1
|
Kiani P, Khodadadi ES, Nikdasti A, Yarahmadi S, Gheibi M, Yousefi Z, Ehtiati S, Yahyazadeh S, Shafiee SM, Taghizadeh M, Igder S, Khatami SH, Karima S, Vakili O, Pourfarzam M. Autophagy and the peroxisome proliferator-activated receptor signaling pathway: A molecular ballet in lipid metabolism and homeostasis. Mol Cell Biochem 2025; 480:3477-3499. [PMID: 39891864 DOI: 10.1007/s11010-025-05207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 02/03/2025]
Abstract
Lipids, which are indispensable for cellular architecture and energy storage, predominantly consist of triglycerides (TGs), phospholipids, cholesterol, and their derivatives. These hydrophobic entities are housed within dynamic lipid droplets (LDs), which expand and contract in response to nutrient availability. Historically perceived as a cellular waste disposal mechanism, autophagy has now been recognized as a crucial regulator of metabolism. Within this framework, lipophagy, the selective degradation of LDs, plays a fundamental role in maintaining lipid homeostasis. Dysregulated lipid metabolism and autophagy are frequently associated with metabolic disorders such as obesity and atherosclerosis. In this context, peroxisome proliferator-activated receptors (PPARs), particularly PPAR-γ, serve as intracellular lipid sensors and master regulators of gene expression. Their regulatory influence extends to both autophagy and lipid metabolism, indicating a complex interplay between these processes. This review explores the hypothesis that PPARs may directly modulate autophagy within the realm of lipid metabolism, thereby contributing to the pathogenesis of metabolic diseases. By elucidating the underlying molecular mechanisms, we aim to provide a comprehensive understanding of the intricate regulatory network that connects PPARs, autophagy, and lipid homeostasis. The crosstalk between PPARs and other signaling pathways underscores the complexity of their regulatory functions and the potential for therapeutic interventions targeting these pathways. The intricate relationships among PPARs, autophagy, and lipid metabolism represent a pivotal area of research with significant implications for understanding and treating metabolic disorders.
Collapse
Affiliation(s)
- Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Sadat Khodadadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122, Padova, Italy
| | - Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Radovic M, Gartzke LP, Wink SE, van der Kleij JA, Politiek FA, Krenning G. Targeting the Electron Transport System for Enhanced Longevity. Biomolecules 2025; 15:614. [PMID: 40427507 PMCID: PMC12109555 DOI: 10.3390/biom15050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Damage to mitochondrial DNA (mtDNA) results in defective electron transport system (ETS) complexes, initiating a cycle of impaired oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) production, and chronic low-grade inflammation (inflammaging). This culminates in energy failure, cellular senescence, and progressive tissue degeneration. Rapamycin and metformin are the most extensively studied longevity drugs. Rapamycin inhibits mTORC1, promoting mitophagy, enhancing mitochondrial biogenesis, and reducing inflammation. Metformin partially inhibits Complex I, lowering reverse electron transfer (RET)-induced ROS formation and activating AMPK to stimulate autophagy and mitochondrial turnover. Both compounds mimic caloric restriction, shift metabolism toward a catabolic state, and confer preclinical-and, in the case of metformin, clinical-longevity benefits. More recently, small molecules directly targeting mitochondrial membranes and ETS components have emerged. Compounds such as Elamipretide, Sonlicromanol, SUL-138, and others modulate metabolism and mitochondrial function while exhibiting similarities to metformin and rapamycin, highlighting their potential in promoting longevity. The key question moving forward is whether these interventions should be applied chronically to sustain mitochondrial health or intermittently during episodes of stress. A pragmatic strategy may combine chronic metformin use with targeted mitochondrial therapies during acute physiological stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, Section of Experimental Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (AP50), 9713 GZ Groningen, The Netherlands; (M.R.); (J.A.v.d.K.); (F.A.P.)
| |
Collapse
|
3
|
Ou Y, Zhao YL, Su H. Pancreatic β-Cells, Diabetes and Autophagy. Endocr Res 2025; 50:12-27. [PMID: 39429147 DOI: 10.1080/07435800.2024.2413064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Pancreatic β-cells play a critical role in regulating plasma insulin levels and glucose metabolism balance, with their dysfunction being a key factor in the progression of diabetes. This review aims to explore the role of autophagy, a vital cellular self-maintenance process, in preserving pancreatic β-cell functionality and its implications in diabetes pathogenesis. METHODS We examine the current literature on the role of autophagy in β-cells, highlighting its function in maintaining cell structure, quantity, and function. The review also discusses the effects of both excessive and insufficient autophagy on β-cell dysfunction and glucose metabolism imbalance. Furthermore, we discuss potential therapeutic agents that modulate the autophagy pathway to influence β-cell function, providing insights into therapeutic strategies for diabetes management. RESULTS Autophagy acts as a self-protective mechanism within pancreatic β-cells, clearing damaged organelles and proteins to maintain cellular stability. Abnormal autophagy activity, either overactive or deficient, can disrupt β-cell function and glucose regulation, contributing to diabetes progression. CONCLUSION Autophagy plays a pivotal role in maintaining pancreatic β-cell function, and its dysregulation is implicated in the development of diabetes. Targeting the autophagy pathway offers potential therapeutic strategies for diabetes management, with agents that modulate autophagy showing promise in preserving β-cell function.
Collapse
Affiliation(s)
- Yang Ou
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, P.R. China
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| | - Yan-Li Zhao
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Su
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| |
Collapse
|
4
|
Dai C, Zhang Y, Gong Y, Bradley A, Tang Z, Sellick K, Shrestha S, Spears E, Covington BA, Stanley J, Jenkins R, Richardson TM, Brantley RA, Coate K, Saunders DC, Wright JJ, Brissova M, Dean ED, Powers AC, Chen W. Hyperaminoacidemia from interrupted glucagon signaling increases pancreatic acinar cell proliferation and size via mTORC1 and YAP pathways. iScience 2024; 27:111447. [PMID: 39720531 PMCID: PMC11667045 DOI: 10.1016/j.isci.2024.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Increased blood amino acid levels (hyperaminoacidemia) stimulate pancreas expansion by unclear mechanisms. Here, by genetic and pharmacological disruption of glucagon receptor (GCGR) in mice and zebrafish, we found that the ensuing hyperaminoacidemia promotes pancreatic acinar cell proliferation and cell hypertrophy, which can be mitigated by a low protein diet in mice. In addition to mammalian target of rapamycin complex 1 (mTORC1) signaling, acinar cell proliferation required slc38a5, the most highly expressed amino acid transporter gene in both species. Transcriptomics data revealed the activation signature of yes-associated protein (YAP) in acinar cells of mice with hyperaminoacidemia, consistent with the observed increase in YAP-expressing acinar cells. Yap1 activation also occurred in acinar cells in gcgr-/- zebrafish, which was reversed by rapamycin. Knocking down yap1 in gcgr-/- zebrafish decreased mTORC1 activity and acinar cell proliferation and hypertrophy. Thus, the study discovered a previously unrecognized role of the YAP/Taz pathway in hyperaminoacidemia-induced acinar cell hypertrophy and hyperplasia.
Collapse
Affiliation(s)
- Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Amber Bradley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittney A. Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jade Stanley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tiffany M. Richardson
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rebekah A. Brantley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katie Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan J. Wright
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Ávila BM, Zanini BM, Luduvico KP, Oliveira TL, Hense JD, Garcia DN, Prosczek J, Stefanello FM, da Cruz PH, Giongo JL, Vaucher RA, Mason JB, Masternak MM, Schneider A. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci 2024; 357:123073. [PMID: 39307182 DOI: 10.1016/j.lfs.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
AIMS This study aimed to assess metabolic responses and senescent cell burden in young female mice induced to estropause and treated with senolytic drugs. MAIN METHODS Estropause was induced by 4-vinylcyclohexene diepoxide (VCD) injection in two-month-old mice. The senolytics dasatinib and quercetin (D + Q) or fisetin were given by oral gavage once a month from five to 11 months of age. KEY FINDINGS VCD-induced estropause led to increased body mass and reduced albumin concentrations compared to untreated cyclic mice, without affecting insulin sensitivity, lipid profile, liver enzymes, or total proteins. Estropause decreased catalase activity in adipose tissue but had no significant effect on other redox parameters in adipose and hepatic tissues. Fisetin treatment reduced ROS levels in the hepatic tissue of estropause mice. Estropause did not influence senescence-associated beta-galactosidase activity in adipose and hepatic tissues but increased senescent cell markers and fibrosis in ovaries. Senolytic treatment did not decrease ovarian cellular senescence induced by estropause. SIGNIFICANCE Overall, the findings suggest that estropause leads to minor metabolic changes in young females, and the senolytics D + Q and fisetin had no protective effects despite increased ovarian senescence.
Collapse
Affiliation(s)
- Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina P Luduvico
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Prosczek
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro H da Cruz
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Janice L Giongo
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Mann G, Adegoke OAJ. Elevated BCAA catabolism reverses the effect of branched-chain ketoacids on glucose transport in mTORC1-dependent manner in L6 myotubes. J Nutr Sci 2024; 13:e66. [PMID: 39464407 PMCID: PMC11503859 DOI: 10.1017/jns.2024.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024] Open
Abstract
Plasma levels of branched-chain amino acids (BCAA) and their metabolites, branched-chain ketoacids (BCKA), are increased in insulin resistance. We previously showed that ketoisocaproic acid (KIC) suppressed insulin-stimulated glucose transport in L6 myotubes, especially in myotubes depleted of branched-chain ketoacid dehydrogenase (BCKD), the enzyme that decarboxylates BCKA. This suggests that upregulating BCKD activity might improve insulin sensitivity. We hypothesised that increasing BCAA catabolism would upregulate insulin-stimulated glucose transport and attenuate insulin resistance induced by BCKA. L6 myotubes were either depleted of BCKD kinase (BDK), the enzyme that inhibits BCKD activity, or treated with BT2, a BDK inhibitor. Myotubes were then treated with KIC (200 μM), leucine (150 μM), BCKA (200 μM), or BCAA (400 μM) and then treated with or without insulin (100 nM). BDK depletion/inhibition rescued the suppression of insulin-stimulated glucose transport by KIC/BCKA. This was consistent with the attenuation of IRS-1 (Ser612) and S6K1 (Thr389) phosphorylation but there was no effect on Akt (Ser473) phosphorylation. The effect of leucine or BCAA on these measures was not as pronounced and BT2 did not influence the effect. Induction of the mTORC1/IRS-1 (Ser612) axis abolished the attenuating effect of BT2 treatment on glucose transport in cells treated with KIC. Surprisingly, rapamycin co-treatment with BT2 and KIC further reduced glucose transport. Our data suggests that the suppression of insulin-stimulated glucose transport by KIC/BCKA in muscle is mediated by mTORC1/S6K1 signalling. This was attenuated by upregulating BCAA catabolic flux. Thus, interventions targeting BCAA metabolism may provide benefits against insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Amin NG, Rahim AA, Rohoma K, Elwafa RAA, Dabees HMF, Elrahmany S. The relation of mTOR with diabetic complications and insulin resistance in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2024; 16:222. [PMID: 39261960 PMCID: PMC11389252 DOI: 10.1186/s13098-024-01450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Dysregulation of the mechanistic target of rapamycin (mTOR) has been related to several metabolic conditions, notably obesity and type 2 diabetes (T2DM). This study aimed to evaluate the role of mTOR in patients with T2DM, and its relationship with insulin resistance and microvascular complications. METHODS This case-control study was conducted on 90 subjects attending the Outpatient Internal Medicine Clinic in Damanhur Teaching Hospital. Subjects were divided into 3 groups, Group I: 20 healthy controls, Group II: 20 subjects with T2DM without complications, and Group III: 50 subjects with T2DM with microvascular complications. An Enzyme-linked immunosorbent assay was used to measure serum mTOR levels. T2DM and diabetic complications were defined according to the diagnostic criteria of the American Diabetes Association. RESULTS The results revealed significant positive correlations to HbA1c (r = 0.530, P < 0.001), fasting glucose (r = 0.508, P < 0.001), and HOMA- IR (r = 0.559, P < 0.001), and a significant negative correlation to eGFR (r=-0.370, P = 0.002). Multivariate analysis revealed an independent association of mTOR and HbA1c values with the presence of microvascular complications. The prediction of microvascular complications was present at a cutoff value of 8 ng/ml mTOR with a sensitivity of 100% and specificity of 95% with an AUC of 0.983 and a p-value < 0.001. CONCLUSION mTOR is a prognostic marker of diabetic microvascular and is associated with insulin resistance in patients with T2DM. TRIAL REGISTRATION The study was conducted following the Declaration of Helsinki, and approved by the Ethics Committee of Alexandria University (0201127, 19/7/2018).
Collapse
Affiliation(s)
- Noha G Amin
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt.
| | - A Abdel Rahim
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Kamel Rohoma
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Reham A Abo Elwafa
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hossam M F Dabees
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Shimaa Elrahmany
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| |
Collapse
|
8
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
9
|
Ávila BM, Zanini BM, Luduvico KP, Hense JD, Garcia DN, Prosczek J, Stefanello FM, Mason JB, Masternak MM, Schneider A. Effect of calorie restriction on redox status during chemically induced estropause in female mice. GeroScience 2024; 46:2139-2151. [PMID: 37857995 PMCID: PMC10828157 DOI: 10.1007/s11357-023-00979-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
In females, there is a continuous decline of the ovarian reserve with age, which results in menopause in women or estropause in mice. Loss of ovarian function results in metabolic alterations in mice and women. Based on this, we aimed to evaluate the effect of caloric restriction (CR) on redox status and metabolic changes in chemically induced estropause in mice. For this, mice were divided into four groups (n = 10): cyclic ad libitum (AL), cyclic 30% CR, AL estropause, and estropause 30% CR. Estropause was induced using 4-vinylcyclohexene diepoxide (VCD) for 20 consecutive days in 2-month-old females. The CR protocol started at 5 months of age and the treatments lasted for 4 months. The CR females gained less body weight than AL females (p < 0.001) and had lower glycemic curves in response to glucose tolerance test (GTT). The AL estropause females had the highest body weight and body fat, despite having lower food intake. However, the estropause females on 30% CR lost the most body weight and had the lowest amount of body fat compared to all groups. The effect of 30% CR on redox status in fat and liver tissue was similar for cyclic and estropause females. Interestingly, estropause decreased ROS in adipose tissue, while increasing it in the liver. No significant effects of CR on redox status were observed. Chemically induced estropause did not influence the response to 30% CR on glucose tolerance and redox status; however, weight loss was exarcebated compared to cyclic females.
Collapse
Affiliation(s)
- Bianca M Ávila
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Karina P Luduvico
- Centro de Ciências Quimicas, Farmacêutica e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Juliane Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Francielle M Stefanello
- Centro de Ciências Quimicas, Farmacêutica e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil.
| |
Collapse
|
10
|
Barros RDS, Queiroz LAD, de Assis JB, Pantoja KC, Bustia SX, de Sousa ESA, Rodrigues SF, Akamine EH, Sá-Nunes A, Martins JO. Effects of low-dose rapamycin on lymphoid organs of mice prone and resistant to accelerated senescence. Front Immunol 2024; 15:1310505. [PMID: 38515742 PMCID: PMC10954823 DOI: 10.3389/fimmu.2024.1310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Aging is a complex, natural, and irreversible phenomenon that subjects the body to numerous changes in the physiological process, characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to immunosenescence. Here, we evaluated the regulation of immunosenescence in lymphoid organs of senescence-accelerated prone 8 (SAM-P8) and senescence-accelerated resistant 1 (SAM-R1) mice treated with a low dose of rapamycin (RAPA). Mice were treated with a dose of 7.1 µg/kg RAPA for 2 months and had body mass and hematological parameters analyzed prior and during treatment. Cellular and humoral parameters of serum, bone marrow, thymus, and spleen samples were evaluated by ELISA, histology, and flow cytometry. Changes in body mass, hematological parameters, cell number, and in the secretion of IL-1β, IL-6, TNF-α, IL-7, and IL-15 cytokines were different between the 2 models used. In histological analyses, we observed that SAM-P8 mice showed faster thymic involution than SAM-R1 mice. Regarding the T lymphocyte subpopulations in the spleen, CD4+ and CD8+ T cell numbers were higher and lower, respectively, in SAM-P8 mice treated with RAPA, with the opposite observed in SAM-R1. Additionally, we found that the low dose of RAPA used did not trigger changes that could compromise the immune response of these mice and the administered dose may have contributed to changes in important lymphocyte populations in the adaptive immune response and the secretion of cytokines that directly collaborate with the maturation and proliferation of these cells.
Collapse
Affiliation(s)
- Rafael dos Santos Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz Adriano Damasceno Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Josiane Betim de Assis
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kamilla Costa Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sofia Xavier Bustia
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Laboratory of Vascular Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Baghdadi M, Nespital T, Monzó C, Deelen J, Grönke S, Partridge L. Intermittent rapamycin feeding recapitulates some effects of continuous treatment while maintaining lifespan extension. Mol Metab 2024; 81:101902. [PMID: 38360109 PMCID: PMC10900781 DOI: 10.1016/j.molmet.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Rapamycin, a powerful geroprotective drug, can have detrimental effects when administered chronically. We determined whether intermittent treatment of mice can reduce negative effects while maintaining benefits of chronic treatment. METHODS From 6 months of age, male and female C3B6F1 hybrid mice were either continuously fed with 42 mg/kg rapamycin, or intermittently fed by alternating weekly feeding of 42 mg/kg rapamycin food with weekly control feeding. Survival of these mice compared to control animals was measured. Furthermore, longitudinal phenotyping including metabolic (body composition, GTT, ITT, indirect calorimetry) and fitness phenotypes (treadmil, rotarod, electrocardiography and open field) was performed. Organ specific pathology was assessed at 24 months of age. RESULTS Chronic rapamycin treatment induced glucose intolerance, which was partially ameliorated by intermittent treatment. Chronic and intermittent rapamycin treatments increased lifespan equally in males, while in females chronic treatment resulted in slightly higher survival. The two treatments had equivalent effects on testicular degeneration, heart fibrosis and liver lipidosis. In males, the two treatment regimes led to a similar increase in motor coordination, heart rate and Q-T interval, and reduction in spleen weight, while in females, they equally reduced BAT inflammation and spleen weight and maintained heart rate and Q-T interval. However, other health parameters, including age related pathologies, were better prevented by continuous treatment. CONCLUSIONS Intermittent rapamycin treatment is effective in prolonging lifespan and reduces some side-effects of chronic treatment, but chronic treatment is more beneficial to healthspan.
Collapse
Affiliation(s)
- Maarouf Baghdadi
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Tobias Nespital
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carolina Monzó
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Institute for Integrative Systems Biology, Spanish National Research Council, Catedràtic Agustín Escardino Benlloch, Paterna, Spain
| | - Joris Deelen
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
12
|
Granata S, Mercuri S, Troise D, Gesualdo L, Stallone G, Zaza G. mTOR-inhibitors and post-transplant diabetes mellitus: a link still debated in kidney transplantation. Front Med (Lausanne) 2023; 10:1168967. [PMID: 37250653 PMCID: PMC10213242 DOI: 10.3389/fmed.2023.1168967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The mammalian target of rapamycin inhibitors (mTOR-Is, Sirolimus, and Everolimus) are immunosuppressive drugs widely employed in kidney transplantation. Their main mechanism of action includes the inhibition of a serine/threonine kinase with a pivotal role in cellular metabolism and in various eukaryotic biological functions (including proteins and lipids synthesis, autophagy, cell survival, cytoskeleton organization, lipogenesis, and gluconeogenesis). Moreover, as well described, the inhibition of the mTOR pathway may also contribute to the development of the post-transplant diabetes mellitus (PTDM), a major clinical complication that may dramatically impact allograft survival (by accelerating the development of the chronic allograft damage) and increase the risk of severe systemic comorbidities. Several factors may contribute to this condition, but the reduction of the beta-cell mass, the impairment of the insulin secretion and resistance, and the induction of glucose intolerance may play a pivotal role. However, although the results of several in vitro and in animal models, the real impact of mTOR-Is on PTDM is still debated and the entire biological machinery is poorly recognized. Therefore, to better elucidate the impact of the mTOR-Is on the risk of PTDM in kidney transplant recipients and to potentially uncover future research topics (particularly for the clinical translational research), we decided to review the available literature evidence regarding this important clinical association. In our opinion, based on the published reports, we cannot draw any conclusion and PTDM remains a challenge. However, also in this case, the administration of the lowest possible dose of mTOR-I should also be recommended.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
14
|
Herrera JJ, Pifer K, Louzon S, Leander D, Fiehn O, Day SM, Miller RA, Garratt M. Early or Late-Life Treatment With Acarbose or Rapamycin Improves Physical Performance and Affects Cardiac Structure in Aging Mice. J Gerontol A Biol Sci Med Sci 2023; 78:397-406. [PMID: 36342748 PMCID: PMC9977253 DOI: 10.1093/gerona/glac221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, USA
| | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Goldberg EL, Letian A, Dlugos T, Leveau C, Dixit VD. Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation. J Biol Chem 2023; 299:103005. [PMID: 36775129 PMCID: PMC10025153 DOI: 10.1016/j.jbc.2023.103005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aging is accompanied by chronic low-grade inflammation, but the mechanisms that allow this to persist are not well understood. Ketone bodies are alternative fuels produced when glucose is limited and improve indicators of healthspan in aging mouse models. Moreover, the most abundant ketone body, β-hydroxybutyrate, inhibits the NLRP3 inflammasome in myeloid cells, a key potentiator of age-related inflammation. Given that myeloid cells express ketogenic machinery, we hypothesized this pathway may serve as a metabolic checkpoint of inflammation. To test this hypothesis, we conditionally ablated ketogenesis by disrupting expression of the terminal enzyme required for ketogenesis, 3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL). By deleting HMGCL in the liver, we validated the functional targeting and establish that the liver is the only organ that can produce the life-sustaining quantities of ketone bodies required for survival during fasting or ketogenic diet feeding. Conditional ablation of HMGCL in neutrophils and macrophages had modest effects on body weight and glucose tolerance in aging but worsened glucose homeostasis in myeloid cell-specific Hmgcl-deficient mice fed a high-fat diet. Our results suggest that during aging, liver-derived circulating ketone bodies might be more important for deactivating the NLRP3 inflammasome and controlling organismal metabolism.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Physiology, University of California San Francisco, San Francisco, California, USA.
| | - Anudari Letian
- Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale School of Medicine; Department of Immunobiology, Yale School of Medicine
| | - Claire Leveau
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale School of Medicine; Department of Immunobiology, Yale School of Medicine
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale School of Medicine; Department of Immunobiology, Yale School of Medicine; Yale Center for Research on Aging, Yale School of Medicine.
| |
Collapse
|
16
|
de Tonnerre DJ, Medina Torres CE, Stefanovski D, Robinson MA, Kemp KL, Bertin FR, van Eps AW. Effect of sirolimus on insulin dynamics in horses. J Vet Intern Med 2023; 37:703-712. [PMID: 36840433 DOI: 10.1111/jvim.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Sirolimus, a mechanistic target of rapamycin inhibitor, suppresses insulin production in other species and has therapeutic potential for hyperinsulinemia in horses. HYPOTHESIS/OBJECTIVE Determine the pharmacokinetics (PKs) of sirolimus and evaluate its effect on insulin dynamics in healthy and insulin dysregulation (ID) horses. ANIMALS Eight Standardbred geldings. METHODS A PK study was performed followed by a placebo-controlled, randomized, crossover study. Blood sirolimus concentrations were measured by liquid chromatography-mass-spectrometry. PK indices were estimated by fitting a 2-compartment model using nonlinear least squares regression. An oral glucose test (OGT) was conducted before and 4, 24, 72, and 144 hours after administration of sirolimus or placebo. Effects of time, treatment and animal on blood glucose and insulin concentrations were analyzed using mixed-effects linear regression. Sirolimus was then administered to 4 horses with dexamethasone-induced ID and an OGT was performed at baseline, after ID induction and after 7 days of treatment. RESULTS Median (range) maximum sirolimus concentration was 277.0 (247.5-316.06) ng/mL at 5 (5-10) min and half-life was 3552 (3248-4767) min. Mean (range) oral bioavailability was 9.5 (6.8-12.4)%. Sirolimus had a significant effect on insulin concentration 24 hours after a single dose: median (interquartile range) insulin at 60 min (5.0 [3.7-7.0] μIU/mL) was 37 (-5 to 54)% less than placebo (8.7 [5.8-13.7] μIU/mL, P = .03); and at 120 min (10.2 [8.4-12.2] μIU/mL) was 28 (-15 to 53)% less than placebo (14.9 [8.4-24.8] μIU/mL, P = .02). There was minimal effect on glucose concentration. Insulin responses decreased toward baseline in ID horses after 7 days of treatment. CONCLUSION AND CLINICAL IMPORTANCE Sirolimus decreased the insulinemic response to glucose and warrants further investigation.
Collapse
Affiliation(s)
- Demia J de Tonnerre
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | | | - Darko Stefanovski
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Kate L Kemp
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - François-René Bertin
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Andrew W van Eps
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
17
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Tibarewal P, Rathbone V, Constantinou G, Pearce W, Adil M, Varyova Z, Folkes L, Hampson A, Classen GAE, Alves A, Carvalho S, Scudamore CL, Vanhaesebroeck B. Long-term treatment of cancer-prone germline PTEN mutant mice with low-dose rapamycin extends lifespan and delays tumour development. J Pathol 2022; 258:382-394. [PMID: 36073856 PMCID: PMC9828006 DOI: 10.1002/path.6009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
PTEN is one of the most commonly inactivated tumour suppressor genes in sporadic cancer. Germline heterozygous PTEN gene alterations also underlie PTEN hamartoma tumour syndrome (PHTS), a rare human cancer-predisposition condition. A key feature of systemic PTEN deregulation is the inability to adequately dampen PI3-kinase (PI3K)/mTORC1 signalling. PI3K/mTORC1 pathway inhibitors such as rapamycin are therefore expected to neutralise the impact of PTEN loss, rendering this a more druggable context compared with those of other tumour suppressor pathways such as loss of TP53. However, this has not been explored in cancer prevention in a model of germline cancer predisposition, such as PHTS. Clinical trials of short-term treatment with rapamycin have recently been initiated for PHTS, focusing on cognition and colon polyposis. Here, we administered a low dose of rapamycin from the age of 6 weeks onwards to mice with heterozygous germline Pten loss, a mouse model that recapitulates most characteristics of human PHTS. Rapamycin was well tolerated and led to a highly significant improvement of survival in both male and female mice. This was accompanied by a delay in, but not full blockade of, the development of a range of proliferative lesions, including gastro-intestinal and thyroid tumours and endometrial hyperplasia, with no impact on mammary and prostate tumours, and no effect on brain overgrowth. Our data indicate that rapamycin may have cancer prevention potential in human PHTS. This might also be the case for sporadic cancers in which genetic PI3K pathway activation is an early event in tumour development, such as endometrial cancer and some breast cancers. To the best of our knowledge, this is the first report of a long-term treatment of a germline cancer predisposition model with a PI3K/mTOR pathway inhibitor. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | | | - Wayne Pearce
- Cancer Institute, University College London, London, UK
| | - Mahreen Adil
- Cancer Institute, University College London, London, UK
| | - Zofia Varyova
- Cancer Institute, University College London, London, UK
| | - Lisa Folkes
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Alix Hampson
- Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | | | - Adriana Alves
- Cancer Institute, University College London, London, UK
| | - Sara Carvalho
- Cancer Institute, University College London, London, UK
| | | | | |
Collapse
|
19
|
Blagosklonny MV. Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice. Aging (Albany NY) 2022; 14:8140-8149. [PMID: 36332147 PMCID: PMC9648808 DOI: 10.18632/aging.204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
Abstract
Making provocative headlines, three outstanding publications demonstrated that early-life treatment with rapamycin, including treatments during developmental growth, extends lifespan in animals, confirming predictions of hyperfunction theory, which views aging as a quasi-program (an unintended continuation of developmental growth) driven in part by mTOR. Despite their high theoretical importance, clinical applications of two of these studies in mice, Drosophila and Daphnia cannot be implemented in humans because that would require growth retardation started at birth. A third study demonstrated that a transient (around 20% of total lifespan in Drosophila) treatment with rapamycin early in Drosophila adult life is as effective as lifelong treatment, whereas a late-life treatment is not effective. However, previous studies in mice demonstrated that a transient late-life treatment is highly effective. Based on hyperfunction theory, this article attempts to reconcile conflicting results and suggests the optimal treatment strategy to extend human lifespan.
Collapse
|
20
|
Guha A, Gong Y, DeRemer D, Owusu-Guha J, Dent SF, Cheng RK, Weintraub NL, Agarwal N, Fradley MG. Cardiometabolic Consequences of Targeted Anticancer Therapies. J Cardiovasc Pharmacol 2022; 80:515-521. [PMID: 34654781 PMCID: PMC8977391 DOI: 10.1097/fjc.0000000000001149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cardiometabolic disease (CMD) is the most common preventable cause of death in the world. A number of components are included in the spectrum of CMD, such as metabolic syndrome/obesity, hyperglycemia/diabetes, dyslipidemia, and hypertension, which are independently associated with cardiovascular disease risk. These conditions often occur together, and patients with cancer frequently undergo treatments that can generate or worsen CMD. This review highlights and presents mechanistic and epidemiological evidence regarding CMD in 4 categories of anticancer medications, namely, mTOR/PI3K-Akt inhibitors, multitargeted tyrosine kinase inhibitor, immune checkpoint inhibitor therapy, and endocrine therapy. Patients taking these medications need careful monitoring during therapy. There is a role for cardio-oncology and onco-primary care specialists in optimally managing patients at risk to mitigate CMD during treatment with these and other investigational anticancer medications.
Collapse
Affiliation(s)
- Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH, USA
- Division of Cardiology, Department of Medicine, Augusta University, Augusta, GA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David DeRemer
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Susan F Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Richard K Cheng
- Cardiology Division, University of Washington, Seattle, WA, USA
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Augusta University, Augusta, GA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah (NCI-CCC), Salt Lake City, UT, USA
| | - Michael G Fradley
- Division of Cardiology, Department of Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
21
|
Pinto AP, da Rocha AL, Teixeira GR, Rovina RL, Veras ASC, Frantz F, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Quadrilatero J, da Silva ASR. Rapamycin did not prevent the excessive exercise-induced hepatic fat accumulation. Life Sci 2022; 306:120800. [PMID: 35839860 DOI: 10.1016/j.lfs.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Allice S C Veras
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil
| | - Fabiani Frantz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Ranallo N, Iamurri AP, Foca F, Liverani C, De Vita A, Mercatali L, Calabrese C, Spadazzi C, Fabbri C, Cavaliere D, Galassi R, Severi S, Sansovini M, Tartaglia A, Pieri F, Crudi L, Bianchini D, Barone D, Martinelli G, Frassineti GL, Ibrahim T, Calabrò L, Berardi R, Bongiovanni A. Prognostic and Predictive Role of Body Composition in Metastatic Neuroendocrine Tumor Patients Treated with Everolimus: A Real-World Data Analysis. Cancers (Basel) 2022; 14:3231. [PMID: 35805003 PMCID: PMC9264955 DOI: 10.3390/cancers14133231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms frequently characterized by an upregulation of the mammalian rapamycin targeting (mTOR) pathway resulting in uncontrolled cell proliferation. The mTOR pathway is also involved in skeletal muscle protein synthesis and in adipose tissue metabolism. Everolimus inhibits the mTOR pathway, resulting in blockade of cell growth and tumor progression. The aim of this study is to investigate the role of body composition indexes in patients with metastatic NETs treated with everolimus. The study population included 30 patients with well-differentiated (G1-G2), metastatic NETs treated with everolimus at the IRCCS Romagnolo Institute for the Study of Tumors (IRST) "Dino Amadori", Meldola (FC), Italy. The body composition indexes (skeletal muscle index [SMI] and adipose tissue indexes) were assessed by measuring on a computed tomography (CT) scan the cross-sectional area at L3 at baseline and at the first radiological assessment after the start of treatment. The body mass index (BMI) was assessed at baseline. The median progression-free survival (PFS) was 8.9 months (95% confidence interval [CI]: 3.4-13.7 months). The PFS stratified by tertiles was 3.2 months (95% CI: 0.9-10.1 months) in patients with low SMI (tertile 1), 14.2 months (95% CI: 2.3 months-not estimable [NE]) in patients with intermediate SMI (tertile 2), and 9.1 months (95% CI: 2.7 months-NE) in patients with high SMI (tertile 3) (p = 0.039). Similarly, the other body composition indexes also showed a statistically significant difference in the three groups on the basis of tertiles. The median PFS was 3.2 months (95% CI: 0.9-6.7 months) in underweight patients (BMI ≤ 18.49 kg/m2) and 10.1 months (95% CI: 3.7-28.4 months) in normal-weight patients (p = 0.011). There were no significant differences in terms of overall survival. The study showed a correlation between PFS and the body composition indexes in patients with NETs treated with everolimus, underlining the role of adipose and muscle tissue in these patients.
Collapse
Affiliation(s)
- Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| | - Andrea Prochoswski Iamurri
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.P.I.); (D.B.)
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Forli-Cesena Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Davide Cavaliere
- General and Oncologic Surgery Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy;
| | - Riccardo Galassi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Maddalena Sansovini
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Andreas Tartaglia
- Endocrinology Unit, Forli-Cesena Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Laura Crudi
- Oncology Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, 47014 Meldola, Italy;
| | - David Bianchini
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Domenico Barone
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.P.I.); (D.B.)
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, 47014 Meldola, Italy;
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Luana Calabrò
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| |
Collapse
|
23
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
24
|
Wang TH, Tseng WC, Leu YL, Chen CY, Lee WC, Chi YC, Cheng SF, Lai CY, Kuo CH, Yang SL, Yang SH, Shen JJ, Feng CH, Wu CC, Hwang TL, Wang CJ, Wang SH, Chen CC. The flavonoid corylin exhibits lifespan extension properties in mouse. Nat Commun 2022; 13:1238. [PMID: 35264584 PMCID: PMC8907184 DOI: 10.1038/s41467-022-28908-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2022] [Indexed: 01/23/2023] Open
Abstract
In the long history of traditional Chinese medicine, single herbs and complex formulas have been suggested to increase lifespan. However, the identification of single molecules responsible for lifespan extension has been challenging. Here, we collected a list of traditional Chinese medicines with potential longevity properties from pharmacopeias. By utilizing the mother enrichment program, we systematically screened these traditional Chinese medicines and identified a single herb, Psoralea corylifolia, that increases lifespan in Saccharomyces cerevisiae. Next, twenty-two pure compounds were isolated from Psoralea corylifolia. One of the compounds, corylin, was found to extend the replicative lifespan in yeast by targeting the Gtr1 protein. In human umbilical vein endothelial cells, RNA sequencing data showed that corylin ameliorates cellular senescence. We also examined an in vivo mammalian model, and found that corylin extends lifespan in mice fed a high-fat diet. Taken together, these findings suggest that corylin may promote longevity.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wei-Che Tseng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wen-Chih Lee
- Office of Research and Development, Tzu Chi University, Hualien, Taiwan
| | - Ying-Chih Chi
- Cryo-EM Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lai
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Hsin Kuo
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Ling Yang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sien-Hung Yang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jiann-Jong Shen
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hao Feng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Jen Wang
- Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Marzoog BA, Vlasova TI. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. OBESITY AND METABOLISM 2022; 18:465-470. [DOI: 10.14341/omet12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Physiologically, autophagy is a major protective mechanism of β-cells from apoptosis, through can reserve normal β- cell mass and inhibit the progression of β-cells destruction. Beta-cell mass can be affected by differentiation from progenitors and de-differentiation as well as self-renewal and apoptosis. Shred evidence indicated that hypoglycemic drugs can induce β-cell proliferation capacity and neogenesis via autophagy stimulation. However, prolonged use of selective hypoglycemic drugs has induced pancreatitis besides several other factors that contribute to β-cell destruction and apoptosis initiation. Interestingly, some nonhypoglycemic medications possess the same effects on β-cells but depending on the combination of these drugs and the duration of exposure to β-cells. The paper comprehensively illustrates the role of the hypoglycemic drugs on the insulin-producing cells and the pathogeneses of β-cell destruction in type 2 diabetes mellitus, in addition to the regulation mechanisms of β-cells division in norm and pathology. The grasping of the hypoglycemic drug’s role in beta-cell is clinically crucial to evaluate novel therapeutic targets such as new signaling pathways. The present paper addresses a new strategy for diabetes mellitus management via targeting specific autophagy inducer factors (transcription factors, genes, lipid molecules, etc.).
Collapse
|
26
|
Zuccarini M, Giuliani P, Di Liberto V, Frinchi M, Caciagli F, Caruso V, Ciccarelli R, Mudò G, Di Iorio P. Adipose Stromal/Stem Cell-Derived Extracellular Vesicles: Potential Next-Generation Anti-Obesity Agents. Int J Mol Sci 2022; 23:ijms23031543. [PMID: 35163472 PMCID: PMC8836090 DOI: 10.3390/ijms23031543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance of the contribution of ASC-derived EVs in the regulation of metabolic processes. In addition, we outlined the advantages/disadvantages of the use of EVs as potential next-generation anti-obesity agents.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90128 Palermo, Italy; (V.D.L.); (M.F.); (G.M.)
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90128 Palermo, Italy; (V.D.L.); (M.F.); (G.M.)
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7001, Australia;
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
- Stem TeCh Group, Center for Advanced Studies and Technologies (CAST), Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90128 Palermo, Italy; (V.D.L.); (M.F.); (G.M.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| |
Collapse
|
27
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
28
|
Liu J, Luo M, Lv S, Tao S, Wu Z, Yu L, Lin D, Huang L, Wu L, Liao X, Zi J, Lai X, Yuan Y, Zhang W, Yang L. Case Report: Reversible Hyperglycemia Following Rapamycin Treatment for Atypical Choroid Plexus Papilloma in an Infant. Front Endocrinol (Lausanne) 2022; 13:865913. [PMID: 35865311 PMCID: PMC9294177 DOI: 10.3389/fendo.2022.865913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, atypical choroid plexus papilloma was treated with high-dose rapamycin for 17 days preoperatively in an infant. Rapamycin significantly reduced the blood supply to the tumor while reducing the tumor volume, and most of the tumor was resected successfully. However, the infant developed hyperglycemia related to the rapamycin dose, which was effectively controlled by adjusting the dose and applying insulin.
Collapse
Affiliation(s)
- Jiale Liu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minjie Luo
- Department of Pediatric Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Lv
- Department of Pediatric Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaohua Tao
- Department of Pediatric Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhu Wu
- Department of Pediatric Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danna Lin
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lulu Huang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Wu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liao
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juan Zi
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorong Lai
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Yuan
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatric Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wangming Zhang, ; Lihua Yang,
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wangming Zhang, ; Lihua Yang,
| |
Collapse
|
29
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
30
|
Kanshana JS, Mattila PE, Ewing MC, Wood AN, Schoiswohl G, Meyer AC, Kowalski A, Rosenthal SL, Gingras S, Kaufman BA, Lu R, Weeks DE, McGarvey ST, Minster RL, Hawley NL, Kershaw EE. A murine model of the human CREBRFR457Q obesity-risk variant does not influence energy or glucose homeostasis in response to nutritional stress. PLoS One 2021; 16:e0251895. [PMID: 34520472 PMCID: PMC8439463 DOI: 10.1371/journal.pone.0251895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Obesity and diabetes have strong heritable components, yet the genetic contributions to these diseases remain largely unexplained. In humans, a missense variant in Creb3 regulatory factor (CREBRF) [rs373863828 (p.Arg457Gln); CREBRFR457Q] is strongly associated with increased odds of obesity but decreased odds of diabetes. Although virtually nothing is known about CREBRF's mechanism of action, emerging evidence implicates it in the adaptive transcriptional response to nutritional stress downstream of TORC1. The objectives of this study were to generate a murine model with knockin of the orthologous variant in mice (CREBRFR458Q) and to test the hypothesis that this CREBRF variant promotes obesity and protects against diabetes by regulating energy and glucose homeostasis downstream of TORC1. To test this hypothesis, we performed extensive phenotypic analysis of CREBRFR458Q knockin mice at baseline and in response to acute (fasting/refeeding), chronic (low- and high-fat diet feeding), and extreme (prolonged fasting) nutritional stress as well as with pharmacological TORC1 inhibition, and aging to 52 weeks. The results demonstrate that the murine CREBRFR458Q model of the human CREBRFR457Q variant does not influence energy/glucose homeostasis in response to these interventions, with the exception of possible greater loss of fat relative to lean mass with age. Alternative preclinical models and/or studies in humans will be required to decipher the mechanisms linking this variant to human health and disease.
Collapse
Affiliation(s)
- Jitendra S. Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Polly E. Mattila
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael C. Ewing
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ashlee N. Wood
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Gabriele Schoiswohl
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Anna C. Meyer
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Aneta Kowalski
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Samantha L. Rosenthal
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brett A. Kaufman
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ray Lu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephen T. McGarvey
- International Health Institute, Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, United States of America
- Department of Anthropology, Brown University, Providence, Rhode Island, United States of America
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicola L. Hawley
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Erin E. Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
31
|
Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12:1821-1835. [PMID: 34504654 PMCID: PMC8416555 DOI: 10.18632/oncotarget.28049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells selectively. It is even more difficult to selectively kill senescent cells than to kill cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, gerostatics do not kill cells but slow down cellular geroconversion to senescence. Numerous studies demonstrated that inhibition of the mTOR pathways by any means (genetic, pharmacological and dietary) extends lifespan. Currently, only two studies demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, life extension by these senolytics can be explained by their slight rapamycin-like (gerostatic) effects.
Collapse
|
32
|
Ehinger Y, Zhang Z, Phamluong K, Soneja D, Shokat KM, Ron D. Brain-specific inhibition of mTORC1 eliminates side effects resulting from mTORC1 blockade in the periphery and reduces alcohol intake in mice. Nat Commun 2021; 12:4407. [PMID: 34315870 PMCID: PMC8316332 DOI: 10.1038/s41467-021-24567-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol Use Disorder (AUD) affects a large portion of the population. Unfortunately, efficacious medications to treat the disease are limited. Studies in rodents suggest that mTORC1 plays a crucial role in mechanisms underlying phenotypes such as heavy alcohol intake, habit, and relapse. Thus, mTORC1 inhibitors, which are used in the clinic, are promising therapeutic agents to treat AUD. However, chronic inhibition of mTORC1 in the periphery produces undesirable side effects, which limit their potential use for the treatment of AUD. To overcome these limitations, we designed a binary drug strategy in which male mice were treated with the mTORC1 inhibitor RapaLink-1 together with a small molecule (RapaBlock) to protect mTORC1 activity in the periphery. We show that whereas RapaLink-1 administration blocked mTORC1 activation in the liver, RapaBlock abolished the inhibitory action of Rapalink-1. RapaBlock also prevented the adverse side effects produced by chronic inhibition of mTORC1. Importantly, co-administration of RapaLink-1 and RapaBlock inhibited alcohol-dependent mTORC1 activation in the nucleus accumbens and attenuated alcohol seeking and drinking.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Drishti Soneja
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
34
|
Belforte N, Agostinone J, Alarcon-Martinez L, Villafranca-Baughman D, Dotigny F, Cueva Vargas JL, Di Polo A. AMPK hyperactivation promotes dendrite retraction, synaptic loss, and neuronal dysfunction in glaucoma. Mol Neurodegener 2021; 16:43. [PMID: 34187514 PMCID: PMC8243567 DOI: 10.1186/s13024-021-00466-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The maintenance of complex dendritic arbors and synaptic transmission are processes that require a substantial amount of energy. Bioenergetic decline is a prominent feature of chronic neurodegenerative diseases, yet the signaling mechanisms that link energy stress with neuronal dysfunction are poorly understood. Recent work has implicated energy deficits in glaucoma, and retinal ganglion cell (RGC) dendritic pathology and synapse disassembly are key features of ocular hypertension damage. RESULTS We show that adenosine monophosphate-activated protein kinase (AMPK), a conserved energy biosensor, is strongly activated in RGC from mice with ocular hypertension and patients with primary open angle glaucoma. Our data demonstrate that AMPK triggers RGC dendrite retraction and synapse elimination. We show that the harmful effect of AMPK is exerted through inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Attenuation of AMPK activity restores mTORC1 function and rescues dendrites and synaptic contacts. Strikingly, AMPK depletion promotes recovery of light-evoked retinal responses, improves axonal transport, and extends RGC survival. CONCLUSIONS This study identifies AMPK as a critical nexus between bioenergetic decline and RGC dysfunction during pressure-induced stress, and highlights the importance of targeting energy homeostasis in glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolas Belforte
- Department of Neuroscience, Université de Montréal, Succursale centre-ville 6128, Montréal, Québec, H3C 3J7, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada
| | - Jessica Agostinone
- Department of Neuroscience, Université de Montréal, Succursale centre-ville 6128, Montréal, Québec, H3C 3J7, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, Succursale centre-ville 6128, Montréal, Québec, H3C 3J7, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, Succursale centre-ville 6128, Montréal, Québec, H3C 3J7, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada
| | - Florence Dotigny
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, Succursale centre-ville 6128, Montréal, Québec, H3C 3J7, Canada.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, Succursale centre-ville 6128, Montréal, Québec, H3C 3J7, Canada. .,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, Québec, H2X 0A9, Canada.
| |
Collapse
|
35
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
36
|
Guo Z, Chen X, Feng P, Yu Q. Short-term rapamycin administration elevated testosterone levels and exacerbated reproductive disorder in dehydroepiandrosterone-induced polycystic ovary syndrome mice. J Ovarian Res 2021; 14:64. [PMID: 33947426 PMCID: PMC8097915 DOI: 10.1186/s13048-021-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy that affects reproduction and metabolism. Mammalian target of rapamycin (mTOR) has been shown to participate in female reproduction under physiological and pathological conditions. This study aimed to investigate the role of mTOR complex 1 (mTORC1) signaling in dehydroepiandrosterone (DHEA)-induced PCOS mice. Results Female C57BL/6J mice were randomly assigned into three groups: control group, DHEA group, and DHEA + rapamycin group. All DHEA-treated mice were administered 6 mg/100 g DHEA for 21 consecutive days, and the DHEA + rapamycin group was intraperitoneally injected with 4 mg/kg rapamycin every other day for the last 14 days of the DHEA treatment. There was no obvious change in the expression of mTORC1 signaling in the ovaries of the control and DHEA groups. Rapamycin did not protect against DHEA-induced acyclicity and PCO morphology, but impeded follicle development and elevated serum testosterone levels in DHEA-induced mice, which was related with suppressed Hsd3b1, Cyp17a1, and Cyp19a1 expression. Moreover, rapamycin also exacerbated insulin resistance but relieved lipid metabolic disturbance in the short term. Conclusions Rapamycin exacerbated reproductive imbalance in DHEA-induced PCOS mice, which characterized by elevated testosterone levels and suppressed steroid synthesis. This underscores the need for new mTORC1-specific and tissue-specific mTOR-related drugs for reproductive disorders.
Collapse
Affiliation(s)
- Zaixin Guo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
37
|
Wolff CA, Lawrence MM, Porter H, Zhang Q, Reid JJ, Laurin JL, Musci RV, Linden MA, Peelor FF, Wren JD, Creery JS, Cutler KJ, Carson RH, Price JC, Hamilton KL, Miller BF. Sex differences in changes of protein synthesis with rapamycin treatment are minimized when metformin is added to rapamycin. GeroScience 2021; 43:809-828. [PMID: 32761290 PMCID: PMC8110668 DOI: 10.1007/s11357-020-00243-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Loss of protein homeostasis is a hallmark of the aging process. We and others have previously shown that maintenance of proteostasis is a shared characteristic of slowed-aging models. Rapamycin (Rap) exerts sex-specific effects on murine lifespan, but the combination of Rap with the anti-hyperglycemic drug metformin (Rap + Met) equally increases male and female mouse median lifespan. In the current investigation, we compare the effects of short-term (8 weeks) Rap and Rap + Met treatments on bulk and individual protein synthesis in two key metabolic organs (the liver and skeletal muscle) of young genetically heterogeneous mice using deuterium oxide. We report for the first time distinct effects of Rap and Rap + Met treatments on bulk and individual protein synthesis in young mice. Although there were decreases in protein synthesis as assessed by bulk measurements, individual protein synthesis analyses demonstrate there were nearly as many proteins that increased synthesis as decreased synthesis rates. While we observed the established sex- and tissue-specific effects of Rap on protein synthesis, adding Met yielded more uniform effects between tissue and sex. These data offer mechanistic insight as to how Rap + Met may extend lifespan in both sexes while Rap does not.
Collapse
Affiliation(s)
- Christopher A Wolff
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, 32610, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Hunter Porter
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin J Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime L Laurin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
- Pennington Biomedical Research Foundation, Baton Rouge, LA, 70808, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joseph S Creery
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Kyle J Cutler
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Richard H Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
38
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
39
|
Blagosklonny MV. DNA- and telomere-damage does not limit lifespan: evidence from rapamycin. Aging (Albany NY) 2021; 13:3167-3175. [PMID: 33578394 PMCID: PMC7906135 DOI: 10.18632/aging.202674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Failure of rapamycin to extend lifespan in DNA repair mutant and telomerase-knockout mice, while extending lifespan in normal mice, indicates that neither DNA damage nor telomere shortening limits normal lifespan or causes normal aging.
Collapse
|
40
|
Blagosklonny MV. The goal of geroscience is life extension. Oncotarget 2021; 12:131-144. [PMID: 33613842 PMCID: PMC7869575 DOI: 10.18632/oncotarget.27882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although numerous drugs seemingly extend healthspan in mice, only a few extend lifespan in mice and only one does it consistently. Some of them, alone or in combination, can be used in humans, without further clinical trials.
Collapse
|
41
|
TOR Signaling Pathway in Cardiac Aging and Heart Failure. Biomolecules 2021; 11:biom11020168. [PMID: 33513917 PMCID: PMC7911348 DOI: 10.3390/biom11020168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanistic Target of Rapamycin (mTOR) signaling is a key regulator of cellular metabolism, integrating nutrient sensing with cell growth. Over the past two decades, studies on the mTOR pathway have revealed that mTOR complex 1 controls life span, health span, and aging by modulating key cellular processes such as protein synthesis, autophagy, and mitochondrial function, mainly through its downstream substrates. Thus, the mTOR pathway regulates both physiological and pathological processes in the heart from embryonic cardiovascular development to maintenance of cardiac homeostasis in postnatal life. In this regard, the dysregulation of mTOR signaling has been linked to many age-related pathologies, including heart failure and age-related cardiac dysfunction. In this review, we highlight recent advances of the impact of mTOR complex 1 pathway and its regulators on aging and, more specifically, cardiac aging and heart failure.
Collapse
|
42
|
Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death Differ 2021; 28:505-521. [PMID: 33398091 PMCID: PMC7862225 DOI: 10.1038/s41418-020-00682-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. ![]()
Collapse
|
43
|
Gnanapradeepan K, Leu JIJ, Basu S, Barnoud T, Good M, Lee JV, Quinn WJ, Kung CP, Ahima R, Baur JA, Wellen KE, Liu Q, Schug ZT, George DL, Murphy ME. Increased mTOR activity and metabolic efficiency in mouse and human cells containing the African-centric tumor-predisposing p53 variant Pro47Ser. eLife 2020; 9:e55994. [PMID: 33170774 PMCID: PMC7661039 DOI: 10.7554/elife.55994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/28/2020] [Indexed: 01/24/2023] Open
Abstract
The Pro47Ser variant of p53 (S47) exists in African-descent populations and is associated with increased cancer risk in humans and mice. Due to impaired repression of the cystine importer Slc7a11, S47 cells show increased glutathione (GSH) accumulation compared to cells with wild -type p53. We show that mice containing the S47 variant display increased mTOR activity and oxidative metabolism, as well as larger size, improved metabolic efficiency, and signs of superior fitness. Mechanistically, we show that mTOR and its positive regulator Rheb display increased association in S47 cells; this is due to an altered redox state of GAPDH in S47 cells that inhibits its ability to bind and sequester Rheb. Compounds that decrease glutathione normalize GAPDH-Rheb complexes and mTOR activity in S47 cells. This study reveals a novel layer of regulation of mTOR by p53, and raises the possibility that this variant may have been selected for in early Africa.
Collapse
Affiliation(s)
- Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
| | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
| | - Joyce V Lee
- Department of Cancer Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - William J Quinn
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Che-Pei Kung
- Washington University in St. LouisSt LouisUnited States
| | - Rexford Ahima
- Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
| | - Zachary T Schug
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
| | - Donna L George
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar InstitutePhiladelphiaUnited States
| |
Collapse
|
44
|
The use of geroprotectors to prevent multimorbidity: Opportunities and challenges. Mech Ageing Dev 2020; 193:111391. [PMID: 33144142 DOI: 10.1016/j.mad.2020.111391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Over 60 % of people over the age of 65 will suffer from multiple diseases concomitantly but the common approach is to treat each disease separately. As age-associated diseases have common underlying mechanisms there is potential to tackle many diseases with the same pharmacological intervention. These are known as geroprotectors and could overcome the problems related to polypharmacy seen with the use of the single disease model. With some geroprotectors now reaching the end stage of preclinical studies and early clinical trials, there is a need to review the evidence and assess how they can be translated practically and effectively into routine practice. Despite promising evidence, there are many gaps and challenges in our understanding that must be addressed to make geroprotective medicine effective in the treatment of age-associated multimorbidity. Here we highlight the key barriers to clinical translation and discuss whether geroprotectors such as metformin, rapamycin and senolytics can tackle all age-associated diseases at the same dose, or whether a more nuanced approach is required. The evidence suggests that geroprotectors' mode of action may differ in different tissues or in response to different inducers of accelerating ageing, suggesting that a blunt 'one drug for many diseases' approach may not work. We make the case for the use of artificial intelligence to better understand multimorbidity, allowing identification of clusters and networks of diseases that are significantly associated beyond chance and the underpinning molecular pathway of ageing causal to each cluster. This will allow us to better understand the development of multimorbidity, select a more homogenous group of patients for intervention, match them with the appropriate geroprotector and identify biomarkers specific to the cluster.
Collapse
|
45
|
Schneider A, Saccon TD, Garcia DN, Zanini BM, Isola JVV, Hense JD, Alvarado-Rincón JA, Cavalcante MB, Mason JB, Stout MB, Bartke A, Masternak MM. The Interconnections Between Somatic and Ovarian Aging in Murine Models. J Gerontol A Biol Sci Med Sci 2020; 76:1579-1586. [PMID: 33037434 DOI: 10.1093/gerona/glaa258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian female is born with a limited ovarian reserve of primordial follicles. These primordial follicles are slowly activated throughout the reproductive lifecycle, thereby determining lifecycle length. Once primordial follicles are exhausted, women undergo menopause, which is associated with several metabolic perturbations and a higher mortality risk. Long before exhaustion of the reserve, females experience severe declines in fertility and health. As such, significant efforts have been made to unravel the mechanisms that promote ovarian aging and insufficiency. In this review, we explain how long-living murine models can provide insights in the regulation of ovarian aging. There is now overwhelming evidence that most life-span-extending strategies, and long-living mutant models simultaneously delay ovarian aging. Therefore, it appears that the same mechanisms that regulate somatic aging may also be modulating ovarian aging and germ cell exhaustion. We explore several potential contributing mechanisms including insulin resistance, inflammation, and DNA damage-all of which are hallmarks of cellular aging throughout the body including the ovary. These findings are in alignment with the disposable soma theory of aging, which dictates a trade-off between growth, reproduction, and DNA repair. Therefore, delaying ovarian aging will not only increase the fertility window of middle age females, but may also actively prevent menopausal-related decline in systemic health parameters, compressing the period of morbidity in mid-to-late life in females.
Collapse
Affiliation(s)
- Augusto Schneider
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Tatiana D Saccon
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Driele N Garcia
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Bianka M Zanini
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - José V V Isola
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Jéssica D Hense
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Joao A Alvarado-Rincón
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | | | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois, University School of Medicine, Springfield
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
| |
Collapse
|
46
|
Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J Nutr Biochem 2020; 88:108503. [PMID: 32956825 DOI: 10.1016/j.jnutbio.2020.108503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
47
|
Lamming DW, Salmon AB. TORwards a Victory Over Aging. J Gerontol A Biol Sci Med Sci 2020; 75:1-3. [PMID: 31544928 DOI: 10.1093/gerona/glz212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison, San Antonio
| | - Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio.,The Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Molecular Medicine, UT Health San Antonio, Texas
| |
Collapse
|
48
|
Tu G, Dai C, Qu H, Wang Y, Liao B. Role of exercise and rapamycin on the expression of energy metabolism genes in liver tissues of rats fed a high‑fat diet. Mol Med Rep 2020; 22:2932-2940. [PMID: 32945385 PMCID: PMC7453655 DOI: 10.3892/mmr.2020.11362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway serves an important role in the development of insulin resistance induced by obesity. Exercise improves obesity-associated insulin resistance and hepatic energy metabolism; however, the precise mechanism of this process remains unknown. Therefore, the present study investigated the role of rapamycin, an inhibitor of mTOR, on exercise-induced expression of hepatic energy metabolism genes in rats fed a high-fat diet (HFD). A total of 30 male rats were divided into the following groups: Normal group (n=6) fed chow diets and HFD group (n=24) fed an HFD for 6 weeks. The HFD rats performed exercise adaptation for 1 week and were randomly divided into the four following groups (each containing six rats): i) Group of HFD rats with sedentary (H group); ii) group of HFD rats with exercise (HE group); iii) group of HFD rats with rapamycin (HR group); and iv) group of HFD rats with exercise and rapamycin (HER group). Both HE and HER rats were placed on incremental treadmill training for 4 weeks (from week 8–11). Both HR and HER rats were injected with rapamycin intraperitoneally at the dose of 2 mg/kg once a day for 2 weeks (from week 10–11). All rats were sacrificed following a 12–16 h fasting period at the end of week 11. The levels of mitochondrial and oxidative enzyme activities, as well as of the expression of genes involved in energy metabolism were assessed in liver tissues. Biochemical assays and oil red staining were used to assess the content of hepatic triglycerides (TGs). The results indicated that exercise, but not rapamycin, reduced TG content in the liver of HFD rats. Further analysis indicated that rapamycin reduced the activity of cytochrome c oxidase, but not the activities of succinate dehydrogenase and β-hydroxyacyl-CoA dehydrogenase in the liver of HFD rats. Exercise significantly upregulated the mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1 β, while rapamycin exhibited no effect on the mRNA expression levels of hepatic transcription factors associated with energy metabolism enzymes in the liver of HFD rats. Collectively, the results indicated that exercise reduced TG content and upregulated mitochondrial metabolic gene expression in the liver of HFD rats. Moreover, this mechanism may not involve the mTOR pathway.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Chunyan Dai
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Haofei Qu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Yunzhen Wang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
49
|
Kanno A, Asahara SI, Furubayashi A, Masuda K, Yoshitomi R, Suzuki E, Takai T, Kimura-Koyanagi M, Matsuda T, Bartolome A, Hirota Y, Yokoi N, Inaba Y, Inoue H, Matsumoto M, Inoue K, Abe T, Wei FY, Tomizawa K, Ogawa W, Seino S, Kasuga M, Kido Y. GCN2 regulates pancreatic β cell mass by sensing intracellular amino acid levels. JCI Insight 2020; 5:128820. [PMID: 32376799 DOI: 10.1172/jci.insight.128820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/01/2020] [Indexed: 01/09/2023] Open
Abstract
EIF2AK4, which encodes the amino acid deficiency-sensing protein GCN2, has been implicated as a susceptibility gene for type 2 diabetes in the Japanese population. However, the mechanism by which GCN2 affects glucose homeostasis is unclear. Here, we show that insulin secretion is reduced in individuals harboring the risk allele of EIF2AK4 and that maintenance of GCN2-deficient mice on a high-fat diet results in a loss of pancreatic β cell mass. Our data suggest that GCN2 senses amino acid deficiency in β cells and limits signaling by mechanistic target of rapamycin complex 1 to prevent β cell failure during the consumption of a high-fat diet.
Collapse
Affiliation(s)
- Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Ayuko Furubayashi
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Katsuhisa Masuda
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Risa Yoshitomi
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Emi Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | | | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Alberto Bartolome
- Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, New York, USA
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Takaya Abe
- Laboratory for Animal Resource Development and.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Kasuga
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and.,Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| |
Collapse
|
50
|
Bellantuono I, de Cabo R, Ehninger D, Di Germanio C, Lawrie A, Miller J, Mitchell SJ, Navas-Enamorado I, Potter PK, Tchkonia T, Trejo JL, Lamming DW. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat Protoc 2020; 15:540-574. [PMID: 31915391 PMCID: PMC7002283 DOI: 10.1038/s41596-019-0256-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer's disease, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of aging and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slow progress. To overcome this, major centers in Europe and the United States skilled in healthspan analysis came together to agree on a toolbox of techniques that can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox, which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose tolerance test (GTT) and insulin tolerance test (ITT), body composition, and energy expenditure. The protocols can be performed longitudinally in the same mouse over a period of 4-6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular, and metabolic health.
Collapse
Affiliation(s)
- I Bellantuono
- Department of Oncology and Metabolism, Healthy Lifespan Institute and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing, University of Sheffield, Sheffield, UK.
| | - R de Cabo
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - D Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1, Bonn, Germany
| | - C Di Germanio
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - A Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - J Miller
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - S J Mitchell
- Department of Molecular Medicine, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - I Navas-Enamorado
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - P K Potter
- Department of Biological and Life Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxfordshire, UK
| | - T Tchkonia
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - J L Trejo
- Department of Translational Neuroscience, Cajal Institute (CSIC), Madrid, Spain
| | - D W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|