1
|
Shen CJ, Hu SY, Hou CP, Shen CF, Cheng CM. T Cell Responses to SARS-CoV-2 in Vaccinated Pregnant Women: A Comparative Study of Pre-Pregnancy and During-Pregnancy Infections. Vaccines (Basel) 2024; 12:1208. [PMID: 39591111 PMCID: PMC11598868 DOI: 10.3390/vaccines12111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic has posed unprecedented challenges to global public health, particularly for vulnerable populations like pregnant women. This study delves into the T cell immune responses in pregnant women with confirmed SARS-CoV-2 infection, all of whom received three doses of a COVID-19 vaccine. Using the ELISpot assay, we measured T cell responses against SARS-CoV-2 spike S1 and nucleocapsid peptides in two groups: those infected before and during pregnancy. Our results showed weak to moderate correlations between T cell responses and neutralizing antibody levels, with no statistically significant differences between the two groups. T cell reactivity appeared to decrease over time post-diagnosis, regardless of infection timing. Intriguingly, over half of the participants maintained detectable T cell memory responses beyond one year post-infection, suggesting the long-term persistence of cellular immunity. These insights contribute to the understanding of COVID-19 immunology in pregnant women, highlighting the importance of considering both humoral and cellular immune responses in this high-risk population.
Collapse
Affiliation(s)
- Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | | | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| |
Collapse
|
2
|
Lord JM, Veenith T, Sullivan J, Sharma-Oates A, Richter AG, Greening NJ, McAuley HJC, Evans RA, Moss P, Moore SC, Turtle L, Gautam N, Gilani A, Bajaj M, Wain LV, Brightling C, Raman B, Marks M, Singapuri A, Elneima O, Openshaw PJM, Duggal NA. Accelarated immune ageing is associated with COVID-19 disease severity. Immun Ageing 2024; 21:6. [PMID: 38212801 PMCID: PMC10782727 DOI: 10.1186/s12979-023-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. RESULTS We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3-5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28-ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ([Formula: see text] = 0.174, p = 0.043), with a major influence being disease severity ([Formula: see text] = 0.188, p = 0.01). CONCLUSIONS Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.
Collapse
Affiliation(s)
- Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Tonny Veenith
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Neil J Greening
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Hamish J C McAuley
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Rachael A Evans
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nandan Gautam
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ahmed Gilani
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Manan Bajaj
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Louise V Wain
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Christopher Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Amisha Singapuri
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Omer Elneima
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK.
| |
Collapse
|
3
|
Bassanello M, Geppini R, Bonsembiante E, Coli U, Farencena A, D’Aquino M, Gambaro A, Buja A, Baldovin T. Risk of SARS-CoV-2 transmission in the close contacts in a small rural area in the Veneto Region (NE-Italy): past evidence for future scenarios. Front Public Health 2023; 11:1223109. [PMID: 37732097 PMCID: PMC10507707 DOI: 10.3389/fpubh.2023.1223109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Background During the first pandemic phase of COVID-19, an epidemiological study, named First survey, was conducted on the population of a small rural area in northern Italy. In spring 2020, the results showed how a prolonged lockdown slowed down the spread of the virus. Methods After contacting positive First Survey subjects and their families, those who decided to join voluntarily underwent a blood test to assess the presence of qualitative lgG about 2 months after the previous one. This was to determine if IgG persisted in individuals who tested positive in the First Survey as well as to assess the antibody status of their close family members, to determine if they were unintentionally infected. Results Based on serological analysis, 35.1% of the samples contained blood IgG. In subjects who tested positive during the First Survey, 62.5% remained IgG positive more than 2 months later. Among family members who were exposed to a positive relative, 23.7% were infected. Linear regression analysis showed that the presence of an infected person within a household resulted in the infection spreading to the others, but not excessively. Induced isolation extinguished the infection regardless of the extent of the contagion (intra-family or extra-family). Micro-outbreaks of SARS-Cov-2 infection which arose in the same household from extra-familial infections played a decisive role on the statistical significance of IgG-positive subjects (p < 0.001). Discussion The study reveal 52.6% of the IgG-positive subjects in the Second Survey came from the First Survey and 47.4% were family members previously in contact with positive subjects. Data suggest that there have been undiagnosed patients feeding the spread of the virus since the beginning of the pandemic. In conclusion, for future pandemics, it will be necessary: i) to ensure the rapid isolation of symptomatic patients and the early identification of their close contacts, ii) to carry out the maximum number of tests in the shortest possible time, both on symptomatic and asymptomatic subjects, and iii) to implement information campaigns to make people aware of their risks, and implement clear, non-conflicting communication.
Collapse
Affiliation(s)
- Marco Bassanello
- Emergency and Health Department, Monastier di Treviso Hospital, Treviso, Italy
- Hygiene and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, School of Medicine and Surgery, University of Padua, Padua, Italy
| | - Ruggero Geppini
- Hygiene and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, School of Medicine and Surgery, University of Padua, Padua, Italy
| | | | - Ugo Coli
- Health Department, Monastier di Treviso Hospital, Treviso, Italy
| | - Aldo Farencena
- Laboratory and Microbiology Monastier di Treviso Hospital, Treviso, Italy
| | | | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca’ Foscari University of Venice, Venice, Italy
| | - Alessandra Buja
- Hygiene and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, School of Medicine and Surgery, University of Padua, Padua, Italy
| | - Tatjana Baldovin
- Hygiene and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, School of Medicine and Surgery, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Song YC, Liu SJ, Lee HJ, Liao HC, Liu CT, Wu MY, Yen HR. Humoral and cellular immunity in three different types of COVID-19 vaccines against SARS-CoV-2 variants in a real-world data analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:705-717. [PMID: 37055256 PMCID: PMC10065040 DOI: 10.1016/j.jmii.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/07/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND An effective vaccine response is currently a critical issue in the control of COVID-19. Little is known about humoral and cellular immunity comparing protein-based vaccine with other types of vaccines. The relevance of basal immunity to antibody production is also unknown. METHODS Seventy-eight individuals were enrolled in the study. The primary outcome were the level of spike-specific antibodies and neutralizing antibodies measured by ELISA. Secondary measures included memory T cells and basal immunity estimated by flow cytometry and ELISA. Correlations for all parameters were calculated using the nonparametric Spearman correlation method. RESULTS We observed that two doses of mRNA-based Moderna mRNA-1273 (Moderna) vaccine produced the highest total spike-binding antibody and neutralizing ability against the wild-type (WT), Delta, and Omicron variants. The protein-based MVC-COV1901 (MVC) vaccine developed in Taiwan produced higher spike-binding antibodies against Delta and Omicron variants and neutralizing ability against the WT strain than the adenovirus-based AstraZeneca-Oxford AZD1222 (AZ) vaccine. Moderna and AZ vaccination produced more central memory T cells in PBMC than the MVC vaccine. However, the MVC vaccine had the lowest adverse effects compared to the Moderna and AZ vaccines. Surprisingly, the basal immunity represented by TNF-α, IFN-γ, and IL-2 prior to vaccination was negatively correlated with the production of spike-binding antibodies and neutralizing ability. CONCLUSION This study compared memory T cells, total spike-binding antibody levels, and neutralizing capacity against WT, Delta, and Omicron variants between the MVC vaccine and the widely used Moderna and AZ vaccines, which provides valuable information for future vaccine development strategies.
Collapse
Affiliation(s)
- Ying-Chyi Song
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Ju Lee
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chuan-Teng Liu
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
5
|
Postovskaya A, Vujkovic A, de Block T, van Petersen L, van Frankenhuijsen M, Brosius I, Bottieau E, Van Dijck C, Theunissen C, van Ierssel SH, Vlieghe E, Bartholomeus E, Mullan K, Adriaensen W, Vanham G, Ogunjimi B, Laukens K, Vercauteren K, Meysman P. Leveraging T-cell receptor - epitope recognition models to disentangle unique and cross-reactive T-cell response to SARS-CoV-2 during COVID-19 progression/resolution. Front Immunol 2023; 14:1130876. [PMID: 37325653 PMCID: PMC10264683 DOI: 10.3389/fimmu.2023.1130876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Despite the general agreement on the significance of T cells during SARS-CoV-2 infection, the clinical impact of specific and cross-reactive T-cell responses remains uncertain. Understanding this aspect could provide insights for adjusting vaccines and maintaining robust long-term protection against continuously emerging variants. To characterize CD8+ T-cell response to SARS-CoV-2 epitopes unique to the virus (SC2-unique) or shared with other coronaviruses (CoV-common), we trained a large number of T-cell receptor (TCR) - epitope recognition models for MHC-I-presented SARS-CoV-2 epitopes from publicly available data. These models were then applied to longitudinal CD8+ TCR repertoires from critical and non-critical COVID-19 patients. In spite of comparable initial CoV-common TCR repertoire depth and CD8+ T-cell depletion, the temporal dynamics of SC2-unique TCRs differed depending on the disease severity. Specifically, while non-critical patients demonstrated a large and diverse SC2-unique TCR repertoire by the second week of the disease, critical patients did not. Furthermore, only non-critical patients exhibited redundancy in the CD8+ T-cell response to both groups of epitopes, SC2-unique and CoV-common. These findings indicate a valuable contribution of the SC2-unique CD8+ TCR repertoires. Therefore, a combination of specific and cross-reactive CD8+ T-cell responses may offer a stronger clinical advantage. Besides tracking the specific and cross-reactive SARS-CoV-2 CD8+ T cells in any TCR repertoire, our analytical framework can be expanded to more epitopes and assist in the assessment and monitoring of CD8+ T-cell response to other infections.
Collapse
Affiliation(s)
- Anna Postovskaya
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alexandra Vujkovic
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tessa de Block
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lida van Petersen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Caroline Theunissen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sabrina H. van Ierssel
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, Antwerp University Hospital, Edegem, Belgium
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Erika Vlieghe
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Kerry Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Koen Vercauteren
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Akhtar E, Mily A, Sarker P, Chanda BC, Haque F, Kuddusi RU, Haq MA, Lourda M, Brighenti S, Raqib R. Immune cell landscape in symptomatic and asymptomatic SARS-CoV-2 infected adults and children in urban Dhaka, Bangladesh. Immunobiology 2023; 228:152350. [PMID: 36822063 PMCID: PMC9938758 DOI: 10.1016/j.imbio.2023.152350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/08/2022] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES The study of cellular immunity to SARS-CoV-2 is crucial for evaluating the course of the COVID-19 disease and for improving vaccine development. We aimed to assess the phenotypic landscape of circulating lymphocytes and mononuclear cells in adults and children who were seropositive to SARS-CoV-2 in the past 6 months. METHODS Blood samples (n = 350) were collected in a cross-sectional study in Dhaka, Bangladesh (Oct 2020-Feb 2021). Plasma antibody responses to SARS-CoV-2 were determined by an electrochemiluminescence immunoassay while lymphocyte and monocyte responses were assessed using flow cytometry including dimensionality reduction and clustering algorithms. RESULTS SARS-CoV-2 seropositivity was observed in 52% of adults (18-65 years) and 56% of children (10-17 years). Seropositivity was associated with reduced CD3+T cells in both adults (beta(β) = -2.86; 95% Confidence Interval (CI) = -5.98, 0.27) and children (β = -8.78; 95% CI = -13.8, -3.78). The frequencies of T helper effector (CD4+TEFF) and effector memory cells (CD4+TEM) were increased in seropositive compared to seronegative children. In adults, seropositivity was associated with an elevated proportion of cytotoxic T central memory cells (CD8+TCM). Overall, diverse manifestations of immune cell dysregulations were more prominent in seropositive children compared to adults, who previously had COVID-like symptoms. These changes involved reduced frequencies of CD4+TEFF cells and CD163+CD64+ classical monocytes, but increased levels of intermediate or non-classical monocytes, as well as CD8+TEM cells in symptomatic children. CONCLUSION Seropositive individuals in convalescence showed increased central and effector memory T cell phenotypes and pro-resolving/healing monocyte phenotypes compared to seronegative subjects. However, seropositive children with a previous history of COVID-like symptoms, displayed an ongoing innate inflammatory trait.
Collapse
Affiliation(s)
- Evana Akhtar
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Protim Sarker
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Farjana Haque
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Md Ahsanul Haq
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh.
| |
Collapse
|
7
|
Peng F, Yi Q, Zhang Q, Deng J, Li C, Xu M, Wu C, Zhong Y, Wu S. Performance of D-dimer to lymphocyte ratio in predicting the mortality of COVID-19 patients. Front Cell Infect Microbiol 2022; 12:1053039. [PMID: 36590587 PMCID: PMC9797859 DOI: 10.3389/fcimb.2022.1053039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nowadays, there is still no effective treatment developed for COVID-19, and early identification and supportive therapies are essential in reducing the morbidity and mortality of COVID-19. This is the first study to evaluate D-dimer to lymphocyte ratio (DLR) as a prognostic utility in patients with COVID-19. METHODS We retrospectively analyzed 611 patients and separated them into groups of survivors and non-survivors. The area under the curve (AUC) of various predictors integrated into the prognosis of COVID-19 was compared using the receiver operating characteristic (ROC) curve. In order to ascertain the interaction between DLR and survival in COVID-19 patients, the Kaplan-Meier (KM) curve was chosen. RESULTS Age (OR = 1.053; 95% CI, 1.022-1.086; P = 0.001), NLR (OR = 1.045; 95% CI, 1.001-1.091; P = 0.046), CRP (OR = 1.010; 95% CI, 1.005-1.016; P < 0.001), PT (OR = 1.184; 95% CI, 1.018-1.377; P = 0.029), and DLR (OR = 1.048; 95% CI, 1.018-1.078; P = 0.001) were the independent risk factors related with the mortality of COVID-19. DLR had the highest predictive value for COVID-19 mortality with the AUC of 0.924. Patients' survival was lower when compared to those with lower DLR (Log Rank P <0.001). CONCLUSION DLR might indicate a risk factor in the mortality of patients with COVID-19.
Collapse
Affiliation(s)
- Fei Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Yi
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quan Zhang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Li
- Department of respiratory medicine, Hunan Provincial People’s Hospital, Changsha, China
| | - Min Xu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenfang Wu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Liang D, Zhang G, Huang M, Wang L, Hong W, Li A, Liang Y, Wang T, Lu J, Ou M, Ren Z, Lu H, Zheng R, Cai X, Pan X, Xia J, Ke C. Progress of the COVID-19: Persistence, Effectiveness, and Immune Escape of the Neutralizing Antibody in Convalescent Serum. Pathogens 2022; 11:pathogens11121531. [PMID: 36558864 PMCID: PMC9782332 DOI: 10.3390/pathogens11121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a new coronavirus causing Coronavirus Disease 2019 (COVID-19), is a major topic of global human health concern. The Delta and Omicron variants have caused alarming responses worldwide due to their high transmission rates and a number of mutations. During a one-year follow-up (from June 2020 to June 2021), we included 114 patients with SARS-CoV-2 infection to study the long-term dynamics and the correlative factors of neutralizing antibodies (NAbs) in convalescent patients. The blood samples were collected at two detection time points (at 6 and 12 months after discharge). We evaluated the NAbs response of discharged patients by performing a micro-neutralization assay using a SARS-CoV-2 wild type. In addition, a total of 62 serum samples from discharged COVID-19 patients with Alpha, Beta, Delta, and Omicron variants of infection were enrolled to perform cross-neutralization tests using the original SARS-CoV-2 strain and VOCs variants (including Alpha, Beta, Gamma, Delta, and Omicron variants) and to assess the ability of NAbs against the SARS-CoV-2 variants. NAbs seroconversion occurred in 91.46% of patients (n = 82) in the first timepoint and in 89.29% of patients (n = 84) in the second detection point, and three kinds of NAbs kinetics curves were perceived. The NAbs levels in young patients had higher values than those in elder patients. The kinetics of disease duration was accompanied by an opposite trend in NAbs levels. Despite a declining NAbs response, NAbs activity was still detectable in a substantial proportion of recovered patients one year after discharge. Compared to the wild strain, the Omicron strain could lead to a 23.44-, 3.42-, 8.03-, and 2.57-fold reduction in neutralization capacity in "SAlpha", "SBeta", "SDelta", and "SOmicron", respectively, and the NAbs levels against the Omicron strain were significantly lower than those of the Beta and Delta variants. Remarkably, the NAbs activity of convalescent serum with Omicron strain infection was most obviously detectable against six SARS-CoV-2 strains in our study. The role of the vaccination history in NAbs levels further confirmed the previous study that reported vaccine-induced NAbs as the convincing protection mechanism against SARS-CoV-2. In conclusion, our findings highlighted the dynamics of the long-term immune responses after the disappearance of symptoms and revealed that NAbs levels varied among all types of convalescent patients with COVID-19 and that NAbs remained detectable for one year, which is reassuring in terms of protection against reinfection. Moreover, a moderate correlation between the duration of disease and Nabs titers was observed, whereas age was negatively correlated with Nabs titers. On the other hand, compared with other VOCs, the Omicron variant was able to escape the defenses of the immune system more significantly, and the convalescent serum infected with the Omicron variant played a critical part in protection against different SARS-CoV-2 variants. Recovery serum from individuals vaccinated with inactivated vaccine preceding infection with the Omicron strain had a high efficacy against the original strain and the VOCs variants, whereas the convalescent serum of persons vaccinated by inactivated vaccine prior to infection with the Delta variant was only potent against the wild-type strain.
Collapse
Affiliation(s)
- Dan Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Emergency Key Team, Guangzhou National Laboratory, Guangzhou 510700, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Guanting Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Mingxing Huang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Li Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenshan Hong
- MPH Education Center, Shantou University Medical College, Shantou 515041, China
| | - An’an Li
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yufeng Liang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Tao Wang
- MPH Education Center, Shantou University Medical College, Shantou 515041, China
| | - Jiahui Lu
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Mengdang Ou
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhongqiang Ren
- Second People’s Hospital of Zhongshan, Zhongshan 528447, China
| | - Huiyi Lu
- Second People’s Hospital of Zhongshan, Zhongshan 528447, China
| | - Rutian Zheng
- Huizhou Central People’s Hospital, Huizhou 516001, China
| | - Xionghui Cai
- Huizhou Central People’s Hospital, Huizhou 516001, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jinyu Xia
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Changwen Ke
- Emergency Key Team, Guangzhou National Laboratory, Guangzhou 510700, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- MPH Education Center, Shantou University Medical College, Shantou 515041, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Kakkassery H, Carpenter E, Patten PEM, Irshad S. Immunogenicity of SARS-CoV-2 vaccines in patients with cancer. Trends Mol Med 2022; 28:1082-1099. [PMID: 35999131 PMCID: PMC9345889 DOI: 10.1016/j.molmed.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023]
Abstract
Transmission of the SARS-CoV-2 virus and its corresponding disease (COVID-19) has been shown to impose a higher burden on cancer patients than on the general population. Approved vaccines for use include new technology mRNA vaccines such as BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), and nonreplicating viral vector vaccines such as Ad26.COV2.S (Johnson & Johnson) and AZD1222 (AstraZeneca). Impaired or delayed humoral and diminished T-cell responses are evident in patients with cancer, especially in patients with haematological cancers or those under active chemotherapy. Herein we review the current data on vaccine immunogenicity in cancer patients, including recommendations for current practice and future research.
Collapse
Affiliation(s)
- Helen Kakkassery
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Esme Carpenter
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Piers E M Patten
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK; Department of Haematological Medicine, King's College Hospital, London, UK
| | - Sheeba Irshad
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK; Breast Cancer Now Research Unit, King's College London, London, UK; Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
10
|
Bispo ECI, Silva-Carvalho AÉ, Sousa MRR, Neves FDAR, Carvalho JL, Arganaraz ER, Saldanha-Araujo F. Differential peripheral blood mononuclear cell reactivity against SARS-CoV-2 proteins in naïve and previously infected subjects following COVID-19 vaccination. CLINICAL IMMUNOLOGY COMMUNICATIONS 2022; 2:172-176. [PMID: 38013967 PMCID: PMC9714124 DOI: 10.1016/j.clicom.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The decline in vaccine efficacy and the risk of reinfection by SARS-CoV-2 make new studies important to better characterize the immune response against the virus and its components. Here, we investigated the pattern of activation of T-cells and the expression of inflammatory factors by PBMCs obtained from naïve and previously infected subjects following COVID-19 vaccination, after PBMCs stimulation with S1, RBD, and N-RBD SARS-CoV-2 proteins. PBMCs showed low levels of ACE2 and TMPRSS2 transcripts, which were not modulated by the exposure of these cells to SARS-CoV-2 proteins. Compared to S1 and RBD, N-RBD stimulation showed a greater ability to stimulate T-cell reactivity, according to CD25 and CD69 markers. Interestingly, T-cell reactivity was more pronounced in vaccinated subjects with prior SARS-CoV-2 infection than in vaccinated donors who never had been diagnosed with COVID-19. Finally, N-RBD stimulation promoted greater expression of IL-6 and IFN-γ in PBMCs, which reinforces the greater immunogenic potential of this protein in the vaccinated subjects. These data suggest that PBMCs from previously infected and vaccinated subjects are more reactive than those derived from just vaccinated donors. Moreover, the N-RBD together viral proteins showed a greater stimulatory capacity than S1 and RBD viral proteins.
Collapse
Affiliation(s)
- Elizabete Cristina Iseke Bispo
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| | - Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| | - Marielly Reis Resende Sousa
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| | - Francisco de Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| | - Juliana Lott Carvalho
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| | - Enrique Roberto Arganaraz
- Laboratório de Virologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF 70.910-900, Brasil
| |
Collapse
|
11
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Gurevich M, Zilkha‐Falb R, Sonis P, Magalashvili D, Dolev M, Mandel M, Menascu S, Achiron A. COVID-19 Alpha Variant (B.1.1.7): Humoral, memory B and T cells in COVID-19 pediatric convalescents. Pediatr Allergy Immunol 2022; 33:e13863. [PMID: 36282137 PMCID: PMC9827896 DOI: 10.1111/pai.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Studies of anti-SARS-CoV-2 humoral and adaptive response in COVID-19 non-vaccinated pediatric convalescents are controversial and further evidence from the pediatric population are needed. OBJECTIVES To elucidate SARS-CoV-2 humoral and memory B- and T-cells responses in pediatric convalescents as compared with the adult. METHODS Blood samples were obtained from 80 non-vaccinated, IgG-positive, COVID-19 convalescents (age 8.0-61.0 years), 4.0 months from onset. Frequency of responders and magnitudes of SARS-COV-2 IgG, memory B-cells (MBC) and IFNg- and IL2-secreting memory T-cells (MTC) in response to immuno-dominant peptide pools in pediatric, young adults and middle-aged adults with onset age 8-18 years (N = 20), 19-39 years (N = 30) and 40-61 years (N = 30), respectively, were analyzed. SARS-CoV-2 IgG were detected by ELISA (Euroimmun, Germany). MBC, IFNg-, IL2- and IFNg+IL2-secreting MTC (IFNg-MTC, IL2-MTC and IFNg+IL2-MTC) were detected using FluoroSpot (Mabtech, Sweden). RESULTS MBC level was lower in pediatric as compared with the middle-aged adults (median 12.75 interquartile range [IQR] 4.27-33.7 and 32.0 IQR 6.0-124.2, respectively, p = .003). MBC level in young adults was lower than in middle-aged adults (median 18.5 IQR 1.7-43.8 and 32.0 IQR 6.0-124.2, respectively, p = .006). The level of IL2-MTC was lower in the pediatric group as compared with middle aged-adults (median 2.1 IQR 0-16.9 and 28.6 IQR 11-49.6, respectively, p < .03) and in young adults lower than in middle-aged adults (median 1.45 IQR 0-18.6 and 28.6 IQR 11-49.6, respectively, p = .02). In addition, the level of IFNg-MTC was lower in pediatric as compared with young adults (median 4.25 IQR 0.0-15.0 and 20.9 IQR 0-75.2, respectively, p = .05). The level of IgG was comparable between pediatric and both young and middle-aged adult groups (4.82 ± 2.95, 3.70 ± 2.65 and 4.9 ± 2.94, respectively, p > .34). CONCLUSION Non-vaccinated COVID-19 pediatric convalescents have lower adaptive immune responses than adults sustaining the recommendation for vaccination of the pediatric population.
Collapse
Affiliation(s)
- Michael Gurevich
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Rina Zilkha‐Falb
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - Polina Sonis
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - David Magalashvili
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
| | - Mark Dolev
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Mathilda Mandel
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Shay Menascu
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Anat Achiron
- Laboratory of Neuroimmunology, Multiple Sclerosis Center, Sheba Medical CenterRamat‐GanIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
13
|
Margiana R, Sharma SK, Khan BI, Alameri AA, Opulencia MJC, Hammid AT, Hamza TA, Babakulov SK, Abdelbasset WK, Jawhar ZH. RETRACTED: The pathogenicity of COVID-19 and the role of pentraxin-3: An updated review study. Pathol Res Pract 2022; 238:154128. [PMID: 36137396 PMCID: PMC9476367 DOI: 10.1016/j.prp.2022.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. In investigating concerns regarding the contributions of the authors to this article, the editors reached out to the authors for an explanation. In addition to the concerns regarding the contribution of each author, the editors discovered suspicious changes in authorship between the original submission and the revised version of this paper. The names of the authors Ameer A Alameri and Zanko Hassan Jawhar were added to the revised version of the article without explanation and without the exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship. The authors were unable to provide a reasonable explanation for either of the issues raised. The editor therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India.
| | | | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical laboratory techniques department, Al-Mustaqbal University College, Babylon, Iraq
| | - Sharaf Khamrakulovich Babakulov
- Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| |
Collapse
|
14
|
Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev 2022; 310:27-46. [PMID: 35733376 PMCID: PMC9349657 DOI: 10.1111/imr.13089] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Zhao P, Zou J, Zhou F, Zhu Y, Song Q, Yu D, Li X. Immune features of COVID-19 convalescent individuals revealed by a single-cell RNA sequencing. Int Immunopharmacol 2022; 108:767. [PMID: 35453072 PMCID: PMC9013654 DOI: 10.1016/j.intimp.2022.108767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
It remains unclear whether immune responses following natural infection can be sustained or potentially prove critical for long-term immune protection against SARS-CoV-2 reinfection. Here, we systematically mapped the phenotypic landscape of SARS-CoV-2-specific immune responses in peripheral blood samples of convalescent patients with COVID-19 by single-cell RNA sequencing. The relative percentage of the CD8 + effector memory subset was increased in both convalescent moderate and severe cases, but NKT-CD160 and marginal zone B clusters were decreased. Innate immune responses were attenuated reflected by decreased expression of genes involved in interferon-gamma, leukocyte migration and neutrophil mediated immune response in convalescent COVID-19 patients. Functions of T cell were strengthened in convalescent COVID-19 patients by clear endorsement of increased expression of genes involved in biological processes of regulation of T cell activation, differentiation and cell-cell adhesion. In addition, T cell mediated immune responses were enhanced with remarkable clonal expansions of TCR and increased transition of CD4 + effector memory and CD8 + effector-GNLY in severe subjects. B cell immune responses displayed complicated and dualfunctions during convalescence of COVID-19, providing a novel mechanism that B cell activation was observed especially in moderate while humoral immune response was weakened. Interestingly, HLA class I genes displayed downregulation while HLA class II genes upregulation in both T and B cell subsets in convalescent individuals. Our results showed that innate immunity was declined but SARS-CoV-2-specific T cell responses were retained even strengthened whereas complicated and dualfunctions of B cells, including declined humoral immunity were presented at several months following infections.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025 China
| | - Jiahua Zou
- Cancer Center, Huanggang Hospital of Traditional Chinese Medicine, Huanggang 438000, China
| | - Fan Zhou
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025 China
| | - Yanyan Zhu
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025 China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
16
|
T cell responses to SARS-CoV-2 in humans and animals. J Microbiol 2022; 60:276-289. [PMID: 35157219 PMCID: PMC8852923 DOI: 10.1007/s12275-022-1624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, first emerged in 2019. Antibody responses against SARS-CoV-2 have been given a lot of attention. However, the armamentarium of humoral and T cells may have differing roles in different viral infections. Though the exact role of T cells in COVID-19 remains to be elucidated, prior experience with human coronavirus has revealed an essential role of T cells in the outcomes of viral infections. Moreover, an increasing body of evidence suggests that T cells might be effective against SARS-CoV-2. This review summarizes the role of T cells in mouse CoV, human pathogenic respiratory CoV in general and SARS-CoV-2 in specific.
Collapse
|
17
|
Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines (Basel) 2022; 10:242. [PMID: 35214700 PMCID: PMC8877307 DOI: 10.3390/vaccines10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the T cell response to SARS-CoV-2 is critical to vaccine development, epidemiological surveillance, and control strategies for this disease. This review provides data from studies of the immune response in coronavirus infections. It describes general mechanisms of immunity, its T cell components, and presents a detailed scheme of the T cell response in SARS-CoV-2 infection, including from the standpoint of determining the most promising targets for assessing its level. In addition, we reviewed studies investigating post-vaccination immunity in the development of vaccines against COVID-19. This review also includes the peculiarities of immunity in different age and gender groups, and in the presence of a number of factors, for example, comorbidity or disease severity. This study summarizes the most informative methods for assessing the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dmitry Kudlay
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ilya Kofiadi
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Immunology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Immunology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
18
|
SARS-COV-2 Memory B and T Cells Profile in Mild COVID-19 Convalescents subjects. Int J Infect Dis 2021; 115:208-214. [PMID: 34896265 PMCID: PMC8653411 DOI: 10.1016/j.ijid.2021.12.309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES . Antiviral adaptive immunity involves memory B-(MBC) and T-cells (MTC), however their dynamics in SARS-CoV-2 convalescents warrant further investigation. METHODS . In the cross-sectional and longitudinal study, we evaluated blood-derived MBC- and MTC-responses in 68 anti-spike IgG-positive mild-COVID-19 convalescents at visit 1 between 1-7 months (median 4.1 months) after disease onset. SARS-CoV-2 anti-spike IgG was performed by ELISA, MBC by SARS-COV-2 specific receptor binding domain (RBD) Elispot and Interferon gamma (IFNg), interleukin 2 (IL2) and IFNg+IL2 secreting MTC by IFNg and IL2 SARS-CoV-2 FluoroSpot. For 24 patients sampled at first visit, the IgG, MBC and MTC analysis were also performed 3 months later at second visit. RESULTS . Seventy two percent were both MBC- and MTC-positive, 18 % - MBC-positive and MTC-negative, and 10% - MTC-positive and MBC-negative. The peak of MBC-response level was detected at 3 months after COVID-19 onset and persisted up to 7 months post infection. A significant MTC-levels were detected one month after onset in response to S1, S2_N and SNMO peptide pools. The frequency and magnitude of MTC response to SNMO was higher than to S1 and S2_N. Longitudinal analysis demonstrated that even when specific humoral immunity declined, the cellular immunity persisted. CONCLUSION . Our findings demonstrate durability of adaptive cellular immunity at least for 7-months after SARS-CoV-2 infection that suggest long-lasting protection.
Collapse
|
19
|
Harrington P, de Lavallade H, Doores KJ, O'Reilly A, Seow J, Graham C, Lechmere T, Radia D, Dillon R, Shanmugharaj Y, Espehana A, Woodley C, Saunders J, Curto-Garcia N, O'Sullivan J, Raj K, Kordasti S, Malim MH, Harrison CN, McLornan DP. Single dose of BNT162b2 mRNA vaccine against SARS-CoV-2 induces high frequency of neutralising antibody and polyfunctional T-cell responses in patients with myeloproliferative neoplasms. Leukemia 2021; 35:3573-3577. [PMID: 34023850 PMCID: PMC8140572 DOI: 10.1038/s41375-021-01300-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Patrick Harrington
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- School of Cancer and Pharmaceutical Science, King's College London, London, UK
| | - Hugues de Lavallade
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- School of Cancer and Pharmaceutical Science, King's College London, London, UK
- Department of Haematological Medicine, King's College London School of Medicine, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Amy O'Reilly
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Deepti Radia
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Richard Dillon
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Department of Medicine and Molecular Genetics, King's College London, London, UK
| | - Yogita Shanmugharaj
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Andreas Espehana
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Claire Woodley
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Jamie Saunders
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Natalia Curto-Garcia
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Jennifer O'Sullivan
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Kavita Raj
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Shahram Kordasti
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- School of Cancer and Pharmaceutical Science, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Claire N Harrison
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- School of Cancer and Pharmaceutical Science, King's College London, London, UK
| | - Donal P McLornan
- Department of Clinical Haematology, Guy's & St Thomas' NHS Foundation Trust, London, UK.
- School of Cancer and Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
20
|
Meir J, Abid MA, Abid MB. State of the CAR-T: Risk of Infections with Chimeric Antigen Receptor T-Cell Therapy and Determinants of SARS-CoV-2 Vaccine Responses. Transplant Cell Ther 2021; 27:973-987. [PMID: 34587552 PMCID: PMC8473073 DOI: 10.1016/j.jtct.2021.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown unprecedented response rates in patients with relapsed/refractory (R/R) hematologic malignancies. Although CAR-T therapy gives hope to heavily pretreated patients, the rapid commercialization and cumulative immunosuppression of this therapy predispose patients to infections for a prolonged period. CAR-T therapy poses distinctive short- and long-term toxicities and infection risks among patients who receive CAR T-cells after multiple prior treatments, often including hematopoietic cell transplantation. The acute toxicities include cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. The long-term B cell depletion, hypogammaglobulinemia, and cytopenia further predispose patients to severe infections and abrogate the remission success achieved by the living drug. These on-target-off-tumor toxicities deplete B-cells across the entire lineage and further diminish immune responses to vaccines. Early observational data suggest that patients with hematologic malignancies may not mount adequate humoral and cellular responses to SARS-CoV-2 vaccines. In this review, we summarize the immune compromising factors indigenous to CAR-T recipients. We discuss the immunogenic potential of different SARS-CoV-2 vaccines for CAR-T recipients based on the differences in vaccine manufacturing platforms. Given the lack of data related to the safety and efficacy of SARS-CoV-2 vaccines in this distinctively immunosuppressed cohort, we summarize the infection risks associated with Food and Drug Administration-approved CAR-T constructs and the potential determinants of vaccine responses. The review further highlights the potential need for booster vaccine dosing and the promise for heterologous prime-boosting and other novel vaccine strategies in CAR-T recipients. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Juliet Meir
- Department of Medicine, Westchester Medical Center, Valhalla, New York
| | - Muhammad Abbas Abid
- Department of Hematopathology & Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Bilal Abid
- Divisions of Infectious Diseases and Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
21
|
Roberts LM, Jessop F, Wehrly TD, Bosio CM. Cutting Edge: Lung-Resident T Cells Elicited by SARS-CoV-2 Do Not Mediate Protection against Secondary Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2399-2404. [PMID: 34607940 DOI: 10.4049/jimmunol.2100608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023]
Abstract
Immunity to pulmonary infection typically requires elicitation of lung-resident T cells that subsequently confer protection against secondary infection. The presence of tissue-resident T cells in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients is unknown. Using a sublethal mouse model of coronavirus disease 2019, we determined if SARS-CoV-2 infection potentiated Ag-specific pulmonary resident CD4+ and CD8+ T cell responses and if these cells mediated protection against secondary infection. S protein-specific T cells were present in resident and circulating populations. However, M and N protein-specific T cells were detected only in the resident T cell pool. Using an adoptive transfer strategy, we found that T cells from SARS-CoV-2 immune animals did not protect naive mice. These data indicate that resident T cells are elicited by SARS-CoV-2 infection but are not sufficient for protective immunity.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| |
Collapse
|
22
|
Intradermal-delivered DNA vaccine induces durable immunity mediating a reduction in viral load in a rhesus macaque SARS-CoV-2 challenge model. CELL REPORTS MEDICINE 2021; 2:100420. [PMID: 34604818 PMCID: PMC8479327 DOI: 10.1016/j.xcrm.2021.100420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/25/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.
Collapse
|
23
|
Wang K, Long QX, Deng HJ, Hu J, Gao QZ, Zhang GJ, He CL, Huang LY, Hu JL, Chen J, Tang N, Huang AL. Longitudinal Dynamics of the Neutralizing Antibody Response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Clin Infect Dis 2021; 73:e531-e539. [PMID: 32745196 PMCID: PMC7454328 DOI: 10.1093/cid/ciaa1143] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) in patients with COVID-19. METHODS Blood samples (n = 173) were collected from 30 patients with COVID-19 over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. RESULTS SARS-CoV-2-specific NAb titers were low for the first 7-10 days after symptom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 days (interquartile range [IQR], 24-59 days) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR, 19.6-42.4%). NAb titers increased over time in parallel with the rise in immunoglobulin G (IgG) antibody levels, correlating well at week 3 (r = 0.41, P < .05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including stem cell factor (SCF), TNF-related apoptosis-inducing ligand (TRAIL), and macrophage colony-stimulating factor (M-CSF). CONCLUSIONS These data provide useful information regarding dynamic changes in NAbs in patients with COVID-19 during the acute and convalescent phases.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan-Xin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hai-Jun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing-Zhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gui-Ji Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang-Long He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu-Yi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Soni B, Kabra R, Singh S. Quantitative Insight into Immunopathology of SARS-CoV-2 Infection. J Interferon Cytokine Res 2021; 41:244-257. [PMID: 34280026 DOI: 10.1089/jir.2020.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV-2), which initiated as an endemic from China, converted into a pandemic disease worldwide within a couple of months' time. This has led researchers from all over the world to come together to find and develop possible curative or preventive strategies, including vaccine development, drug repurposing, plasma therapy, drug discovery, and cytokine-based therapies. Herein, we are providing, a summarized overview of immunopathology of the SARS-CoV-2 along with various therapeutic strategies undertaken to COVID-19 with a vision for their possible outcome. High levels of proinflammatory cytokines such as interleukin (IL)-7, G-CSF, IP-10, TNF-α, monocyte chemoattractant protein-1 (MCP-1), and IL-2 in severe cases of COVID-19 have been observed. Immune responses play significant roles in the determination of SARS-CoV-2 pathogenesis. Thus, exploring the underlying mechanism of the immune system response to SARS-CoV-2 infection would help in the prediction of disease course and selection of intensive care and therapeutic strategy. As an effort toward developing possible therapeutics for COVID-19, we highlighted different types of vaccines, which are under clinical trials, and also discussed the impact of genome variability on efficacy of vaccine under development.
Collapse
|
25
|
Nielsen SS, Vibholm LK, Monrad I, Olesen R, Frattari GS, Pahus MH, Højen JF, Gunst JD, Erikstrup C, Holleufer A, Hartmann R, Østergaard L, Søgaard OS, Schleimann MH, Tolstrup M. SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity. EBioMedicine 2021; 68:103410. [PMID: 34098342 PMCID: PMC8176920 DOI: 10.1016/j.ebiom.2021.103410] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic currently prevails worldwide. To understand the immunological signature of SARS-CoV-2 infections and aid the search and evaluation of new treatment modalities and vaccines, comprehensive characterization of adaptive immune responses towards SARS-CoV-2 is needed. METHODS We included 203 recovered SARS-CoV-2 infected patients in Denmark between April 3rd and July 9th 2020, at least 14 days after COVID-19 symptom recovery. The participants had experienced a range of disease severities from asymptomatic to severe. We collected plasma, serum and PBMC's for analysis of SARS-CoV-2 specific antibody response by Meso Scale analysis including other coronavirus strains, ACE2 competition, IgA ELISA, pseudovirus neutralization capacity, and dextramer flow cytometry analysis of CD8+ T cells. The immunological outcomes were compared amongst severity groups within the cohort, and 10 pre-pandemic SARS-CoV-2 negative controls. FINDINGS We report broad serological profiles within the cohort, detecting antibody binding to other human coronaviruses. 202(>99%) participants had SARS-CoV-2 specific antibodies, with SARS-CoV-2 neutralization and spike-ACE2 receptor interaction blocking observed in 193(95%) individuals. A significant positive correlation (r=0.7804) between spike-ACE2 blocking antibody titers and neutralization potency was observed. Further, SARS-CoV-2 specific CD8+ T-cell responses were clear and quantifiable in 95 of 106(90%) HLA-A2+ individuals. INTERPRETATION The viral surface spike protein was identified as the dominant target for both neutralizing antibodies and CD8+ T-cell responses. Overall, the majority of patients had robust adaptive immune responses, regardless of their disease severity. FUNDING This study was supported by the Danish Ministry for Research and Education (grant# 0238-00001B) and The Danish Innovation Fund (grant# 0208-00018B).
Collapse
Affiliation(s)
- Stine Sf Nielsen
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Line K Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Ida Monrad
- Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | | | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Jesper F Højen
- Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Jesper D Gunst
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Andreas Holleufer
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
26
|
Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Rep 2021; 35:109179. [PMID: 34004174 PMCID: PMC8116342 DOI: 10.1016/j.celrep.2021.109179] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding and eliciting protective immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an urgent priority. To facilitate these objectives, we profile the repertoire of human leukocyte antigen class II (HLA-II)-bound peptides presented by HLA-DR diverse monocyte-derived dendritic cells pulsed with SARS-CoV-2 spike (S) protein. We identify 209 unique HLA-II-bound peptide sequences, many forming nested sets, which map to sites throughout S including glycosylated regions. Comparison of the glycosylation profile of the S protein to that of the HLA-II-bound S peptides reveals substantial trimming of glycan residues on the latter, likely induced during antigen processing. Our data also highlight the receptor-binding motif in S1 as a HLA-DR-binding peptide-rich region and identify S2-derived peptides with potential for targeting by cross-protective vaccine-elicited responses. Results from this study will aid analysis of CD4+ T cell responses in infected individuals and vaccine recipients and have application in next-generation vaccine design.
Collapse
|
27
|
Dauletova M, Hafsan H, Mahhengam N, Zekiy AO, Ahmadi M, Siahmansouri H. Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clin Immunol 2021; 226:108712. [PMID: 33684527 PMCID: PMC7935675 DOI: 10.1016/j.clim.2021.108712] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
In the past year, an emerging disease called Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been discovered in Wuhan, China, which has become a worrying pandemic and has challenged the world health system and economy. SARS-CoV-2 enters the host cell through a specific receptor (Angiotensin-converting enzyme 2) expressed on epithelial cells of various tissues. The virus, by inducing cell apoptosis and production of pro-inflammatory cytokines, generates as cytokine storm, which is the major cause of mortality in the patients. This type of response, along with responses by other immune cell, such as alveolar macrophages and neutrophils causes extensive damage to infected tissue. Newly, a novel cell-based therapy by Mesenchymal stem cell (MSC) as well as by their exosomes has been developed for treatment of COVID-19 that yielded promising outcomes. In this review study, we discuss the characteristics and benefits of MSCs therapy as well as MSC-secreted exosome therapy in treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Meruyert Dauletova
- Department of Propaedeutics and Internal Medicine, Akhmet Yassawi Internationl Kazakh-Turkish University, Turkistan, Kazakhstan
| | - Hafsan Hafsan
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, South Sulawesi, Indonesia
| | - Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Shang J, Du L, Han N, Lv D, Wang J, Yang H, Bai L, Tang H. Severe acute respiratory syndrome coronavirus 2 for physicians: Molecular characteristics and host immunity (Review). Mol Med Rep 2021; 23:262. [PMID: 33576464 PMCID: PMC7893688 DOI: 10.3892/mmr.2021.11901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
Recently, severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS‑CoV‑2)‑causing CoV disease 2019 (COVID‑19) emerged in China and has become a global pandemic. SARS‑CoV‑2 is a novel CoV originating from β‑CoVs. Major distinctions in the gene sequences between SARS‑CoV and SARS‑CoV‑2 include the spike gene, open reading frame (ORF) 3b and ORF 8. SARS‑CoV‑2 infection is initiated when the virus interacts with angiotensin‑converting enzyme 2 (ACE2) receptors on host cells. Through this mechanism, the virus infects the alveolar, esophageal epithelial, ileum, colon and other cells on which ACE2 is highly expressed, causing damage to target organs. To date, host innate immunity may be the only identified direct factor associated with viral replication. However, increased ACE2 expression may upregulate the viral load indirectly by increasing the baseline level of infectious virus particles. The peak viral load of SARS‑CoV‑2 is estimated to occur ~10 days following fever onset, causing patients in the acute stage to be the primary infection source. However, patients in the recovery stage or with occult infections can also be contagious. The host immune response in patients with COVID‑19 remains to be elucidated. By studying other SARS and Middle East respiratory syndrome coronaviruses, it is hypothesized that patients with COVID‑19 may lack sufficient antiviral T‑cell responses, which consequently present with innate immune response disorders. This may to a certain degree explain why this type of CoV triggers severe inflammatory responses and immune damage and its associated complications.
Collapse
Affiliation(s)
- Jin Shang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiayi Wang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hailing Yang
- Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Immune memory in convalescent patients with asymptomatic or mild COVID-19. Cell Discov 2021; 7:18. [PMID: 33767156 PMCID: PMC7993859 DOI: 10.1038/s41421-021-00250-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
It is important to evaluate the durability of the protective immune response elicited by primary infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we systematically evaluated the SARS-CoV-2-specific memory B cell and T cell responses in healthy controls and individuals recovered from asymptomatic or symptomatic infection approximately 6 months prior. Comparatively low frequencies of memory B cells specific for the receptor-binding domain (RBD) of spike glycoprotein (S) persisted in the peripheral blood of individuals who recovered from infection (median 0.62%, interquartile range 0.48-0.69). The SARS-CoV-2 RBD-specific memory B cell response was detected in 2 of 13 individuals who recovered from asymptomatic infection and 10 of 20 individuals who recovered from symptomatic infection. T cell responses induced by S, membrane (M), and nucleocapsid (N) peptide libraries from SARS-CoV-2 were observed in individuals recovered from coronavirus disease 2019 (COVID-19), and cross-reactive T cell responses to SARS-CoV-2 were also detected in healthy controls.
Collapse
|
30
|
Putri DU, Wang CH, Tseng PC, Lee WS, Chen FL, Kuo HP, Lee CH, Lin CF. Profiles of Peripheral Immune Cells of Uncomplicated COVID-19 Cases with Distinct Viral RNA Shedding Periods. Viruses 2021; 13:v13030514. [PMID: 33808906 PMCID: PMC8003740 DOI: 10.3390/v13030514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.
Collapse
Affiliation(s)
- Denise Utami Putri
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Cheng-Hui Wang
- Department of Laboratory Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Core Laboratory of Immune Monitoring, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Sen Lee
- Divisions of Infectious Diseases, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan; (W.-S.L.); (F.-L.C.)
| | - Fu-Lun Chen
- Divisions of Infectious Diseases, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan; (W.-S.L.); (F.-L.C.)
| | - Han-Pin Kuo
- Divisions of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Hsin Lee
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Divisions of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Divisions of Pulmonary Medicine, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: (C.-H.L.); (C.-F.L.); Tel.: +886-2-27361661 (ext. 7156) (C.-F.L.)
| | - Chiou-Feng Lin
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Core Laboratory of Immune Monitoring, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-H.L.); (C.-F.L.); Tel.: +886-2-27361661 (ext. 7156) (C.-F.L.)
| |
Collapse
|
31
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
32
|
Abstract
Zahlreiche neuroimmunologische Krankheitsbilder wie Enzephalopathien, Enzephalitiden, Myelitiden oder ADEM (akute disseminierte Enzephalomyelitis) sind nach einer Infektion mit SARS-CoV‑2 („severe acute respiratory syndrome coronavirus 2“) gehäuft aufgetreten, was für einen para- oder postinfektiösen Zusammenhang spricht. Ursächlich ist wahrscheinlich eine virusgetriggerte Überaktivierung des Immunsystems mit Hyperinflammation und Zytokin-Sturm, aber möglicherweise auch die Bildung spezifischer Autoantikörper gegen Gewebe des Zentralnervensystems, die sich vor allem im Liquor schwerkranker COVID-19(„coronavirus disease 2019“)-Patienten finden lassen. Eine direkte Schädigung durch die Invasion von SARS-CoV‑2 ins Gehirn oder Rückenmark scheint keine relevante Rolle zu spielen. Bei Patienten mit Multipler Sklerose, Myasthenie oder anderen neuroimmunologischen Krankheitsbildern wird die Anfälligkeit für eine SARS-CoV-2-Infektion sowie das Risiko eines schweren Verlaufs nicht durch die immunmodulierende Therapie bestimmt, sondern durch bekannte Risikofaktoren wie Alter, Komorbiditäten und den krankheitsbedingten Grad der Behinderung. Immuntherapien sollten bei diesen Patienten daher nicht verschoben oder pausiert werden. Inwieweit neuroimmunologische Mechanismen auch für Langzeitfolgen nach überstandener COVID-19-Erkrankung – wie Fatigue, Gedächtnis‑, Schlaf- oder Angststörungen – verantwortlich sind, werden klinische Verlaufsuntersuchungen u. a. in COVID-19-Registerstudien zeigen.
Collapse
Affiliation(s)
- Thomas Skripuletz
- Klinik für Neurologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Nora Möhn
- Klinik für Neurologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Christiana Franke
- Klinik für Neurologie und Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Harald Prüß
- Klinik für Neurologie und Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Berlin, Berlin, Deutschland.
| |
Collapse
|
33
|
West R, Kobokovich A, Connell N, Gronvall GK. COVID-19 Antibody Tests: A Valuable Public Health Tool with Limited Relevance to Individuals. Trends Microbiol 2021; 29:214-223. [PMID: 33234439 PMCID: PMC7836413 DOI: 10.1016/j.tim.2020.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Antibody tests for detecting past infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have many uses for public health decision making, but demand has largely come from individual consumers. This review focuses on the individual relevance of antibody tests: their accuracy in detecting prior infection, what past SARS-CoV-2 infection can currently infer about future immunity or possible medical sequelae, and the potential future importance of antibody tests for vaccine selection and medical screening. Given uncertainty about the antibody tests (quality, accuracy level, positive predictive value) and what those tests might indicate immunologically (durability of antibodies and necessity for protection from reinfection), seropositive test results should not be used to inform individual decision making, and antibody testing should remain a tool of public health at this time.
Collapse
Affiliation(s)
- Rachel West
- Johns Hopkins Center for Health Security, Baltimore, MD, USA
| | | | - Nancy Connell
- Johns Hopkins Center for Health Security, Baltimore, MD, USA
| | | |
Collapse
|
34
|
O Murchu E, Byrne P, Walsh KA, Carty PG, Connolly M, De Gascun C, Jordan K, Keoghan M, O'Brien KK, O'Neill M, Smith SM, Teljeur C, Ryan M, Harrington P. Immune response following infection with SARS-CoV-2 and other coronaviruses: A rapid review. Rev Med Virol 2021; 31:e2162. [PMID: 32964627 PMCID: PMC7536965 DOI: 10.1002/rmv.2162] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
In this review, we systematically searched and summarized the evidence on the immune response and reinfection rate following SARS-CoV-2 infection. We also retrieved studies on SARS-CoV and MERS-CoV to assess the long-term duration of antibody responses. A protocol based on Cochrane rapid review methodology was adhered to and databases were searched from 1/1/2000 until 26/5/2020. Of 4744 citations retrieved, 102 studies met our inclusion criteria. Seventy-four studies were retrieved on SARS-CoV-2. While the rate and timing of IgM and IgG seroconversion were inconsistent across studies, most seroconverted for IgG within 2 weeks and 100% (N = 62) within 4 weeks. IgG was still detected at the end of follow-up (49-65 days) in all patients (N = 24). Neutralizing antibodies were detected in 92%-100% of patients (up to 53 days). It is not clear if reinfection with SARS-CoV-2 is possible, with studies more suggestive of intermittent detection of residual RNA. Twenty-five studies were retrieved on SARS-CoV. In general, SARS-CoV-specific IgG was maintained for 1-2 years post-infection and declined thereafter, although one study detected IgG up to 12 years post-infection. Neutralizing antibodies were detected up to 17 years in another study. Three studies on MERS-CoV reported that IgG may be detected up to 2 years. In conclusion, limited early data suggest that most patients seroconvert for SARS-CoV-2-specific IgG within 2 weeks. While the long-term duration of antibody responses is unknown, evidence from SARS-CoV studies suggest SARS-CoV-specific IgG is sustained for 1-2 years and declines thereafter.
Collapse
Affiliation(s)
- Eamon O Murchu
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
- The Centre for Health Policy and ManagementTrinity College DublinDublin 2Ireland
| | - Paula Byrne
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Kieran A. Walsh
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Paul G. Carty
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Máire Connolly
- School of MedicineNational University of Ireland GalwayGalwayIreland
| | - Cillian De Gascun
- UCD National Virus Reference LaboratoryUniversity College DublinDublin 4Ireland
| | - Karen Jordan
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Mary Keoghan
- Department of Clinical ImmunologyBeaumont HospitalDublin 9Ireland
| | - Kirsty K. O'Brien
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Michelle O'Neill
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Susan M. Smith
- Department of General Practice, Health Research Board Centre for Primary Care ResearchRoyal College of Surgeons in IrelandDublin 2Ireland
| | - Conor Teljeur
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Máirín Ryan
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
- Department of Pharmacology & Therapeutics, Trinity Health SciencesTrinity College DublinDublin 8Ireland
| | - Patricia Harrington
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| |
Collapse
|
35
|
Sahu AK, Sreepadmanabh M, Rai M, Chande A. SARS-CoV-2: phylogenetic origins, pathogenesis, modes of transmission, and the potential role of nanotechnology. Virusdisease 2021; 32:1-12. [PMID: 33644261 PMCID: PMC7897733 DOI: 10.1007/s13337-021-00653-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has elicited a rapid response from the scientific community with significant advances in understanding the causative pathogen (SARS-CoV-2). Mechanisms of viral transmission and pathogenesis, as well as structural and genomic details, have been reported, which are essential in guiding containment, treatment, and vaccine development efforts. Here, we present a concise review of the recent research in these domains and an exhaustive analysis of the genomic origins of SARS-CoV-2. Particular emphasis has been placed on the pathology and disease progression of COVID-19 as documented by recent clinical studies, in addition to the characteristic immune responses involved therein. Furthermore, we explore the potential of nanomaterials and nanotechnology to develop diagnostic tools, drug delivery systems, and personal protective equipment design within the ongoing pandemic context. We present this as a ready resource for researchers to gain succinct, up-to-date insights on SARS-CoV-2.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| | - M. Sreepadmanabh
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra 444602 India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| |
Collapse
|
36
|
Breton G, Mendoza P, Hägglöf T, Oliveira TY, Schaefer-Babajew D, Gaebler C, Turroja M, Hurley A, Caskey M, Nussenzweig MC. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med 2021; 218:211727. [PMID: 33533915 PMCID: PMC7845919 DOI: 10.1084/jem.20202515] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 is responsible for an ongoing pandemic that has affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals, we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 mo after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen–specific memory that could contribute to rapid recall responses. Recovered individuals also show enduring alterations in relative overall numbers of CD4+ and CD8+ memory T cells, including expression of activation/exhaustion markers, and cell division.
Collapse
Affiliation(s)
- Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Arlene Hurley
- Hospital Program Direction, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, Baltimore, MD
| |
Collapse
|
37
|
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines 2021; 20:23-44. [PMID: 33435774 PMCID: PMC7898300 DOI: 10.1080/14760584.2021.1875824] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/11/2021] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has currently caused the pandemic with a high progressive speed and has been considered as the global public health crisis in 2020. This new member of the coronavirus family has created a potentially fatal disease, called coronavirus disease-2019 (COVID-19). Despite the continuous efforts of researchers to find effective vaccines and drugs for COVID-19, there is still no success in this matter. AREAS COVERED Here, the literature regarding the COVID-19 vaccine candidates currently in the clinical trials, as well as main candidates in pre-clinical stages for development and research, were reviewed. These candidates have been developed under five different major platforms, including live-attenuated vaccine, mRNA-based vaccine, DNA vaccines, inactivated virus, and viral-vector-based vaccine. EXPERT OPINION There are several limitations in the field of the rapid vaccine development against SARS-CoV-2, and other members of the coronavirus family such as SARS-CoV and MERS-CoV. The key challenges of designing an effective vaccine within a short time include finding the virulence ability of an emerging virus and potential antigen, choosing suitable experimental models and efficient route of administration, the immune-response study, designing the clinical trials, and determining the safety, as well as efficacy.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Abstract
In this chapter, we will discuss the infection history and epidemiology, the viral structure of COVID 19 or SARS-CoV-2, mode of transmission, virulence, and pathogenesis of disease, and we also discuss how it was started and its relation to other coronaviruses. Then we will mention the relation to pregnancy, how it can affect pregnant female, sequelae on pregnancy course and labor, and effect on fetus and neonates.
Collapse
|
39
|
Design of Multi-Epitope Vaccine against SARS-CoV-2. CYBERNETICS AND INFORMATION TECHNOLOGIES 2020. [DOI: 10.2478/cait-2020-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The ongoing COVID-19 pandemic requires urgently specific therapeutics and approved vaccines. Here, the four structural proteins of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COVID-19, are screened by in-house immunoinformatic tools to identify peptides acting as potential T-cell epitopes. In order to act as an epitope, the peptide should be processed in the host cell and presented on the cell surface in a complex with the Human Leukocyte Antigen (HLA). The aim of the study is to predict the binding affinities of all peptides originating from the structural proteins of SARS-CoV-2 to 30 most frequent in the human population HLA proteins of class I and class II and to select the high binders (IC50 < 50 nM). The predicted high binders are compared to known high binders from SARS-CoV conserved in CoV-2 and 77% of them coincided. The high binders will be uploaded onto lipid nanoparticles and the multi-epitope vaccine prototype will be tested for ability to provoke T-cell mediated immunity and protection against SARS-CoV-2.
Collapse
|
40
|
Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs. Sci Rep 2020; 10:22375. [PMID: 33361777 PMCID: PMC7758335 DOI: 10.1038/s41598-020-78758-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The global population is at present suffering from a pandemic of Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goal of this study was to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the global population. To help achieve these aims, we profiled the entire SARS-CoV-2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population, using host-infected cell surface antigen presentation and immunogenicity predictors from the NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. We then used these epitope maps as input for a Monte Carlo simulation designed to identify statistically significant “epitope hotspot” regions in the virus that are most likely to be immunogenic across a broad spectrum of HLA types. We then removed epitope hotspots that shared significant homology with proteins in the human proteome to reduce the chance of inducing off-target autoimmune responses. We also analyzed the antigen presentation and immunogenic landscape of all the nonsynonymous mutations across 3,400 different sequences of the virus, to identify a trend whereby SARS-COV-2 mutations are predicted to have reduced potential to be presented by host-infected cells, and consequently detected by the host immune system. A sequence conservation analysis then removed epitope hotspots that occurred in less-conserved regions of the viral proteome. Finally, we used a database of the HLA haplotypes of approximately 22,000 individuals to develop a “digital twin” type simulation to model how effective different combinations of hotspots would work in a diverse human population; the approach identified an optimal constellation of epitope hotspots that could provide maximum coverage in the global population. By combining the antigen presentation to the infected-host cell surface and immunogenicity predictions of the NEC Immune Profiler with a robust Monte Carlo and digital twin simulation, we have profiled the entire SARS-CoV-2 proteome and identified a subset of epitope hotspots that could be harnessed in a vaccine formulation to provide a broad coverage across the global population.
Collapse
|
41
|
Malone B, Simovski B, Moliné C, Cheng J, Gheorghe M, Fontenelle H, Vardaxis I, Tennøe S, Malmberg JA, Stratford R, Clancy T. Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs. Sci Rep 2020; 10:22375. [PMID: 33361777 DOI: 10.1101/2020.04.21.052084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/30/2020] [Indexed: 05/23/2023] Open
Abstract
The global population is at present suffering from a pandemic of Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goal of this study was to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the global population. To help achieve these aims, we profiled the entire SARS-CoV-2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population, using host-infected cell surface antigen presentation and immunogenicity predictors from the NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. We then used these epitope maps as input for a Monte Carlo simulation designed to identify statistically significant "epitope hotspot" regions in the virus that are most likely to be immunogenic across a broad spectrum of HLA types. We then removed epitope hotspots that shared significant homology with proteins in the human proteome to reduce the chance of inducing off-target autoimmune responses. We also analyzed the antigen presentation and immunogenic landscape of all the nonsynonymous mutations across 3,400 different sequences of the virus, to identify a trend whereby SARS-COV-2 mutations are predicted to have reduced potential to be presented by host-infected cells, and consequently detected by the host immune system. A sequence conservation analysis then removed epitope hotspots that occurred in less-conserved regions of the viral proteome. Finally, we used a database of the HLA haplotypes of approximately 22,000 individuals to develop a "digital twin" type simulation to model how effective different combinations of hotspots would work in a diverse human population; the approach identified an optimal constellation of epitope hotspots that could provide maximum coverage in the global population. By combining the antigen presentation to the infected-host cell surface and immunogenicity predictions of the NEC Immune Profiler with a robust Monte Carlo and digital twin simulation, we have profiled the entire SARS-CoV-2 proteome and identified a subset of epitope hotspots that could be harnessed in a vaccine formulation to provide a broad coverage across the global population.
Collapse
Affiliation(s)
- Brandon Malone
- NEC Laboratories Europe GmbH, Kurfuersten-Anlage 36, 69115, Heidelberg, Germany
| | - Boris Simovski
- NEC OncoImmunity AS, Ullernchausseen 64/66, 0379, Oslo, Norway
| | - Clément Moliné
- NEC OncoImmunity AS, Ullernchausseen 64/66, 0379, Oslo, Norway
| | - Jun Cheng
- NEC Laboratories Europe GmbH, Kurfuersten-Anlage 36, 69115, Heidelberg, Germany
| | - Marius Gheorghe
- NEC OncoImmunity AS, Ullernchausseen 64/66, 0379, Oslo, Norway
| | | | | | - Simen Tennøe
- NEC OncoImmunity AS, Ullernchausseen 64/66, 0379, Oslo, Norway
| | | | | | - Trevor Clancy
- NEC OncoImmunity AS, Ullernchausseen 64/66, 0379, Oslo, Norway.
| |
Collapse
|
42
|
Steiner S, Sotzny F, Bauer S, Na IK, Schmueck-Henneresse M, Corman VM, Schwarz T, Drosten C, Wendering DJ, Behrends U, Volk HD, Scheibenbogen C, Hanitsch LG. HCoV- and SARS-CoV-2 Cross-Reactive T Cells in CVID Patients. Front Immunol 2020; 11:607918. [PMID: 33424856 PMCID: PMC7785785 DOI: 10.3389/fimmu.2020.607918] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.
Collapse
Affiliation(s)
- Sophie Steiner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Désirée J Wendering
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uta Behrends
- Department of Pediatrics, Kinderklinik München Schwabing, StKM GmbH und Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Leif G Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
Keller MD, Harris KM, Jensen-Wachspress MA, Kankate VV, Lang H, Lazarski CA, Durkee-Shock J, Lee PH, Chaudhry K, Webber K, Datar A, Terpilowski M, Reynolds EK, Stevenson EM, Val S, Shancer Z, Zhang N, Ulrey R, Ekanem U, Stanojevic M, Geiger A, Liang H, Hoq F, Abraham AA, Hanley PJ, Cruz CR, Ferrer K, Dropulic L, Gangler K, Burbelo PD, Jones RB, Cohen JI, Bollard CM. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood 2020; 136:2905-2917. [PMID: 33331927 PMCID: PMC7746091 DOI: 10.1182/blood.2020008488] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described in recovered patients, and may be important for immunity following infection and vaccination as well as for the development of an adoptive immunotherapy for the treatment of immunocompromised individuals. In this report, we demonstrate that SARS-CoV-2-specific T cells can be expanded from convalescent donors and recognize immunodominant viral epitopes in conserved regions of membrane, spike, and nucleocapsid. Following in vitro expansion using a good manufacturing practice-compliant methodology (designed to allow the rapid translation of this novel SARS-CoV-2 T-cell therapy to the clinic), membrane, spike, and nucleocapsid peptides elicited interferon-γ production, in 27 (59%), 12 (26%), and 10 (22%) convalescent donors (respectively), as well as in 2 of 15 unexposed controls. We identified multiple polyfunctional CD4-restricted T-cell epitopes within a highly conserved region of membrane protein, which induced polyfunctional T-cell responses, which may be critical for the development of effective vaccine and T-cell therapies. Hence, our study shows that SARS-CoV-2 directed T-cell immunotherapy targeting structural proteins, most importantly membrane protein, should be feasible for the prevention or early treatment of SARS-CoV-2 infection in immunocompromised patients with blood disorders or after bone marrow transplantation to achieve antiviral control while mitigating uncontrolled inflammation.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer and Immunology Research and
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC
| | | | | | | | - Haili Lang
- Center for Cancer and Immunology Research and
| | | | - Jessica Durkee-Shock
- Center for Cancer and Immunology Research and
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | - Eva M Stevenson
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | | | - Zoe Shancer
- Center for Cancer and Immunology Research and
| | - Nan Zhang
- Center for Cancer and Immunology Research and
| | | | | | | | | | - Hua Liang
- Department of Statistics, George Washington University, Washington, DC
| | - Fahmida Hoq
- Center for Cancer and Immunology Research and
| | - Allistair A Abraham
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
- Division of Blood and Marrow Transplantation and
| | - Patrick J Hanley
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
- Division of Blood and Marrow Transplantation and
| | - C Russell Cruz
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
| | - Kathleen Ferrer
- Division of Infectious Diseases, Children's National Hospital, Washington, DC
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Krista Gangler
- Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, MD; and
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
- Division of Blood and Marrow Transplantation and
| |
Collapse
|
44
|
Shomuradova AS, Vagida MS, Sheetikov SA, Zornikova KV, Kiryukhin D, Titov A, Peshkova IO, Khmelevskaya A, Dianov DV, Malasheva M, Shmelev A, Serdyuk Y, Bagaev DV, Pivnyuk A, Shcherbinin DS, Maleeva AV, Shakirova NT, Pilunov A, Malko DB, Khamaganova EG, Biderman B, Ivanov A, Shugay M, Efimov GA. SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity 2020; 53:1245-1257.e5. [PMID: 33326767 PMCID: PMC7664363 DOI: 10.1016/j.immuni.2020.11.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Understanding the hallmarks of the immune response to SARS-CoV-2 is critical for fighting the COVID-19 pandemic. We assessed antibody and T cell reactivity in convalescent COVID-19 patients and healthy donors sampled both prior to and during the pandemic. Healthy donors examined during the pandemic exhibited increased numbers of SARS-CoV-2-specific T cells, but no humoral response. Their probable exposure to the virus resulted in either asymptomatic infection without antibody secretion or activation of preexisting immunity. In convalescent patients, we observed a public and diverse T cell response to SARS-CoV-2 epitopes, revealing T cell receptor (TCR) motifs with germline-encoded features. Bulk CD4+ and CD8+ T cell responses to the spike protein were mediated by groups of homologous TCRs, some of them shared across multiple donors. Overall, our results demonstrate that the T cell response to SARS-CoV-2, including the identified set of TCRs, can serve as a useful biomarker for surveying antiviral immunity.
Collapse
Affiliation(s)
- Alina S Shomuradova
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Savely A Sheetikov
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ksenia V Zornikova
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Aleksei Titov
- National Research Center for Hematology, Moscow, Russia
| | | | - Alexandra Khmelevskaya
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry V Dianov
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Malasheva
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | - Dmitry V Bagaev
- Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anastasia Pivnyuk
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitrii S Shcherbinin
- Pirogov Russian Medical State University, Moscow, Russia; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Artem Pilunov
- National Research Center for Hematology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Pirogov Russian Medical State University, Moscow, Russia; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | | |
Collapse
|
45
|
Sattler A, Angermair S, Stockmann H, Heim KM, Khadzhynov D, Treskatsch S, Halleck F, Kreis ME, Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 2020; 130:6477-6489. [PMID: 32833687 DOI: 10.1172/jci140965] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, viral targets of cellular immunity and factors determining successful mounting of T cell responses are poorly defined. We therefore analyzed cellular responses to membrane, nucleocapsid, and spike proteins in individuals suffering from moderate or severe infection and in individuals who recovered from mild disease. We demonstrate that the CoV-2-specific CD4+ T helper cell response is directed against all 3 proteins with comparable magnitude, ex vivo proliferation, and portions of responding patients. However, individuals who died were more likely to have not mounted a cellular response to the proteins. Higher patient age and comorbidity index correlated with increased frequencies of CoV-2-specific CD4+ T cells, harboring higher portions of IL-2-secreting, but lower portions of IFN-γ-secreting, cells. Diminished frequencies of membrane protein-reactive IFN-γ+ T cells were particularly associated with higher acute physiology and chronic health evaluation II scores in patients admitted to intensive care. CoV-2-specific T cells exhibited elevated PD-1 expression in patients with active disease as compared with those individuals who recovered from previous mild disease. In summary, our data suggest a link between individual patient predisposition with respect to age and comorbidity and impairment of CoV-2-specific Th1-type cellular immunity, thereby supporting a concept of altered T cell function in at-risk patients.
Collapse
Affiliation(s)
- Arne Sattler
- Department for General, Visceral and Vascular Surgery
| | | | | | - Katrin Moira Heim
- Department of Infectiology and Pneumonology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, and
| | | | - Katja Kotsch
- Department for General, Visceral and Vascular Surgery
| |
Collapse
|
46
|
Breton G, Mendoza P, Hagglof T, Oliveira TY, Schaefer-Babajew D, Gaebler C, Turroja M, Hurley A, Caskey M, Nussenzweig MC. Persistent Cellular Immunity to SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.08.416636. [PMID: 33330867 PMCID: PMC7743071 DOI: 10.1101/2020.12.08.416636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is responsible for an ongoing pandemic that affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 months after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen specific memory that could contribute to rapid recall responses. In addition, recovered individuals show enduring immune alterations in relative numbers of CD4 + and CD8 + T cells, expression of activation/exhaustion markers, and cell division. SUMMARY We show that SARS-CoV-2 infection elicits broadly reactive and highly functional memory T cell responses that persist 6 months after infection. In addition, recovered individuals show enduring immune alterations in CD4 + and CD8 + T cells compartments.
Collapse
Affiliation(s)
- Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Hagglof
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene Hurley
- Hospital Program Direction, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
47
|
Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Front Immunol 2020; 11:571481. [PMID: 33362759 PMCID: PMC7756008 DOI: 10.3389/fimmu.2020.571481] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China resulted in the current COVID-19 global pandemic. The human immune system has not previously encountered this virus, raising the important question as to whether or not protective immunity is generated by infection. Growing evidence suggests that protective immunity can indeed be acquired post-infection-although a handful of reinfection cases have been reported. However, it is still unknown whether the immune response to SARS-CoV-2 leads to some degree of long-lasting protection against the disease or the infection. This review draws insights from previous knowledge regarding the nature and longevity of immunity to the related virus, SARS-CoV, to fill the gaps in our understanding of the immune response to SARS-CoV-2. Deciphering the immunological characteristics that give rise to protective immunity against SARS-CoV-2 is critical to guiding vaccine development and also predicting the course of the pandemic. Here we discuss the recent evidence that characterises the adaptive immune response against SARS-CoV-2 and its potential implications for the generation of memory responses and long-term protection.
Collapse
Affiliation(s)
- David S. Kim
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020; 9:E1027. [PMID: 33302366 PMCID: PMC7762606 DOI: 10.3390/pathogens9121027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
49
|
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Front Pharmacol 2020; 11:578382. [PMID: 33343349 PMCID: PMC7744882 DOI: 10.3389/fphar.2020.578382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
At the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, limiting their use against COVID-19 infection. Actually, no treatment has been approved in humans against SARS-CoV-2, and therefore there is an urgent need of a suitable vaccine to tackle this health issue. However, the puzzled scenario of biological features of the virus and its interaction with human immune response, represent a challenge for vaccine development. As expected, in hundreds of research laboratories there is a running out of breath to explore different strategies to obtain a safe and quickly spreadable vaccine; and among others, the peptide-based approach represents a turning point as peptides have demonstrated unique features of selectivity and specificity toward specific targets. Peptide-based vaccines imply the identification of different epitopes both on human cells and virus capsid and the design of peptide/peptidomimetics able to counteract the primary host-pathogen interaction, in order to induce a specific host immune response. SARS-CoV-2 immunogenic regions are mainly distributed, as well as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano Di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples Federico II, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Paola Brandi
- Centro Nacional De Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
50
|
Branch AD. How to Survive COVID-19 Even If the Vaccine Fails. Hepatol Commun 2020; 4:1864-1879. [PMID: 33305156 PMCID: PMC7706293 DOI: 10.1002/hep4.1588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has created an emergency of epic proportions. While a vaccine may be forthcoming, this is not guaranteed, as discussed herein. The potential problems and ominous signs include (1) lung injury that developed in animals given an experimental vaccine for the severe acute respiratory syndrome coronavirus (SARS-CoV)-1; (2) a perversion of adaptive immune responses called antibody-dependent enhancement of infection that occurs in SARS-CoV-1 and that may occur in people vaccinated for COVID-19; (3) the frequent and recurrent infections that are caused by respiratory coronaviruses; and (4) the appearance of mutations in SARS-CoV-2 proteins, which raise the specter of vaccine escape mutants. Because success is uncertain, alternatives to vaccines need to be vigorously pursued during this critical moment in the pandemic. Alternatives include (1) engineered monoclonal antibodies that do not cause antibody-dependent enhancement; (2) cocktails of antiviral drugs and inhibitors of the cellular proteins required for SARS-CoV-2 replication; (3) interferons; and (4) anticoagulants, antioxidants, and immune modulators. To organize and coordinate the systematic investigation of existing therapies and new therapies (as they emerge), a Covid-19 clinical trials network is needed to provide (1) robust funding (on a par with vaccine funding) and administration; (2) an adaptive trial design committee to prioritize interventions and review results in real time; (3) a computer interface to facilitate patient enrollment, make data available to investigators, and present findings; (4) a practice guidelines study group; and (5) a mobile corps of COVID-19 experts available for rapid deployment, to assist local health care providers and enroll patients in trials as outbreaks occur. To combat the COVID-19 pandemic and future mass contagions, the network would be a cornerstone of a comprehensive infectious diseases research program.
Collapse
Affiliation(s)
- Andrea D. Branch
- Division of Liver DiseasesDepartment of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|