1
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2025; 39:1776-1807. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Lombardo GE, Navarra M, Cremonini E. A flavonoid-rich extract of bergamot juice improves high-fat diet-induced intestinal permeability and associated hepatic damage in mice. Food Funct 2024; 15:9941-9953. [PMID: 39263833 DOI: 10.1039/d4fo02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Consumption of high-fat diets (HFDs) is a contributing factor to obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Several studies suggested the protective role of bioactives present in Citrus fruits against the above mentioned chronic metabolic conditions. In this study, we evaluated if a flavonoid-rich extract of Citrus bergamia (bergamot) juice (BJe) could inhibit HFD-induced intestinal permeability and endotoxemia and, through this mechanism, mitigate the associated hepatic damage in C57BL/6J mice. After 12 weeks of the treatment, HFD consumption caused high body weight (BW) gain, hyperinsulinemia, hyperglycemia, and dyslipidemia, which were mitigated by BJe (50 mg per kg BW) supplementation. Furthermore, supplementation with BJe prevented HFD-induced liver alterations, including increased plasma alanine aminotransferase (ALT) activity, increased hepatic lipid deposition, high NAS, and fibrosis. Mice fed a HFD for 12 weeks showed (i) a decrease in small intestine tight junction protein levels (ZO-1, occludin, and claudin-1), (ii) increased intestinal permeability, and (iii) endotoxemia. All these adverse events were mitigated by BJe supplementation. Linking the capacity of BJe to prevent HFD-associated endotoxemia, supplementation with this extract decreased the HFD-induced overexpression of hepatic TLR-4, downstream signaling pathways (MyD88, NF-κB and MAPK), and the associated inflammation, evidenced by increased MCP-1, TNF-α, IL-6, iNOS, and F4/80 levels. Overall, we suggest that BJe could mitigate the harmful consequences of western style diet consumption on liver physiology by protecting the gastrointestinal tract from permeabilization and associated metabolic endotoxemia.
Collapse
Affiliation(s)
- Giovanni E Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Prof. Antonio Imbesi Foundation, Messina, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Enna, Italy
- Department of Nutrition, University of California, Davis, USA.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | | |
Collapse
|
3
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Demircan B, Velioglu YS, Giuffrè AM. Bergamot juice powder with high bioactive properties: Spray-drying for the preservation of antioxidant activity and ultrasound-assisted extraction for enhanced phenolic compound extraction. J Food Sci 2023; 88:3694-3713. [PMID: 37493276 DOI: 10.1111/1750-3841.16706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The spray-drying process yielded functional bergamot juice powder with high antioxidant activity, phenolic content, and vitamin C content. Optimal drying conditions were determined as 10% maltodextrin concentration, 146.02°C inlet temperature, and 39.99% pump rate, preserving powder's bioactive properties. Under these drying conditions, bergamot juice powder exhibited an antioxidant activity of 62.2% DPPH scavenging activity, a total phenolic content of 3862.1 ppm, and a vitamin C content of 1385.9 ppm. The bergamot juice powder, with a water activity of 0.2, bulk density of 0.4 g/mL, tapped density of 0.5 g/mL, porosity of 89.6%, hygroscopicity of 8.6%, and cohesiveness of 37.2%, is highly suitable for further processing. High-pressure liquid chromatography analysis revealed the presence of major phenolic compounds in both fresh bergamot juice and spray-dried powder, although their concentrations were lower in the powder form. The major phenolics identified in the fruit juice were naringin (197.5 ppm), eriocitrin (105.9 ppm), neoeriocitrin (53.4 ppm), neohesperidin (68.8 ppm), and naringenin (119.8 ppm). However, in the powder form, the bitterness-associated compounds, naringin and neohesperidin, exhibited a significant reduction of 85.0% and 90.3%, respectively. Compared to dimethyl sulfoxide (48.4%), ethanol (37.9%), and distilled water (17.3%), ultrasound-assisted extraction with acetone solvent demonstrated the highest efficiency (61.7%) in obtaining phenolic compounds from bergamot juice powder. In conclusion, spray-drying is an effective method for obtaining functional bergamot juice powder, and ultrasound-assisted extraction can further enhance phenolic compound extraction efficiency. These findings have potential applications in the food, cosmetics, and pharmaceutical industries, with opportunities for further research in functional foods or nutraceuticals. PRACTICAL APPLICATION: Spray-drying yields functional bergamot juice powder with high bioactive properties. Optimal drying conditions can be applied in industrial settings. Ultrasound-assisted extraction enhances phenolic compound extraction efficiency. Potential applications in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Yakup Sedat Velioglu
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Angelo Maria Giuffrè
- Department of AGRARIA, Università degli Studi Mediterranea, Reggio Calabria, Italy
| |
Collapse
|
5
|
Stanzione R, Forte M, Cotugno M, Oppedisano F, Carresi C, Marchitti S, Mollace V, Volpe M, Rubattu S. Beneficial Effects of Citrus Bergamia Polyphenolic Fraction on Saline Load-Induced Injury in Primary Cerebral Endothelial Cells from the Stroke-Prone Spontaneously Hypertensive Rat Model. Nutrients 2023; 15:nu15061334. [PMID: 36986064 PMCID: PMC10056311 DOI: 10.3390/nu15061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders.
Collapse
Affiliation(s)
| | | | | | - Francesca Oppedisano
- Department of Health Science, Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Science, Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy
| | | | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy
- IRCCS San Raffaele, 00163 Rome, Italy
| | - Massimo Volpe
- IRCCS San Raffaele, 00163 Rome, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
6
|
Gualtieri P, Marchetti M, Frank G, Smeriglio A, Trombetta D, Colica C, Cianci R, De Lorenzo A, Di Renzo L. Antioxidant-Enriched Diet on Oxidative Stress and Inflammation Gene Expression: A Randomized Controlled Trial. Genes (Basel) 2023; 14:206. [PMID: 36672947 PMCID: PMC9859217 DOI: 10.3390/genes14010206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Mediterranean Diet (MedDiet) is associated with beneficial effects against chronic non-communicable diseases (CNCDs). In particular, the content of micronutrients leads to an improvement of the oxidative and inflammatory profiles. A randomized, parallel, controlled study, on 24 subjects, was conducted to evaluate if 2-week supplementation with a mixed apple and bergamot juice (MAB juice), had a positive impact on the body composition, the biochemical profile, and oxidative and inflammatory gene expression (Superoxide dismutase (SOD1), Peroxisome Proliferator-Activated Receptor γ (PPARγ), catalase (CAT), chemokine C-C motif ligand 5 (CCL5), Nuclear Factor Kappa B Subunit 1 (NFKB1), Vitamin D Receptor (VDR), and Macrophage Migration Inhibitory Factor (MIF)), respect to a MedDiet. Body composition evaluation analysis showed a gain in lean mass (p < 0.01). Moreover, a significant reduction in total cholesterol/HDL index (p < 0.01) was pointed out between the two groups. Gene expression analysis highlighted an increase in MIF (p ≤ 0.05), PPARγ (p < 0.001), SOD1 (p ≤ 0.05), and VDR (p ≤ 0.05) expressions when comparing MedDiet and MedDiet + MAB juice groups. These data based on the nutrigenomics approach demonstrated that supplementing 2 weeks of MAB juice to the MedDiet could contribute to a reduction in the risk of CNCDs.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Marchetti
- School of Specialization in Food Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Citrus Essential Oils in Aromatherapy: Therapeutic Effects and Mechanisms. Antioxidants (Basel) 2022; 11:antiox11122374. [PMID: 36552586 PMCID: PMC9774566 DOI: 10.3390/antiox11122374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40-47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties.
Collapse
|
8
|
The effects of citrus flavonoids and their metabolites on immune-mediated intestinal barrier disruption using an in vitro co-culture model. Br J Nutr 2022; 128:1917-1926. [PMID: 35086580 DOI: 10.1017/s0007114521004797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hesperidin and naringin are citrus flavonoids with known anti-oxidative and anti-inflammatory properties. Evidence from previous studies indicates that both these compounds and the metabolites that are formed during intestinal metabolism are able to exert beneficial effects on intestinal barrier function and inflammation. However, so far, studies investigating the relative contributions of the various compounds are lacking. Therefore, we assessed the effect of citrus flavonoids and their intestinal metabolites on immune-mediated barrier disruption in an in vitro co-culture model. Caco-2 cell monolayers were placed in co-culture with phorbol 12-myristate 13-acetate-stimulated THP-1-Blue™ NF-κB cells for 30 h. At baseline, the citrus flavonoids and their metabolites were added to the apical compartment (50 or 100 µM per compound). After 24 h, THP-1 cells were incubated with lipopolysaccharide (LPS) in the basolateral compartment for 6 h. Incubation with citrus flavonoids and their metabolites did not induce changes in transepithelial electrical resistance, fluorescein isothiocyanate-dextran 4 kDa permeation or gene expression of barrier-related genes for any of the compounds tested. After LPS stimulation, NF-κB activity was significantly inhibited by all compounds (100 µM) except for one metabolite (all P ≤ 0·03). LPS-induced production of the cytokines IL-8, TNF-α and IL-6 was inhibited by most compounds (all P < 0·05). However, levels of IL-1β were increased, which may contribute to the lack of an improved barrier effect. Overall, these results suggest that citrus flavonoids may decrease intestinal inflammation via reduction of NF-κB activity and that the parent compounds and their metabolites formed during intestinal metabolism are able to exert comparable effects.
Collapse
|
9
|
Dakowicz A, Dzięcioł-Anikiej Z, Hryniewicz A, Judycka M, Ciołkiewicz M, Moskal-Jasińska D, Kuryliszyn-Moskal A. Evaluation of the Effectiveness of Iontophoresis with Perskindol Gel in Patients with Osteoarthritis of the Knee Joints. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8489. [PMID: 35886341 PMCID: PMC9315835 DOI: 10.3390/ijerph19148489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is one of the most common causes of pain in the musculoskeletal system leading to disability. The basic principle of the therapy is the simultaneous use of pharmacological and non-pharmacological treatments. The aim of this study was to evaluate the effectiveness of galvanic and iontophoresis treatments with Perskindol Active Classic Gel (Perskindol) in patients with OA of the knee joints. Moreover, a comparative evaluation of the effectiveness of the application was performed depending on the selection of the active electrode. MATERIAL AND METHODS The study included 100 patients with gonarthrosis, treated at the Rehabilitation Clinic of the Białystok University Hospital. Three groups were randomly selected: in group I (n = 33), anodic galvanic treatment was applied, group II (n = 33) received iontophoresis with Perskindol gel from the negative pole ("-" iontophoresis), and group III (n = 34) received iontophoresis with Perskindol gel from the positive pole ("+" iontophoresis). The VAS, the Laitinen questionnaire, the Lequesne Index, the Lysholm questionnaire, and the SF-36v2 health survey were used for the clinical evaluation of the patients. RESULTS In the group of patients who underwent iontophoresis with the use of Perskindol gel introduced from the positive pole, a statistically significant improvement was shown in all the assessed parameters in comparison to the patients who underwent anodic galvanic treatment. CONCLUSIONS The most favorable effect of iontophoresis was observed in the case of iontophoresis with Perskindol gel introduced from the positive pole.
Collapse
Affiliation(s)
- Agnieszka Dakowicz
- Department of Rehabilitation, Medical University of Bialystok, M. Curie-Sklodowska Str. 24 A, 15-276 Białystok, Poland; (Z.D.-A.); (A.H.); (M.J.); (M.C.); (A.K.-M.)
| | - Zofia Dzięcioł-Anikiej
- Department of Rehabilitation, Medical University of Bialystok, M. Curie-Sklodowska Str. 24 A, 15-276 Białystok, Poland; (Z.D.-A.); (A.H.); (M.J.); (M.C.); (A.K.-M.)
| | - Anna Hryniewicz
- Department of Rehabilitation, Medical University of Bialystok, M. Curie-Sklodowska Str. 24 A, 15-276 Białystok, Poland; (Z.D.-A.); (A.H.); (M.J.); (M.C.); (A.K.-M.)
| | - Małgorzata Judycka
- Department of Rehabilitation, Medical University of Bialystok, M. Curie-Sklodowska Str. 24 A, 15-276 Białystok, Poland; (Z.D.-A.); (A.H.); (M.J.); (M.C.); (A.K.-M.)
| | - Mariusz Ciołkiewicz
- Department of Rehabilitation, Medical University of Bialystok, M. Curie-Sklodowska Str. 24 A, 15-276 Białystok, Poland; (Z.D.-A.); (A.H.); (M.J.); (M.C.); (A.K.-M.)
| | - Diana Moskal-Jasińska
- Department of Clinical of Phonoaudiology and Speech Therapy, Medical University of Bialystok, 15-276 Białystok, Poland;
| | - Anna Kuryliszyn-Moskal
- Department of Rehabilitation, Medical University of Bialystok, M. Curie-Sklodowska Str. 24 A, 15-276 Białystok, Poland; (Z.D.-A.); (A.H.); (M.J.); (M.C.); (A.K.-M.)
| |
Collapse
|
10
|
Protic O, Di Pillo R, Montesanto A, Galeazzi R, Matacchione G, Giuliani A, Sabbatinelli J, Gurău F, Silvestrini A, Olivieri F, Antonicelli R, Bonfigli AR. Randomized, Double-Blind, Placebo-Controlled Trial to Test the Effects of a Nutraceutical Combination Monacolin K-Free on the Lipid and Inflammatory Profile of Subjects with Hypercholesterolemia. Nutrients 2022; 14:nu14142812. [PMID: 35889769 PMCID: PMC9324786 DOI: 10.3390/nu14142812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nutraceutical combinations (NCs) against hypercholesterolemia are increasing in the marketplace. However, the availability of NCs without monacolin K is scarce even though the statin-intolerant population needs it. METHODS This study is a parallel-group, randomized, placebo-controlled, double-blind trial. We evaluated the effects of the NC containing phytosterols, bergamot, olive fruits, and vitamin K2 on lipid profile and inflammatory biomarkers in 118 subjects (mean age ± SD, 57.9 ± 8.8 years; 49 men and 69 women) with hypercholesterolemia (mean total cholesterol ± SD, 227.4 ± 20.8 mg/dL) without clinical history of cardiovascular diseases. At baseline and 6 and 12 weeks of treatment, we evaluated lipid profile (total, LDL and HDL cholesterol, and triglycerides), safety (liver, kidney, and muscle parameters), and inflammatory biomarkers such as hs-CRP, leukocytes, interleukin-32, and interleukin-38 and inflammatory-microRNAs (miRs) miR-21, miR-126, and miR-146a. RESULTS Compared to the placebo, at 6 and 12 weeks, NC did not significantly reduce total cholesterol (p = 0.083), LDL cholesterol (p = 0.150), and triglycerides (p = 0.822). No changes were found in hs-CRP (p = 0.179), interleukin-32 (p = 0.587), interleukin-38 (p = 0.930), miR-21 (p = 0.275), miR-126 (p = 0.718), miR-146a (p = 0.206), myoglobin (p = 0.164), and creatine kinase (p = 0.376). Among the two reported, only one adverse event was probably related to the nutraceutical treatment. CONCLUSIONS The evaluated nutraceutical combination did not change serum lipid profile and inflammatory parameters, at least not with the daily dose applied in the present study.
Collapse
Affiliation(s)
- Olga Protic
- Cardiology Unit, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy; (O.P.); (R.D.P.); (R.A.)
| | - Raffaele Di Pillo
- Cardiology Unit, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy; (O.P.); (R.D.P.); (R.A.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostic, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy;
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.M.); (A.G.); (J.S.); (F.G.); (A.S.); (F.O.)
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.M.); (A.G.); (J.S.); (F.G.); (A.S.); (F.O.)
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.M.); (A.G.); (J.S.); (F.G.); (A.S.); (F.O.)
| | - Felicia Gurău
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.M.); (A.G.); (J.S.); (F.G.); (A.S.); (F.O.)
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.M.); (A.G.); (J.S.); (F.G.); (A.S.); (F.O.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.M.); (A.G.); (J.S.); (F.G.); (A.S.); (F.O.)
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy
| | - Roberto Antonicelli
- Cardiology Unit, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy; (O.P.); (R.D.P.); (R.A.)
| | - Anna Rita Bonfigli
- Scientific Direction, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy
- Correspondence:
| |
Collapse
|
11
|
Salvino RA, Aroulanda C, De Filpo G, Celebre G, De Luca G. Metabolic composition and authenticity evaluation of bergamot essential oil assessed by nuclear magnetic resonance spectroscopy. Anal Bioanal Chem 2022; 414:2297-2313. [PMID: 35048138 DOI: 10.1007/s00216-021-03869-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
In this work, a sample of pure and certified bergamot essential oil (BEO) was extensively studied for the first time directly by NMR spectroscopy with the aim of investigating its metabolic composition, quantifying the main components of this complex natural matrix and simultaneously assessing whether the NMR technique is able to highlight possible frauds to which this high-cost product may be subjected. Eleven low molecular weight compounds have been identified by using 1D 1H and 13C-{1H} NMR experiments, 2D homo- and heteronuclear correlation NMR spectra, and 2D 1H DOSY experiments; the most abundant of them, i.e., about 90% of the sample analyzed, has been quantified by employing benzoic acid as an internal standard by 1H NMR spectrum. Moreover, since the commercial fraud of this precious oil is often due to the addition of less expensive oils, we have simulated a possible adulteration through the preparation of BEO samples to which different percentages of orange essential oil (OEO) were added. The results, obtained by combining the 1H NMR spectra collected on the adulterated samples and on pure BEO, with chemometric analysis, principal component analysis (PCA), indicate that it is possible to distinguish the sample of pure BEO from the adulterated ones and also, among them, to differentiate between the degrees of adulteration.
Collapse
Affiliation(s)
- Rosachiara A Salvino
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy.,Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, 91405, Orsay cedex, France
| | - Christie Aroulanda
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, 91405, Orsay cedex, France
| | - Giovanni De Filpo
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy
| | - Giorgio Celebre
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy
| | - Giuseppina De Luca
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy.
| |
Collapse
|
12
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, Cirmi S, Navarra M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021; 26:5991. [PMID: 34641535 PMCID: PMC8512617 DOI: 10.3390/molecules26195991] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Citrus fruits (CF) are among the most widely cultivated fruit crops throughout the world and their production is constantly increasing along with consumers' demand. Therefore, huge amounts of waste are annually generated through CF processing, causing high costs for their disposal, as well as environmental and human health damage, if inappropriately performed. According to the most recent indications of an economic, environmental and pharmaceutical nature, CF processing residues must be transformed from a waste to be disposed to a valuable resource to be reused. Based on a circular economy model, CF residues (i.e., seeds, exhausted peel, pressed pulp, secondary juice and leaves) have increasingly been re-evaluated to also obtain, but not limited to, valuable compounds to be employed in the food, packaging, cosmetic and pharmaceutical industries. However, the use of CF by-products is still limited because of their underestimated nutritional and economic value, hence more awareness and knowledge are needed to overcome traditional approaches for their disposal. This review summarizes recent evidence on the pharmacological potential of CF waste to support the switch towards a more environmentally sustainable society.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| |
Collapse
|
14
|
KYP-2047, an Inhibitor of Prolyl-Oligopeptidase, Reduces GlioBlastoma Proliferation through Angiogenesis and Apoptosis Modulation. Cancers (Basel) 2021; 13:cancers13143444. [PMID: 34298658 PMCID: PMC8306782 DOI: 10.3390/cancers13143444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Glioblastoma (GB) is the most aggressive brain tumor characterized by necrosis, excessive proliferation, and invasiveness. Despite relevant progress in conventional treatments, the survival rate for patients with GB remains low. The present study investigated the potential effect of KYP-2047, an inhibitor of the prolyl-oligopeptidase (POP or PREP), in an in vivo U87-xenograft model and in an in vitro study on human GB cells. This study demonstrated the abilities of KYP-2047 to counteract and reduce GB progression through angiogenesis and apoptosis modulation. Abstract Glioblastoma (GB) is the most aggressive tumor of the central nervous system (CNS), characterized by excessive proliferation, necrosis and invasiveness. The survival rate for patients with GB still remains low. Angiogenesis and apoptosis play a key role in the development of GB. Thus, the modulation of angiogenesis and apoptosis processes represent a possible strategy to counteract GB progression. This study aimed to investigate the potential effect of KYP-2047, an inhibitor of the prolyl-oligopeptidase (POP), known to modulate angiogenesis, in an in vivo U87-xenograft model and in an in vitro study on human GB cells. Our results showed that KYP-2047 at doses of 2.5 mg/kg and 5 mg/kg was able to reduce tumor burden in the xenograft-model. Moreover, KYP-2047 significantly reduced vascular endothelial-growth-factor (VEGF), angiopoietins (Ang) and endothelial-nitric-oxide synthase (eNOS) expression. In vitro study revealed that KYP-2047 at different concentrations reduced GB cells’ viability. Additionally, KYP-2047 at the concentrations of 50 µM and 100 µM was able to increase the pro-apoptotic protein Bax, p53 and caspase-3 expression whereas Bcl-2 expression was reduced. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract or reduce GB progression, thanks its abilities to modulate angiogenesis and apoptosis pathways.
Collapse
|
15
|
Bergamottin and 5-Geranyloxy-7-methoxycoumarin Cooperate in the Cytotoxic Effect of Citrus bergamia (Bergamot) Essential Oil in Human Neuroblastoma SH-SY5Y Cell Line. Toxins (Basel) 2021; 13:toxins13040275. [PMID: 33920139 PMCID: PMC8069240 DOI: 10.3390/toxins13040275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/23/2023] Open
Abstract
The plant kingdom has always been a treasure trove for valuable bioactive compounds, and Citrus fruits stand out among the others. Bergamottin (BRG) and 5-geranyloxy-7-methoxycoumarin (5-G-7-MOC) are two coumarins found in different Citrus species with well-acknowledged pharmacological properties. Previously, they have been claimed to be relevant in the anti-proliferative effects exerted by bergamot essential oil (BEO) in the SH-SY5Y human neuroblastoma cells. This study was designed to verify this assumption and to assess the mechanisms underlying the anti-proliferative effect of both compounds. Our results demonstrate that BRG and 5-G-7-MOC are able to reduce the proliferation of SH-SY5Y cells, inducing apoptosis and increasing cell population in sub-G0/G1 phase. Moreover, we demonstrated the pro-oxidant activity of the two coumarins that increased reactive oxygen species and impaired mitochondrial membrane potential. From a molecular point of view, BRG and 5-G-7-MOC were able to modulate apoptosis related factors at both protein and gene levels. Lastly, we evaluated the synergistic effect of their combination, finding that the highest synergy was observed at a concentration ratio similar to that occurring in the BEO, supporting our initial hypothesis. Taken together, our results deepen the knowledge regarding the effect of BRG and 5-G-7-MOC in SH-SY5Y cells, emphasizing the relevance of their cooperation in achieving this effect.
Collapse
|
16
|
Finger Citron Extract Ameliorates Glycolipid Metabolism and Inflammation by Regulating GLP-1 Secretion via TGR5 Receptors in Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6623379. [PMID: 33854556 PMCID: PMC8021467 DOI: 10.1155/2021/6623379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/03/2022]
Abstract
Finger citron (FC) is one of many traditional Chinese herbs that have been used to treat obesity. The aim of this study was to elucidate the pharmacological effects and mechanisms of FC on obese rats. Rats were fed with a high-fat diet as a model of obesity and treated with FC at three different dosages for 6 weeks. Pathology in liver tissue was observed. Glucose levels, lipids levels, and inflammatory indicators in serum were evaluated by enzyme‐linked immunosorbent assay. Furthermore, the expression of G protein-coupled receptor 5 (TGR5) pathway genes in rat colon tissue was detected by reverse transcription-polymerase chain reaction analysis (RT-PCR). Our result revealed that FC alleviates obesity by reducing body weight (BW) and waist circumference, managing inflammation and improving glycolipid metabolism, liver function, and liver lipid peroxidation in vivo. In addition, the mechanism of FC on obesity is possibly the stimulation of glucagon-like peptide-1 (GLP-1) secretion by activating the TGR5 pathway in intestinal endocrine cells. Our studies highlight the obesity reduction effects of FC and one of the mechanisms may be the activation of the TGR5 pathway in intestinal endocrine cells.
Collapse
|
17
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
18
|
Zhang N, Kong F, Zhao L, Yang X, Wu W, Zhang L, Ji B, Zhou F. Essential oil, juice, and ethanol extract from bergamot confer improving effects against primary dysmenorrhea in rats. J Food Biochem 2021; 45:e13614. [PMID: 33470446 DOI: 10.1111/jfbc.13614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/08/2020] [Accepted: 12/30/2020] [Indexed: 11/28/2022]
Abstract
Primary dysmenorrhea (PD) is one of the most common gynecological disorders among young women. Bergamot is rich in natural bioactive ingredients, which could potentially ameliorate PD. We aimed to investigate whether the bergamot products (essential oil, juice, and ethanol extract) could improve PD induced by estradiol benzoate and oxytocin. The rats were supplemented with the three doses of bergamot products and positive drugs by gastric perfusion, respectively. The results demonstrated that bergamot products could alleviate PD with dose-dependence via inhibiting the growth of PGF2 α /PGE2 ratio, accumulation of MDA, and release of iNOS, and promoting the activities of T-AOC, SOD, CAT, and GSH in uterine tissues. Furthermore, bergamot products could mitigate the writhing response and histopathological alterations in uterine tissues. In addition, bergamot essential oil had greater benefits than the corresponding dose of juice and ethanol extract. PRACTICAL APPLICATIONS: An increasing number of young women suffered PD, severely impacting their life. Seeking a healthy diet therapy can effectively avoid the adverse effects of PD drugs. Bergamot as natural fruit is rich in several bioactive ingredients. This study reported the function of bergamot products for alleviating PD via regulating the levels of prostaglandins and inflammatory mediator, and the capacities of antioxidants. This research provides insights for the development of functional foods with improving effect against PD. It also offers us a theoretical basis for the reasonable application of different forms of bergamot products.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang Kong
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xue Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Rapa SF, Di Paola R, Cordaro M, Siracusa R, D’Amico R, Fusco R, Autore G, Cuzzocrea S, Stuppner H, Marzocco S. Plumericin Protects against Experimental Inflammatory Bowel Disease by Restoring Intestinal Barrier Function and Reducing Apoptosis. Biomedicines 2021; 9:biomedicines9010067. [PMID: 33445622 PMCID: PMC7826791 DOI: 10.3390/biomedicines9010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.
Collapse
Affiliation(s)
- Shara Francesca Rapa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (S.F.R.); (G.A.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.D.P.); (R.S.); (R.D.); (R.F.); (S.C.)
| | - Marika Cordaro
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.D.P.); (R.S.); (R.D.); (R.F.); (S.C.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.D.P.); (R.S.); (R.D.); (R.F.); (S.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.D.P.); (R.S.); (R.D.); (R.F.); (S.C.)
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (S.F.R.); (G.A.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.D.P.); (R.S.); (R.D.); (R.F.); (S.C.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria;
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (S.F.R.); (G.A.)
- Correspondence: ; Tel.: +89-969159
| |
Collapse
|
20
|
Endothelial Dysfunction and Extra-Articular Neurological Manifestations in Rheumatoid Arthritis. Biomolecules 2021; 11:biom11010081. [PMID: 33435178 PMCID: PMC7827097 DOI: 10.3390/biom11010081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory autoimmune disease that affects about 1% of the global population, with a female–male ratio of 3:1. RA preferably affects the joints, with consequent joint swelling and deformities followed by ankylosis. However, evidence has accumulated showing that patients suffering from RA can also develop extra-articular manifestations, including cardiovascular disease states, neuropathies, and multiorgan dysfunction. In particular, peripheral nerve disorders showed a consistent impact in the course of the disease (prevalence about 20%) mostly associated to vasculitis of the nerve vessels leading to vascular ischemia, axonal degeneration, and neuronal demyelination. The pathophysiological basis of this RA-associated microvascular disease, which leads to impairment of assonal functionality, is still to be better clarified. However, endothelial dysfunction and alterations of the so-called brain-nerve barrier (BNB) seem to play a fundamental role. This review aims to assess the potential mechanisms underlying the impairment of endothelial cell functionality in the development of RA and to identify the role of dysfunctional endothelium as a causative mechanism of extra-articular manifestation of RA. On the other hand, the potential impact of lifestyle and nutritional interventions targeting the maintenance of endothelial cell integrity in patients with RA will be discussed as a potential option when approaching therapeutic solutions in the course of the disease.
Collapse
|
21
|
Junren C, Xiaofang X, Mengting L, Qiuyun X, Gangmin L, Huiqiong Z, Guanru C, Xin X, Yanpeng Y, Fu P, Cheng P. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review. Chin Med 2021; 16:5. [PMID: 33413544 PMCID: PMC7791836 DOI: 10.1186/s13020-020-00413-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Patchouli ("Guanghuoxiang") or scientifically known as Pogostemon cablin Benth, belonging to the family Lamiaceae, has been used in traditional Chinse medicine (TCM) since the time of the Eastern Han dynasty. In TCM theory, patchouli can treat colds, nausea, fever, headache, and diarrhea. Various bioactive compounds have been identified in patchouli, including terpenoids, phytosterols, flavonoids, organic acids, lignins, glycosides, alcohols, pyrone, and aldehydes. Among the numerous compounds, patchouli alcohol, β-patchoulene, patchoulene epoxide, pogostone, and pachypodol are of great importance. The pharmacological impacts of these compounds include anti-peptic ulcer effect, antimicrobial effect, anti-oxidative effect, anti-inflammatory effect, effect on ischemia/reperfusion injury, analgesic effect, antitumor effect, antidiabetic effect, anti-hypertensive effect, immunoregulatory effect, and others.For this review, we examined publications from the previous five years collected from PubMed, Web of Science, Springer, and the Chinese National Knowledge Infrastructure databases. This review summarizes the recent progress in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies focused on clinical applications of this important plant extract.
Collapse
Affiliation(s)
- Chen Junren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xie Xiaofang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Mengting
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xiong Qiuyun
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Gangmin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Zhang Huiqiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Chen Guanru
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xu Xin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Yin Yanpeng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Peng Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- West China School of Pharmacy, Sichuan University, 17 South Renmin Rd, 610065, Chengdu, China.
| | - Peng Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 611137, China.
| |
Collapse
|
22
|
Ghattamaneni NKR, Brown L. Functional foods from the tropics to relieve chronic normobaric hypoxia. Respir Physiol Neurobiol 2020; 286:103599. [PMID: 33333240 DOI: 10.1016/j.resp.2020.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Functional foods with antioxidant and anti-inflammatory properties are regarded as a complementary therapy to improve chronic diseases such as obesity and inflammatory bowel disease (IBD). Obesity is a chronic low-grade inflammatory state leading to organ damage with increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteoarthritis and some cancers. IBD is a chronic intestinal inflammation categorised as Crohn's disease and ulcerative colitis depending on the location of inflammation. These inflammatory states are characterised by normobaric hypoxia in adipose and intestinal tissues, respectively. Tropical foods especially from Australia and South America are discussed in this review to show their potential in attenuation of these chronic diseases. The phytochemicals from these foods have antioxidant and anti-inflammatory activities to reduce chronic normobaric hypoxia in the tissues. These health benefits of the tropical foods are relevant not only for health economy but also in providing a global solution by improving the sustainability of their cultivation and assisting the local economies.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia.
| |
Collapse
|
23
|
Lather A, Sharma S, Khatkar A. Naringin derivatives as glucosamine-6-phosphate synthase inhibitors based preservatives and their biological evaluation. Sci Rep 2020; 10:20477. [PMID: 33235242 PMCID: PMC7686335 DOI: 10.1038/s41598-020-77511-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Glucosamine-6-Phosphate synthase enzyme has been targeted for development of better and safe preservative due to its role in microbial cell wall synthesis. In recent year's demand of preservatives for the food, cosmetics and pharmaceuticals have increased. Although, the available synthetic preservatives have associated unwanted adverse effects, soa chain of naringin derivatives were schemed synthesized and judged for antioxidant, antimicrobial, preservative efficacy, stability study and topical evaluation. Molecular docking resulted with excellent dock score and binding energy for compound 7, compound 6 and compound 1 as compared to standard drugs. Resultant data of antimicrobial activity revealed compound 7as most potent antimicrobial compound for P. mirabilis, P. aeruginosa, S. aureus, E. coli, C. albicans, and A. niger, respectively, as compared to the standard drugs. The preservative efficacy test of compound 7 in White Lotion USP showed the log cfu/mL value within prescribed limit of USP standard. Compound 7 stabilize the White lotion USP from microbial growth for a period of six months under accelerated storage condition. Compound 7 was further evaluated for toxicity by using the Draize test in rabbits and showed no sign of eye and skin irritation. The outcome demonstrated that synthesized naringin compounds showed glorious antioxidant, antimicrobial, preservative efficacy, stable and safe as compared to standards.
Collapse
Affiliation(s)
- Amit Lather
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, G.J.U.S.&T., Hisar, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
24
|
Modulation of NLRP3 Inflammasome Attenuated Inflammatory Response Associated to Diarrhea-Predominant Irritable Bowel Syndrome. Biomedicines 2020; 8:biomedicines8110519. [PMID: 33233503 PMCID: PMC7699594 DOI: 10.3390/biomedicines8110519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a multifactorial chronic gastrointestinal disorder characterized by inflammation and immune response. In this context, NLRP3 over-activation is associated with a breakdown of enteric-immune balance related to IBS-D. The aim of this study was to evaluate the effect of the inflammasome inhibitor, BAY 11-7082, in a rat model of IBS-D. Syndrome was induced by intracolonic instillation of 1 mL 4% acetic acid at 8 cm proximal to the anus for 30 s and sacrificed 2 weeks after IBS-D induction. BAY 11-7082 (10 and 30 mg/kg) was administered daily by oral gavage. The results obtained showed that the treatment with BAY 11-7082 (30 mg/kg) significantly reduced tissue injury characterized by edema, neutrophil infiltration, and loss of colon structure. We demonstrated that BAY 11-7082 treatment inhibited NLRP3 inflammasome activation and NF-kB translocation, reducing inflammatory mediators. Moreover, treatment with BAY 11-7082 restored tight junction alteration following IBS-D induction and reduced the restraint stress. Taken together, our data demonstrate that IBS-D induced NLRP3 inflammasome pathway activation, accompanied by the production of proinflammatory response. The modulation of the inflammosome pathway with BAY 11-7082 inhibitor significantly reduced pathological signs of IBS-D, therefore, can be considered a valuable strategy to reduce the development of IBS-D.
Collapse
|
25
|
D’Amico R, Siracusa R, Fusco R, Cordaro M, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea S, Paola RD. Protective effects of Colomast ®, A New Formulation of Adelmidrol and Sodium Hyaluronate, in A Mouse Model of Acute Restraint Stress. Int J Mol Sci 2020; 21:E8136. [PMID: 33143356 PMCID: PMC7662642 DOI: 10.3390/ijms21218136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Stress is generally defined as a homeostatic disruption from actual or implied threats and alters the homeostatic balance of different body organs, such as gastrointestinal function and the hypothalamic-pituitary-adrenal axis (HPA), inducing the release of glucocorticoid hormones. Stress is also known to be a risk factor for the development of depression and anxiety. However, until today there are no suitable therapies for treating of stress. The aim of this study was to explore the protective effect of Colomast®, a new preparation containing Adelmidrol, an enhancer of physiological of palmitoylethanolamide (PEA), and sodium hyaluronate in an animal model of immobilization stress. Acute restraint stress (ARS) was induced in mice by fixation for 2 h of the four extremities with an adhesive tape and Colomast® (20 mg/kg) was administered by oral gavage 30 min before the immobilization. Colomast® pre-treatment was able to decrease histopathological changes in the gastrointestinal tract, cytokines expression, neutrophil infiltration, mast cell activation, oxidative stress, as well as modulate nuclear factor NF-kB and apoptosis pathways after ARS induction. Moreover, Colomast® was able to restore tight junction in both ileum and hippocampus and cortex. Additionally, we demonstrated that Colomast® ameliorated depression and anxiety-related behaviours, and modulate inflammatory and apoptosis pathways also in brain after ARS induction. In conclusion, our results suggest Colomast® to be a potential approach to ARS.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| |
Collapse
|
26
|
Tian J, Pan W, Xu X, Tian X, Zhang M, Hu Q. RETRACTED: NF-κB inhibits the occurrence of type 1 diabetes through microRNA-150-dependent PUMA degradation. Life Sci 2020; 255:117724. [PMID: 32360624 DOI: 10.1016/j.lfs.2020.117724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy) This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 1D,E+H, 2E+H, 3F,H+K, and 4B+E which appear to have a similar phenotype as many other publications, as detailed here: https://pubpeer.com/publications/C6FD5C041268DBBCDA521AEC112FA4 and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested the corresponding author comment on these concerns and provide the raw Western blot data. However, the authors were not able to satisfactorily fulfill this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Pan
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaoheng Xu
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Tian
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Meng Zhang
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Qibo Hu
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
27
|
Baumgartner S, Bruckert E, Gallo A, Plat J. The position of functional foods and supplements with a serum LDL-C lowering effect in the spectrum ranging from universal to care-related CVD risk management. Atherosclerosis 2020; 311:116-123. [PMID: 32861515 DOI: 10.1016/j.atherosclerosis.2020.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
A wealth of data demonstrates a causal link between serum low-density lipoprotein cholesterol (LDL-C) concentrations and cardiovascular disease (CVD). Any decrease in serum LDL-C concentrations is associated with a decreased CVD risk, and this benefit is similar to a comparable LDL-C reduction after drug treatment and dietary intervention. Moreover, life-long reductions in serum LDL-C levels have a large impact on CVD risk and a long-term dietary enrichment with functional foods or supplements with a proven LDL lowering efficacy is therefore a feasible and efficient approach to decrease future CVD risk. Functional foods with an LDL-C lowering effect can improve health and/or a reduce the risk of disease. However, it has not been mentioned specifically whether this concerns mainly universal prevention or whether this can also be applied to the hierarchy towards care related prevention. Therefore, we here describe the effects of a list of interesting functional food ingredients with proven benefit in LDL-C lowering. In addition, we pay particular attention to the emerging evidence that the addition of these functional ingredients and supplements is advisable as universal and selective prevention in the general population. Moreover, functional ingredients and supplements are also helpful in care related prevention, i.e. in patients with elevated LDL-C concentrations who are statin-intolerant or are not able to achieve their LDL-C target levels. Furthermore, we will highlight practical aspects regarding the use of functional foods with an LDL-C lowering effect, such as the increasing importance of shared decision making of medical doctors and dieticians with patients to ensure proper empowerment and better adherence to dietary approaches. In addition, we will address costs issues related to the use of these functional foods, which might be a barrier in some populations.
Collapse
Affiliation(s)
- Sabine Baumgartner
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD, Maastricht, the Netherlands.
| | - Eric Bruckert
- Endocrinology Metabolism and Cardiovascular Prevention, E3M Institute and Cardiometabolic IHU (ICAN), Sorbonne University, Pitié Salpêtrière Hospital, Paris, France
| | - Antonio Gallo
- Endocrinology Metabolism and Cardiovascular Prevention, E3M Institute and Cardiometabolic IHU (ICAN), Sorbonne University, Pitié Salpêtrière Hospital, Paris, France
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
28
|
Marchese E, D’onofrio N, Balestrieri ML, Castaldo D, Ferrari G, Donsì F. Bergamot essential oil nanoemulsions: antimicrobial and cytotoxic activity. ACTA ACUST UNITED AC 2020; 75:279-290. [DOI: 10.1515/znc-2019-0229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Abstract
Bergamot essential oil (BEO) is well-known for its food preservation activity, as well as anticancer efficacy. However, the poor BEO water solubility and deriving low bioaccessibility have limited its wider applications. The incorporation in nanoemulsions of BEO and its refined fractions was investigated to enhance its dispersibility in water to promote its antimicrobial activity, tested against Escherichia coli, Lactobacillus delbrueckii, and Saccharomyces cerevisiae, and its cytotoxicity already at low concentrations. Different nanoemulsion formulations were tested based on food-grade ingredients, which were characterized in terms of hydrodynamic diameter and polydispersity index, and physical stability. The antimicrobial activity against all the tested micro-organisms was observed to be higher for BEO in its initial composition, than the light fraction, richer in d-limonene, ß-pinene, and γ-terpinene, or the heavy fraction, richer in linalyl acetate and linalool. Remarkably, the use of BEO nanoemulsions notably enhanced the antimicrobial activity for all the tested oils. BEO exhibited also a measurable cytotoxic activity against Caco-2 cells, which was also enhanced by the use of the different nanoemulsions tested, in comparison with free oil, which discourages the direct use of BEO nanoemulsions as a food preservative. Conversely, BEO nanoemulsions might find use in therapeutic applications as anticarcinogenic agents.
Collapse
Affiliation(s)
- Enrico Marchese
- Department of Industrial Engineering , University of Salerno , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
| | - Nunzia D’onofrio
- Department of Precision Medicine , Università degli Studi della Campania “Luigi Vanvitelli” , Via L. De Crecchio 7, 80138 , Napoli , Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine , Università degli Studi della Campania “Luigi Vanvitelli” , Via L. De Crecchio 7, 80138 , Napoli , Italy
| | - Domenico Castaldo
- ProdAl Scarl , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi (SSEA), Azienda Speciale della CCIAA di Reggio Calabria , Via Generale Tommasini 2, 89127 , Reggio Calabria , Italy
- Ministero dello Sviluppo Economico (MiSE) , Via Molise 2 , Roma , Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering , University of Salerno , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
- ProdAl Scarl , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
| | - Francesco Donsì
- Department of Industrial Engineering , University of Salerno , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
| |
Collapse
|
29
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
30
|
Ferlazzo N, Cirmi S, Maugeri A, Russo C, Lombardo GE, Gangemi S, Calapai G, Mollace V, Navarra M. Neuroprotective Effect of Bergamot Juice in 6-OHDA-Induced SH-SY5Y Cell Death, an In Vitro Model of Parkinson's Disease. Pharmaceutics 2020; 12:pharmaceutics12040326. [PMID: 32260543 PMCID: PMC7238189 DOI: 10.3390/pharmaceutics12040326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Much evidence suggests that both oxidative stress and apoptosis play a key role in the pathogenesis of Parkinson’s disease (PD). The present study aims to evaluate the protective effect of bergamot juice (BJ) against 6-hydroxydopamine (6-OHDA)- or H2O2-induced cell death. Treatment of differentiated SH-SY5Y human neuroblastoma cells with 6-OHDA or H2O2 resulted in cell death that was significantly reduced by the pre-treatment with BJ. The protective effects of BJ seem to correlate with the reduction of intracellular reactive oxygen species and nitric oxide generation caused by 6-OHDA or H2O2. BJ also attenuated mitochondrial dysfunction, caspase-3 activation, imbalance of pro- and anti-apoptotic proteins, MAPKs activation and reduced NF-ĸB nuclear translocation evoked by neurotoxic agents. Additionally, BJ exhibited excellent antioxidant capability in cell-free assays. Collectively, our results suggest that BJ exerts neuroprotective effect through the interplay with specific cell targets and its antioxidant activity, making it worthy of consideration for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
- Fondazione “Prof. Antonio Imbesi”, 98100 Messina, Italy
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Vincenzo Mollace
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
- Correspondence:
| |
Collapse
|
31
|
The Antioxidant and Anti-Inflammatory Properties of Anacardium occidentale L. Cashew Nuts in a Mouse Model of Colitis. Nutrients 2020; 12:nu12030834. [PMID: 32245085 PMCID: PMC7146548 DOI: 10.3390/nu12030834] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Anacardium occidentale L. is a tropical plant used for the treatment of inflammatory diseases. The goal of the present work was to investigate the anti-inflammatory and anti-oxidant potential of oral administration of cashew nuts (from Anacardium occidentale L.) in a mouse model of colitis. Methods: Induction of colitis was performed by intrarectally injection of dinitrobenzene sulfonic acid (DNBS). Cashew nuts were administered daily orally (100 mg/kg) in DNBS-injected mice. Results: Four days after DNBS, histological and macroscopic colon alterations as well as marked clinical signs and increased cytokine production were observed. Neutrophil infiltration, measured by myeloperoxidase (MPO) positive immunostaining, was correlated with up-regulation of adhesion molecules ICAM-1 and P-selectin in colons. Oxidative stress was detected with increased malondialdehyde (MDA) levels, nitrotyrosine, and poly ADP-ribose polymerase (PARP) positive staining in inflamed colons. Oral treatment with cashew nuts reduced histological, macroscopic damage, neutrophil infiltration, pro-inflammatory cytokines and MDA levels, as well as nitrotyrosine, PARP and ICAM-1, and P-selectin expressions. Colon inflammation could be related to nuclear factor (NF)-kB pathway activation and reduced manganese superoxide dismutase (MnSOD) antioxidant activity. Cashew nuts administration inhibited NF-kB and increased MnSOD antioxidant expressions. Conclusions: The results suggested that oral assumption of cashew nuts may be beneficial for the management of colitis.
Collapse
|
32
|
Shanmugam S, Thangaraj P, Dos Santos Lima B, Trindade GGG, Narain N, Mara de Oliveira E Silva A, Santin JR, Broering MF, Serafini MR, Quintans-Júnior LJ, Antunes de Souza Araújo A. Protective effects of flavonoid composition rich P. subpeltata Ortega. on indomethacin induced experimental ulcerative colitis in rat models of inflammatory bowel diseases. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112350. [PMID: 31669103 DOI: 10.1016/j.jep.2019.112350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyphenolics (flavonoid and phenolic) rich plants are the effective source for the treatment of acute and chronic degenerative diseases including inflammatory bowel disease. OBJECTIVE This study was aimed to examine the effects of polyphenolics rich leaf acetone extract of P. subpeltata against the indomethacin induced ulcerative colitis in rats. MATERIALS AND METHODS Two consecutive days administration of indomethacin produced chronic inflammation in GIT tissues of rats. Further, the plant extract 200 and 400 mg/kg treatment were continued until 11th day. Then hematological, enzymatic antioxidants, MPO and histological evaluations were analyzed. Moreover, the extracts were treated with RAW267.4 cells for the cytotoxicity, NO and TNF-α analysis. RESULTS The obtained results revealed, that higher dose of the plant extract dropped neutrophil infiltration followed by inhibiting the MPO enzyme levels and controls the enzymatic antioxidants such as SOD, CAT, GSH and LPO. RAW cells study also proved that the plant extract effectively inhibits NO and TNF-α production. CONCLUSIONS Thus, these results suggest that P. subpeltata extract may have therapeutic potential for the treatment of IBD although further clinical research is still warranted.
Collapse
Affiliation(s)
- Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, Sergipe, Brazil.
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Bruno Dos Santos Lima
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, Sergipe, Brazil.
| | - Gabriela G G Trindade
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, Sergipe, Brazil.
| | - Narendra Narain
- Postgraduate Program in Food Science and Technology, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP: 49100-000, São Cristóvão, Sergipe, Brazil.
| | | | - José Roberto Santin
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil.
| | - Milena Fronza Broering
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil.
| | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, Sergipe, Brazil.
| | - Lucindo José Quintans-Júnior
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, Sergipe, Brazil.
| | - Adriano Antunes de Souza Araújo
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
33
|
Rapa SF, Waltenberger B, Di Paola R, Adesso S, Siracusa R, Peritore AF, D'Amico R, Autore G, Cuzzocrea S, Stuppner H, Marzocco S. Plumericin prevents intestinal inflammation and oxidative stress in vitro and in vivo. FASEB J 2020; 34:1576-1590. [PMID: 31914614 DOI: 10.1096/fj.201902040r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by an inflammatory and oxidative stress condition in the intestinal tissue. In this study, we evaluated the effect of plumericin, one of the main bioactive components of Himatanthus sucuuba (Woodson) bark, on intestinal inflammation and oxidative stress, both in vitro and in vivo. The effect of plumericin (0.5-2 µM) in vitro was evaluated in rat intestinal epithelial cells (IEC-6) treated with lipopolysaccharides from E. coli (10 μg/mL) plus interferon-γ (10 U/mL). Moreover, a 2,4,6-dinitrobenzene sulfonic acid (DNBS)-induced colitis model was used to evaluate the anti-inflammatory and antioxidant activity of plumericin (3 mg/kg) in vivo. The results showed that plumericin significantly reduces intestinal inflammatory factors such as tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase expression, and nitrotyrosine formation. Plumericin also inhibited nuclear factor-κB translocation, reactive oxygen species (ROS) release, and inflammasome activation. Moreover, plumericin activated the nuclear factor erythroid-derived 2 pathway in IEC-6. Using the DNBS-induced colitis model, a significant reduction in the weight loss and in the development of the macroscopic and histologic signs of colon injury, together with a reduced inflammatory and oxidative stress state, were observed in plumericin-treated mice. These results indicate that plumericin exerts a strong anti-inflammatory and antioxidant activity. Thus, it might be a candidate for the development of a new pharmacologic approach for IBDs treatment.
Collapse
Affiliation(s)
- Shara F Rapa
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Simona Adesso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio F Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
34
|
de Assis POA, Guerra GCB, Araújo DFDS, de Andrade LDFLI, de Araújo AA, de Araújo RF, de Carvalho TG, de Souza MDFV, Borges GDSC, Lima MDS, Rolim FRL, Rodrigues RAV, Queiroga RDCRDE. Intestinal anti-inflammatory activity of xique-xique (Pilosocereus gounellei A. Weber ex K. Schum. Bly. Ex Rowl) juice on acetic acid-induced colitis in rats. Food Funct 2019; 10:7275-7290. [PMID: 31621721 DOI: 10.1039/c9fo00920e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by severe mucosal damage in the intestine and a deregulated immune response. Natural products derived from plants that are rich in bioactive compounds are used by many patients with IBD. Xique-xique (Pilosocereus gounellei) is a cactus of the Caatinga family that has been used by the local population for food and medicinal purposes. The intestinal anti-inflammatory effect of xique-xique cladode juice was evaluated in the present study. A dose of 5 mL kg-1 had a protective effect on intestinal inflammation, with an improvement in macroscopic damage, and a decrease in pro-inflammatory markers and oxidative stress, in addition to preserving the colonic tissue. Immunohistochemical analysis revealed the downregulation of IL-17, NF-κB, and iNOS, and upregulation of SOCs-1, ZO-1, and MUC-2. These protective effects could be attributed to the phenolic compounds as well as the fibers present in xique-xique juice. Further studies are needed before suggesting the use of xique-xique juice as a new alternative for treating IBD.
Collapse
Affiliation(s)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | | | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Raimundo Fernandes de Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Graciele da Silva Campelo Borges
- Department of Food Technology, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Institute Federal of Sertão Pernambucano, Petrolina, Brazil
| | | | | | | |
Collapse
|
35
|
The Potential Role of Citrus limon Powder as a Natural Feed Supplement to Boost the Productive Performance, Antioxidant Status, and Blood Biochemistry of Growing Rabbits. Animals (Basel) 2019; 9:ani9070426. [PMID: 31284654 PMCID: PMC6680595 DOI: 10.3390/ani9070426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/17/2023] Open
Abstract
The current study examined the influence of Citrus limon (dry lemon) on the hemato-biochemical profiles, and antioxidant indices of growing rabbits. Forty-eight growing New Zealand White rabbits (age, eight weeks; weight, 1543.33 ± 25 g) were allocated into three groups (16 animals each), the first group was (control) fed a basal diet, whereas the second and third groups were supplemented with dried lemon, 1% or 2% DLP, respectively. A GC-MS analysis of more than 27 active constituents was performed. Feed conversion efficiency was (p < 0.05) better with diets containing 1% or 2% dry lemon, compared to the control group. Hematological indexes were increased significantly with the addition of DLP compared to those in the control group. Adding 1% or 2% dry lemon to rabbit diet increased (p < 0.05) enzymatic and non-enzymatic antioxidant activities (TAC, SOD, GSH, GST, and CAT) in serum and liver tissues. Taken together, these data reveal the advantages and antioxidant effects of dry lemon supplementation for growing rabbits once supplemented at a maximum of 2% in their daily diet.
Collapse
|
36
|
Stevens Y, Rymenant EV, Grootaert C, Camp JV, Possemiers S, Masclee A, Jonkers D. The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health. Nutrients 2019; 11:nu11071464. [PMID: 31252646 PMCID: PMC6683056 DOI: 10.3390/nu11071464] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
Citrus flavanones, with hesperidin and naringin as the most abundant representatives, have various beneficial effects, including anti-oxidative and anti-inflammatory activities. Evidence also indicates that they may impact the intestinal microbiome and are metabolized by the microbiota as well, thereby affecting their bioavailability. In this review, we provide an overview on the current evidence on the intestinal fate of hesperidin and naringin, their interaction with the gut microbiota, and their effects on intestinal barrier function and intestinal inflammation. These topics will be discussed as they may contribute to gastrointestinal health in various diseases. Evidence shows that hesperidin and naringin are metabolized by intestinal bacteria, mainly in the (proximal) colon, resulting in the formation of their aglycones hesperetin and naringenin and various smaller phenolics. Studies have also shown that citrus flavanones and their metabolites are able to influence the microbiota composition and activity and exert beneficial effects on intestinal barrier function and gastrointestinal inflammation. Although the exact underlying mechanisms of action are not completely clear and more research in human subjects is needed, evidence so far suggests that citrus flavanones as well as their metabolites have the potential to contribute to improved gastrointestinal function and health.
Collapse
Affiliation(s)
- Yala Stevens
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- BioActor BV, Gaetano Martinolaan 85, 6229 GS Maastricht, The Netherlands.
| | - Evelien Van Rymenant
- Department of Food Technology, Safety and Health, Research Group Food Chemistry and Human Nutrition, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Research Group Food Chemistry and Human Nutrition, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Research Group Food Chemistry and Human Nutrition, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | - Adrian Masclee
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Daisy Jonkers
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
37
|
Aronia Berry Supplementation Mitigates Inflammation in T Cell Transfer-Induced Colitis by Decreasing Oxidative Stress. Nutrients 2019; 11:nu11061316. [PMID: 31212794 PMCID: PMC6627224 DOI: 10.3390/nu11061316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is involved in the pathogenesis and progression of inflammatory bowel disease. Consumption of aronia berry inhibits T cell transfer colitis, but the antioxidant mechanisms pertinent to immune function are unclear. We hypothesized that aronia berry consumption could inhibit inflammation by modulating the antioxidant function of immunocytes and gastrointestinal tissues. Colitis was induced in recombinase activating gene-1 deficient (Rag1-/-) mice injected with syngeneic CD4+CD62L+ naïve T cells. Concurrent with transfer, mice consumed either 4.5% w/w aronia berry-supplemented or a control diet for five weeks. Aronia berry inhibited intestinal inflammation evidenced by lower colon weight/length ratios, 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake, mRNA expressions of tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) in the colon. Aronia berry also suppressed systemic inflammation evidenced by lower FDG uptake in the spleen, liver, and lung. Colitis induced increased colon malondialdehyde (MDA), decreased colon glutathione peroxidase (GPx) activity, reduced glutathione (rGSH) level, and suppressed expression of antioxidant enzymes in the colon and mesenteric lymph node (MLN). Aronia berry upregulated expression of antioxidant enzymes, prevented colitis-associated depletion of rGSH, and maintained GPx activity. Moreover, aronia berry modulated mitochondria-specific antioxidant activity and decreased splenic mitochondrial H2O2 production in colitic mice. Thus, aronia berry consumption inhibits oxidative stress in the colon during T cell transfer colitis because of its multifaceted antioxidant function in both the cytosol and mitochondria of immunocytes.
Collapse
|
38
|
Maugeri A, Ferlazzo N, De Luca L, Gitto R, Navarra M. The link between the AMPK/SIRT1 axis and a flavonoid-rich extract of Citrus bergamia juice: A cell-free, in silico, and in vitro study. Phytother Res 2019; 33:1805-1814. [PMID: 31094018 DOI: 10.1002/ptr.6368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/20/2023]
Abstract
A previous report indicated that the flavonoid-rich extract of bergamot juice (BJe) exerts an anti-inflammatory effect through the activation of SIRT1 in leukemic monocytes THP-1 exposed to lipopolysaccharide (LPS). In this study, we deeply investigate the mode of action of BJe, along with its major flavonoids on SIRT1 through cell-free, in silico, and in vitro experimental models. In the cell-free assay, all the tested compounds as well as the whole BJe inhibited the deacetylase activity of SIRT1. This finding was reinforced by the results of the in silico study. In THP-1 cells exposed to LPS, a reduction of SIRT1 activity was observed, effect that was reverted by the pre-incubation with either BJe or its major flavonoids. This effect was also observed at gene level. Employing an activator and an inhibitor of AMP-activated protein kinase (AMPK; AICAR and dorsomorphin, respectively), we discovered its involvement in the activation of SIRT1 elicited by BJe or its major flavonoids in whole cell. Our study indicates the dual role of BJe and its components, depending on the employed experimental model as well as reveals their mode of action on the AMPK/SIRT1 axis, suggesting their role as promising candidates in pathologies in which this axis is implied.
Collapse
Affiliation(s)
- Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Fondazione Prof. Antonio Imbesi, Messina, Italy
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Musumeci L, Maugeri A, Cirmi S, Lombardo GE, Russo C, Gangemi S, Calapai G, Navarra M. Citrus fruits and their flavonoids in inflammatory bowel disease: an overview. Nat Prod Res 2019; 34:122-136. [PMID: 30990326 DOI: 10.1080/14786419.2019.1601196] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD), with its major manifestations being Crohn's disease and ulcerative colitis, belongs to the gastrointestinal inflammatory disorders, whose main therapeutic approach is represented by synthetic anti-inflammatory drugs. However, they are often accompanied by many side effects that shifted the interest of the scientific community towards natural products. In this context, several studies asserted the anti-IBD effects of Citrus fruits and their flavonoids, thus the aim of the present review is to provide robust evidence favouring their role in the prevention and treatment of IBD. Key mechanisms relate to their anti-inflammatory and antioxidant properties, as well as their ability to modulate gut microbiota. All the findings collected in this review, lay the foundations for further studies in human with the aim of evaluating the concrete applicability as a novel preventive and therapeutic approach of Citrus fruits and their flavonoids.[Figure: see text].
Collapse
Affiliation(s)
- Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Fondazione Prof. Antonio Imbesi, Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Fondazione Prof. Antonio Imbesi, Messina, Italy
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Fondazione Prof. Antonio Imbesi, Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
40
|
Navarra M, Femia AP, Romagnoli A, Tortora K, Luceri C, Cirmi S, Ferlazzo N, Caderni G. A flavonoid-rich extract from bergamot juice prevents carcinogenesis in a genetic model of colorectal cancer, the Pirc rat (F344/NTac-Apc am1137). Eur J Nutr 2019; 59:885-894. [PMID: 30919084 DOI: 10.1007/s00394-019-01948-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine the potential of a flavonoid-rich extract from bergamot juice (BJe) to prevent colorectal carcinogenesis (CRC) in vivo. MAIN METHODS Pirc rats (F344/NTac-Apcam1137), mutated in Apc, the key gene in CRC, were treated with two different doses of BJe (35 mg/kg or 70 mg/kg body weight, respectively) mixed in the diet for 12 weeks. Then, the entire intestine was surgically removed and dissected for histological, immunohistochemical and molecular analyses. RESULTS Rats treated with BJe showed a significant dose-related reduction in the colon preneoplastic lesions mucin-depleted foci (MDF). Colon and small intestinal tumours were also significantly reduced in rats supplemented with 70 mg/kg of BJe. To elucidate the involved mechanisms, markers of inflammation and apoptosis were determined. Compared to controls, colon tumours from BJe 70 mg/kg-supplemented rats showed a significant down-regulation of inflammation-related genes (COX-2, iNOS, IL-1β, IL-6 and IL-10 and Arginase 1). Moreover, in colon tumours from rats fed with 70 mg/kg BJe, apoptosis was significantly higher than in controls. Up-regulation of p53 and down-regulation of survivin and p21 genes was also observed. CONCLUSIONS These data indicate a strong chemopreventive activity of BJe that, at least in part, is due to its pro-apoptotic and anti-inflammatory actions. This effect could be exploited as a strategy to prevent CRC in high-risk patients.
Collapse
Affiliation(s)
- Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Angelo Pietro Femia
- Section of Pharmacology and Toxicology, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Andrea Romagnoli
- Section of Pharmacology and Toxicology, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Katia Tortora
- Section of Pharmacology and Toxicology, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Fondazione "Prof. Antonio Imbesi", Messina, Italy
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Caderni
- Section of Pharmacology and Toxicology, NEUROFARBA Department, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Perna S, Spadaccini D, Botteri L, Girometta C, Riva A, Allegrini P, Petrangolini G, Infantino V, Rondanelli M. Efficacy of bergamot: From anti-inflammatory and anti-oxidative mechanisms to clinical applications as preventive agent for cardiovascular morbidity, skin diseases, and mood alterations. Food Sci Nutr 2019; 7:369-384. [PMID: 30847114 PMCID: PMC6392855 DOI: 10.1002/fsn3.903] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
We summarize the effects of bergamot (extract, juice, essential oil, and polyphenolic fraction) on cardiovascular, bone, inflammatory, skin diseases, mood alteration, anxiety, pain, and stress. This review included a total of 31 studies (20 studies on humans with 1709 subjects and 11 in animals (rats and mice)). In humans, bergamot-derived extract (BE) exerts positive effects on hyperlipidemia with an oral dose from 150 mg to 1000 mg/day of flavonoids administered from 30 to 180 days, demonstrating an effect on body weight and in modulating total cholesterol, triglycerides, LDL, and HDL. Studies in animals confirm promising data on glucose control (500/1000 mg/day of BE with a treatment lasting 30 days) are available in rats. In animals models, bergamot essential oil (BEO, 10 mg/kg or 20 mg/kg daily for 20 weeks) increases bone volume, decreases psoriatic plaques, increases skin collagen content, and promotes hair growth. Bergamot juice (20 mg/kg) is promising in terms of pro-inflammatory cytokine reduction. In humans, aromatherapy (from 15 to 30 min) does not appear to be useful in order to reduce stress, anxiety, and nausea, compared to placebo. Compared to baseline, BE topical application and BEO aromatherapy reduce blood diastolic and systolic pressure and could have a significant effect on improving mental conditions.
Collapse
Affiliation(s)
- Simone Perna
- Department of BiologyCollege of ScienceUniversity of BahrainZallaqBahrain
| | - Daniele Spadaccini
- Department of Public Health, Experimental and Forensic MedicineSection of Human Nutrition, Endocrinology and Nutrition UnitAzienda di Servizi alla PersonaUniversity of PaviaPaviaItaly
| | - Leonardo Botteri
- Department of Public Health, Experimental and Forensic MedicineSection of Human Nutrition, Endocrinology and Nutrition UnitAzienda di Servizi alla PersonaUniversity of PaviaPaviaItaly
| | - Carolina Girometta
- Department of Earth and Environmental SciencesMycology and Plant Pathology LaboratoryPaviaItaly
| | | | | | | | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic MedicineSection of Human Nutrition, Endocrinology and Nutrition UnitAzienda di Servizi alla PersonaUniversity of PaviaPaviaItaly
- Department of Biomedical Science and Human OncologyUniversity of BariBariItaly
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic MedicineSection of Human Nutrition, Endocrinology and Nutrition UnitAzienda di Servizi alla PersonaUniversity of PaviaPaviaItaly
- IRCCS Mondino FoundationPaviaItaly
| |
Collapse
|
42
|
Gugliandolo E, Fusco R, D'Amico R, Peditto M, Oteri G, Di Paola R, Cuzzocrea S, Navarra M. Treatment With a Flavonoid-Rich Fraction of Bergamot Juice Improved Lipopolysaccharide-Induced Periodontitis in Rats. Front Pharmacol 2019; 9:1563. [PMID: 30705631 PMCID: PMC6345201 DOI: 10.3389/fphar.2018.01563] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: In this study, we investigated the effects of a flavonoid-rich fraction of Bergamot juice (BJe) in rats subjected to experimental periodontitis induced by a single intragingival injection of lipopolysaccharides (LPS). Main Methods: Periodontitis was induced by a single intragingival injection of 1 μl LPS (10 μg/μl) derived from Salmonella typhimurium in sterile saline solution. The injection was made in the mesolateral side at the interdental papilla between the first and the second molar. Fourteen days after LPS injection, we performed radiographic analyses and then we surgically removed the gingivomucosal tissue surrounding the mandibular first molar for histological, immunohistochemical and molecular analysis. Results: LPS significantly induced oedema, tissue damage and increased neutrophil infiltration. At molecular level, we found increased NF-κB translocation as well as raised both TNF-α and IL-1β expression, other than modulation of apoptosis-associated proteins. Moreover, the increased myeloperoxidase activity was associated with up-regulation of adhesion molecules. Immunohistochemical analysis for nitrotyrosine and poly ADP-ribose displayed an intense staining in the gingivomucosal tissue. Oral administration of BJe for 14 consecutive days reduced tissue injury and several markers of gingival inflammation including nuclear NF-κB translocation, cytokines expression, myeloperoxidase activity and the expression of some adhesion molecules such as ICAM and P-selectin. BJe also decreased both nitrosative stress and PARP positive staining. Moreover, it caused down-regulation of Bax and up-regulation of Bcl-2 expression. Conclusion: Our findings demonstrate that BJe improves LPS-induced periodontitis in rats by reducing the typical markers of inflammation, thus suggesting its potential in the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Matteo Peditto
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
43
|
Sansone F, Mencherini T, Picerno P, Lauro MR, Cerrato M, Aquino RP. Development of Health Products from Natural Sources. Curr Med Chem 2019; 26:4606-4630. [PMID: 30259806 DOI: 10.2174/0929867325666180926152139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.
Collapse
Affiliation(s)
| | | | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | | - Michele Cerrato
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | |
Collapse
|
44
|
Parafati M, Lascala A, La Russa D, Mignogna C, Trimboli F, Morittu VM, Riillo C, Macirella R, Mollace V, Brunelli E, Janda E. Bergamot Polyphenols Boost Therapeutic Effects of the Diet on Non-Alcoholic Steatohepatitis (NASH) Induced by "Junk Food": Evidence for Anti-Inflammatory Activity. Nutrients 2018; 10:nu10111604. [PMID: 30388763 PMCID: PMC6267059 DOI: 10.3390/nu10111604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Wrong alimentary behaviors and so-called “junk food” are a driving force for the rising incidence of non-alcoholic fatty liver disease (NAFLD) among children and adults. The “junk food” toxicity can be studied in “cafeteria” (CAF) diet animal model. Young rats exposed to CAF diet become obese and rapidly develop NAFLD. We have previously showed that bergamot (Citrus bergamia Risso et Poiteau) flavonoids, in the form of bergamot polyphenol fraction (BPF), effectively prevent CAF diet-induced NAFLD in rats. Here, we addressed if BPF can accelerate therapeutic effects of weight loss induced by a normocaloric standard chow (SC) diet. 21 rats fed with CAF diet for 16 weeks to induce NAFLD with inflammatory features (NASH) were divided into three groups. Two groups were switched to SC diet supplemented or not with BPF (CAF/SC±BPF), while one group continued with CAF diet (CAF/CAF) for 10 weeks. BPF had no effect on SC diet-induced weight loss, but it accelerated hepatic lipid droplets clearance and reduced blood triglycerides. Accordingly, BPF improved insulin sensitivity, but had little effect on leptin levels. Interestingly, the inflammatory parameters were still elevated in CAF/SC livers compared to CAF/CAF group after 10 weeks of dietary intervention, despite over 90% hepatic fat reduction. In contrast, BPF supplementation decreased hepatic inflammation by reducing interleukin 6 (Il6) mRNA expression and increasing anti-inflammatory Il10, which correlated with fewer Kupffer cells and lower inflammatory foci score in CAF/SC+BPF livers compared to CAF/SC group. These data indicate that BPF mediates a specific anti-inflammatory activity in livers recovering from NASH, while it boosts lipid-lowering and anti-diabetic effects of the dietary intervention.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Daniele La Russa
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Chiara Mignogna
- Department of Experimental and Clinical Medicine, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Francesca Trimboli
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Valeria Maria Morittu
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| |
Collapse
|
45
|
Ruby-Figueroa R, Conidi C, Di Donna L, Cassano A. Recovery of bruteridin and melitidin from clarified bergamot juice by membrane operations. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación; Universidad Tecnológica Metropolitana; Santiago Chile
| | - Carmela Conidi
- Institute on Membrane Technology; ITM-CNR, c/o University of Calabria via P. Bucci; Rende Italy
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies; University of Calabria; Rende Italy
| | - Alfredo Cassano
- Institute on Membrane Technology; ITM-CNR, c/o University of Calabria via P. Bucci; Rende Italy
| |
Collapse
|
46
|
Impellizzeri D, Siracusa R, Cordaro M, Peritore AF, Gugliandolo E, Mancuso G, Midiri A, Di Paola R, Cuzzocrea S. Therapeutic potential of dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice by targeting IL-1β and IL-18. Biochem Pharmacol 2018; 155:150-161. [PMID: 29963998 DOI: 10.1016/j.bcp.2018.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-1 and IL-18 belong to the IL-1 family of ligands, and their receptors are members of the IL-1 receptor family. Both cytokines drive an extensive range of pro-inflammatory networks in many cell types using common signal transduction cascades. Anyway, differences in signaling pathways exist. With this aim in mind, we investigated by using transgenic mice the mechanisms through the simultaneous deficiency of both IL-1β and IL-18 could be more protective compared to blocking the single cytokine IL-1β or IL-18 during colitis. Colitis was provoked in mice by instillation of dinitrobenzene sulfonic acid (DNBS) in the colon. The results indicated that single knockout (KO) mice of IL-1β or IL-18, and double KO mice of both IL-1β and IL-18 were hyporesponsive to DNBS-induced colitis compared to wild type (WT) mice, in which double KO were less sensitive than single KO mice. Moreover, treatment with Anakinra (IL-1R antagonist) also ameliorated colitis, in views of macroscopic and histological alteration, infiltration of neutrophils or Th1 cells, oxidative and nitrosative stress. Anakinra more significantly reduced cyclooxygenase (COX-2) and nuclear factor (NF-κB) levels as well as IKB-α degradation compared to blocking IL-18. On the contrary, the absence of IL-18 reduced p-ERK and p-p38 mitogen-activated protein kinase (MAPKs) in a more significant way compared to blocking IL-1β. Thus, the double KO increased the protective effects against colon inflammation maybe because different converging inflammatory pathways are being inhibited. In conclusion, the blocking of both IL-1β and IL-18 function may be advantageous in the treatment of IBD or inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
47
|
Antioxidant and Antisenescence Effects of Bergamot Juice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9395804. [PMID: 30116497 PMCID: PMC6079356 DOI: 10.1155/2018/9395804] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/28/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022]
Abstract
Aging is one of the main risk factor for the onset of cardiovascular diseases; one of the possible explanations could be linked to the age-associated overproduction of free radicals. This increase of oxidative stress can be overcome with a high intake of food antioxidants. In this context, a number of studies have been addressed to assess the antiaging potential of natural antioxidant compounds. Recently, it has been shown that the juice of bergamot (Citrus bergamia Risso et Poiteau), a fruit mostly produced in the Ionian coastal areas of Southern Italy (Calabria), is a valuable source of health-promoting constituents with, among other, antioxidant properties. In order to investigate the potential antiaging effects of this Mediterranean natural antioxidant source, bergamot juices of three different cultivars (“fantastico,” “femminello,” and “castagnaro”) were herein characterized by the mean of high-performance liquid chromatography-photodiode array-electrospray ionization-tandem mass spectrometry. Then, juices were investigated for the evaluation of total polyphenolic and flavonoid contents, cell-free model antioxidant activities, and in vitro antiaging properties on two different cellular models of induced myocardial senescence. The best performing juice was also assessed in vivo. The phytochemical profiles confirmed that juices were rich in flavonoids, both flavone and flavanone glycosides. In addition, two limonoid glycosides were also identified in all cultivars. Each cultivar showed different phenolic and flavonoid contents. In tube results showed the juice robust antioxidant activities that correlate with their phenolic and flavonoid contents. Moreover, for the first time, the ability of juice to counteract the chemical-induced senescence was here demonstrated in both cellular models. Lastly, the in vivo data obtained from mouse hearts evidenced an increase in transcription of genes involved in antiaging and antioxidant responses. The overall results suggest that bergamot juice exerts antioxidant and antisenescence effects, making it useful for nutraceutical purposes.
Collapse
|
48
|
Plastina P, Apriantini A, Meijerink J, Witkamp R, Gabriele B, Fazio A. In Vitro Anti-Inflammatory and Radical Scavenging Properties of Chinotto ( Citrus myrtifolia Raf.) Essential Oils. Nutrients 2018; 10:nu10060783. [PMID: 29912150 PMCID: PMC6024861 DOI: 10.3390/nu10060783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023] Open
Abstract
Chinotto (Citrus myrtifolia Raf.) is a widely diffused plant native from China and its fruits have a wide-spread use in confectionary and drinks. Remarkably, only little has been reported thus far on its bioactive properties, in contrast to those of the taxonomically related bergamot (Citrus bergamia Risso). The present study aimed to investigate potential in vitro anti-inflammatory and radical scavenging properties of chinotto essential oils (CEOs) and to establish to what extent their composition and bioactivities are dependent on maturation. Essential oil from half ripe chinotto (CEO2) reduced the production of nitric oxide (NO) and the expression of inflammatory genes, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), cytokines, including interleukin-1β (IL-1β) and interleukin-6 (IL-6), and chemokine monocyte chemotactic protein-1 (MCP-1) by lipopolysaccharide (LPS)-stimulated RAW264,7 macrophages. Limonene, linalool, linalyl acetate, and γ-terpinene were found to be the main components in CEO2. Moreover, CEO2 showed high radical scavenging activity measured as Trolox equivalents (TE) against both 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). These findings show that chinotto essential oil represents a valuable part of this fruit and warrants further in vivo studies to validate its anti-inflammatory potential.
Collapse
Affiliation(s)
- Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Astari Apriantini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Bartolo Gabriele
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
49
|
Monforte MT, Smeriglio A, Germanò MP, Pergolizzi S, Circosta C, Galati EM. Evaluation of antioxidant, antiinflammatory, and gastroprotective properties of Rubus fruticosus
L. fruit juice. Phytother Res 2018; 32:1404-1414. [DOI: 10.1002/ptr.6078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Teresa Monforte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
- Foundation of Prof. A. Imbesi; University of Messina; Messina Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Enza Maria Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| |
Collapse
|
50
|
Cai Y, Xing G, Shen T, Zhang S, Rao J, Shi R. Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2017; 16:251. [PMID: 29273027 PMCID: PMC5741859 DOI: 10.1186/s12944-017-0640-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS Recent experiments suggest that Citrus bergamia extracts could benefit people with dyslipidemia and obesity but this needs to be further validated. METHODS A total of 98 people age-matched older adults (65 years) with elevated blood lipids were enrolled to receive 12-week supplementation of a Citrus bergamia extracts-based formulation (CitriCholess)(n = 48) and placebo (n = 50). RESULTS No group differences were found in baseline bodyweight, body mass index (BMI), blood cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and glucose levels. CitriCholess supplementation resulted in lower levels than placebo in TG (1.83 ± 0.92 vs. 1.95 ± 1.34 mmol/L, P = 0.612), TC (5.14 ± 0.98 vs. 5.44 ± 0.77 mmol/L, P = 0.097), and LDL-C (3.13 ± 0.74 vs. 3.43 ± 0.62 mmol/L, P = 0.032). Compared to placebo, CitriCholess also resulted in greater reductions in body weight (-0.604 ± 0.939 vs. 0.06 ± 0.74 kg, P < 0.01), waist circumferences (-0.60 ± 1.349 cm vs. -0.16 ± 1.503 cm, P < 0.01) and BMI (-0.207 ± 0.357 vs. 0.025 ± 0.274, P < 0.01). Additionally, females had a significantly higher level of HDL-C than males. TC was significantly correlated with LDL-C, and to a less degree, with TG. TG was inversely correlated with HDL-C. Body weight and waist circumference were negatively correlated with HDL-C and positively correlated with glucose. CONCLUSION 12-week supplementation of CitriCholess could benefit lipid metabolism and weight management in old adults with dyslipidemia.
Collapse
Affiliation(s)
- Yong Cai
- School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Guoqiang Xing
- Department of Radiology & Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Institute of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, People's Republic of China.
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Tian Shen
- School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shuxian Zhang
- School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Rong Shi
- School of Public Health, Shanghai University of T.C.M, Shanghai, 201203, People's Republic of China.
| |
Collapse
|