fluorophores, down to individual molecules. In this work, we present two-photon excited luminescence of single gold nanoclusters, Au18(SG)14, in close proximity to bare gold nanorods (AuNRs). We observed 25-times enhanced emission of gold nanoclusters (AuNCs) in near infrared region, which was mainly attributed to the resonant excitation of localized surface plasmon resonance (LSPR) of AuNRs and spectral overlap of LSPR band with photoluminescence of AuNCs. This work is an initial step in application of combined nanoparticles: gold nanorods and ultrasmall nanoclusters in a wide range of multiphoton imaging and biosensing applications.
Collapse
|