1
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Qin L, Fan B, Zhou Y, Zheng J, Diao R, Wang F, Liu J. Targeted gut microbiome therapy: Applications and prospects of probiotics, fecal microbiota transplantation and natural products in the management of type 2 diabetes. Pharmacol Res 2025; 213:107625. [PMID: 39875017 DOI: 10.1016/j.phrs.2025.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is considered as one of the most pressing public health challenges worldwide. Studies have shown significant differences in the gut microbiota between healthy individuals and T2DM patients, suggesting that gut microorganisms may play a key role in the onset and progression of T2DM. This review systematically summarizes the relationship between gut microbiota and T2DM, and explores the mechanisms through which gut microorganisms may alleviate T2DM. Additionally, it evaluates the potential of probiotics, fecal microbiota transplantation (FMT)/virome transplantation (FVT), and natural products in modulating gut microbiota to treat T2DM. Although existing studies have suggested that these interventions may delay or even halt the progression of T2DM, most research remained limited to animal models and observational clinical studies, with a lack of high-quality clinical data. This has led to an imbalance between theoretical research and clinical application. Although some studies have explored the regulatory role of the gut virome on the gut microbiota, research in this area remains in its early stages. Based on these current studies, future research should be focused on large-scale, long-term clinical studies and further investigation on the potential role of the gut virome in T2DM. In conclusion, this review aims to summarize the current evidence and explore the applications of gut microbiota in T2DM treatment, as well as providing recommendations for further investigation in this field.
Collapse
Affiliation(s)
- Luqi Qin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yixia Zhou
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jiahuan Zheng
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Rao Diao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
3
|
Wu Y, Ma J, Chen J, Liu X, Wang Z, Luo L, Sun C. Ablation of CD44 Attenuates Adipogenesis in White Adipocytes via the Tryptophan 5-Hydroxylase 2/5-Hydroxytryptamine Axis to Protect Mice from High-Fat Diet-Induced Obesity. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:247-264. [PMID: 39476955 DOI: 10.1016/j.ajpath.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/11/2024]
Abstract
CD44 is a transmembrane protein that plays an essential role in transducing extracellular stimuli into intracellular signaling cascades, especially in cancer cells. Recent studies have shown that CD44 contributes to metabolic regulation. However, the effect of CD44 on adipogenesis in white adipose tissue (WAT) remains unclear. Herein, the expression of CD44 was largely increased in the inguinal and epididymal WAT of obese mice. Ablation or neutralization of CD44 inhibited adipogenesis in cultured adipocytes. CD44-deficient mice were resistant to high-fat diet-induced obesity and metabolic dysfunction. RNA-sequencing, together with functional studies, revealed that reduced expression of tryptophan 5-hydroxylase 2 (Tph2) in WAT was responsible for the repressed adipogenesis in the absence of CD44. The application of 5-hydroxytryptamine, a product of TPH2, rescued the repressed adipogenesis induced by CD44 neutralization. Moreover, the inhibition of TPH2 by p-chlorophenylalanine recapitulated the beneficial phenotypes observed in CD44-deficient mice. Taken together, these data indicate that CD44 plays a pivotal role in adipogenesis in WAT. In this regard, CD44 and its downstream target TPH2 may hold great therapeutic potential for treating excessive adiposity-related metabolic disorders, such as obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Zhe Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2025; 182:471-483. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
5
|
Gruber T, Lechner F, Krieger JP, García-Cáceres C. Neuroendocrine gut-brain signaling in obesity. Trends Endocrinol Metab 2025; 36:42-54. [PMID: 38821753 DOI: 10.1016/j.tem.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.
Collapse
Affiliation(s)
- Tim Gruber
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Franziska Lechner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean-Philippe Krieger
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
6
|
Shang K, Guan J, An T, Zhao H, Bai Q, Li H, Sha Q, Jiang M, Zhang X, Luo X. Effects of perinatal nutrition supplementation and early weaning on serum biochemistry, metabolomics, and reproduction in yaks. Front Vet Sci 2024; 11:1443856. [PMID: 39748870 PMCID: PMC11694451 DOI: 10.3389/fvets.2024.1443856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025] Open
Abstract
The transition period is a crucial stage in the reproductive cycle for dams and is linked closely with postpartum recovery, reproduction performance, and health. The confronting problem in the yak industry is that transition yaks under a conventional grazing feeding regime endure nutritional deficiency since this period is in late winter and early spring of the Qinghai-Tibet Plateau with the lack of grass on natural pasture. Therefore, this study aimed to investigate the effects of perinatal nutritional supplementation and early weaning on serum biochemistry, reproductive performance, and metabolomics in transition yaks. Eighteen healthy yaks in late pregnancy (233.9 ± 18.3 kg, 2-4 parity) were randomly assigned to three groups: conventional grazing feeding (GF, n = 6), additional nutrition supplementation (SF, n = 6), and additional nutrition supplementation with early weaning (SW, n = 6). Yaks in the GF, SF, and SW groups were free grazing on the same pasture in the daytime from -30 to 90 d relative to parturition. Yaks in SF and SW groups received total mixed ration supplementation in the barn during the night throughout the trial. Calves in the SW group were early weaned and separated from the dam at 60 d postpartum. Maternal body weight was measured at -30 and 90 d, and serum samples were collected to analyze serum biochemistry, hormones, and metabolomics at -15, 30, and 90 d relative to calving. In the SF and SW groups, yaks showed significantly higher body weight gain, serum glucose, globulin, and total protein concentrations. Lipid transportation molecules apolipoprotein B100 and very low-density lipoprotein of SF and SW yaks were significantly increased along with the decreased lipid mobilization products non-esterified fatty acid and β-hydroxybutyric acid when compared to GF yaks at -15 and 30 d. At 90 d, serum non-esterified fatty acid and β-hydroxybutyric acid levels were significantly lower in SW yaks than in SF ones, while apolipoprotein B100 and very low-density lipoprotein levels were significantly higher in SW yaks than in GF yaks. The serum levels of metabolic regulatory hormones, including insulin, leptin, and insulin-like growth factor I were significantly increased, and glucagon was significantly reduced in the SF and SW groups than in the GF group at -15 and 30 d. Among serum reproductive hormones, SF and SW yaks had significantly higher estradiol and progesterone concentrations than GF ones at -15 and 30 d. Follicle-stimulating and luteinizing hormone levels were increased in SW group than in SF and GF ones at 90 d. The calving rates in the following year were 0% (GF), 16.7% (SF), and 83.3% (SW), respectively. The serum metabolomics analysis revealed 848 metabolites in positive mode and 350 in negative mode. With the perinatal nutritional supplementation, the lipid and energy metabolism of transition yaks were improved, meanwhile, lipid mobilization and estrogen production-related pathways were down-regulated. These data suggest that perinatal nutrition supplementation reduces body weight loss, improves glucose and lipid metabolic adaptation to the transition period, and improves yaks' reproductive performance. Additionally, the combination of early weaning and nutritional supplementation results in lower lipid mobilization and up-regulation of lipid transportation and reproductive hormone secretion, which may further contribute to postpartum recovery and acceleration of the reproductive cycle.
Collapse
Affiliation(s)
- Kaiyuan Shang
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Hongwen Zhao
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Qin Bai
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Huade Li
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Quan Sha
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Mingfeng Jiang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | | | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu, China
| |
Collapse
|
7
|
Kolczyńska-Matysiak K, Karwen T, Loeffler M, Hawro I, Kassouf T, Stegner D, Sumara G. Dense but not alpha granules of platelets are required for insulin secretion from pancreatic β cells. Biochem Biophys Res Commun 2024; 734:150753. [PMID: 39366180 DOI: 10.1016/j.bbrc.2024.150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Platelets, originally described for their role in blood coagulation, are now also recognized as key players in modulating inflammation, tissue regeneration, angiogenesis, and carcinogenesis. Recent evidence suggests that platelets also influence insulin secretion from pancreatic β cells. The multifaceted functions of platelets are mediated by the factors stored in their alpha granules (AGs) and dense granules (DGs). AGs primarily contain proteins, while DGs are rich in small molecules, and both types of granules are released during blood coagulation. Specific components stored in AGs and DGs are implicated in various inflammatory, regenerative, and tumorigenic processes. However, the relative contributions of AGs and DGs to the regulation of pancreatic β cell function have not been previously explored. METHODS In this study, we utilized mouse models deficient in AG content (neurobeachin-like 2 (Nbeal2) -deficient mice) and models with defective DG release (Unc13d-deficiency in bone marrow-derived cells) to investigate the impact of platelet granules on insulin secretion from pancreatic β cells. RESULTS Our findings indicate that AG deficiency has little to no effect on pancreatic β cell function and glucose homeostasis. Conversely, mice with defective DG release exhibited glucose intolerance and reduced insulin secretion. Furthermore, Unc13d-deficiency in hematopoietic stem cells led to a reduction in adipose tissue gain in obese mice. CONCLUSIONS Obtained data suggest that DGs, but not AGs, mediate the influence of platelets on pancreatic β cells, thereby modulating glucose metabolism.
Collapse
Affiliation(s)
| | - Till Karwen
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Mona Loeffler
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - David Stegner
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany; Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080, Würzburg, Germany.
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
8
|
Li L, Guo X, Zhao Y, Guo Y, Shi B, Zhou Y, Zhang Y, Yan S. Cecal Microbial Diversity and Metabolome Reveal a Reduction in Growth Due to Oxidative Stress Caused by a Low-Energy Diet in Donkeys. Antioxidants (Basel) 2024; 13:1377. [PMID: 39594519 PMCID: PMC11591121 DOI: 10.3390/antiox13111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Dietary energy level plays an important role in animal growth and development. The present study investigated the effect of dietary energy on the growth performance, antioxidative state, and nutrient digestion of meat donkeys. It simultaneously explored the probable reason for cecal microbiota and metabolome. Twelve meat donkeys (male) aged 1 year with a similar weight (150 ± 25 kg) were divided into two treatment groups: low-energy group (E1) and high-energy group (E2). The experiment was divided into a 10-day pre-trial period and a 135-day trial period. Donkeys in the trial periods were fed diets with digestible energy values (in dry matter) of 12.08 and 13.38 MJ/kg (pre-fattening, 1-45 d), 13.01 and 14.27 MJ/kg (mid-fattening, 46-90 d), and 13.54 and 14.93 MJ/kg (late-fattening, 91-135 d). The results show that E1 decreases body weight, average daily gain (ADG), and the digestibility of crude protein, ether extract, neutral detergent fiber, and acid detergent fiber (p < 0.05), but increases cecal acetate and butyrate concentrations, non-esterified fatty acids (NEFAs) in serum, and the ratio of dry matter intake to ADG(F/G). E1 diminished the activities of catalase and glutathione peroxidase, while it increased the content of interleukin, tumor necrosis factor-alpha, and reactive oxygen species (ROS) (p < 0.05). Cecal microbiome showed that the abundance of Firmicutes and Actinobacteria in E1 was significantly lower than in E2 (p = 0.029, p = 0.002), whereas Bacteroidetes was higher (p = 0.005). E1 increased the genera Ruminococcaceae-UCG-004, Acinetobacter, and Rikenellaceae_RC9_gut_group. Meanwhile, cecal metabolome showed that formyl-5-hydroxykynurenamine, chorismate, 3-sulfinoalanine, and 3-isopropylmalate were upregulated in E1, while brassinolide was downregulated. The altered metabolites were mainly enriched in metabolic pathways related to energy metabolism and metabolism to mitigate oxidative stress in the meat donkeys, such as tryptophan metabolism, brassinosteroid biosynthesis metabolism, etc. In conclusion, low-energy diets resulted in a negative energy balance in meat donkeys, resulting in more nutrients being oxidized to provide energy, inducing oxidative stress, and thereby leading to decreasing growth. The reduction in meat donkey growth from low-energy diets was related to changes in cecum microbiota and metabolites.
Collapse
Affiliation(s)
- Li Li
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| | - Xiaoyu Guo
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| | - Yongmei Guo
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| | - Binlin Shi
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| | - Yan Zhou
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| | - Yongwei Zhang
- Inner Mongolia Grassland Yulv Science and Technology Animal Husbandry Co., Ltd., Hohhot 011500, China;
| | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.L.); (X.G.); (Y.Z.); (Y.G.); (B.S.); (Y.Z.)
| |
Collapse
|
9
|
Cui X, Huang X, Chen X, Li H, Wu Y, Yang Z, Liu Z, Feng R, Xu J, Wei C, Ding Z, Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby ( Synechogobius hasta). Animals (Basel) 2024; 14:2734. [PMID: 39335323 PMCID: PMC11429288 DOI: 10.3390/ani14182734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the influence of fasting on hepatic glucose and lipid metabolism was explored by examining biochemical, antioxidative, and morphological indicators and transcriptional expression in the liver of javelin goby (Synechogobius hasta) after 0, 3, 7, or 14 days of starvation. Marked reductions in hepatic glycogen and triglycerides occurred from the seventh day of starvation until the end of the trial (p < 0.05). However, no alterations in hepatic cholesterol or protein were detected throughout the entire experiment (p > 0.05). During fasting, the activities of pyruvate kinase, lactate dehydrogenase, and glycogen phosphorylase a all rose firstly and then fell (p < 0.05). The activities of hepatic fatty acid synthase and acetyl-CoA carboxylase were minimized to their lowest levels at the end of food deprivation (p < 0.05), while lipase was elevated after 7-14 days of fasting (p < 0.05). Catalase, glutathione, and the total antioxidative capacity were increased and maintained their higher values in the later stage of fasting (p < 0.05), whereas malondialdehyde was not significantly changed (p > 0.05). Hepatic vein congestion, remarkable cytoplasmic vacuoles, and irregular cell shape were present in S. hasta which endured 3-7 days of fasting and were less pronounced when food shortage was prolonged. In terms of genes associated with glucose and lipid metabolism, the hepatic phosphofructokinase gene was constantly up-regulated during fasting (p < 0.05). However, the mRNA levels of glycogen synthase and glucose-6-phosphatase were obviously lower when the food scarcity extended to 7 days or more (p < 0.05). Fatty acid synthase, stearoyl-CoA desaturase 1, and peroxisome proliferator-activated receptor γ were substantially down-regulated in S. hasta livers after 7-14 days of food deprivation (p < 0.05). However, genes involved in lipolysis and fatty acid transport were transcriptionally enhanced to varying extents and peaked at the end of fasting (p < 0.05). Overall, starvation lasting 7 days or more could concurrently mobilize hepatic carbohydrates and fat as energy resources and diminished their hepatic accumulation by suppressing biosynthesis and enhancing catabolism and transport, ultimately metabolically and structurally perturbing the liver in S. hasta. This work presents preliminary data on the dynamic characteristics of hepatic glucose and lipid metabolism in S. hasta in response to starvation, which may shed light on the sophisticated mechanisms of energetic homeostasis in fish facing nutrient unavailability and may benefit the utilization/conservation of S. hasta.
Collapse
Affiliation(s)
- Xiangyu Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honghui Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanru Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zikui Yang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Rui Feng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
10
|
Raka F, Hoffman S, Nady A, Guan H, Zhang R, Wang H, Khan WI, Adeli K. Peripheral Serotonin Controls Dietary Fat Absorption and Chylomicron Secretion via 5-HT4 Receptor in Males. Endocrinology 2024; 165:bqae112. [PMID: 39248655 PMCID: PMC11417612 DOI: 10.1210/endocr/bqae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.
Collapse
Affiliation(s)
- Fitore Raka
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asal Nady
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Henry Guan
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rianna Zhang
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Huaqing Wang
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Waliul I Khan
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Khosrow Adeli
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
11
|
Du W, Jiang S, Yin S, Wang R, Zhang C, Yin BC, Li J, Li L, Qi N, Zhou Y, Ye BC. The microbiota-dependent tryptophan metabolite alleviates high-fat diet-induced insulin resistance through the hepatic AhR/TSC2/mTORC1 axis. Proc Natl Acad Sci U S A 2024; 121:e2400385121. [PMID: 39167602 PMCID: PMC11363250 DOI: 10.1073/pnas.2400385121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Type 2 diabetes (T2D) is potentially linked to disordered tryptophan metabolism that attributes to the intricate interplay among diet, gut microbiota, and host physiology. However, underlying mechanisms are substantially unknown. Comparing the gut microbiome and metabolome differences in mice fed a normal diet (ND) and high-fat diet (HFD), we uncover that the gut microbiota-dependent tryptophan metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) is present at lower concentrations in mice with versus without insulin resistance. We further demonstrate that the microbial transformation of tryptophan into 5-HIAA is mediated by Burkholderia spp. Additionally, we show that the administration of 5-HIAA improves glucose intolerance and obesity in HFD-fed mice, while preserving hepatic insulin sensitivity. Mechanistically, 5-HIAA promotes hepatic insulin signaling by directly activating AhR, which stimulates TSC2 transcription and thus inhibits mTORC1 signaling. Moreover, T2D patients exhibit decreased fecal levels of 5-HIAA. Our findings identify a noncanonical pathway of microbially producing 5-HIAA from tryptophan and indicate that 5-HIAA might alleviate the pathogenesis of T2D.
Collapse
Affiliation(s)
- Wei Du
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Shanshan Jiang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, Zhejiang, China
| | - Shengxiang Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, Zhejiang, China
| | - Rongjiang Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, Zhejiang, China
| | - Chunling Zhang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, Zhejiang, China
| | - Bin-Cheng Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jialin Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo 315010, Zhejiang, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo 315010, Zhejiang, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, Zhejiang, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou510005, Guangdong, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, Zhejiang, China
| |
Collapse
|
12
|
Baraghithy S, Gammal A, Permyakova A, Hamad S, Kočvarová R, Calles Y, Tam J. 5-Methoxy-2-aminoindane Reverses Diet-Induced Obesity and Improves Metabolic Parameters in Mice: A Potential New Class of Antiobesity Therapeutics. ACS Pharmacol Transl Sci 2024; 7:2527-2543. [PMID: 39144560 PMCID: PMC11320730 DOI: 10.1021/acsptsci.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating prevalence of obesity and its related disorders represents a daunting global health challenge. Unfortunately, current pharmacological interventions for obesity remain limited and are often associated with debilitating side effects. Against this backdrop, the psychoactive aminoindane derivative 5-methoxy-2-aminoindane (MEAI) has gained considerable attention for its ability to induce a pleasurable, alcohol-like sensation while curbing alcohol consumption. Given the potential impact of MEAI on food addiction and energy homeostasis, we examined its metabolic efficacy on appetite regulation, obesity, and related comorbidities under acute and chronic settings, utilizing a mouse model of diet-induced obesity (DIO). Our results demonstrated that MEAI treatment significantly reduced DIO-induced overweight and adiposity by preserving lean mass and decreasing fat mass. Additionally, MEAI treatment exhibited positive effects on glycemic control by attenuating DIO-induced hyperglycemia, glucose intolerance, and hyperinsulinemia. Furthermore, MEAI reduced DIO-induced hepatic steatosis by decreasing hepatic lipid accumulation and lowering liver triglyceride and cholesterol levels, primarily by inhibiting de novo lipid synthesis. Metabolic phenotyping revealed that MEAI increased energy expenditure and fat utilization while maintaining food consumption similar to that of the vehicle-treated group. Lastly, MEAI normalized voluntary locomotion actions without any overstimulatory effects. These findings provide compelling evidence for the antiobesity effects of MEAI treatment and call for further preclinical testing. In conclusion, our study highlights the potential of MEAI as a novel therapeutic approach for treating obesity and its associated metabolic disorders, offering hope for the development of new treatment options for this global health challenge.
Collapse
Affiliation(s)
- Saja Baraghithy
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Sharleen Hamad
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Radka Kočvarová
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Yael Calles
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory,
The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
13
|
Lou X, Li P, Luo X, Lei Z, Liu X, Liu Y, Gao L, Xu W, Liu X. Dietary patterns interfere with gut microbiota to combat obesity. Front Nutr 2024; 11:1387394. [PMID: 38953044 PMCID: PMC11215203 DOI: 10.3389/fnut.2024.1387394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity and obesity-related metabolic disorders are global epidemics that occur when there is chronic energy intake exceeding energy expenditure. Growing evidence suggests that healthy dietary patterns not only decrease the risk of obesity but also influence the composition and function of the gut microbiota. Numerous studies manifest that the development of obesity is associated with gut microbiota. One promising supplementation strategy is modulating gut microbiota composition by dietary patterns to combat obesity. In this review, we discuss the changes of gut microbiota in obesity and obesity-related metabolic disorders, with a particular emphasis on the impact of dietary components on gut microbiota and how common food patterns can intervene in gut microbiota to prevent obesity. While there is promise in intervening with the gut microbiota to combat obesity through the regulation of dietary patterns, numerous key questions remain unanswered. In this review, we critically review the associations between dietary patterns, gut microbes, and obesity, aiming to contribute to the further development and application of dietary patterns against obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaomeng Liu
- Nutrition and Food Hygiene Laboratory, School of Public Health, Xinxiang Medical College, Xinxiang, China
| |
Collapse
|
14
|
Field SL, Galvan EA, Hernandez LL, Laporta J. Exploring the contribution of mammary-derived serotonin on liver and pancreas metabolism during lactation. PLoS One 2024; 19:e0304910. [PMID: 38837989 DOI: 10.1371/journal.pone.0304910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During lactation, the murine mammary gland is responsible for a significant increase in circulating serotonin. However, the role of mammary-derived serotonin in energy homeostasis during lactation is unclear. To investigate this, we utilized C57/BL6J mice with a lactation and mammary-specific deletion of the gene coding for the rate-limiting enzyme in serotonin synthesis (TPH1, Wap-Cre x TPH1FL/FL) to understand the metabolic contributions of mammary-derived serotonin during lactation. Circulating serotonin was reduced by approximately 50% throughout lactation in Wap-Cre x TPH1FL/FL mice compared to wild-type mice (TPH1FL/FL), with mammary gland and liver serotonin content reduced on L21. The Wap-Cre x TPH1FL/FL mice had less serotonin and insulin immunostaining in the pancreatic islets on L21, resulting in reduced circulating insulin but no changes in glucose. The mammary glands of Wap-Cre x TPH1FL/FL mice had larger mammary alveolar areas, with fewer and smaller intra-lobular adipocytes, and increased expression of milk protein genes (e.g., WAP, CSN2, LALBA) compared to TPH1FL/FL mice. No changes in feed intake, body composition, or estimated milk yield were observed between groups. Taken together, mammary-derived serotonin appears to contribute to the pancreas-mammary cross-talk during lactation with potential implications in the regulation of insulin homeostasis.
Collapse
Affiliation(s)
- Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Everardo Anta Galvan
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
15
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
16
|
Pagire HS, Pagire SH, Jeong BK, Choi WI, Oh CJ, Lim CW, Kim M, Yoon J, Kim SS, Bae MA, Jeon JH, Song S, Lee HJ, Lee EY, Goughnour PC, Kim D, Lee IK, Loomba R, Kim H, Ahn JH. Discovery of a peripheral 5HT 2A antagonist as a clinical candidate for metabolic dysfunction-associated steatohepatitis. Nat Commun 2024; 15:645. [PMID: 38245505 PMCID: PMC10799935 DOI: 10.1038/s41467-024-44874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is currently the leading cause of chronic liver disease worldwide. Metabolic Dysfunction-Associated Steatohepatitis (MASH), an advanced form of MASLD, can progress to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Based on recent findings by our team that liver 5HT2A knockout male mice suppressed steatosis and reduced fibrosis-related gene expression, we developed a peripheral 5HT2A antagonist, compound 11c for MASH. It shows good in vitro activity, stability, and in vivo pharmacokinetics (PK) in rats and dogs. Compound 11c also shows good in vivo efficacy in a diet-induced obesity (DIO) male mice model and in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) male mice model, effectively improving histologic features of MASH and fibrosis. According to the tissue distribution study using [14C]-labeled 11c, the compound was determined to be a peripheral 5HT2A antagonist. Collectively, first-in-class compound 11c shows promise as a therapeutic agent for the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Byung-Kwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Il Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
| | - Chae Won Lim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Minhee Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jihyeon Yoon
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, Republic of Korea
| | - Sungmin Song
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Hee Jong Lee
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Eun Young Lee
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Peter C Goughnour
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Dooseop Kim
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea.
| |
Collapse
|
17
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Jiang L, Hao Y, Han D, Dong W, Yang A, Sun Z, Ge Y, Duan S, Zhang X, Dai Z. Gut microbiota dysbiosis deteriorates immunoregulatory effects of tryptophan via colonic indole and LBP/HTR2B-mediated macrophage function. THE ISME JOURNAL 2024; 18:wrae166. [PMID: 39180723 PMCID: PMC11421149 DOI: 10.1093/ismejo/wrae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 08/26/2024]
Abstract
Tryptophan (Trp) has been shown to regulate immune function by modulating gut serotonin (5-HT) metabolism and signaling. However, the mechanisms underlying the microbial modulation of gut 5-HT signaling in gut inflammation with gut microbiota dysbiosis require further investigation. Here, we investigated the effects of Trp supplementation on the composition and metabolism of the gut microbiome and 5-HT signaling-related gut immune function using a dextran sodium sulfate (DSS)-induced colitis mouse model coupled with antibiotic exposure. The results showed that antibiotic treatment before but not during DSS treatment decreased the immunoregulatory effects of Trp and aggravated gut inflammation and body weight loss in mice. Metagenomic analysis revealed that the fecal microbiota transplantation of Trp-enriched gut microbiota to recipient mice subject to antibiotic pre-exposure and DSS treatment alleviated inflammation by increasing the relative abundances of Lactobacillus and Parabacteroides and the microbial production of indole coupled with the activation of the 5-HT receptor 2B (HTR2B) in the colon. Transcriptomic analysis showed that HTR2B agonist administration strengthened the beneficial effects of Trp in DSS-induced colitis mice with antibiotic exposure by reducing gut lipopolysaccharide-binding protein (LBP) production, IκB-α/nuclear factor-κB signaling, and M1 macrophage polarization. Indole treatment reduced LBP production and M1 macrophage polarization both in mice with DSS-induced colitis and in lipopolysaccharide-treated mouse macrophages; however, the HTR2B antagonist reversed the effects of indole. Our findings provide the basis for developing new dietary and therapeutic interventions to improve gut microbiota dysbiosis-associated inflammatory gut disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Wenjian Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Aoyu Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yao Ge
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Shuai Duan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiuwen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
19
|
Yanko R, Levashov M, Chaka OG, Nosar V, Khasabov SG, Khasabova I. Tryptophan Prevents the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2023; 16:4195-4204. [PMID: 38152280 PMCID: PMC10752026 DOI: 10.2147/dmso.s444278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose The main aim of this research is to study the protective effects of tryptophan on the histomorphological and biochemical abnormalities in the liver caused by a high-calorie diet (HCD), as well as its ability to normalize mitochondrial functions in order to prevent the development of non-alcoholic fatty liver disease (NAFLD). Methods The study was conducted in male Wistar rats aged 3 months at the start of the experiment. Control animals (group I) were fed a standard diet. Group II experimental animals were fed a diet with an excess of fat (45%) and carbohydrates (31%) for 12 weeks. Group III experimental animals also received L-tryptophan at a dose of 80 mg/kg body weight in addition to the HCD. The presence of NAFLD, functional activity, physiological regeneration, and the state of the liver parenchyma and connective tissue were assessed using physiological, morphological, histo-morphometric, biochemical, and biophysical research methods. Results HCD induced the development of NAFLD, which is characterized by an increase in liver weight, hypertrophy of hepatocytes and an increase in the concentration of lipids, cholesterol and triglycerides in liver tissue. Increased alanine aminotransferase activity in the liver of obese rats also confirm hepatocytes damage. Tryptophan added to the diet lowered the severity of NAFLD by reducing fat accumulation and violations of bioelectric properties, and prevented a decrease in mitochondrial ATP synthesis. Conclusion The addition of tryptophan can have a potential positive effect on the liver, reducing the severity of structural, biochemical, mitochondrial and bioelectric damage caused by HCD.
Collapse
Affiliation(s)
- Roman Yanko
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Mikhail Levashov
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Olena Georgievna Chaka
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Valentina Nosar
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Iryna Khasabova
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Ribeiro PVDM, Veloso TG, de Oliveira LL, Mendes NP, Alfenas RDCG. Consumption of yacon flour and energy-restricted diet increased the relative abundance of intestinal bacteria in obese adults. Braz J Microbiol 2023; 54:3085-3099. [PMID: 37807018 PMCID: PMC10689717 DOI: 10.1007/s42770-023-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Prebiotics can alter the gastrointestinal environment, favoring the growth of health-promoting bacteria. Although yacon is a functional food, with prebiotic properties (fructooligosaccharides), its effects on the intestinal microbiota have not been investigated yet. The objective of this study was to evaluate the effects of yacon flour consumption and energy-restricted diet in the intestinal microbiota in adults with excess body weight. Twenty-one adults with excess body weight were included in this randomized, parallel, double-blind, placebo-controlled, 6-week clinical trial. Subjects daily consumed at breakfast a drink containing 25 g of yacon flour (n = 11) or not containing yacon (n = 10) and received the prescription of energy-restricted diets. Fecal samples were collected on the first and on last day of the study. 16S rRNA sequencing was assessed to evaluate the effect of yacon fermentation on intestinal microbiota bacterial composition. There was an increase in the genera Bifidobacterium, Blautia, Subdoligranulum, and Streptococcus after the consumption of yacon and energy-restricted diet. In the yacon group, we also observed a positive correlation between the concentrations of short-chain fatty acids versus the genera Coprococcus and Howardella, besides a negative correlation between the concentrations of advanced glycation end products and early glycation products versus the genera Ruminococcus and Prevotella, respectively. Consumption of yacon flour and energy-restricted diet selectively changed the intestinal microbiota composition in adults with excess body weight. TRIAL REGISTRATION: Register number: RBR-6YH6BQ. Registered 23 January, 2018.
Collapse
Affiliation(s)
- Priscila Vaz de Melo Ribeiro
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tomas Gomes Veloso
- Department of Microbiology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Nélia Pinheiro Mendes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Rita de Cássia Gonçalves Alfenas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
21
|
Kuuskmäe C, Philips MA, Kilk K, Haring L, Kangro R, Seppo I, Zilmer M, Vasar E. Kynurenine pathway dynamics in patients with schizophrenia spectrum disorders across the disease trajectory. Psychiatry Res 2023; 328:115423. [PMID: 37639988 DOI: 10.1016/j.psychres.2023.115423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The aim of this study was to evaluate how schizophrenia spectrum disorders (SSD) and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum levels of tryptophan (Trp) metabolites. A total of 112 adults (54 first-episode psychosis [FEP] patients and 58 control subjects [CSs]) participated in the study. The investigated changes in the metabolite levels appeared against a background of persistent increase in BMI and waist circumference among the patients. Regarding the kynurenine (KYN) pathway, the strongest changes were seen in AP-naïve FEP patients. Trp, KYN, kynurenic acid (KYNA), and anthranilic acid (ANT) levels were significantly reduced in blood samples from patients in the early stage of the disease. Furthermore, 3-OH-kynurenine (3-HK) and quinolinic acid (QUIN) levels were somewhat lower in these patients. Most of these changes in the KYN pathway became weaker with AP treatment. The levels of serotonin and its metabolite 5-HIAA tended to be higher at 5.1 years in patients showing the relation of elevated serotonin turnover to increased BMI and waist circumference. The similar trend was evident for the ratio between xanthurenic acid (XA) and KYNA with strong link to the elevated BMI. Altogether, the present study supports the role of Trp-metabolites in the development of obesity and metabolic syndrome in SSD patients.
Collapse
Affiliation(s)
- Carolin Kuuskmäe
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia.
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, Estonia; Psychiatry Clinic of Tartu University Hospital, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, Estonia
| | - Indrek Seppo
- School of Economics and Business Administration, University of Tartu, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| |
Collapse
|
22
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
23
|
Li HY, Huang SY, Zhou DD, Xiong RG, Luo M, Saimaiti A, Han MK, Gan RY, Zhu HL, Li HB. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis. J Adv Res 2023; 52:59-72. [PMID: 36639024 PMCID: PMC10555776 DOI: 10.1016/j.jare.2023.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) with obesity seriously threats public health. Our previous studies showed that dark tea had more potential on regulating lipid metabolism than other teas, and theabrownin (TB) was considered to be a main contributor to the bioactivity of dark tea. OBJECTIVES This in vivo study aims to reveal the effects and molecular mechanisms of TB on NAFLD and obesity, and the role of the gut-liver axis is explored. METHODS The histopathological examinations, biochemical tests, and nuclear magnetic resonance were applied to evaluate the effects of TB on NAFLD and obesity. The untargeted metabolomics was used to find the key molecule for further exploration of molecular mechanisms. The 16S rRNA gene sequencing was used to assess the changes in gut microbiota. The antibiotic cocktail and fecal microbiota transplant were used to clarify the role of gut microbiota. RESULTS TB markedly reduced body weight gain (67.01%), body fat rate (62.81%), and hepatic TG level (51.35%) in the preventive experiment. Especially, TB decreased body weight (32.16%), body fat rate (42.56%), and hepatic TG level (42.86%) in the therapeutic experiment. The mechanisms of action could be the improvement of fatty acid oxidation, lipolysis, and oxidative stress via the regulation of serotonin-related signaling pathways. Also, TB increased the abundance of serotonin-related gut microbiota, such as Akkermansia, Bacteroides and Parabacteroides. Antibiotics-induced gut bacterial dysbiosis disrupted the regulation of TB on serotonin-related signaling pathways in liver, whereas the beneficial regulation of TB on target proteins was regained with the restoration of gut microbiota. CONCLUSION We find that TB has markedly preventive and therapeutic effects on NAFLD and obesity by regulating serotonin level and related signaling pathways through gut microbiota. Furthermore, gut microbiota and TB co-contribute to alleviating NAFLD and obesity. TB could be a promising medicine for NAFLD and obesity.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Mu-Ke Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
24
|
Karwen T, Kolczynska‐Matysiak K, Gross C, Löffler MC, Friedrich M, Loza‐Valdes A, Schmitz W, Wit M, Dziaczkowski F, Belykh A, Trujillo‐Viera J, El‐Merahbi R, Deppermann C, Nawaz S, Hastoy B, Demczuk A, Erk M, Wieckowski MR, Rorsman P, Heinze KG, Stegner D, Nieswandt B, Sumara G. Platelet-derived lipids promote insulin secretion of pancreatic β cells. EMBO Mol Med 2023; 15:e16858. [PMID: 37490001 PMCID: PMC10493578 DOI: 10.15252/emmm.202216858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Collapse
Affiliation(s)
- Till Karwen
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | | | - Carina Gross
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Werner Schmitz
- Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Filip Dziaczkowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Andrei Belykh
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Jonathan Trujillo‐Viera
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Carsten Deppermann
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sameena Nawaz
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Agnieszka Demczuk
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Manuela Erk
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
- Department of Physiology, Institute of Neuroscience and PhysiologyUniversity of GöteborgGöteborgSweden
- Oxford National Institute for Health Research, Biomedical Research CentreChurchill HospitalOxfordUK
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
25
|
Meyer RK, Duca FA. RISING STARS: Endocrine regulation of metabolic homeostasis via the intestine and gut microbiome. J Endocrinol 2023; 258:e230019. [PMID: 37171833 PMCID: PMC10524498 DOI: 10.1530/joe-23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.
Collapse
Affiliation(s)
- Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
26
|
Suchacki KJ, Ramage LE, Kwok TC, Kelman A, McNeill BT, Rodney S, Keegan M, Gray C, MacNaught G, Patel D, Fletcher AM, Simpson JP, Carter RN, Semple RK, Homer NZM, Morton NM, van Beek EJR, Wakelin SJ, Stimson RH. The serotonin transporter sustains human brown adipose tissue thermogenesis. Nat Metab 2023; 5:1319-1336. [PMID: 37537371 PMCID: PMC10447248 DOI: 10.1038/s42255-023-00839-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT2B receptor. SERT inhibition by the selective serotonin reuptake inhibitor (SSRI) sertraline prevents uptake of extracellular serotonin, thereby potentiating serotonin's suppressive effect on brown adipocytes. Furthermore, we see that sertraline reduces BAT activation in healthy volunteers, and SSRI-treated patients demonstrate no 18F-fluorodeoxyglucose uptake by BAT at room temperature, unlike matched controls. Inhibition of BAT thermogenesis may contribute to SSRI-induced weight gain and metabolic dysfunction, and reducing peripheral serotonin action may be an approach to treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Lynne E Ramage
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - T'ng Choong Kwok
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Alexandra Kelman
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Ben T McNeill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Stewart Rodney
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Matthew Keegan
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Calum Gray
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Gillian MacNaught
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Dilip Patel
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Alison M Fletcher
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Roderick N Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Robert K Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Edwin J R van Beek
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sonia J Wakelin
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
27
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
29
|
Shoji H, Ikeda K, Miyakawa T. Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol Brain 2023; 16:32. [PMID: 36991468 PMCID: PMC10061809 DOI: 10.1186/s13041-023-01020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
30
|
Blot F, Marchix J, Ejarque M, Jimenez S, Meunier A, Keime C, Trottier C, Croyal M, Lapp C, Mahe MM, De Arcangelis A, Gradwohl G. Gut Microbiota Remodeling and Intestinal Adaptation to Lipid Malabsorption After Enteroendocrine Cell Loss in Adult Mice. Cell Mol Gastroenterol Hepatol 2023; 15:1443-1461. [PMID: 36858136 PMCID: PMC10149283 DOI: 10.1016/j.jcmgh.2023.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND & AIMS Enteroendocrine cells (EECs) and their hormones are essential regulators of whole-body energy homeostasis. EECs sense luminal nutrients and microbial metabolites and subsequently secrete various hormones acting locally or at a distance. Impaired development of EECs during embryogenesis is life-threatening in newborn mice and humans due to compromised nutrient absorption. However, the physiological importance of the EEC system in adult mice has yet to be directedly studied. Herein, we aimed to determine the long-term consequences of a total loss of EECs in healthy adults on energy metabolism, intestinal transcriptome, and microbiota. METHODS We depleted intestinal EECs by tamoxifen treatment of adult Neurog3fl/fl; Villin-CreERT2 male mice. We studied intestinal cell differentiation, food efficiency, lipid absorption, microbiota composition, fecal metabolites, and transcriptomic responses in the proximal and distal small intestines of mice lacking EECs. We also determined the high-fat diet-induced transcriptomic changes in sorted Neurog3eYFP/+ EECs. RESULTS Induction of EEC deficiency in adults is not life-threatening unless fed with a high-fat diet. Under a standard chow diet, mice lose 10% of weight due to impaired food efficiency. Blood concentrations of cholesterol, triglycerides, and free fatty acids are reduced, and lipid absorption is impaired and delayed in the distal small intestine. Genes controlling lipogenesis, carbohydrate metabolism, and neoglucogenesis are upregulated. Microbiota composition is rapidly altered after EECs depletion and is characterized by decreased a-diversity. Bacteroides and Lactobacillus were progressively enriched, whereas Lachnospiraceae declined without impacting fecal short-chain fatty acid concentrations. CONCLUSIONS EECs are dispensable for survival in adult male mice under a standard chow diet. The absence of EECs impairs intestinal lipid absorption, leading to transcriptomic and metabolic adaptations and remodeling of the gut microbiota.
Collapse
Affiliation(s)
- Florence Blot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Justine Marchix
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Miriam Ejarque
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Sara Jimenez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Camille Trottier
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Mikaël Croyal
- L'Institut du Thorax, INSERM UMR_S1087, CNRS UMR_6291, Université de Nantes, Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Céline Lapp
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Maxime M Mahe
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France; Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
31
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
32
|
Liu W, Yang G, Liu P, Jiang X, Xin Y. Modulation of adipose tissue metabolism by microbial-derived metabolites. Front Microbiol 2022; 13:1031498. [PMID: 36569060 PMCID: PMC9783635 DOI: 10.3389/fmicb.2022.1031498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its complications, including type 2 diabetes, cardiovascular disease, and certain cancers, have posed a significant burden on health and healthcare systems over the years due to their high prevalence and incidence. Gut microbial derivatives are necessary for the regulation of energy metabolism and host immunity, as well as for maintaining homeostasis of the intestinal environment. Gut flora metabolites may be a link between gut microbes and diseases, such as obesity, and help understand why alterations in the microbiota can influence the pathophysiology of human disease. This is supported by emerging evidence that microbial-derived metabolites, such as short-chain fatty acids, bile acids, tryptophan, trimethylamine-N-oxide, and lipopolysaccharides, can be beneficial or detrimental to the host by affecting organs outside the gut, including adipose tissue. Adipose tissue is the largest lipid storage organ in the body and an essential endocrine organ that plays an indispensable role in the regulation of lipid storage, metabolism, and energy balance. Adipose tissue metabolism includes adipocyte metabolism (lipogenesis and lipolysis), thermogenesis, and adipose tissue metabolic maladaptation. Adipose tissue dysfunction causes the development of metabolic diseases, such as obesity. Here, we review the current understanding of how these microbial metabolites are produced and discuss both established mechanisms and the most recent effects of microbial products on host adipose tissue metabolism. We aimed to identify novel therapeutic targets or strategies for the prevention and treatment of obesity and its complications.
Collapse
Affiliation(s)
- Wenyun Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Pinyi Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Xin Jiang,
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Ying Xin,
| |
Collapse
|
33
|
Body weight changes and bipolar disorder: a molecular pathway analysis. Pharmacogenet Genomics 2022; 32:308-320. [DOI: 10.1097/fpc.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Chen ZZ, Pacheco JA, Gao Y, Deng S, Peterson B, Shi X, Zheng S, Tahir UA, Katz DH, Cruz DE, Ngo D, Benson MD, Robbins JM, Guo X, del Rocio Sevilla Gonzalez M, Manning A, Correa A, Meigs JB, Taylor KD, Rich SS, Goodarzi MO, Rotter JI, Wilson JG, Clish CB, Gerszten RE. Nontargeted and Targeted Metabolomic Profiling Reveals Novel Metabolite Biomarkers of Incident Diabetes in African Americans. Diabetes 2022; 71:2426-2437. [PMID: 35998269 PMCID: PMC9630088 DOI: 10.2337/db22-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023]
Abstract
Nontargeted metabolomics methods have increased potential to identify new disease biomarkers, but assessments of the additive information provided in large human cohorts by these less biased techniques are limited. To diversify our knowledge of diabetes-associated metabolites, we leveraged a method that measures 305 targeted or "known" and 2,342 nontargeted or "unknown" compounds in fasting plasma samples from 2,750 participants (315 incident cases) in the Jackson Heart Study (JHS)-a community cohort of self-identified African Americans-who are underrepresented in omics studies. We found 307 unique compounds (82 known) associated with diabetes after adjusting for age and sex at a false discovery rate of <0.05 and 124 compounds (35 known, including 11 not previously associated) after further adjustments for BMI and fasting plasma glucose. Of these, 144 and 68 associations, respectively, replicated in a multiethnic cohort. Among these is an apparently novel isomer of the 1-deoxyceramide Cer(m18:1/24:0) with functional geonomics and high-resolution mass spectrometry. Overall, known and unknown metabolites provided complementary information (median correlation ρ = 0.29), and their inclusion with clinical risk factors improved diabetes prediction modeling. Our findings highlight the importance of including nontargeted metabolomics methods to provide new insights into diabetes development in ethnically diverse cohorts.
Collapse
Affiliation(s)
- Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard School of Medicine, Boston, MA
| | | | - Yan Gao
- University of Mississippi Medical Center, Jacksonville, MS
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Bennet Peterson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Usman A. Tahir
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel H. Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel E. Cruz
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Debby Ngo
- Harvard School of Medicine, Boston, MA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mark D. Benson
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeremy M. Robbins
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Magdalena del Rocio Sevilla Gonzalez
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Alisa Manning
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jacksonville, MS
| | - James B. Meigs
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Stephen S. Rich
- University of Virginia School of Medicine, Charlottesville, VA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Robert E. Gerszten
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
35
|
Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022; 12:metabo12090834. [PMID: 36144238 PMCID: PMC9505266 DOI: 10.3390/metabo12090834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The trillions of commensal microorganisms comprising the gut microbiota have received growing attention owing to their impact on host physiology. Recent advances in our understandings of the host–microbiota crosstalk support a pivotal role of microbiota-derived metabolites in various physiological processes, as they serve as messengers in the complex dialogue between commensals and host immune and endocrine cells. In this review, we highlight the importance of tryptophan-derived metabolites in host physiology, and summarize the recent findings on the role of tryptophan catabolites in preserving intestinal homeostasis and fine-tuning immune and metabolic responses. Furthermore, we discuss the latest evidence on the effects of microbial tryptophan catabolites, describe their mechanisms of action, and discuss how perturbations of microbial tryptophan metabolism may affect the course of intestinal and extraintestinal disorders, including inflammatory bowel diseases, metabolic disorders, chronic kidney diseases, and cardiovascular diseases.
Collapse
|
36
|
Cai Y, Li X, Zhou H, Zhou J. The serotonergic system dysfunction in diabetes mellitus. Front Cell Neurosci 2022; 16:899069. [PMID: 35910256 PMCID: PMC9331500 DOI: 10.3389/fncel.2022.899069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Most peripheral serotonin (5-HT) is synthesized in enterochromaffin cells, and most circulating 5-HT is stored in platelets. As a monoamine, 5-HT has several functions in various non-neuronal and neuronal systems. In the central nervous system, it functions as a neurotransmitter to modulate feeding behavior and mood. Numerous clinical trials have focused on increasing 5-HT activation in the central nervous system, including those involving anti-obesity drugs currently in the market, although severe side effects on peripheral system can lead to the withdrawal of certain drugs. Recent studies have revealed that both the peripheral and central serotonergic systems play a vital role in diabetes and its complications. This review summarizes the roles of the serotonergic system in blood glucose regulation, diabetic macroangiopathy, diabetic peripheral neuropathy, and diabetic encephalopathy, indicating its potential clinical significance as a therapeutic target for the treatment of diabetes and its complications.
Collapse
|
37
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Moon JH, Oh CM, Kim H. Serotonin in the regulation of systemic energy metabolism. J Diabetes Investig 2022; 13:1639-1645. [PMID: 35762288 PMCID: PMC9533050 DOI: 10.1111/jdi.13879] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Serotonin is a well‐known neurotransmitter that is synthesized from the amino acid, tryptophan. To date, more than 14 different serotonin receptors have been discovered; they exist universally in our body and enable diverse biological functions in different organs. Central serotonin regulates mood and behavior, and impacts the systemic energy balance by decreasing appetite. A number of drugs that modulate central serotonin function (e.g., fenfluramine, sibutramine and lorcaserin) were approved and used as anti‐obesity drugs, but then later withdrawn due to adverse cardiovascular and carcinogenic effects. Over the past decade, the role of peripheral serotonin in regulating systemic energy metabolism has been extensively explored using tissue‐specific knockout animal models. By inhibiting the action of serotonin in liver and adipose tissues, hepatic steatosis was improved and lipid accumulation was mitigated, respectively. Recent findings show that modulation of the serotonergic system is a promising therapeutic target for metabolic diseases. This review summarizes the role of serotonin in regulating energy metabolism in different organs, and discusses the potential of serotonin modulation for treating metabolic diseases.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| |
Collapse
|
39
|
Asuaje Pfeifer M, Liebmann M, Beuerle T, Grupe K, Scherneck S. Role of Serotonin (5-HT) in GDM Prediction Considering Islet and Liver Interplay in Prediabetic Mice during Gestation. Int J Mol Sci 2022; 23:ijms23126434. [PMID: 35742878 PMCID: PMC9224346 DOI: 10.3390/ijms23126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
Gestational diabetes (GDM) is characterized by a glucose tolerance disorder. This may first appear during pregnancy or pre-exist before conception as a form of prediabetes, but there are few data on the pathogenesis of the latter subtype. Female New Zealand obese (NZO) mice serve as a model for this subpopulation of GDM. It was recently shown that GDM is associated with elevated urinary serotonin (5-hydroxytryptamine, 5-HT) levels, but the role of the biogenic amine in subpopulations with prediabetes remains unclear. 5-HT is synthesized in different tissues, including the islets of Langerhans during pregnancy. Furthermore, 5-HT receptors (HTRs) are expressed in tissues important for the regulation of glucose homeostasis, such as liver and pancreas. Interestingly, NZO mice showed elevated plasma and islet 5-HT concentrations as well as impaired glucose-stimulated 5-HT secretion. Incubation of isolated primary NZO islets with 5-HT revealed an inhibitory effect on insulin and glucagon secretion. In primary NZO hepatocytes, 5-HT aggravated hepatic glucose production (HGP), decreased glucose uptake (HGU), glycogen content, and modulated AKT activation as well as cyclic adenosine monophosphate (cAMP) increase, indicating 5-HT downstream modulation. Treatment with an HTR2B antagonist reduced this 5-HT-mediated deterioration of the metabolic state. With its strong effect on glucose metabolism, these data indicate that 5-HT is already a potential indicator of GDM before conception in mice.
Collapse
Affiliation(s)
- Melissa Asuaje Pfeifer
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Moritz Liebmann
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany;
| | - Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
- Correspondence: ; Tel.: +49-531-391-8440
| |
Collapse
|
40
|
Benech N, Rolhion N, Sokol H. Gut Microbiota Reprogramming of Tryptophan Metabolism During Pregnancy Shapes Host Insulin Resistance. Gastroenterology 2022; 162:1587-1589. [PMID: 35247461 DOI: 10.1053/j.gastro.2022.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France; Institut National de la Recherche Agronomique, UMR1319, Micalis & AgroParisTech, Jouy en Josas, France.
| |
Collapse
|
41
|
Sbrini G, Hanswijk SI, Brivio P, Middelman A, Bader M, Fumagalli F, Alenina N, Homberg JR, Calabrese F. Peripheral Serotonin Deficiency Affects Anxiety-like Behavior and the Molecular Response to an Acute Challenge in Rats. Int J Mol Sci 2022; 23:ijms23094941. [PMID: 35563331 PMCID: PMC9105435 DOI: 10.3390/ijms23094941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Serotonin is synthetized through the action of tryptophan hydroxylase (TPH) enzymes. While the TPH2 isoform is responsible for the production of serotonin in the brain, TPH1 is expressed in peripheral organs. Interestingly, despite its peripheral localization, alterations of the gene coding for TPH1 have been related to stress sensitivity and an increased susceptibility for psychiatric pathologies. On these bases, we took advantage of newly generated TPH1-/- rats, and we evaluated the impact of the lack of peripheral serotonin on the behavior and expression of brain plasticity-related genes under basal conditions and in response to stress. At a behavioral level, TPH1-/- rats displayed reduced anxiety-like behavior. Moreover, we found that neuronal activation, quantified by the expression of Bdnf and the immediate early gene Arc and transcription of glucocorticoid responsive genes after 1 h of acute restraint stress, was blunted in TPH1-/- rats in comparison to TPH1+/+ animals. Overall, we provided evidence for the influence of peripheral serotonin levels in modulating brain functions under basal and dynamic situations.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
| | - Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (A.M.); (J.R.H.)
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
| | - Anthonieke Middelman
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (A.M.); (J.R.H.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany; (M.B.); (N.A.)
- Charite-University Medicine, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lubeck, Germany
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany; (M.B.); (N.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (A.M.); (J.R.H.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
- Correspondence: ; Tel.: +39-02-50318277
| |
Collapse
|
42
|
Zhong X, Gu J, Zhang S, Chen X, Zhang J, Miao J, Ding Z, Xu J, Cheng H. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 2022; 819:146265. [PMID: 35121026 DOI: 10.1016/j.gene.2022.146265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Peripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders. The zebrafish were fed a high-fat diet for 8 weeks and were simultaneously injected with PBS, 0.1 mM and 10 mM 5-HT, intraperitoneally. The body weight was significantly lower in the zebrafish injected with 0.1 mM 5-HT (P < 0.05), however, there was no change in body length (P > 0.05) at the end of the 8-week treatment. The muscle tissues from the zebrafish treated with PBS and 5-HT were collected for transcriptomic analysis and the RNA-seq revealed 1134, 3713, and 2535 genes were screened out compared to the muscular DEGs among three groups. The enrichment analysis revealed DEGs to be significantly associated with multiple metabolic pathways, including ribosome, oxidative phosphorylation, proteasome, PPAR signaling pathway, and ferroptosis. Additionally, the qRT-PCR validated 12 DEGs out of which 10 genes exhibited consistent trends. Taken together, this data provided useful information on the transcriptional characteristics of the muscle tissue in the obese zebrafish exposed to 5-HT, offering important insights into the regulatory effect of peripheral 5-HT in teleosts, as well as novel approaches for preventing and treating obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jintao Miao
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
43
|
Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res 2022; 32:555-569. [PMID: 35379903 DOI: 10.1038/s41422-022-00645-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) reside within specialized niches at the crypt base and harbor self-renewal and differentiation capacities. ISCs in the crypt base are sustained by their surrounding niche for precise modulation of self-renewal and differentiation. However, how intestinal cells in the crypt niche and microbiota in enteric cavity coordinately regulate ISC stemness remains unclear. Here, we show that ISCs are regulated by microbiota and niche enteric serotonergic neurons. The gut microbiota metabolite valeric acid promotes Tph2 expression in enteric serotonergic neurons via blocking the recruitment of the NuRD complex onto Tph2 promoter. 5-hydroxytryptamine (5-HT) in turn activates PGE2 production in a PGE2+ macrophage subset through its receptors HTR2A/3 A; and PGE2 via binding its receptors EP1/EP4, promotes Wnt/β-catenin signaling in ISCs to promote their self-renewal. Our findings illustrate a complex crosstalk among microbiota, intestinal nerve cells, intestinal immune cells and ISCs, revealing a new layer of ISC regulation by niche cells and microbiota.
Collapse
|
44
|
Banskota S, Khan WI. Gut-derived serotonin and its emerging roles in immune function, inflammation, metabolism and the gut-brain axis. Curr Opin Endocrinol Diabetes Obes 2022; 29:177-182. [PMID: 35197425 DOI: 10.1097/med.0000000000000713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To shed light on the recently uncovered diverse role of serotonin (5-hydroxytryptamine; 5-HT) in the regulation of immune functions, inflammation, metabolism, and gut-brain axis. RECENT FINDINGS Peripheral 5-HT which accounts for approximately 95% of the total is largely synthesized in the gut by enterochromaffin cells. Enterochromaffin cells release 5-HT in response to various stimuli including microbial products. Released 5-HT influences secretomotor, sensory and immune functions as well as inflammatory processes in the gut. 5-HT released from enterochromaffin cells enters circulation and is taken up and concentrated in platelets. 5-HT released from the activated platelets interacts with different organs to alter their metabolic activity. 5-HT also serves as a link in the gut-brain axis. SUMMARY Emerging evidence regarding the role of peripheral 5-HT in the regulation of various physiological and pathophysiological conditions opens up new targets for researchers to explore and for clinicians to treat and manage different diseases associated with the altered 5-HT signalling.
Collapse
Affiliation(s)
- Suhrid Banskota
- Department of Pathology and Molecular Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
45
|
The Role of Serotonin Neurotransmission in Gastrointestinal Tract and Pharmacotherapy. Molecules 2022; 27:molecules27051680. [PMID: 35268781 PMCID: PMC8911970 DOI: 10.3390/molecules27051680] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
5-Hydroxytryptamine (5-HT, serotonin) is a neurotransmitter in both the central nervous system and peripheral structures, acting also as a hormone in platelets. Although its concentration in the gut covers >90% of all organism resources, serotonin is mainly known as a neurotransmitter that takes part in the pathology of mental diseases. Serotonin modulates not only CNS neurons, but also pain transmission and platelet aggregation. In the periphery, 5-HT influences muscle motility in the gut, bronchi, uterus, and vessels directly and through neurons. Serotonin synthesis starts from hydroxylation of orally delivered tryptophan, followed by decarboxylation. Serotonin acts via numerous types of receptors and clinically plays a role in several neural, mental, and other chronic disorders, such as migraine, carcinoid syndrome, and some dysfunctions of the alimentary system. 5-HT acts as a paracrine hormone and growth factor. 5-HT receptors in both the brain and gut are targets for drugs modifying serotonin neurotransmission. The aim of the present article is to review the 5-HT receptors in the gastrointestinal (GI) tract to determine the role of serotonin in GI physiology and pathology, including known GI diseases and the role of serotonin in GI pharmacotherapy.
Collapse
|
46
|
Nonogaki K. The Regulatory Role of the Central and Peripheral Serotonin Network on Feeding Signals in Metabolic Diseases. Int J Mol Sci 2022; 23:ijms23031600. [PMID: 35163521 PMCID: PMC8836087 DOI: 10.3390/ijms23031600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Central and peripheral serotonin (5-hydroxytryptamine, 5-HT) regulate feeding signals for energy metabolism. Disruption of central 5-HT signaling via 5-HT2C receptors (5-HT2CRs) induces leptin-independent hyperphagia in mice, leading to late-onset obesity, insulin resistance, and impaired glucose tolerance. 5-HT2CR mutant mice are more responsive than wild-type mice to a high-fat diet, exhibiting earlier-onset obesity and type 2 diabetes. High-fat and high-carbohydrate diets increase plasma 5-HT and fibroblast growth factor-21 (FGF21) levels. Plasma 5-HT and FGF21 levels are increased in rodents and humans with obesity, type 2 diabetes, and non-alcohol fatty liver diseases (NAFLD). The increases in plasma FGF21 and hepatic FGF21 expression precede hyperinsulinemia, insulin resistance, hyperglycemia, and weight gain in mice fed a high-fat diet. Nutritional, pharmacologic, or genetic inhibition of peripheral 5-HT synthesis via tryptophan hydroxylase 1 (Tph1) decreases hepatic FGF21 expression and plasma FGF21 levels in mice. Thus, perturbing central 5-HT signaling via 5-HT2CRs alters feeding behavior. Increased energy intake via a high-fat diet and/or high-carbohydrate diet can upregulate gut-derived 5-HT synthesis via Tph1. Peripheral 5-HT upregulates hepatic FGF21 expression and plasma FGF21 levels, leading to metabolic diseases such as obesity, insulin resistance, type 2 diabetes, and NAFLD. The 5-HT network in the brain–gut–liver axis regulates feeding signals and may be involved in the development and/or prevention of metabolic diseases.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Laboratory of Diabetes and Nutrition, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
47
|
Trézéguet V, Fatrouni H, Merched AJ. Immuno-Metabolic Modulation of Liver Oncogenesis by the Tryptophan Metabolism. Cells 2021; 10:cells10123469. [PMID: 34943977 PMCID: PMC8700200 DOI: 10.3390/cells10123469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023] Open
Abstract
Metabolic rewiring in tumor cells is a major hallmark of oncogenesis. Some of the oncometabolites drive suppressive and tolerogenic signals from the immune system, which becomes complicit to the advent and the survival of neoplasia. Tryptophan (TRP) catabolism through the kynurenine (KYN) pathway was reported to play immunosuppressive actions across many types of cancer. Extensive debate of whether the culprit of immunosuppression was the depletion of TRP or rather KYN accumulation in the tumor microenvironment has been ongoing for years. Results from clinical trials assessing the benefit of inhibiting key limiting enzymes of this pathway such as indoleamine 2,3-dioxygenase (IDO1) or tryptophan 2,3-dioxygenase (TDO2) failed to meet the expectations. Bearing in mind the complexity of the tumoral terrain and the existence of different cancers with IDO1/TDO2 expressing and non-expressing tumoral cells, here we present a comprehensive analysis of the TRP global metabolic hub and the driving potential of the process of oncogenesis with the main focus on liver cancers.
Collapse
|
48
|
Choi WG, Choi W, Oh TJ, Cha HN, Hwang I, Lee YK, Lee SY, Shin H, Lim A, Ryu D, Suh JM, Park SY, Choi SH, Kim H. Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance. J Clin Invest 2021; 131:145331. [PMID: 34618686 DOI: 10.1172/jci145331] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Insulin resistance is a cornerstone of obesity-related complications such as type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease. A high rate of lipolysis is known to be associated with insulin resistance, and inhibiting adipose tissue lipolysis improves obesity-related insulin resistance. Here, we demonstrate that inhibition of serotonin (5-hydroxytryptamine [5-HT]) signaling through serotonin receptor 2B (HTR2B) in adipose tissues ameliorates insulin resistance by reducing lipolysis in visceral adipocytes. Chronic high-fat diet (HFD) feeding increased Htr2b expression in epididymal white adipose tissue, resulting in increased HTR2B signaling in visceral white adipose tissue. Moreover, HTR2B expression in white adipose tissue was increased in obese humans and positively correlated with metabolic parameters. We further found that adipocyte-specific Htr2b-knockout mice are resistant to HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Enhanced 5-HT signaling through HTR2B directly activated lipolysis through phosphorylation of hormone-sensitive lipase in visceral adipocytes. Moreover, treatment with a selective HTR2B antagonist attenuated HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Thus, adipose HTR2B signaling could be a potential therapeutic target for treatment of obesity-related insulin resistance.
Collapse
Affiliation(s)
- Won Gun Choi
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Wonsuk Choi
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea.,Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Inseon Hwang
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Yun Kyung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Yeon Lee
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Hyemi Shin
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Ajin Lim
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| |
Collapse
|
49
|
Park J, Jeong W, Yun C, Kim H, Oh CM. Serotonergic Regulation of Hepatic Energy Metabolism. Endocrinol Metab (Seoul) 2021; 36:1151-1160. [PMID: 34911172 PMCID: PMC8743581 DOI: 10.3803/enm.2021.1331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
The liver is a vital organ that regulates systemic energy metabolism and many physiological functions. Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease and end-stage liver failure. NAFLD is primarily caused by metabolic disruption of lipid and glucose homeostasis. Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic amine with several functions in both the central and peripheral systems. 5-HT functions as a neurotransmitter in the brain and a hormone in peripheral tissues to regulate systemic energy homeostasis. Several recent studies have proposed various roles of 5-HT in hepatic metabolism and inflammation using tissue-specific knockout mice and 5-HT-receptor agonists/antagonists. This review compiles the most recent research on the relationship between 5-HT and hepatic metabolism, and the role of 5-HT signaling as a potential therapeutic target in NAFLD.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Wooju Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Chahyeon Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| |
Collapse
|
50
|
Liu Y, Wang H, Gui S, Zeng B, Pu J, Zheng P, Zeng L, Luo Y, Wu Y, Zhou C, Song J, Ji P, Wei H, Xie P. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry 2021; 11:568. [PMID: 34744165 PMCID: PMC8572885 DOI: 10.1038/s41398-021-01689-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness. Increasing evidence from both animal and human studies suggested that the gut microbiota might be involved in the onset of depression via the gut-brain axis. However, the mechanism in depression remains unclear. To explore the protein changes of the gut-brain axis modulated by gut microbiota, germ-free mice were transplanted with gut microbiota from MDD patients to induce depression-like behaviors. Behavioral tests were performed following fecal microbiota transplantation. A quantitative proteomics approach was used to examine changes in protein expression in the prefrontal cortex (PFC), liver, cecum, and serum. Then differential protein analysis and weighted gene coexpression network analysis were used to identify microbiota-related protein modules. Our results suggested that gut microbiota induced the alteration of protein expression levels in multiple tissues of the gut-brain axis in mice with depression-like phenotype, and these changes of the PFC and liver were model specific compared to chronic stress models. Gene ontology enrichment analysis revealed that the protein changes of the gut-brain axis were involved in a variety of biological functions, including metabolic process and inflammatory response, in which energy metabolism is the core change of the protein network. Our data provide clues for future studies in the gut-brain axis on protein level and deepen the understanding of how gut microbiota cause depression-like behaviors.
Collapse
Affiliation(s)
- Yiyun Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Zeng
- grid.410570.70000 0004 1760 6682Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juncai Pu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Luo
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ping Ji
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|