1
|
Wang L, Tang W, Sun N, Lv J, Hu J, Tao L, Zhang C, Wang H, Chen L, Xu DX, Zhang Y, Huang Y. Low-dose tire wear chemical 6PPD-Q exposure elicit fatty liver via promoting fatty acid biosynthesis in ICR mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137574. [PMID: 39986096 DOI: 10.1016/j.jhazmat.2025.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) as a major metabolite of tire wear chemical 6PPD has been demonstrated to be an emerging burden of exposure in human populations, via contamination from drinking water, air particulate matter and food sources. Whilst increasing attention has been moved toward its adverse effect, the potential hepatotoxicity of 6PPD-Q in mammals at realistic dose remains unknown. Here, the toxic effects of 6PPD-Q at environmentally relevant dose on the liver of adult mice and its underlying mechanism were investigated through an integrative approach combining transcriptomic and lipidomic analyses. We found that 6PPD-Q exposure induced excessive lipid deposition following three weeks of exposure, ultimately contributing to the pathogenesis of fatty liver disease. Mechanistically, 6PPD-Q exposure caused a remarkable increase in the contents of fatty acids within the hepatic tissue of mice by enhancing their biosynthesis, thereby facilitating lipid deposition. In summary, this study provides a new understanding on the endocrine disrupting effects of 6PPD-Q on hepatic lipid metabolism and how it may contribute to elevated risk of fatty liver disease. Our findings call for a potential public health attention on the risk assessment of 6PPD-Q, particularly towards the risk of chronic metabolic diseases.
Collapse
Affiliation(s)
- Lili Wang
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weitian Tang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Nan Sun
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayue Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yihao Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yichao Huang
- School of Public Health, Anhui Medical University, Hefei 230032, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China.
| |
Collapse
|
2
|
Kalyesubula M, Von Bank H, Davidson JW, Burhans MS, Becker MM, Aljohani A, Simcox J, Ntambi JM. Stearoyl-CoA Desaturase 1 deficiency drives saturated lipid accumulation and increases liver and plasma acylcarnitines. J Lipid Res 2025:100824. [PMID: 40350036 DOI: 10.1016/j.jlr.2025.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a critical regulator of lipogenesis that catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleate (18:1n-9) and palmitoleate (16:1n-7) from saturated fatty acids (SFA), stearoyl-CoA (18:0) and palmitoyl-CoA (16:0), respectively. Elevated SCD1 expression and its products are associated with obesity, metabolic dysfunction-associated steatotic liver disease, insulin resistance, and cancer. Conversely, Scd1 deficiency diminishes de novo lipogenesis and protects mice against adiposity, hepatic steatosis, and hyperglycemia. Yet, the comprehensive impact of Scd1 deficiency on hepatic and circulating lipids remains incompletely understood. To further delineate the effects of SCD1 on lipid metabolism, we employed lipidomics on the liver from mice under a lipogenic high carbohydrate, very low-fat diet. We found that Scd1 deficiency leads to an accumulation of saturated lipids and an increase in hepatic and plasma acylcarnitines. Remarkably, transgenic replenishment of de novo oleate synthesis by human SCD5 in the liver of Scd1-deficient mice not only restored hepatic lipid desaturation levels but also attenuated acylcarnitine accumulation, highlighting the distinct role of SCD1 and oleate in regulating intracellular lipid homeostasis.
Collapse
Affiliation(s)
- Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Helaina Von Bank
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jessica W Davidson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Maggie S Burhans
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - Madelaine M Becker
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; HHMI, Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Feto NA, Asuzu P, Wan J, Stentz F, Dagogo-Jack S, Mandal N. Do circulating sphingolipid species correlate with age? A study in a normoglycemic biracial population. Biogerontology 2025; 26:106. [PMID: 40323517 PMCID: PMC12052799 DOI: 10.1007/s10522-025-10244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Sphingolipids (SPLs) are essential membrane lipids with significant bioactive roles involved in various cellular processes, and their alterations have been found to be linked to many diseases, including age-related diseases. However, comprehensive studies on the association of plasma sphingolipids with aging in large, diverse cohorts remain limited. The objective of this study was to investigate the relationship between plasma sphingolipid levels and aging in a cohort of 240 normoglycemic, biracial individuals (Black and White), aged 19-65 years. Using a targeted lipidomics approach, we measured 76 sphingolipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in picomole/mL and determined changes in their levels with age and their correlations with aging. We found significant age-related changes in several sphingolipid species, including ceramide C18:1 and several very long-chain sphingomyelins (VLC SMs), such as C28:1 and C30:1, increases with age, showing a positive correlation. On the other hand, glycosphingolipids (monohexosylceramide, MHC; lactosylceramide, LacCer) and sphingosine (So) showed strong negative correlations with aging. A significant correlation was also observed between the ratios of saturate/monosaturated sphingolipid species with aging. In conclusion, our findings provide novel insights into the dynamic changes of circulating sphingolipids with aging. Specific sphingolipid species, such as Ceramide C18:1 and SM, accumulate with age, while others, including MHC, LacCer, and So decrease. These results suggest that the plasma SPL profile may provide valuable information about healthy aging and age-associated disease conditions.
Collapse
Affiliation(s)
- Naser Aliye Feto
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, 930 Madison Ave., Memphis, TN, 38163, USA
| | - Peace Asuzu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Frankie Stentz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sam Dagogo-Jack
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, 930 Madison Ave., Memphis, TN, 38163, USA.
- Research, Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
4
|
Xia Y, Zhang Y, Zhang Z, Yan N, Sawaswong V, Sun L, Guo W, Wang P, Krausz KW, Gavrilova O, Ntambi JM, Hao H, Yan T, Gonzalez FJ. Intestinal stearoyl-coenzyme A desaturase-inhibition improves obesity-associated metabolic disorders. Acta Pharm Sin B 2025; 15:892-908. [PMID: 40177566 PMCID: PMC11959918 DOI: 10.1016/j.apsb.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the rate-limiting step of de novo lipogenesis and modulates lipid homeostasis. Although numerous SCD1 inhibitors were tested for treating metabolic disorders both in preclinical and clinic studies, the tissue-specific roles of SCD1 in modulating obesity-associated metabolic disorders and determining the pharmacological effect of chemical SCD1 inhibition remain unclear. Here a novel role for intestinal SCD1 in obesity-associated metabolic disorders was uncovered. Intestinal SCD1 was found to be induced during obesity progression both in humans and mice. Intestine-specific, but not liver-specific, SCD1 deficiency reduced obesity and hepatic steatosis. A939572, an SCD1-specific inhibitor, ameliorated obesity and hepatic steatosis dependent on intestinal, but not hepatic, SCD1. Mechanistically, intestinal SCD1 deficiency impeded obesity-induced oxidative stress through its novel function of inducing metallothionein 1 in intestinal epithelial cells. These results suggest that intestinal SCD1 could be a viable target that underlies the pharmacological effect of chemical SCD1 inhibition in the treatment of obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Zhang
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Third Hospital, Peking University, Beijing 100191, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lulu Sun
- State Key Laboratory of Female Fertility Promotion, Department of Endocrinology and Metabolism, Third Hospital, Peking University, Beijing 100191, China
| | - Wanwan Guo
- State Key Laboratory of Female Fertility Promotion, Department of Endocrinology and Metabolism, Third Hospital, Peking University, Beijing 100191, China
| | - Ping Wang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Gyllenhammer LE, Boyle KE. New Frontiers: Umbilical Cord Mesenchymal Stem Cells Uncover Developmental Roots and Biological Underpinnings of Obesity Susceptibility. Curr Obes Rep 2025; 14:10. [PMID: 39814984 PMCID: PMC11735562 DOI: 10.1007/s13679-024-00599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 01/18/2025]
Abstract
PURPOSE OF REVIEW To review evidence supporting human umbilical cord mesenchymal stem cells (UC-MSC) as an innovative model system advancing obesity precision medicine. RECENT FINDINGS Obesity prevalence is increasing rapidly and exposures during fetal development can impact individual susceptibility to obesity. UC-MSCs exhibit heterogeneous phenotypes associated with maternal exposures and predictive of child cardiometabolic outcomes. This recent evidence supports UC-MSCs as a precision model serving three purposes: (1) as a mechanistic tool to interrogate biological underpinnings of obesity in human studies, (2) as a sensitive index of early life causes and determinants of obesity, and (3) as a marker and transducer of susceptibility, highlighting populations most at risk for future obesity. Data from UC-MSCs emphasize nutrient sensing and lipid partitioning as phenotypes most relevant to neonatal and early childhood adiposity and implicate a role for these cell-autonomous features of mesodermal tissues in the biological underpinnings of obesity.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, USA.
| | - Kristen E Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA.
| |
Collapse
|
6
|
Bahari H, Shahraki Jazinaki M, Goudarzi K, Namkhah Z, Taheri S, Golafrouz H, Pahlavani N. Effects of propolis consumption on blood pressure, lipid profile and glycemic parameters in adults: a GRADE-assessed systematic review and dose-response meta-analysis. Br J Nutr 2025; 133:13-36. [PMID: 39610126 DOI: 10.1017/s0007114524002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Propolis, as a by-product of honey production, has shown several beneficial effects on cardiovascular risks in past randomised controlled trials, although the findings are not conclusive. In this review, we intend to evaluate the effects of propolis consumption on cardiovascular risk factors by conducting a meta-analysis. The Web of Science, Medline and Scopus databases were comprehensively searched until September 2023. Eligible studies were identified by screening, and their data were extracted. Weighted mean differences with a 95 % CI for each outcome were estimated using the random-effects model. This meta-analysis revealed that propolis consumption led to a significant decrease in the levels of TAG (weighted mean differences (WMD): -10·44 mg/dl 95 % CI: -16·58, -4·31; P = 0·001), LDL-cholesterol (WMD: -9·31 mg/dl; 95 % CI: -13·50, -5·12 mg; P < 0·001), fasting blood glucose (WMD: -7·30 mg/dl; 95 % CI: -11·58, -3·02; P = 0·001), HbA1c (WMD: -0·32 %; 95 % CI: -0·60, -0·05; P = 0·01), insulin (WMD: -1·36 μU/ml; 95 % CI: -2·36, -0·36; P = 0·007), homeostatic model assessment for insulin resistance (WMD: -0·39; 95 % CI: -0·74, -0·03; P = 0·020) and systolic blood pressure (WMD: -2·24 mmHg 95 % CI: -4·08, -0·39; P = 0·010), compared with the control groups. Furthermore, propolis consumption had a significant increasing effect on HDL-cholesterol levels (WMD: 2·03 mg/dl; 95 % CI: 0·24, 3·83; P = 0·020). In contrast, the consumption of propolis had no significant effect on total cholesterol and diastolic blood pressure levels. This systematic review and dose-response meta-analysis suggested that propolis intake may be effective in cardiometabolic improvement in adults. Further, well-designed studies are required to confirm and elucidate all aspects of these findings.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Namkhah
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Haniyeh Golafrouz
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Social Determinants of Health Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
7
|
Ntambi JN, Kalyesubula M, Cootway D, Lewis SA, Phang YX, Liu Z, O'Neill LM, Lefers L, Huff H, Miller JR, Pegkou Christofi V, Anderson E, Aljohani A, Mutebi F, Dutta M, Patterson A, Ntambi JM. Hepatic stearoyl-CoA desaturase-1 deficiency induces fibrosis and hepatocellular carcinoma-related gene activation under a high carbohydrate low fat diet. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159538. [PMID: 39067685 PMCID: PMC11323073 DOI: 10.1016/j.bbalip.2024.159538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a pivotal enzyme in lipogenesis, which catalyzes the synthesis of monounsaturated fatty acids (MUFA) from saturated fatty acids, whose ablation downregulates lipid synthesis, preventing steatosis and obesity. Yet deletion of SCD1 promotes hepatic inflammation and endoplasmic reticulum stress, raising the question of whether hepatic SCD1 deficiency promotes further liver damage, including fibrosis. To delineate whether SCD1 deficiency predisposes the liver to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), we employed in vivo SCD1 deficient global and liver-specific mouse models fed a high carbohydrate low-fat diet and in vitro established AML12 mouse cells. The absence of liver SCD1 remarkably increased the saturation of liver lipid species, as indicated by lipidomic analysis, and led to hepatic fibrosis. Consistently, SCD1 deficiency promoted hepatic gene expression related to fibrosis, cirrhosis, and HCC. Deletion of SCD1 increased the circulating levels of Osteopontin, known to be increased in fibrosis, and alpha-fetoprotein, often used as an early marker and a prognostic marker for patients with HCC. De novo lipogenesis or dietary supplementation of oleate, an SCD1-generated MUFA, restored the gene expression related to fibrosis, cirrhosis, and HCC. Although SCD1 deficient mice are protected against obesity and fatty liver, our results show that MUFA deprivation results in liver injury, including fibrosis, thus providing novel insights between MUFA insufficiency and pathways leading to fibrosis, cirrhosis, and HCC under lean non-steatotic conditions.
Collapse
Affiliation(s)
- Jayne-Norah Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Tufts Medical Center, Radiation Oncology, 800 Washington St., Box 359, Boston, MA 02111, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Dylan Cootway
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Sarah A Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Yar Xin Phang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Zhaojin Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Lucas M O'Neill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Lucas Lefers
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Hailey Huff
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jacqueline Rose Miller
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Veronica Pegkou Christofi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ethan Anderson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Francis Mutebi
- School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Mainak Dutta
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, University Park, PA 16802, United States; Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani Dubai Campus, Academic City, Dubai 345055, United Arab Emirates
| | - Andrew Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, University Park, PA 16802, United States; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Kirad S, Puri S, Deepa PR, Sankaranarayanan M. An insight into advances and challenges in the development of potential stearoyl Co-A desaturase 1 inhibitors. RSC Adv 2024; 14:30487-30517. [PMID: 39318456 PMCID: PMC11421311 DOI: 10.1039/d4ra06237j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is one of the key enzymes involved in lipid metabolism, plays a vital role in the synthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). Due to its promising therapeutic potential in treating metabolic disorders, cancers, and skin diseases there is an increasing interest in the development of novel inhibitors against SCD1. This review comprehensively explores the evolution of potential SCD1 inhibitors, focusing on systemic and liver-targeted inhibitors and discusses their structure-activity relationship (SAR) pattern. Among the various small molecules reported, natural products like sterculic acid have emerged as significant SCD1 inhibitors, highlighting the potential of naturally derived compounds in therapeutic development. This review also addresses the challenges in optimizing pharmacokinetic properties and reducing adverse effects, providing insights into the future directions for the development of potential novel SCD1 inhibitors with maximum therapeutic effect and minimum side effects.
Collapse
Affiliation(s)
- Shivani Kirad
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Sonakshi Puri
- Biochemistry and Enzyme Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - P R Deepa
- Biochemistry and Enzyme Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| |
Collapse
|
9
|
Aliakbarian M, Jazinaki MS, Bahari H, Rashidmayvan M, Golafrouz H, Khodashahi R, Pahlavani N. Effects of Propolis Consumption on Liver Enzymes and Obesity Indices in Adults: A Systematic Review and Dose-Response Meta-Analysis. Curr Dev Nutr 2024; 8:104438. [PMID: 39296926 PMCID: PMC11407979 DOI: 10.1016/j.cdnut.2024.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Background Propolis, a natural resin produced by bees, has been studied for its potential effects on liver enzymes and obesity indices. However, a meta-analysis is necessary to comprehensively understand the impact of propolis on obesity and liver function. Objectives This meta-analysis of randomized controlled trials (RCTs) sought to evaluate the effects of propolis consumption on liver enzymes and obesity indices in adults. Methods A systematic literature search up to December 2023 was completed in PubMed/Medline, Scopus, and Web of Science, to identify eligible RCTs. Heterogeneity tests of the selected trials were performed using the I 2 statistic. Random-effects models were assessed on the basis of the heterogeneity tests, and pooled data were determined as weighted mean differences (WMDs) with a 95% confidence interval (CI). Results A pooled analysis of 24 trials showed that propolis consumption led to a significant reduction in alanine aminotransferase (ALT) (WMD: -2.58; 95% CI: -4.64, -0.52; P = 0.01), aspartate aminotransferase (AST) (WMD: -1.84; 95% CI: -3.01, -0.67; P = 0.002), and alkaline phosphatase (ALP) (WMD: -24.90; 95% CI: -42.13, -7.67; P = 0.005) in comparison with the control group. However, there were no significant effects on gamma-glutamyl transferase (GGT), body weight, BMI (in kg/m2), fat mass, body fat percentage, fat-free mass, adiponectin, waist circumference, hip circumference, and waist-hip ratio in comparison with the control group. Conclusions We discovered that consuming propolis can lead to a significant decrease in ALT, AST, and ALP levels, without causing significant changes in GGT, anthropometric indices, and adiponectin levels. However, future well-designed RCTs with large numbers of participants and extended durations, focusing on precise propolis dosage and ingredients, are necessary.
Collapse
Affiliation(s)
- Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Haniyeh Golafrouz
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran
- Social Determinants of Health Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran
| |
Collapse
|
10
|
Springer C, Binsch C, Weide D, Toska L, Cremer AL, Backes H, Scheel AK, Espelage L, Kotzka J, Sill S, Kurowski A, Kim D, Karpinski S, Schnurr TM, Hansen T, Hartwig S, Lehr S, Cames S, Brüning JC, Lienhard M, Herwig R, Börno S, Timmermann B, Al-Hasani H, Chadt A. Depletion of TBC1D4 Improves the Metabolic Exercise Response by Overcoming Genetically Induced Peripheral Insulin Resistance. Diabetes 2024; 73:1058-1071. [PMID: 38608276 DOI: 10.2337/db23-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by Tbc1d4 depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Deborah Weide
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anna L Cremer
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Anna K Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sebastian Sill
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anette Kurowski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Daebin Kim
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Karpinski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
11
|
Mezincescu AM, Rudd A, Cheyne L, Horgan G, Philip S, Cameron D, van Loon L, Whitfield P, Gribbin R, Hu MK, Delibegovic M, Fielding B, Lobley G, Thies F, Newby DE, Gray S, Henning A, Dawson D. Comparison of intramyocellular lipid metabolism in patients with diabetes and male athletes. Nat Commun 2024; 15:3690. [PMID: 38750012 PMCID: PMC11096352 DOI: 10.1038/s41467-024-47843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).
Collapse
Affiliation(s)
- Alice M Mezincescu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Amelia Rudd
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Lesley Cheyne
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Donnie Cameron
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Luc van Loon
- University of Maastricht, Maastricht, The Netherlands
| | | | | | - May Khei Hu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Gerald Lobley
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
12
|
Luo J, Alkhalidy H, Jia Z, Liu D. Sulforaphane Ameliorates High-Fat-Diet-Induced Metabolic Abnormalities in Young and Middle-Aged Obese Male Mice. Foods 2024; 13:1055. [PMID: 38611359 PMCID: PMC11012181 DOI: 10.3390/foods13071055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Type 2 diabetes (T2D) is still a fast-growing health problem globally. It is evident that chronic insulin resistance (IR) and progressive loss of β-cell mass and function are key features of T2D etiology. Obesity is a leading pathogenic factor for developing IR. The aim of the present study was to determine whether sulforaphane (SFN), a natural compound derived from cruciferous vegetables, can prevent (prevention approach) or treat (treatment approach) obesity and IR in mouse models. We show that dietary intake of SFN (0.5 g/kg of HFD) for 20 weeks suppressed high-fat diet (HFD)-induced fat accumulation by 6.04% and improved insulin sensitivity by 23.66% in young male mice. Similarly, dietary provision of SFN (0.25 g/kg) significantly improved blood lipid profile, glucose tolerance, and insulin sensitivity of the middle-aged male mice while it had little effects on body composition as compared with the HFD group. In the treatment study, oral administration of SFN (40 mg/kg) induced weight loss and improved insulin sensitivity and plasma lipid profile in the diet-induced-obesity (DIO) male mice. In all three studies, the metabolic effects of SFN administration were not associated with changes in food intake. In vitro, SFN increased glucose uptake in C2C12 myotubes and increased fatty acid and pyruvate oxidation in primary human skeletal muscle cells. Our results suggest that SFN may be a naturally occurring insulin-sensitizing agent that is capable of improving the metabolic processes in HFD-induced obesity and IR and thereby may be a promising compound for T2D prevention.
Collapse
Affiliation(s)
- Jing Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
| |
Collapse
|
13
|
Jia JY, Chen GH, Shu TT, Lou QY, Jin X, He JY, Xiao WH, Zhai G, Yin Z. Androgen signaling inhibits de novo lipogenesis to alleviate lipid deposition in zebrafish. Zool Res 2024; 45:355-366. [PMID: 38485505 PMCID: PMC11017085 DOI: 10.24272/j.issn.2095-8137.2023.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males. However, the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood, especially in teleosts. In this study, cyp17a1-/- zebrafish ( Danio rerio) exhibited excessive visceral adipose tissue (VAT), lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis (DNL) enzymes. The assay for transposase accessible chromatin with sequencing (ATAC-seq) results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/- fish compared to cyp17a1+/+ male fish, including stearoyl-CoA desaturase ( scd) and fatty acid synthase ( fasn). Androgen response element (ARE) motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+ male fish but not in cyp17a1-/- fish. Both androgen receptor ( ar)-/- and wild-type (WT) zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue, lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis enzymes. The Ar agonist BMS-564929 reduced the content of VAT and lipid content, and down-regulated acetyl-CoA carboxylase a ( acaca), fasn, and scd expression. Mechanistically, the rescue effect of testosterone on cyp17a1-/- fish in terms of phenotypes was abolished when ar was additionally depleted. Collectively, these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish, thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts.
Collapse
Affiliation(s)
- Jing-Yi Jia
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Guang-Hui Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ting-Ting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Qi-Yong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jiang-Yan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wu-Han Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, Hubei 430070, China. E-mail:
| | - Zhan Yin
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, Hubei 430070, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
14
|
Park S, Jevtovic F, Krassovskaia PM, Chaves AB, Zheng D, Treebak JT, Houmard JA. Effect of resveratrol on insulin action in primary myotubes from lean individuals and individuals with severe obesity. Am J Physiol Endocrinol Metab 2024; 326:E398-E406. [PMID: 38324260 PMCID: PMC11193525 DOI: 10.1152/ajpendo.00299.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Resveratrol, a natural polyphenol compound contained in numerous plants, has been proposed as a treatment for obesity-related disease processes such as insulin resistance. However, in humans there are conflicting results concerning the efficacy of resveratrol in improving insulin action; the purpose of the present study was to determine whether obesity status (lean, severely obese) affects the response to resveratrol in human skeletal muscle. Primary skeletal muscle cells were derived from biopsies obtained from age-matched lean and insulin-resistant women with severe obesity and incubated with resveratrol (1 µM) for 24 h. Insulin-stimulated glucose oxidation and incorporation into glycogen, insulin signal transduction, and energy-sensitive protein targets [AMP-activated protein kinase (AMPK), Sirt1, and PGC1α] were analyzed. Insulin-stimulated glycogen synthesis, glucose oxidation, and AMPK phosphorylation increased with resveratrol incubation compared with the nonresveratrol conditions (main treatment effect for resveratrol). Resveratrol further increased IRS1, Akt, and TBC1D4 insulin-stimulated phosphorylation and SIRT1 content in myotubes from lean women, but not in women with severe obesity. Resveratrol improves insulin action in primary human skeletal myotubes derived from lean women and women with severe obesity. In women with obesity, these improvements may be associated with enhanced AMPK phosphorylation with resveratrol treatment.NEW & NOTEWORTHY A physiologically relevant dose of resveratrol increases insulin-stimulated glucose oxidation and glycogen synthesis in myotubes from individuals with severe obesity. Furthermore, resveratrol improved insulin signal transduction in myotubes from lean individuals but not from individuals with obesity. Activation of AMPK plays a role in resveratrol-induced improvements in glucose metabolism in individuals with severe obesity.
Collapse
Affiliation(s)
- Sanghee Park
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Filip Jevtovic
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Polina M Krassovskaia
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Alec B Chaves
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Donghai Zheng
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Houmard
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
15
|
Mandal N, Stentz F, Asuzu PC, Nyenwe E, Wan J, Dagogo-Jack S. Plasma Sphingolipid Profile of Healthy Black and White Adults Differs Based on Their Parental History of Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:740-749. [PMID: 37804534 PMCID: PMC10876402 DOI: 10.1210/clinem/dgad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
CONTEXT Ceramides and sphingolipids have been linked to type 2 diabetes (T2D). The Ceramides and Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study is designed to determine the association of plasma sphingolipids with the pathophysiology of human T2D. OBJECTIVE A comparison of plasma sphingolipids profiles in Black and White adults with (FH+) and without (FH-) family history of T2D. DESIGN We recruited 100 Black and White FH- (54 Black, 46 White) and 140 FH+ (75 Black, 65 White) adults. Fasting plasma levels of 58 sphingolipid species, including 18 each from 3 major classes (ceramides, monohexosylceramides, and sphingomyelins, all with 18:1 sphingoid base) and 4 long-chain sphingoid base-containing species, were measured by liquid chromatography/mass spectrometry. RESULTS Sphingomyelin was the most abundant sphingolipid in plasma (89% in FH-), and was significantly elevated in FH+ subjects (93%). Ceramides and monohexosylceramides comprised 5% and 6% of total sphingolipids in the plasma of FH- subjects, and were reduced significantly in FH+ subjects (3% and 4%, respectively). In FH+ subjects, most ceramide and monohexosylceramide species were decreased but sphingomyelin species were increased. The level of C18:1 species of all 3 classes was elevated in FH+ subjects. CONCLUSION Elevated levels of sphingomyelin, the major sphingolipids of plasma, and oleic acid-containing sphingolipids in healthy FH+ subjects compared with healthy FH- subjects may reflect heritable elements linking sphingolipids and the development of T2D.
Collapse
Affiliation(s)
- Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Chiamaka Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer Nyenwe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
17
|
Ntambi JM, Stover PJ. A Conversation with James Ntambi. Annu Rev Nutr 2023; 43:1-23. [PMID: 37253680 DOI: 10.1146/annurev-nutr-061021-020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An interview with James M. Ntambi, professor of biochemistry and the Katherine Berns Van Donk Steenbock Professor in Nutrition, College of Agricultural and Life Sciences, at the University of Wisconsin-Madison, took place via Zoom in April 2022. He was interviewed by Patrick J. Stover, director of the Institute for Advancing Health through Agriculture and professor of nutrition and biochemistry and biophysics at Texas A&M University. Dr. James Ntambi is a true pioneer in the field of nutritional biochemistry. He was among the very first to discover and elucidate the role that diet and nutrients play in regulating metabolism through changes in the expression of metabolic genes, focusing on the de novo lipogenesis pathways. As an African immigrant from Uganda, his love of science and his life experiences in African communities suffering from severe malnutrition molded his scientific interests at the interface of biochemistry and nutrition. Throughout his career, he has been an academic role model, a groundbreaking nutrition scientist, and an educator. His commitment to experiential learning through the many study-abroad classes he has hosted in Uganda has provided invaluable context for American students in nutrition. Dr. Ntambi's passion for education and scientific discovery is his legacy, and the field of nutrition has benefited enormously from his unique perspectives and contributions to science that are defined by his scientific curiosity, his generosity to his students and colleagues, and his life experiences. The following is an edited transcript.
Collapse
Affiliation(s)
- James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Patrick J Stover
- College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Shen ZL, Chen WH, Liu Z, Yu DY, Chen WZ, Zang WF, Zhang P, Yan XL, Yu Z. A novel insight into the key gene signature associated with the immune landscape in the progression of sarcopenia. Exp Gerontol 2023; 179:112244. [PMID: 37343810 DOI: 10.1016/j.exger.2023.112244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Sarcopenia is an age-related skeletal muscle disorder that causes falls, disability and death in the elderly, but its exact mechanism remains unknown. In this study, we merged three GEO datasets into the expression profiles of 118 samples and screened 22 differentially expressed genes (DEGs) as candidate genes. Pathway analysis demonstrated that the functional enrichment of DEGs is mainly in the cellular response to insulin stimulus, PPAR signaling pathway and other metabolism-related pathways. Then, we identified six key genes by machine learning, which were confirmed to be closely associated with sarcopenia by bioinformatics analysis. It was experimentally verified that SCD1 exhibits the most substantial alterations in the progression of sarcopenia with disturbed lipid metabolism and myosteatosis. In addition, the immune microenvironment of sarcopenia was found to be affected by these key genes, with Th17 cells down-regulated and NK cells up-regulated. Sarcopenic patients consequently presented a more significant systemic inflammatory state with higher CAR (p = 0.028) and PAR (p = 0.018). For the first time, we identified key genes in sarcopenia with high-throughput data and demonstrated that key genes can regulate the progression of sarcopenia by affecting the immune microenvironment. Among them, SCD1 may influence lipid metabolism and myosteatosis process. Screening of key genes and analyzing of immune microenvironment provide a more accurate target for treating sarcopenia.
Collapse
Affiliation(s)
- Zi-Le Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wen-Hao Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhang Liu
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ding-Ye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wei-Zhe Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wang-Fu Zang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Peng Zhang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xia-Lin Yan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhen Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
19
|
Ntambi JM, Liu X, Burhans MS, ALjohani A, Selen ES, Kalyesubula M, Assadi-Porter F. Hepatic oleate regulates one-carbon metabolism during high carbohydrate feeding. Biochem Biophys Res Commun 2023; 651:62-69. [PMID: 36791500 PMCID: PMC9992055 DOI: 10.1016/j.bbrc.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, coronary heart disease, and strok. These diseases are associated with profound alterations in gene expression in metabolic tissues. Epigenetic-mediated regulation of gene expression is one mechanism through which environmental factors, such as diet, modify gene expression and disease predisposition. However, epigenetic control of gene expression in obesity and insulin resistance is not fully characterized. We discovered that liver-specific stearoyl-CoA desaturase-1 (Scd1) knockout mice (LKO) fed a high-carbohydrate low-fat diet exhibit dramatic changes in hepatic gene expression and metabolites of the folate cycle and one-carbon metabolism respectively for the synthesis of S-adenosylmethionine (SAM). LKO mice show an increased ratio of S-adenosylmethionine to S-adenosylhomocysteine, a marker for increased cellular methylation capacity. Furthermore, expression of DNA and histone methyltransferase genes is up-regulated while the mRNA and protein levels of the non-DNA methyltransferases including phosphatidylethanolamine methyltransferase (PEMT), Betaine homocysteine methyltransferase (Bhmt), and the SAM-utilizing enzymes such as glycine-N-methyltransferase (Gnmt) and guanidinoacetate methyltransferase (Gamt) are generally down-regulated. Feeding LKO mice a high carbohydrate diet supplemented with triolein, but not tristearin, and increased endogenous hepatic synthesis of oleate but not palmitoleate in Scd1 global knockout mice normalized one carbon gene expression and metabolite levels. Additionally, changes in one carbon gene expression are independent of the PGC-1α-mediated ER stress response previously reported in the LKO mice. Together, these results highlight the important role of oleate in maintaining one-carbon cycle homeostasis and point to observed changes in one-carbon metabolism as a novel mediator of the Scd1 deficiency-induced liver phenotype.
Collapse
Affiliation(s)
- James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Xueqing Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Maggie S Burhans
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ahmed ALjohani
- College of Science and Health Professions, King Saudi Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Ebru Selin Selen
- Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fariba Assadi-Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Xu SS, Li Y, Wang HP, Chen WB, Wang YQ, Song ZW, Liu H, Zhong S, Sun YH, Zhong S, Sun YH, 中国科学院水生生物研究所种子设计创新研究院淡水生态与生物技术国家重点实验室, 湖北洪山实验室, 湖北 武汉 430072, 中国, 中国科学院大学现代农业科学学院, 北京 100049, 中国, 湖北省过敏及免疫相关疾病重点实验室,湖北 武汉 430071,中国a, State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China. Depletion of stearoyl-CoA desaturase ( scd) leads to fatty liver disease and defective mating behavior in zebrafish. Zool Res 2023; 44:63-77. [PMID: 36317480 PMCID: PMC9841191 DOI: 10.24272/j.issn.2095-8137.2022.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd-/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wen-Bo Chen
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Ya-Qing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zi-Wei Song
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Hui Liu
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Shan Zhong
- Department of Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China,E-mail:
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, Hubei 430072, China,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chu DT, Bui NL, Le NH. Adrenoceptors and SCD1 in adipocytes/adipose tissues: The expression and variation in health and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:311-332. [PMID: 36631196 DOI: 10.1016/bs.pmbts.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity, considered a metabolic disorder, is one of the most significant health issues that the community has to cope with today. A rising number of studies have been conducted to find out promising genetic targets for obese treatment. The sympathetic nervous system was proven to possess remarkable roles in energy metabolism, including the stimulation of lipolysis as well as thermogenesis, via distinct adrenoceptors appearing on the membrane of adipocyte. A decrease of β-adrenoceptor expression has been observed in obese individuals, which is related to reducing energy expenditure and developing obesity. While that the deficiency of stearoyl-CoA desaturase-1 (SCD1), which is a promising target for treatments of metabolic diseases, decreases oxidation and promotes the synthesis of fatty acids. Here, we emphasized several differences between distinct adrenoceptor subtypes, including their mRNA expression level and function in white adipose tissue and brown adipose tissue. We also highlighted SCD1's roles related to the progression of adipocytes and its changing expression under the obese condition in both rodents and humans, and furthermore, tried to figure out the interaction between adrenoceptors and SCD1 in adipose tissue.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
22
|
Ntambi JM. The role of Stearoyl-CoA desaturase in hepatic de novo lipogenesis. Biochem Biophys Res Commun 2022; 633:81-83. [DOI: 10.1016/j.bbrc.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
|
23
|
Katare PB, Dalmao-Fernandez A, Mengeste AM, Hamarsland H, Ellefsen S, Bakke HG, Kase ET, Thoresen GH, Rustan AC. Energy metabolism in skeletal muscle cells from donors with different body mass index. Front Physiol 2022; 13:982842. [DOI: 10.3389/fphys.2022.982842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m2) and individuals with obesity (BMI>30 kg/m2). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups. Alterations in protein expression were investigated using proteomic analysis, and energy metabolism was studied using radiolabeled substrates. Gene Ontology enrichment analysis showed that glycolytic, apoptotic, and hypoxia pathways were upregulated, whereas the pentose phosphate pathway was downregulated in myotubes from donors with obesity compared to myotubes from lean donors. Moreover, fatty acid, glucose, and amino acid uptake were increased in myotubes from individuals with obesity. However, fatty acid oxidation was reduced, glucose oxidation was increased in myotubes from subjects with obesity compared to cells from lean. Pretreatment of myotubes with palmitic acid (PA) or eicosapentaenoic acid (EPA) for 24 h increased glucose oxidation and oleic acid uptake. EPA pretreatment increased the glucose and fatty acid uptake and reduced leucine fractional oxidation in myotubes from donors with obesity. In conclusion, these results suggest that myotubes from individuals with obesity showed increased fatty acid, glucose, and amino acid uptake compared to cells from lean donors. Furthermore, myotubes from individuals with obesity had reduced fatty acid oxidative capacity, increased glucose oxidation, and a higher glycolytic reserve capacity compared to cells from lean donors. Fatty acid pretreatment enhances glucose metabolism, and EPA reduces oleic acid and leucine fractional oxidation in myotubes from donor with obesity, suggesting increased metabolic flexibility after EPA treatment.
Collapse
|
24
|
Óvilo C, Trakooljul N, Núñez Y, Hadlich F, Murani E, Ayuso M, García-Contreras C, Vázquez-Gómez M, Rey AI, Garcia F, García-Casco JM, López-Bote C, Isabel B, González-Bulnes A, Wimmers K, Muñoz M. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs. Sci Rep 2022; 12:16361. [PMID: 36180572 PMCID: PMC9525691 DOI: 10.1038/s41598-022-20817-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Iberian pigs and its crosses are produced to obtain high-quality meat products. The objective of this work was to evaluate a wide panel of DNA markers, selected by biological and functional criteria, for association with traits related to muscle growth, fatness, meat quality and metabolism. We used 18 crossbred Iberian pigs with divergent postnatal growth patterns for whole genome sequencing and SNP discovery, with over 13 million variants being detected. We selected 1023 missense SNPs located on annotated genes and showing different allele frequencies between pigs with makerdly different growth patterns. We complemented this panel with 192 candidate SNPs obtained from literature mining and from muscle RNAseq data. The selected markers were genotyped in 480 Iberian × Duroc pigs from a commercial population, in which phenotypes were obtained, and an association study was performed for the 1005 successfully genotyped SNPs showing segregation. The results confirmed the effects of several known SNPs in candidate genes (such as LEPR, ACACA, FTO, LIPE or SCD on fatness, growth and fatty acid composition) and also disclosed interesting effects of new SNPs in less known genes such as LRIG3, DENND1B, SOWAHB, EPHX1 or NFE2L2 affecting body weight, average daily gain and adiposity at different ages, or KRT10, NLE1, KCNH2 or AHNAK affecting fatness and FA composition. The results provide a valuable basis for future implementation of marker-assisted selection strategies in swine and contribute to a better understanding of the genetic architecture of relevant traits.
Collapse
Affiliation(s)
- C Óvilo
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain.
| | - N Trakooljul
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - F Hadlich
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - E Murani
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - M Ayuso
- CoPeD, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - C García-Contreras
- Department of Nutrition and Sustainable Animal Production, CSIC, Granada, Spain
| | | | - A I Rey
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - F Garcia
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - C López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - B Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - A González-Bulnes
- Facultad de Medicina Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - K Wimmers
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| |
Collapse
|
25
|
Tian H, Niu H, Luo J, Yao W, Gao W, Wen Y, Cheng M, Lei A, Hua J. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10:e13945. [PMID: 36124130 PMCID: PMC9482360 DOI: 10.7717/peerj.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Lipid synthesis is an indispensable process during embryo and growth development. Abnormal lipid synthesis metabolism can cause multiple metabolic diseases including obesity and hyperlipidemia. Stearoyl-Coenzyme A desaturase 1 (SCD1) is responsible for catalyzing the synthesis of monounsaturated fatty acids (MUFA) and plays an essential role in lipid metabolism. The aim of our study was to evaluate the effects of SCD1 on embryo development and lipid synthesis in a knockout mice model. Methods We used the CRISPR/Cas9 system together with microinjection for the knockout mouse model generation. Ten-week-old female C57BL/6 mice were used for zygote collection. RNase-free water was injected into mouse zygotes at different cell phases in order to select the optimal time for microinjection. Five sgRNAs were designed and in vitro transcription was performed to obtain sgRNAs and Cas9 mRNA. RNase-free water, NC sgRNA/Cas9 mRNA, and Scd1 sgRNA/Cas9 mRNA were injected into zygotes to observe the morula and blastocyst formation rates. Embryos that were injected with Scd1 sgRNA/Cas9 mRNA and developed to the two-cell stage were used for embryo transfer. Body weight, triacylglycerol (TAG), and cholesterol in Scd1 knockout mice serum were analyzed to determine the effects of SCD1 on lipid metabolism. Results Microinjection performed during the S phase presented with the highest zygote survival rate (P < 0.05). Of the five sgRNAs targeted to Scd1, two sgRNAs with relatively higher gene editing efficiency were used for Scd1 knockout embryos and mice generation. Genome sequence modification was observed at Scd1 exons in embryos, and Scd1 knockout reduced blastocyst formation rates (P < 0.05). Three Scd1 monoallelic knockout mice were obtained. In mice, the protein level of SCD1 decreased (P < 0.05), and the body weight and serum TAG and cholesterol contents were all reduced (P < 0.01).
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Heras-Molina A, Escudero R, Pesántez-Pacheco JL, García-Contreras C, Vázquez-Gómez M, Astiz S, Óvilo C, González-Bulnes A, Isabel B. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Prenatal Effects on Fetal Fatty Acid Composition in the Iberian Pig. Animals (Basel) 2022; 12:ani12162140. [PMID: 36009731 PMCID: PMC9405247 DOI: 10.3390/ani12162140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The present study aimed to determine the effects of maternal dietary supplementation combining hydroxytyrosol and n3 polyunsaturated fatty acids (n3-PUFA) from day 35 to day 100 of gestation on the fatty acid (FA) composition of the offspring tissues of the Iberian pig. No effects were found in the plasma FA composition of the dams but higher levels of n3-PUFA were found in the plasma and different tissues (muscle, liver, and brain) of the supplemented fetuses. These findings may have important implications for piglets’ health and may offer guidance for achieving human dietary n3-PUFA recommendations. Abstract Intrauterine Growth Restriction (IUGR) is a major problem in pig production and different strategies, mainly maternal supplementation with different agents, are currently being studied. The combination of hydroxytyrosol and n3-PUFA seems to be a promising treatment to counteract IUGR, since the combination may help improve n3-PUFA composition and lower the inflammatory status of IUGR piglets. The aim of the present study is to determine the effects of a maternal supplementation, from day 35 to day 100 of pregnancy, with linseed oil and hydroxytyrosol on the fetal FA composition. The results showed higher n3 levels, including eicosapentaenoic and docosahexaenoic FA in the offspring from treated gilts, which showed lower n6-PUFA/n3-PUFA (n6/n3) ratios. Saturated and monounsaturated fatty acids were also affected by treatment, especially in the muscle and brain. Thus, a maternal supplementation with linseed oil and hydroxytyrosol affected the fetal FA tissue composition, which could have implications in pig production due to the improvement of the piglets’ health status.
Collapse
Affiliation(s)
- Ana Heras-Molina
- CSIC-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain
- Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Rosa Escudero
- Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - José L. Pesántez-Pacheco
- CSIC-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain
- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, University of Cuenca, Avda. Doce de Octubre, Cuenca 010220, Ecuador
| | | | - Marta Vázquez-Gómez
- Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Nutrition and Obesities: Systemic Approaches Research Unit (NutriOmics), INSERM, Sorbonne Université, 75006 Paris, France
| | - Susana Astiz
- CSIC-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain
| | - Cristina Óvilo
- CSIC-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain
| | - Antonio González-Bulnes
- CSIC-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7. Alfara del Patriarca, 46115 Valencia, Spain
- Correspondence: (A.G.-B.); (B.I.)
| | - Beatriz Isabel
- Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: (A.G.-B.); (B.I.)
| |
Collapse
|
27
|
Liu HH, Xu Y, Li CJ, Hsu SJ, Lin XH, Zhang R, Chen J, Chen J, Gao DM, Cui JF, Yang XR, Ren ZG, Chen RX. An SCD1-dependent mechanoresponsive pathway promotes HCC invasion and metastasis through lipid metabolic reprogramming. Mol Ther 2022; 30:2554-2567. [PMID: 35358687 PMCID: PMC9263248 DOI: 10.1016/j.ymthe.2022.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Matrix stiffness promotes hepatocellular carcinoma (HCC) metastasis. This study examined the contribution of lipid metabolic reprogramming to matrix stiffness-induced HCC metastasis. HCC cells were cultured on mechanically tunable polyacrylamide gels and subjected to lipidomic analysis. The key enzyme that responded to matrix stiffness and regulated lipid metabolism was identified. The comparative lipidomic screening revealed that stearoyl-CoA desaturase 1 (SCD1) is a mechanoresponsive enzyme that reprogrammed HCC cell lipid metabolism. The genetic and pharmacological inhibition of SCD1 expression/activity altered the cellular lipid composition, which in turn impaired plasma membrane fluidity and inhibited in vitro invasive motility of HCC cells in response to high matrix stiffness. Knockdown of SCD1 suppressed HCC invasion and metastasis in vivo. Conversely, the overexpression of SCD1 or exogenous administration of its product oleic acid augmented plasma membrane fluidity and rescued in vitro invasive migration in HCC cells cultured on soft substrates, mimicking the effects imposed by high matrix stiffness. In human HCC tissues, collagen content, a marker of increasing matrix stiffness, and increased expression of SCD1 together predicted poor survival of HCC patients. An SCD1-dependent mechanoresponsive pathway that responds to increasing matrix stiffness in the tumor microenvironment promotes HCC invasion and metastasis through lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Hua-Hua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Yang Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Cao-Jie Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Shu-Jung Hsu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Xia-Hui Lin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Rui Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
| | - Xin-Rong Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China.
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
28
|
Tibori K, Orosz G, Zámbó V, Szelényi P, Sarnyai F, Tamási V, Rónai Z, Mátyási J, Tóth B, Csala M, Kereszturi É. Molecular Mechanisms Underlying the Elevated Expression of a Potentially Type 2 Diabetes Mellitus Associated SCD1 Variant. Int J Mol Sci 2022; 23:ijms23116221. [PMID: 35682900 PMCID: PMC9181825 DOI: 10.3390/ijms23116221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022] Open
Abstract
Disturbances in lipid metabolism related to excessive food intake and sedentary lifestyle are among major risk of various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) has an essential role in these diseases, as it catalyzes the synthesis of unsaturated fatty acids, both supplying for fat storage and contributing to cellular defense against saturated fatty acid toxicity. Recent studies show that increased activity or over-expression of SCD1 is one of the contributing factors for type 2 diabetes mellitus (T2DM). We aimed to investigate the impact of the common missense rs2234970 (M224L) polymorphism on SCD1 function in transfected cells. We found a higher expression of the minor Leu224 variant, which can be attributed to a combination of mRNA and protein stabilization. The latter was further enhanced by various fatty acids. The increased level of Leu224 variant resulted in an elevated unsaturated: saturated fatty acid ratio, due to higher oleate and palmitoleate contents. Accumulation of Leu224 variant was found in a T2DM patient group, however, the difference was statistically not significant. In conclusion, the minor variant of rs2234970 polymorphism might contribute to the development of obesity-related metabolic disorders, including T2DM, through an increased intracellular level of SCD1.
Collapse
Affiliation(s)
- Kinga Tibori
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Péter Szelényi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Farkas Sarnyai
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Viola Tamási
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Zsolt Rónai
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Judit Mátyási
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (J.M.); (B.T.)
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (J.M.); (B.T.)
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
- Correspondence: (M.C.); (É.K.)
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
- Correspondence: (M.C.); (É.K.)
| |
Collapse
|
29
|
Woyames J, Souza AFP, Miranda RA, Oliveira LS, Caetano B, Andrade CBV, Fortunato RS, Atella GC, Trevenzoli IH, Souza LL, Pazos-Moura CC. Maternal high-fat diet aggravates fructose-induced mitochondrial damage in skeletal muscles and causes differentiated adaptive responses on lipid metabolism in adult male offspring. J Nutr Biochem 2022; 104:108976. [PMID: 35245653 DOI: 10.1016/j.jnutbio.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning. After weaning, male offspring received STD and, from 120 to 150 days-old, they drank water or 15% fructose in water (STD-F and HFD-F). At 150th day, we collected the oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles. Fructose-treated groups exhibited hypertriglyceridemia, regardless of maternal diet. Soleus of maternal HFD offspring showed increased triglycerides and monounsaturated fatty acid content, independent of fructose, with increased fatty acid transporters and lipogenesis markers. The EDL exhibited unaltered triglycerides content, with an apparent equilibrium between lipogenesis and lipid oxidation markers in HFD, and higher lipid uptake (fatty acid-binding protein 4) accompanied by enhanced monounsaturated fatty acid in fructose-treated groups. Mitochondrial complexes proteins and Tfam mRNA were increased in the soleus of HFD, while uncoupling protein 3 was decreased markedly in HFD-F. In EDL, maternal HFD increased ATP synthase, while fructose decreased Tfam predominantly in STD offspring. Maternal HFD and fructose induced mitochondria ultrastructural damage, intensified in HFD-F in both muscles. Thus, alterations in molecular markers of lipid metabolism and mitochondrial function in response to fructose are modified by an isocaloric and moderate maternal HFD and are fiber-type specific, representing adaptation/maladaptation mechanisms associated with higher skeletal muscle fructose-induced mitochondria injury in adult offspring.
Collapse
Affiliation(s)
- Juliana Woyames
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lorraine Soares Oliveira
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Bruna Caetano
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rodrigo Soares Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Luana Lopes Souza
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
Pacwa A, Machowicz J, Wojtyniak A, Pietrucha-Dutczak M, Toropainen E, Koskela A, Mrukwa-Kominek E, Lewin-Kowalik J, Smedowski A. SCD1-Fatty Acid Desaturase Inhibitor MF-438 Alleviates Latent Inflammation Induced by Preservative-Free Prostaglandin Analog Eye Drops. J Inflamm Res 2022; 15:793-806. [PMID: 35173454 PMCID: PMC8840838 DOI: 10.2147/jir.s347784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Prostaglandin analogs are the first line of treatment in patients with glaucoma. Recently, many preservative-free prostaglandin analogs have been marketed to increase their tolerance in chronic use. However, potentially safer formulations have been reported to induce inflammation within ocular surface and adnexa, associated with pronounced activation of tissue macrophages. AIM We aimed to evaluate the effect of a Stearoyl-CoA desaturase-1 (SCD1) inhibitor, MF-438, on the differentiation of monocytes exposed to eye drop detergents, representing saturated fatty acid derivatives. METHODS A culture of human peripheral blood monocytes was exposed to eye drops containing fatty acid derivatives (eye drop detergents), pf-latanoprost (Monoprost®, hydroxystearate macrogolglycerol - MGHS40) or pf-tafluprost (Taflotan®, polysorbate 80 - PS80), as well as pf-latanoprost+MF-438, MGHS40, and PS80. For the negative control C(-), monocytes were cultured in basal medium, and for the positive controls, monocytes were stimulated with Lipopolysaccharide (LPS) and Interferon γ (IFNγ) (M1 macrophages) or Interleukin-4 (IL-4) (M2 macrophages). The concentration of desaturase in the cell homogenates was determined by ELISA. The number of cells was counted under a microscope at 20x magnification. RESULTS The following concentrations of SCD1 (ng/mL) were measured: 7.8±0.3 - pf-latanoprost group; 1.5±0.4 - pf-tafluprost group; 6.8±0.7 - MGHS40 group; 0.4±0.002 - PS80 group; 0.9±0.02 - pf-latanoprost+MF-438 group; 5.4±1.6 - C(-) control; 0.5±0.04 - M1 control; 2.2±0.13 - M2 control. The percentages of macrophages in culture were 33.6%, 17.6%, 33%, 0%, 13.5%, 18.6%, 36.3%, and 39.3% for the pf-latanoprost, pf-tafluprost, MGHS40, PS80, pf-latanoprost+MF-438, C(-), M1, and M2 cultures, respectively. There was a strong correlation between SCD1 concentration and macrophage count in the culture (r=0.8, p<0.05). CONCLUSION Inhibition of SCD1 in monocytes prevents their transformation into macrophages after exposure to saturated fatty acid derivatives contained in eye drops, which may contribute to the limitation of latent inflammation within ocular adnexa and could possibly translate into better tolerability of the topical treatment.
Collapse
Affiliation(s)
- Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
31
|
Bamba R, Okamura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Takakuwa H, Hamaguchi M, Fukui M. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle atrophy in db/db mice. J Cachexia Sarcopenia Muscle 2022; 13:574-588. [PMID: 34854254 PMCID: PMC8818690 DOI: 10.1002/jcsm.12814] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus increases the excretion of urinary glucose from the renal glomeruli due to elevated blood glucose levels. In the renal tubules, SGLT2 is expressed and reabsorbs the excreted urinary glucose. In the pathogenesis of diabetes mellitus, glucose reabsorption by SGLT2 is increased, and SGLT2 inhibitors improve hyperglycaemia by inhibiting this reabsorption. When urinary glucose excretion is enhanced, glucose supply to skeletal muscle may be insufficient and muscle protein catabolism may be accelerated. On the other hand, SGLT2 inhibitors not only ameliorate hyperglycaemia but also improve fatty acid metabolism in muscle, which may prevent muscle atrophy. METHODS Eight-week-old male db/m mice or db/db mice were fed a standard diet with or without the SGLT2i luseogliflozin (0.01% w/w in chow) for 8 weeks. Mice were sacrificed at 16 weeks of age, and skeletal muscle and serum lipidomes, as well as skeletal muscle transcriptome, were analysed. RESULTS Administration of SGLT2i led to not only decreased visceral fat accumulation (P = 0.004) but also increased soleus muscle weight (P = 0.010) and grip strength (P = 0.0001). The levels of saturated fatty acids, especially palmitic acid, decreased in both muscles (P = 0.017) and sera (P = 0.041) upon administration of SGLT2i, while the content of monosaturated fatty acids, especially oleic acid, increased in both muscle (P < 0.0001) and sera (P = 0.009). Finally, the accumulation of transcripts associated with fatty acid metabolism, such as Scd1, Fasn, and Elovl6, and of muscle atrophy-associated transcripts, such as Foxo1, Mstn, Trim63, and Fbxo32, decreased following SGLT2i administration. CONCLUSIONS Intramuscular fatty acid metabolism and gene expression were influenced by the extracellular lipidome, which was modified by SGLT2i. Hence, secondary effects, other than the hypoglycaemic effects of SGLT2i, might lead to the alleviation of sarcopenia.
Collapse
Affiliation(s)
- Ryo Bamba
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Takakuwa
- Agilent Technologies, Chromatography Mass Spectrometry Sales Department, Life Science and Applied Markets Group, Tokyo, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J Diabetes Metab Disord 2021; 21:889-917. [DOI: 10.1007/s40200-021-00917-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
|
33
|
Gheflati A, Dehnavi Z, Ghannadzadeh Yazdi A, Khorasanchi Z, Raeisi-Dehkordi H, Ranjbar G. The effects of propolis supplementation on metabolic parameters: A systematic review and meta-analysis of randomized controlled clinical trials. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:551-565. [PMID: 34804893 PMCID: PMC8588957 DOI: 10.22038/ajp.2021.18046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
Objective: Propolis is a sticky, resinous substance produced by honeybees from various plants. Various biological properties of propolis and its extracts have been recognized in previous studies including the antiseptic, anti-inflammatory, antioxidant, antiviral, hepatoprotective, antitumor, antibacterial and antimycotic properties. This study aimed to summarize the effect of propolis on metabolic parameters in human adults using systematic review and meta-analysis. Materials and Methods: A comprehensive systematic search was performed in ISI Web of Science, PubMed, Scopus, and Google Scholar up to July 2020 for controlled clinical trials evaluating the impact of propolis on lipid profile and liver enzyme biomarkers. A random effects model was used to calculate the weighted mean difference (WMD) and 95% confidence interval (CI) as the difference between the mean for the intervention and control groups. Results: The present meta-analysis included six randomized controlled trials. There was significant reduction in Aspartate Aminotransferase (AST) in comparison to the control groups (WMD=-2.01; 95% CI: -3.93--0.10; p=0.039). However, a non-significant effect was observed in Triglycerides (TG), Total cholesterol (TC), low-density lipoprotein (LDL), High-density lipoprotein (HDL) (WMD=-0.05 mg/dl; 95% CI: -0.27-0.18; p=0.688; WMD=7.08 mg/dl; 95% CI: -37.31-51.46; p=0.755; WMD=-0.94 mg/dl; 95% CI: -6.64-4.77; p=0.747; WMD=3.14 mg/dl; 95% CI: -1.84-8.13; p=0.216, respectively). Conclusion: Current meta-analysis revealed that propolis supplementation can reduce AST; nevertheless, there was no significant effect on lipid profile indices and ALT.
Collapse
Affiliation(s)
- Alireza Gheflati
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Dehnavi
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Khorasanchi
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Raeisi-Dehkordi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Estévez-Vázquez O, Benedé-Ubieto R, Guo F, Gómez-Santos B, Aspichueta P, Reissing J, Bruns T, Sanz-García C, Sydor S, Bechmann LP, Maranillo E, Sañudo JR, Vázquez MT, Lamas-Paz A, Morán L, Mazariegos MS, Ciudin A, Pericàs JM, Peligros MI, Vaquero J, Martínez-Naves E, Liedtke C, Regueiro JR, Trautwein C, Bañares R, Cubero FJ, Nevzorova YA. Fat: Quality, or Quantity? What Matters Most for the Progression of Metabolic Associated Fatty Liver Disease (MAFLD). Biomedicines 2021; 9:biomedicines9101289. [PMID: 34680405 PMCID: PMC8533605 DOI: 10.3390/biomedicines9101289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives: Lately, many countries have restricted or even banned transfat, and palm oil has become a preferred replacement for food manufacturers. Whether palm oil is potentially an unhealthy food mainly due to its high content of saturated Palmitic Acid (PA) is a matter of debate. The aim of this study was to test whether qualitative aspects of diet such as levels of PA and the fat source are risk factors for Metabolic Syndrome (MS) and Metabolic Associated Fatty Liver Disease (MAFLD). Methods: C57BL/6 male mice were fed for 14 weeks with three types of Western diet (WD): 1. LP-WD—low concentration of PA (main fat source—corn and soybean oils); 2. HP-WD—high concentration of PA (main fat source—palm oil); 3. HP-Trans-WD—high concentration of PA (mainly transfat). Results: All types of WD caused weight gain, adipocyte enlargement, hepatomegaly, lipid metabolism alterations, and steatohepatitis. Feeding with HP diets led to more prominent obesity, hypercholesterolemia, stronger hepatic injury, and fibrosis. Only the feeding with HP-Trans-WD resulted in glucose intolerance and elevation of serum transaminases. Brief withdrawal of WDs reversed MS and signs of MAFLD. However, mild hepatic inflammation was still detectable in HP groups. Conclusions: HP and HP-Trans-WD play a crucial role in the genesis of MS and MAFLD.
Collapse
Affiliation(s)
- Olga Estévez-Vázquez
- Department of Physiology, Genetics and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (O.E.-V.); (R.B.-U.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
| | - Raquel Benedé-Ubieto
- Department of Physiology, Genetics and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (O.E.-V.); (R.B.-U.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
| | - Feifei Guo
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (B.G.-S.); (P.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (B.G.-S.); (P.A.)
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.P.); (J.V.)
| | - Johanna Reissing
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.R.); (T.B.); (C.L.); (C.T.)
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.R.); (T.B.); (C.L.); (C.T.)
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, 44801 Bochum, Germany; (S.S.); (L.P.B.)
| | - Lars P. Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, 44801 Bochum, Germany; (S.S.); (L.P.B.)
| | - Eva Maranillo
- Department of Human Anatomy and Embryology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (E.M.); (J.R.S.); (M.T.V.)
| | - José Ramón Sañudo
- Department of Human Anatomy and Embryology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (E.M.); (J.R.S.); (M.T.V.)
| | - María Teresa Vázquez
- Department of Human Anatomy and Embryology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (E.M.); (J.R.S.); (M.T.V.)
| | - Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Marina S. Mazariegos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
| | - Andreea Ciudin
- Endocrinology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute for Research (VHIR), 08035 Barcelona, Spain;
| | - Juan M. Pericàs
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.P.); (J.V.)
- Liver Unit, Internal Medicine Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute for Research (VHIR), 08035 Barcelona, Spain
| | - María Isabel Peligros
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Javier Vaquero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.P.); (J.V.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.R.); (T.B.); (C.L.); (C.T.)
| | - José R. Regueiro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.R.); (T.B.); (C.L.); (C.T.)
| | - Rafael Bañares
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.P.); (J.V.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.P.); (J.V.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (F.G.); (C.S.-G.); (A.L.-P.); (L.M.); (M.S.M.); (E.M.-N.); (J.R.R.); (R.B.); (F.J.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.P.); (J.V.)
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.R.); (T.B.); (C.L.); (C.T.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
- Correspondence: ; Tel.: +49-(0)241-80-80662; Fax: +49-(0)241-80-82455
| |
Collapse
|
35
|
Mitchell CM, Davy BM, Ponder MA, McMillan RP, Hughes MD, Hulver MW, Neilson AP, Davy KP. Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients 2021; 13:nu13093235. [PMID: 34579112 PMCID: PMC8471706 DOI: 10.3390/nu13093235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Prediabetes affects 84.1 million adults, and many will progress to type 2 diabetes (T2D). The objective of this proof-of-concept trial was to determine the efficacy of inulin supplementation to improve glucose metabolism and reduce T2D risk. Adults (n = 24; BMI: 31.3 ± 2.9 kg/m2; age: 54.4 ± 8.3 years) at risk for T2D were enrolled in this controlled feeding trial and consumed either inulin (10 g/day) or placebo (maltodextrin, 10 g/day) for six weeks. Assessments included peripheral insulin sensitivity, fasting glucose, and insulin, HOMA-IR, in vivo skeletal muscle substrate preference, Bifidobacteria copy number, intestinal permeability, and endotoxin concentrations. Participant retention was 92%. There were no baseline group differences except for fasting insulin (p = 0.003). The magnitude of reduction in fasting insulin concentrations with inulin (p = 0.003, inulin = Δ-2.9, placebo = Δ2.3) was attenuated after adjustment for baseline concentrations (p = 0.04). After adjusting for baseline values, reduction in HOMA-IR with inulin (inulin = Δ-0.40, placebo=Δ0.27; p = 0.004) remained significant. Bifidobacteria 16s increased (p = 0.04; inulin = Δ3.1e9, placebo = Δ-8.9e8) with inulin supplementation. Despite increases in gut Bifidobacteria, inulin supplementation did not improve peripheral insulin sensitivity. These findings question the need for larger investigations of inulin and insulin sensitivity in this population.
Collapse
Affiliation(s)
- Cassie M. Mitchell
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.M.); (B.M.D.); (R.P.M.); (M.W.H.)
- Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, VA 24061, USA;
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Brenda M. Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.M.); (B.M.D.); (R.P.M.); (M.W.H.)
- Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Monica A. Ponder
- Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.M.); (B.M.D.); (R.P.M.); (M.W.H.)
| | - Michael D. Hughes
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Matthew W. Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.M.); (B.M.D.); (R.P.M.); (M.W.H.)
- Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Andrew P. Neilson
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Kevin P. Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.M.); (B.M.D.); (R.P.M.); (M.W.H.)
- Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, VA 24061, USA;
- Correspondence:
| |
Collapse
|
36
|
Tuthill II BF, Quaglia CJ, O'Hara E, Musselman LP. Loss of Stearoyl-CoA desaturase 1 leads to cardiac dysfunction and lipotoxicity. J Exp Biol 2021; 224:jeb240432. [PMID: 34423827 PMCID: PMC8502255 DOI: 10.1242/jeb.240432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
Diets high in carbohydrates are associated with type 2 diabetes and its co-morbidities, including hyperglycemia, hyperlipidemia, obesity, hepatic steatosis and cardiovascular disease. We used a high-sugar diet to study the pathophysiology of diet-induced metabolic disease in Drosophila melanogaster. High-sugar diets produce hyperglycemia, obesity, insulin resistance and cardiomyopathy in flies, along with ectopic accumulation of toxic lipids, or lipotoxicity. Stearoyl-CoA desaturase 1 is an enzyme that contributes to long-chain fatty acid metabolism by introducing a double bond into the acyl chain. Knockdown of stearoyl-CoA desaturase 1 in the fat body reduced lipogenesis and exacerbated pathophysiology in flies reared on high-sucrose diets. These flies exhibited dyslipidemia and growth deficiency in addition to defects in cardiac and gut function. We assessed the lipidome of these flies using tandem mass spectrometry to provide insight into the relationship between potentially lipotoxic species and type 2 diabetes-like pathophysiology. Oleic acid supplementation is able to rescue a variety of phenotypes produced by stearoyl-CoA desaturase 1 RNAi, including fly mass, triglyceride storage, gut development and cardiac failure. Taken together, these data suggest a protective role for monounsaturated fatty acids in diet-induced metabolic disease phenotypes.
Collapse
|
37
|
Ascenzi F, De Vitis C, Maugeri-Saccà M, Napoli C, Ciliberto G, Mancini R. SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res 2021; 40:265. [PMID: 34429143 PMCID: PMC8383407 DOI: 10.1186/s13046-021-02067-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular degradation system that removes unnecessary or dysfunctional components and recycles them for other cellular functions. Over the years, a mutual regulation between lipid metabolism and autophagy has been uncovered. METHODS This is a narrative review discussing the connection between SCD1 and the autophagic process, along with the modality through which this crosstalk can be exploited for therapeutic purposes. RESULTS Fatty acids, depending on the species, can have either activating or inhibitory roles on autophagy. In turn, autophagy regulates the mobilization of fat from cellular deposits, such as lipid droplets, and removes unnecessary lipids to prevent cellular lipotoxicity. This review describes the regulation of autophagy by lipid metabolism in cancer cells, focusing on the role of stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in the synthesis of monounsaturated fatty acids. SCD1 plays an important role in cancer, promoting cell proliferation and metastasis. The role of autophagy in cancer is more complex since it can act either by protecting against the onset of cancer or by promoting tumor growth. Mounting evidence indicates that autophagy and lipid metabolism are tightly interconnected. CONCLUSION Here, we discuss controversial findings of SCD1 as an autophagy inducer or inhibitor in cancer, highlighting how these activities may result in cancer promotion or inhibition depending upon the degree of cancer heterogeneity and plasticity.
Collapse
Affiliation(s)
- Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, 00144, Rome, Italy
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, 00189, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS "Regina Elena" National Cancer Institute, 00144, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00161, Rome, Italy.
| |
Collapse
|
38
|
Sciarrillo CM, Keirns BH, Koemel NA, Anderson KL, Emerson SR. Fibroblast Growth Factor 19: Potential modulation of hepatic metabolism for the treatment of non-alcoholic fatty liver disease. Liver Int 2021; 41:894-904. [PMID: 33506572 DOI: 10.1111/liv.14802] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease that is becoming more prevalent in concert with obesity and poor lifestyle habits. Although NAFLD is treatable via lifestyle modification in early stages, more advanced liver pathologies (eg non-alcoholic steatohepatitis [NASH]) are harder to reverse. There is no Food and Drug Administration approved pharmacological treatment for NAFLD, and little research has been done to identify compounds that target key NAFLD mechanisms. Bile acids and bile acid receptors have been implicated in NAFLD pathogenesis and modulating bile acids and bile acid receptors has recently been targeted as a therapeutic treatment option for NAFLD. Fibroblast growth factor 19 (FGF19), a nutritionally regulated post-prandial hormone, is a chief regulator of bile acid metabolism and an important player in lipid and carbohydrate metabolism, including key mechanisms of NAFLD pathogenesis. In this review, we discuss recent findings related to FGF19-regulated processes involved in the pathogenesis of NAFLD. We summarize known and conjectural frameworks and limitations for the clinical application of FGF19-targeted therapies as they relate to NAFLD.
Collapse
Affiliation(s)
| | - Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Nicholas A Koemel
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kendall L Anderson
- Department of Pediatric Gastroenterology and Hepatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
39
|
Dasilva G, Lois S, Méndez L, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish Oil Improves Pathway-Oriented Profiling of Lipid Mediators for Maintaining Metabolic Homeostasis in Adipose Tissue of Prediabetic Rats. Front Immunol 2021; 12:608875. [PMID: 33968013 PMCID: PMC8097180 DOI: 10.3389/fimmu.2021.608875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is now recognized as an active organ with an important homeostatic function in glucose and lipid metabolism and the development of insulin resistance. The present research investigates the role of lipid mediators and lipid profiling for controlling inflammation and the metabolic normal function of white adipose tissue from rats suffering from diet-induced prediabetes. Additionally, the contribution to the adipose lipidome induced by the consumption of marine ω-3 PUFAs as potential regulators of inflammation is addressed. For that, the effects on the inflammatory response triggered by high-fat high-sucrose (HFHS) diets were studied in male Sprague-Dawley rats. Using SPE-LC-MS/MS-based metabolo-lipidomics, a range of eicosanoids, docosanoids and specialized pro-resolving mediators (SPMs) were measured in white adipose tissue. The inflammatory response occurring in prediabetic adipose tissue was associated with the decomposition of ARA epoxides to ARA-dihydroxides, the reduction of oxo-derivatives and the formation of prostaglandins (PGs). In an attempt to control the inflammatory response initiated, LOX and non-enzymatic oxidation shifted toward the production of the less pro-inflammatory EPA and DHA metabolites rather than the high pro-inflammatory ARA hydroxides. Additionally, the change in LOX activity induced the production of intermediate hydroxides precursors of SPMs as protectins (PDs), resolvins (Rvs) and maresins (MaRs). This compensatory mechanism to achieve the restoration of tissue homeostasis was significantly strengthened through supplementation with fish oils. Increasing proportions of ω-3 PUFAs in adipose tissue significantly stimulated the formation of DHA-epoxides by cytochrome P450, the production of non-enzymatic EPA-metabolites and prompted the activity of 12LOX. Finally, protectin PDX was significantly reduced in the adipose tissue of prediabetic rats and highly enhanced through ω-3 PUFAs supplementation. Taken together, these actively coordinated modifications constitute key mechanisms to restore adipose tissue homeostasis with an important role of lipid mediators. This compensatory mechanism is reinforced through the supplementation of the diet with fish oils with high and balanced contents of EPA and DHA. The study highlights new insides on the targets for effective treatment of incipient diet-induced diabetes and the mechanism underlying the potential anti-inflammatory action of marine lipids.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Food Science Department, Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Salomé Lois
- Food Science Department, Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Lucía Méndez
- Food Science Department, Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Bernat Miralles-Pérez
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Romeu
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Sara Ramos-Romero
- Biological Chemistry Department, Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Josep L Torres
- Biological Chemistry Department, Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Isabel Medina
- Food Science Department, Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| |
Collapse
|
40
|
Ferrara PJ, Rong X, Maschek JA, Verkerke AR, Siripoksup P, Song H, Green TD, Krishnan KC, Johnson JM, Turk J, Houmard JA, Lusis AJ, Drummond MJ, McClung JM, Cox JE, Shaikh SR, Tontonoz P, Holland WL, Funai K. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J Clin Invest 2021; 131:135963. [PMID: 33591957 DOI: 10.1172/jci135963] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Aberrant lipid metabolism promotes the development of skeletal muscle insulin resistance, but the exact identity of lipid-mediated mechanisms relevant to human obesity remains unclear. A comprehensive lipidomic analysis of primary myocytes from individuals who were insulin-sensitive and lean (LN) or insulin-resistant with obesity (OB) revealed several species of lysophospholipids (lyso-PLs) that were differentially abundant. These changes coincided with greater expression of lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme involved in phospholipid transacylation (Lands cycle). Strikingly, mice with skeletal muscle-specific knockout of LPCAT3 (LPCAT3-MKO) exhibited greater muscle lysophosphatidylcholine/phosphatidylcholine, concomitant with improved skeletal muscle insulin sensitivity. Conversely, skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) promoted glucose intolerance. The absence of LPCAT3 reduced phospholipid packing of cellular membranes and increased plasma membrane lipid clustering, suggesting that LPCAT3 affects insulin receptor phosphorylation by modulating plasma membrane lipid organization. In conclusion, obesity accelerates the skeletal muscle Lands cycle, whose consequence might induce the disruption of plasma membrane organization that suppresses muscle insulin action.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and
| | - Anthony Rp Verkerke
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center and.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Haowei Song
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Jordan M Johnson
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - John Turk
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph A Houmard
- East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Aldons J Lusis
- Cardiology Division, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center and.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - James E Cox
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute and.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - William L Holland
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Vázquez-Gómez M, García-Contreras C, Astiz S, Torres-Rovira L, Pesantez-Pacheco JL, Heras-Molina A, Castro Madrigal T, López-Bote C, Óvilo C, González-Bulnes A, Isabel B. Effects of L-Glutamine Supplementation during the Gestation of Gilts and Sows on the Offspring Development in a Traditional Swine Breed. Animals (Basel) 2021; 11:ani11030903. [PMID: 33809899 PMCID: PMC8004119 DOI: 10.3390/ani11030903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Nutritional strategies during pregnancy in swine production are considered essential to increase the number of piglets born alive and improve their survival and development. Amino acids, such as glutamine, are among the best compound to introduce in commercial farms after obtaining positive results in trials carried out in selected swine breeds. However, several critical productive factors have to be assessed before translating these strategies to the farm level to ensure the best balance between benefits and investments. The current study focused on the effects of prenatal L-glutamine supplementation on the offspring of Iberian gilts and sows under farm conditions. It is the first trial of amino acid supplementation during pregnancy carried out in traditional swine breeds. These non-selected swine breeds show productive or physiological differences that could affect the supplementation effect. Indeed, although there were changes at the molecular and tissue level, these effects did not turn into advantageous effects for the offspring of traditional breeds. The present study shows the importance of pre-testing nutritional strategies under the final conditions and breeds of implementation and the need to deepen at the molecular level to improve the biological interpretation of findings. Abstract The use of amino acids during pregnancy, such as glutamine (Gln), seems to be a promising strategy in selected swine breeds to improve the offspring prenatal development. The main goal of the current study was to assess the development of the offspring from parity 1–3 sows of a traditional breed, which were supplemented with 1% glutamine after Day 35 of gestation, under farm conditions. A total of 486 (288 treated) piglets from 78 (46 treated) Iberian sows were used. At birth and slaughterhouse, fatty acid composition, metabolism, and mTOR pathway gene expression were analyzed. At birth, treated newborns showed greater amounts of specific amino acids in plasma, such as glutamine, asparagine, or alanine, and Σn-3 fatty acids in cellular membranes than control newborns. The expression of genes belonging to mTOR Complex 1 was also higher in treated piglets with normal birth-weight. However, these findings did not improve productive traits at birth or following periods in litters from supplemented gilts (parity 1) or sows (parities 2–3). Thus, further research is needed to properly understand the effects of prenatal glutamine supplementation, particularly in traditional swine breeds.
Collapse
Affiliation(s)
- Marta Vázquez-Gómez
- Faculty of Veterinary Medicine, UCM, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.V.-G.); (T.C.M.); (C.L.-B.)
- Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Trav. dels Turons, 08193 Bellaterra, Spain
| | - Consolación García-Contreras
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
| | - Susana Astiz
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
| | - Laura Torres-Rovira
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
| | - José Luis Pesantez-Pacheco
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, University of Cuenca, Avda. Doce de Octubre, 010220 Cuenca, Ecuador
| | - Ana Heras-Molina
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
| | - Teresa Castro Madrigal
- Faculty of Veterinary Medicine, UCM, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.V.-G.); (T.C.M.); (C.L.-B.)
| | - Clemente López-Bote
- Faculty of Veterinary Medicine, UCM, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.V.-G.); (T.C.M.); (C.L.-B.)
| | - Cristina Óvilo
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
| | - Antonio González-Bulnes
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (C.G.-C.); (S.A.); (L.T.-R.); (J.L.P.-P.); (A.H.-M.); (C.Ó.); (A.G.-B.)
- Faculty of Veterinary Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Beatriz Isabel
- Faculty of Veterinary Medicine, UCM, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.V.-G.); (T.C.M.); (C.L.-B.)
- Correspondence:
| |
Collapse
|
42
|
González Hernández MA, Blaak EE, Hoebers NTH, Essers YPG, Canfora EE, Jocken JWE. Acetate Does Not Affect Palmitate Oxidation and AMPK Phosphorylation in Human Primary Skeletal Muscle Cells. Front Endocrinol (Lausanne) 2021; 12:659928. [PMID: 34220709 PMCID: PMC8248488 DOI: 10.3389/fendo.2021.659928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Our recent in vivo human studies showed that colonic administration of sodium acetate (SA) resulted in increased circulating acetate levels, which was accompanied by increments in whole-body fat oxidation in overweight-obese men. Since skeletal muscle has a major role in whole-body fat oxidation, we aimed to investigate effects of SA on fat oxidation and underlying mechanisms in human primary skeletal muscle cells (HSkMC). We investigated the dose (0-5 mmol/L) and time (1, 4, 20, and 24 h) effect of SA on complete and incomplete endogenous and exogenous oxidation of 14C-labeled palmitate in HSkMC derived from a lean insulin sensitive male donor. Both physiological (0.1 and 0.25 mmol/L) and supraphysiological (0.5, 1 and 5 mmol/L) concentrations of SA neither increased endogenous nor exogenous fat oxidation over time in HSkMC. In addition, no effect of SA was observed on Thr172-AMPKα phosphorylation. In conclusion, our previously observed in vivo effects of SA on whole-body fat oxidation in men may not be explained via direct effects on HSkMC fat oxidation. Nevertheless, SA-mediated effects on whole-body fat oxidation may be triggered by other mechanisms including gut-derived hormones or may occur in other metabolically active tissues.
Collapse
|
43
|
The Role of Offspring Genotype-By-Sex Interactions, Independently of Environmental Cues, on the Phenotype Traits of an Obese Swine Model. BIOLOGY 2020; 9:biology9120445. [PMID: 33291637 PMCID: PMC7761963 DOI: 10.3390/biology9120445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary The present study, comparing the postnatal development of purebred Iberian and crossbreds Iberian × Large White littermates born from purebred Iberian sows, allows us to discern phenotype traits driven by the genotype from features imposed by pre- and postnatal environment. The results obtained in this study support the well-known relevance of genotype but also evidence a paramount role of the interaction sex-by-genotype, with differential effects depending on the offspring genotype and sex. Abstract The present study aimed to assess the importance of offspring genotype on postnatal development, independently of confounding factors related to prenatal environment and postnatal lifestyle, using a translational model of obesity and metabolic syndrome (the Iberian pig). Hence, we compared two genotypes (purebred Iberian and crossbreds Iberian × Large White), produced in one single maternal environment (pure Iberian mothers) through artificial insemination of Iberian sows with Iberian and Large White heterospermic semen and maintained in the same conditions during postnatal development. The results indicate that, under same pre- and postnatal environments, the interaction genotype-by-sex has a determinant role on offspring phenotype (i.e., growth and development, metabolic and antioxidant status and fatty acid composition of different tissues). These results may set the basis for future preclinical and clinical research on the differences in the metabolic phenotype among genotypes.
Collapse
|
44
|
Benninghoff T, Espelage L, Eickelschulte S, Zeinert I, Sinowenka I, Müller F, Schöndeling C, Batchelor H, Cames S, Zhou Z, Kotzka J, Chadt A, Al-Hasani H. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4. Diabetes 2020; 69:2281-2293. [PMID: 32868338 DOI: 10.2337/db20-0180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin- and contraction-stimulated glucose uptake and to elevated fatty acid (FA) uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of proteins for oxidative phosphorylation. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the FA transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain FAs (LCFAs) into skeletal muscle and knockdown (Kd) of a subset of RabGAP substrates, Rab8, Rab10, or Rab14, decreased LCFA uptake into these cells. In skeletal muscle from Tbc1d1 and Tbc1d4 knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced FA oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.
Collapse
Affiliation(s)
- Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Isabel Zeinert
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Isabelle Sinowenka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Frank Müller
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Christina Schöndeling
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Hannah Batchelor
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Zhou Zhou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
45
|
Heras-Molina A, Pesantez-Pacheco JL, Astiz S, Garcia-Contreras C, Vazquez-Gomez M, Encinas T, Óvilo C, Isabel B, Gonzalez-Bulnes A. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Effects on Growth, Metabolism, and Body Composition of the Offspring. Animals (Basel) 2020; 10:ani10111946. [PMID: 33105758 PMCID: PMC7690598 DOI: 10.3390/ani10111946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The present study aimed to determine benefits and risks of a dietary supplementation combining hydroxytyrosol and n3 polyunsaturated fatty acids (PUFA) on developmental patterns and metabolic traits of offspring in swine, a model of intrauterine growth restricted (IUGR) pregnancies. There were no deleterious effects on the reproductive traits of the sows and the postnatal features of the piglets. Piglets from the supplemented sows, in spite of a lower mean weight and corpulence at birth, showed higher average daily weight gain and fractional growth rate afterwards. Consequently, they reached higher weight and corpulence with increased muscle development and better lipidemic and fatty acids profiles than control offspring at juvenile stages. Abstract Maternal supplementation with antioxidants and n3 PUFAs may be a promising strategy to reduce the risk of intrauterine growth restriction and preterm delivery, which may diminish the appearance of low-birth-weight neonates. The present study aimed to determine benefits and risks of a dietary supplementation combining hydroxytyrosol, a polyphenol from olive leaves and fruits, and n3 PUFAs, from linseed oil, on developmental patterns and metabolic traits of offspring in swine, a model of IUGR pregnancies. The results obtained indicate that maternal supplementation with hydroxytyrosol and n-3 fatty acids during pregnancy has no deleterious effects on the reproductive traits of the sows (prolificacy, homogeneity of the litter, and percentage of stillborns and low-birth-weight, LBW, piglets) and the postnatal features of the piglets (growth patterns, adiposity, and metabolic traits). Conversely, in spite of a lower mean weight and corpulence at birth, piglets from the supplemented sows showed higher average daily weight gain and fractional growth rate. Thus, at juvenile stages afterwards, the offspring from the treated group reached higher weight and corpulence, with increased muscle development and better lipidemic and fatty acid profiles, in spite of similar adiposity, than offspring in the control group. However, much caution and more research are still needed before practical recommendation and use in human pregnancies.
Collapse
Affiliation(s)
- Ana Heras-Molina
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (S.A.); (C.G.-C.); (C.Ó.)
| | - José Luis Pesantez-Pacheco
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (S.A.); (C.G.-C.); (C.Ó.)
- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, University of Cuenca, Avda. Doce de Octubre, Cuenca 010220, Ecuador
| | - Susana Astiz
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (S.A.); (C.G.-C.); (C.Ó.)
| | | | - Marta Vazquez-Gomez
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (T.E.); (B.I.)
- Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Trav. dels Turons, 08193 Bellaterra, Spain
| | - Teresa Encinas
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (T.E.); (B.I.)
| | - Cristina Óvilo
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (S.A.); (C.G.-C.); (C.Ó.)
| | - Beatriz Isabel
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (T.E.); (B.I.)
| | - Antonio Gonzalez-Bulnes
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (S.A.); (C.G.-C.); (C.Ó.)
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (T.E.); (B.I.)
- Correspondence:
| |
Collapse
|
46
|
Short-Term Effects of Early Menopause on Adiposity, Fatty Acids Profile and Insulin Sensitivity of a Swine Model of Female Obesity. BIOLOGY 2020; 9:biology9090284. [PMID: 32932852 PMCID: PMC7565410 DOI: 10.3390/biology9090284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Menopause strongly increases incidence and consequences of obesity and non-communicable diseases in women, with recent research suggesting a very early onset of changes in lipid accumulation, dyslipidemia, and insulin resistance. However, there is a lack of adequate preclinical models for its study. The present trial evaluated the usefulness of an alternative method to surgical ovariectomy, the administration of two doses of a GnRH analogue-protein conjugate (Vacsincel®), for inducing ovarian inactivity in sows used as preclinical models of obesity and menopause. All the sows treated with the compound developed ovarian stoppage after the second dose and, when exposed to obesogenic diets during the following three months, showed changes in the patterns of fat deposition, in the fatty acids profiles at the different tissues and in the plasma concentrations of fructosamine, urea, β-hydroxibutirate, and haptoglobin when compared to obese fed with the same diet but maintaining ovarian activity. Altogether, these results indicate that menopause early augments the deleterious effects induced by overfeeding and obesity on metabolic traits, paving the way for future research on physiopathology of these conditions and possible therapeutic targets using the swine model.
Collapse
|
47
|
Ropka-Molik K, Pawlina-Tyszko K, Żukowski K, Tyra M, Derebecka N, Wesoły J, Szmatoła T, Piórkowska K. Identification of Molecular Mechanisms Related to Pig Fatness at the Transcriptome and miRNAome Levels. Genes (Basel) 2020; 11:E600. [PMID: 32485856 PMCID: PMC7348756 DOI: 10.3390/genes11060600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Fat deposition and growth rate are closely related to pork quality and fattening efficiency. The next-generation sequencing (NGS) approach for transcriptome and miRNAome massive parallel sequencing of adipocyte tissue was applied to search for a molecular network related to fat deposition in pigs. Pigs were represented by three breeds (Large White, Pietrain, and Hampshire) that varied in fat content within each breed. The obtained results allowed for the detection of significant enrichment of Gene Ontology (GO) terms and pathways associated directly and indirectly with fat deposition via regulation of fatty acid metabolism, fat cell differentiation, inflammatory response, and extracellular matrix (ECM) organization and disassembly. Moreover, the results showed that adipocyte tissue content strongly affected the expression of leptin and other genes related to a response to excessive feed intake. The findings indicated that modification of genes and miRNAs involved in ECM rearrangements can be essential during fat tissue growth and development in pigs. The identified molecular network within genes and miRNAs that were deregulated depending on the subcutaneous fat level are proposed as candidate factors determining adipogenesis, fatness, and selected fattening characteristics in pigs.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.-T.); (T.S.); (K.P.)
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.-T.); (T.S.); (K.P.)
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Uniwersytetu Poznanskiego street 6, 61-614 Poznań, Poland; (N.D.); (J.W.)
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Uniwersytetu Poznanskiego street 6, 61-614 Poznań, Poland; (N.D.); (J.W.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.-T.); (T.S.); (K.P.)
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.-T.); (T.S.); (K.P.)
| |
Collapse
|
48
|
Vázquez-Gómez M, Garcia-Contreras C, Pesantez-Pacheco JL, Torres-Rovira L, Heras-Molina A, Astiz S, Óvilo C, Isabel B, Gonzalez-Bulnes A. Differential Effects of Litter Size and Within-Litter Birthweight on Postnatal Traits of Fatty Pigs. Animals (Basel) 2020; 10:ani10050870. [PMID: 32429595 PMCID: PMC7278408 DOI: 10.3390/ani10050870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The current work evaluated the relative effects of the number of piglets in the litter of origin (high vs. low litter size) and the birthweight (low (LBW) vs. normal (NBW) in large litters) on postnatal performance and quality of carcasses and meat in purebred Iberian pigs. The results indicated that NBW piglets born in large litters had disparities in developmental patterns in weight and size, back-fat deposition, and fatty acid composition of viscerae compared to NBW piglets from small litters, which again were different from those found in LBW piglets when compared to their NBW counterparts. However, both growth patterns were altered and might indicate previous phases of metabolic disorders. Abstract Fatty pigs are characterized by a thrifty genotype, adapted to harsh environments based on changes in metabolism and energy saving. Thus, we hypothesized that feto-maternal energy partitioning in large litters might have postnatal effects that might be independent of intrauterine growth restriction (IUGR) processes. Hence, the current work reported the influence of two effects on postnatal performance and carcass and meat quality of purebred Iberian pigs: (a) the effects of the number of piglets in the litter (high vs. low litter size), and (b) the effects of birthweight (low (LBW) vs. normal (NBW)) in large litters. The results confirmed that NBW piglets born in large litters had differences in developmental patterns of weight, back-fat deposition, and fatty acid (FA) composition when compared to NBW piglets from small litters. These results were different from those found in LBW piglets when compared to their NBW counterparts, which showed an initial asymmetrical growth and altered muscle FA composition at slaughtering. The assessment of FA composition indicated better metabolic status in NBW piglets from large litters than in LBW piglets. These data support the concept that the prenatal environment, even when the individual may cope with it, inescapably affects postnatal life.
Collapse
Affiliation(s)
- Marta Vázquez-Gómez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
| | - Consolacion Garcia-Contreras
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (C.G.-C.); (C.Ó.)
| | - José Luis Pesantez-Pacheco
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Avda. Doce de Octubre, Cuenca 010220, Ecuador
| | - Laura Torres-Rovira
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
| | - Ana Heras-Molina
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
| | - Susana Astiz
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (C.G.-C.); (C.Ó.)
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
- Correspondence:
| |
Collapse
|
49
|
Son YM, Cheon IS, Goplen NP, Dent AL, Sun J. Inhibition of stearoyl-CoA desaturases suppresses follicular help T- and germinal center B- cell responses. Eur J Immunol 2020; 50:1067-1077. [PMID: 32133634 DOI: 10.1002/eji.201948257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
Stearoyl-CoA desaturases (SCD) are endoplasmic reticulum (ER)-associated enzymes that catalyze the synthesis of the monounsaturated fatty acids (MUFAs). As such, SCD play important roles in maintaining the intracellular balance between saturated fatty acid (SFAs) and MUFAs. The roles of SCD in CD4+ T-helper cell responses are currently unexplored. Here, we have found that murine and human follicular helper T (TFH ) cells express higher levels of SCD compared to non-TFH cells. Further, the expression of SCD in TFH cells is dependent on the TFH lineage-specification transcription factor BCL6. We found that the inhibition of SCD impaired TFH cell maintenance and shifted the balance between TFH and follicular regulatory T (TFR ) cells in the spleen. Consequently, SCD inhibition dampened germinal center B-cell responses following influenza immunization. Mechanistically, we found that SCD inhibition led to increased ER stress and enhanced TFH cell apoptosis in vitro and in vivo. These results reveal a possible link between fatty acid metabolism and cellular and humoral responses induced by immunization or potentially, autoimmunity.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Immunology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Departments of Microbiology and Immunology and Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Immunology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Departments of Microbiology and Immunology and Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nick P Goplen
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Immunology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alexander L Dent
- Departments of Microbiology and Immunology and Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Immunology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Departments of Microbiology and Immunology and Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
50
|
Guo Y, Xiong Z, Su M, Huang L, Liao J, Xiao H, Huang X, Xiong Z. Positive association of SCD1 genetic variation and metabolic syndrome in dialysis patients in China. Per Med 2020; 17:111-119. [PMID: 32125933 DOI: 10.2217/pme-2019-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Metabolic syndrome (MetS) diagnosed in the dialysis patients is increasingly reported which worsens the prognosis of the renal diseases. The relationship of SCD1 with MetS is largely unknown. The purpose of this study was to investigate the relationship between SCD1 polymorphism and MetS in dialysis patients. Methods: A cross-sectional study was conducted on 323 Chinese dialysis patients, and the correlation between the seven SNPs of SCD1 gene (rs10883465, rs2060792, rs1502593, rs522951, rs3071, rs3978768 and rs1393492) and MetS was analyzed. Results: One tag-SNP (rs1393492) has significantly associated with the prevalence of MetS. Dialysis patients with rs1393492 AA genotype of SCD1 are more prone to MetS (p = 0.021). Conclusion: This study shows that the rs1393492 variations of SCD1 gene are related with the development of MetS in Chinese dialysis patients.
Collapse
Affiliation(s)
- Yanyan Guo
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Zibo Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Meiling Su
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Limin Huang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Jinlan Liao
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Hongbo Xiao
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Xiaoyan Huang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, PR China
| |
Collapse
|