1
|
Niu X, Zhang Q, Zhang Y, Wang R, Yao K, Sang Y, Fang B, Zhao Y, Liu L, Wang L, Liu R, Li Y, Sun M, Cui H, Liu Y, He J. Effect of Bifidobacterium animalis subsp. lactis Langg JZ-08 on lipid metabolism in individuals with obesity and dyslipidemia: A randomised, double-blind, and placebo-controlled trial. HUMAN NUTRITION & METABOLISM 2025; 40:200300. [DOI: 10.1016/j.hnm.2025.200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
2
|
Niu D, Wu X, Zhang Y, Wang X, Shiu-Hin Chan D, Jing S, Wong CY, Wang W, Leung CH. Tailoring obeticholic acid activity by iridium(III) complex conjugation to develop a farnesoid X receptor probe. J Adv Res 2025; 71:307-316. [PMID: 39490736 DOI: 10.1016/j.jare.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is a crucial regulator in the intestine, maintaining bile acid homeostasis. Inhibiting intestinal FXR shows promise in managing inflammatory bowel and liver diseases by reducing bile acid accumulation. Additionally, changes in FXR expression could serve as a potential biomarker for intestinal diseases. Therefore, developing an imaging probe for FXR holds significant potential for the early detection, simultaneous treatment, and monitoring of FXR-related diseases. OBJECTIVES The study aimed to develop a bioimaging probe for FXR by conjugating obeticholic acid (OCA), an FXR agonist, to an iridium(III) complex, and to investigate its application for targeting FXR in intestinal cells. METHODS OCA was conjugated to an iridium(III) complex to generate the novel complex 1. The effect of complex 1 on FXR activity, nuclear translocation, and downstream targets was investigated in intestinal epithelial cells using various biochemical and cellular assays. Additionally, the photophysical properties of complex 1 were assessed for FXR imaging. RESULTS Complex 1 retained the desirable photophysical properties for monitoring FXR in intestinal cells while reversing OCA's activity from agonistic to antagonistic. It disrupted FXR-RXR heterodimerization, inhibited FXR nuclear translocation, and downregulated downstream targets responsible for bile acid absorption, transport, and metabolism in intestinal epithelial cells. CONCLUSION The study successfully developed an imaging probe and modulator of FXR by conjugating OCA to an iridium(III) complex. Complex 1 retained the favorable photophysical properties of the iridium(III) complex, while reversing OCA's activity from agonistic to antagonistic. The findings highlight the exciting application of using metals to tailor the activity of nuclear receptor modulators in living systems.
Collapse
Affiliation(s)
- Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiaolei Wu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yuxin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | | | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
3
|
Shijing T, Yinping P, Qiong Y, Deshuai L, Liancai Z, Jun T, Shaoyong L, Bochu W. Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute. Microb Cell Fact 2024; 23:326. [PMID: 39623449 PMCID: PMC11613824 DOI: 10.1186/s12934-024-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste. Current technology has facilitated the industrial production of TUDCA from Tauodeoxycholic acid (TCDCA) using chicken bile powder. The review begins by examining the chemical composition, structure, and properties of bear bile, followed by an outline of the pharmacological mechanisms and manufacturing methods of TUDCA, covering chemical synthesis and biotransformation methods, and a discussion on their respective advantages and disadvantages. Finally, the process of converting chicken bile powder into bear bile powder using an immobilized 7α-Hydroxysteroid Dehydrogenases(7α-HSDH) with 7β- Hydroxysteroid Dehydrogenases (7β-HSDH) dual-enzyme system is thoroughly explained. The main objective of this review is to propose a comprehensive strategy for the complete synthesis of artificial bear bile from chicken bile within a controlled laboratory setting.
Collapse
Affiliation(s)
- Tang Shijing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Pan Yinping
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Yang Qiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhu Liancai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Liu Shaoyong
- Shanghai Kaibao Pharmaceutical Co., LTD., Shanghai, 200030, People's Republic of China
| | - Wang Bochu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
4
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
5
|
Li X, Kong Y, Ren Y, Li Y, Xu J, Zhan Y, Zhou S, Yang F, Xu T, Wang X. The impact of maternal intrahepatic cholestasis during pregnancy on the growth trajectory of offspring: a population-based nested case‒control cohort study. BMC Pregnancy Childbirth 2024; 24:413. [PMID: 38849722 PMCID: PMC11157880 DOI: 10.1186/s12884-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is associated with an increased risk of adverse fetal outcomes, yet its influence on offspring growth remains unclear. Our study dynamically tracks growth rates in children from ICP and healthy mothers and investigates the link between maternal liver function and developmental abnormalities in offspring. METHOD Our case‒control study involved 97 women with ICP and 152 with uncomplicated pregnancies nested in a cohort of their offspring, including 50 from the ICP group and 87 from the uncomplicated pregnancy group. We collected pediatric growth and development data, with a maximum follow-up duration of 36 months. Stratified analyses of children's height, weight, and head circumference were conducted, and Spearman's rank correlation was applied to examine the relationships between maternal serological markers and pediatric growth metrics. RESULT Maternal liver and renal functions, along with serum lipid profiles, significantly differed between the ICP and normal groups. In the ICP group, the offspring showed elevated alanine aminotransferase (ALT), direct bilirubin (DBIT), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein B (APOB) levels. Notably, the length-for-age z score (LAZ), weight-for-age z score (WAZ), and head circumference-for-age z score (HCZ) were lower in ICP offspring compared with those from normal pregnancies within the 1- to 12-month age range (P < 0.05). However, no significant differences in LAZ, weight-for-length z score (WLZ), BMI-for-age z score (BAZ), or HCZ were observed between groups in the 13- to 36-month age range. Maternal maximum lactate dehydrogenase (LDH) and total bile acids (TBA) levels during pregnancy were inversely correlated with LAZ and WAZ in the first year. Furthermore, offspring of mothers with ICP exhibited a greater incidence of stunting (24% vs. 6.9%, P = 0.004) and abnormal HCZ (14% vs. 3.7%, P = 0.034). CONCLUSIONS Growth disparities in offspring of ICP-affected pregnancies were most significant within the 1- to 12-month age range. During this period, maximum maternal LDH and TBA levels were negatively correlated with LAZ and WAZ values of offspring. The observation of similar growth rates between ICP and control group offspring from 13 to 36 months suggested catch-up growth in the ICP group.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yao Kong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yuxin Ren
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Yaqian Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yongchi Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Fan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
- Department of Child Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tingting Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Sadowska A, Poniedziałek-Czajkowska E, Mierzyński R. The Role of the FGF19 Family in the Pathogenesis of Gestational Diabetes: A Narrative Review. Int J Mol Sci 2023; 24:17298. [PMID: 38139126 PMCID: PMC10743406 DOI: 10.3390/ijms242417298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications. Understanding the pathogenesis and appropriate diagnosis of GDM enables the implementation of early interventions during pregnancy that reduce the risk of maternal and fetal complications. At the same time, it provides opportunities to prevent diabetes, metabolic syndrome, and cardiovascular diseases in women with GDM and their offspring in the future. Fibroblast growth factors (FGFs) represent a heterogeneous family of signaling proteins which play a vital role in cell proliferation and differentiation, repair of damaged tissues, wound healing, angiogenesis, and mitogenesis and also affect the regulation of carbohydrate, lipid, and hormone metabolism. Abnormalities in the signaling function of FGFs may lead to numerous pathological conditions, including metabolic diseases. The FGF19 subfamily, also known as atypical FGFs, which includes FGF19, FGF21, and FGF23, is essential in regulating metabolic homeostasis and acts as a hormone while entering the systemic circulation. Many studies have pointed to the involvement of the FGF19 subfamily in the pathogenesis of metabolic diseases, including GDM, although the results are inconclusive. FGF19 and FGF21 are thought to be associated with insulin resistance, an essential element in the pathogenesis of GDM. FGF21 may influence placental metabolism and thus contribute to fetal growth and metabolism regulation. The observed relationship between FGF21 and increased birth weight could suggest a potential role for FGF21 in predicting future metabolic abnormalities in children born to women with GDM. In this group of patients, different mechanisms may contribute to an increased risk of cardiovascular diseases in women in later life, and FGF23 appears to be their promising early predictor. This study aims to present a comprehensive review of the FGF19 subfamily, emphasizing its role in GDM and predicting its long-term metabolic consequences for mothers and their offspring.
Collapse
Affiliation(s)
| | - Elżbieta Poniedziałek-Czajkowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland; (A.S.); (R.M.)
| | | |
Collapse
|
7
|
Peng C, Wu DD, Ren JL, Peng ZL, Ma Z, Wu W, Lv Y, Wang Z, Deng C, Jiang K, Parkinson CL, Qi Y, Zhang ZY, Li JT. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023; 186:2959-2976.e22. [PMID: 37339633 DOI: 10.1016/j.cell.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.
Collapse
Affiliation(s)
- Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifei Ma
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; College of Life Science, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cao Deng
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 610000, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | | | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
| |
Collapse
|
8
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
9
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
10
|
Xie H, Wang R, Xie L, Wang X, Liu C. Study on the pathogenesis and prevention strategies of kidney stones based on GC-MS combined with metabolic pathway analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9387. [PMID: 36039746 DOI: 10.1002/rcm.9387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Most kidney stone composition analyses include organic compounds, and only few organic volatile compounds have been reported. METHODS In the present study, a novel approach for studying the pathogenesis and prevention of kidney stones was established. First, common organic volatile compounds were detected using gas chromatography-mass spectrometry (GC-MS) in 137 kidney stone samples. The Kyoto Encyclopedia of Genes and Genomes database and MetaboAnalyst 5.0 software were then used to analyze the metabolic pathways associated with the development of kidney stones. RESULTS The metabolic pathway analysis of the common component cholesterol revealed that two metabolic pathways, the steroid biosynthesis pathway and the primary bile acid biosynthesis pathway, were closely associated with the formation of kidney stones. The pretreatment process for stone analysis, including the solvent type, solvent volume, and extraction time, was optimized to improve the detection efficiency. The calibration curve was y = 756 299x - 8 000 000, with a correlation coefficient (r) of 0.9992, which was obtained over the concentration range of 10-500 μg ml-1 of cholesterol. The recovery values of cholesterol ranged from 93.34% to 94.67%, 96.98% to 99.23%, and 87.27% to 93.00% when spiked with 0.75, 1.00, and 1.25 μg, respectively, with a relative standard deviation of no less than 3.18%. Finally, the content of common compounds was determined in 37 renal stone samples using the modified GC-MS method. CONCLUSIONS The common organic volatile compound in the kidney stone samples detected using GC-MS was cholesterol, and the steroid biosynthesis and primary bile acid biosynthesis pathways were determined to be closely associated with the formation of kidney stones. The GC-MS method for detecting cholesterol in kidney stones was optimized for efficiency and accuracy.
Collapse
Affiliation(s)
- Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Rui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xianhua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Liu Y, Kang W, Liu S, Li J, Liu J, Chen X, Gan F, Huang K. Gut microbiota-bile acid-intestinal Farnesoid X receptor signaling axis orchestrates cadmium-induced liver injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157861. [PMID: 35934034 DOI: 10.1016/j.scitotenv.2022.157861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a widely prevalent environmental pollutant that accumulates in the liver and induces liver injury. The mechanism of Cd-induced liver injury remains elusive. Our study aimed to clarify the mechanism by which changes in the gut microbiota contribute to Cd-induced liver injury. Here, a murine model of liver injury induced by chronic Cd exposure was used. Liver injury was assessed by biochemistry and histopathology. Expression profiles of genes involved in bile acid (BA) homeostasis, inflammation and injury were assessed via Realtime-PCR and Western-blot. 16S rRNA gene sequencing and mass spectrometry-based metabolomics were used to investigate changes in the gut microbiota and its metabolites in the regulation of Cd-induced liver injury. Here, we showed that Cd exposure induced hepatic ductular proliferation, hepatocellular damage and inflammatory infiltration in mice. Cd exposure induced gut microbiota dysbiosis and reduced the fecal bile salt hydrolase activity leading to an increase of tauro-β-muricholic acid levels in the intestine. Cd exposure decreased intestine FXR/FGF-15 signaling and promoted hepatic BA synthesis. Furthermore, the mice receiving fecal microbiota transplantation from Cd-treated mice showed reduced intestinal FXR/FGF-15 signaling, increased hepatic BA synthesis, and liver injury. However, the depletion of the commensal microbiota by antibiotics failed to change these indices in Cd-treated mice. Finally, the administration of the intestine-restricted FXR agonist fexaramine attenuated the liver injury, improved the intestinal barrier, and decreased hepatic BA synthesis in the Cd-treated mice. Our study identified a new mechanism of Cd-induced liver injury. Cd-induced gut microbiota dysbiosis, decreased feces BSH activity, and increased intestinal T-βMCA levels led to an inhibition of intestinal FXR/FGF-15 signaling and an increase in hepatic BA synthesis, ultimately facilitating the development of hepatic ductular proliferation, inflammation, and injury in mice. This study expands our understanding of the health hazards caused by environmental Cd pollution.
Collapse
Affiliation(s)
- Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
12
|
Guthrie G, Vonderohe C, Burrin D. Fibroblast growth factor 15/19 expression, regulation, and function: An overview. Mol Cell Endocrinol 2022; 548:111617. [PMID: 35301051 PMCID: PMC9038700 DOI: 10.1016/j.mce.2022.111617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Since the discovery of fibroblast growth factor (FGF)-19 over 20 years ago, our understanding of the peptide and its role in human biology has moved forward significantly. A member of a superfamily of paracrine growth factors regulating embryonic development, FGF19 is unique in that it is a dietary-responsive endocrine hormone linked with bile acid homeostasis, glucose and lipid metabolism, energy expenditure, and protein synthesis during the fed to fasted state. FGF19 achieves this through targeting multiple tissues and signaling pathways within those tissues. The diverse functional capabilities of FGF19 is due to the unique structural characteristics of the protein and its receptor binding in various cell types. This review will cover the current literature on the protein FGF19, its target receptors, and the biological pathways they target through unique signaling cascades.
Collapse
Affiliation(s)
- Greg Guthrie
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Caitlin Vonderohe
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States.
| |
Collapse
|
13
|
Physiological and pathophysiological role of endocrine fibroblast growth factors. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The endocrine subfamily of fibroblast growth factors (FGF) includes three factors: FGF19, FGF21, FGF23. They act on distal tissues through FGF receptors (FGFRs). The FGFR activation requires two cofactors: α- and β-Klotho, which are structurally related single-pass transmembrane proteins. The endocrine FGFs regulate various metabolic processes involved in the regulation of glucose and lipid metabolism as well as bile acid circulation, vitamin D modulation, and phosphate homeostasis. The FGF-FGFR dysregulation is widely implicated in the pathogenesis of various disorders. Significant alterations in plasma FGF concentration are associated with the most prevalent chronic diseases, including dyslipidemia, type 2 diabetes, cardiovascular diseases, obesity, non-alcoholic fatty liver disease, diseases of the biliary tract, chronic kidney disease, inflammatory bowel disease, osteomalacia, various malignancies, and depression. Therefore, the endocrine FGFs may serve as disease predictors or biomarkers, as well as potential therapeutic targets. Currently, numerous analogues and inhibitors of endocrine FGFs are under development for treatment of various disorders, and recently, a human monoclonal antibody against FGF23 has been approved for treatment of X-linked hypophosphatemia. The aim of this review is to summarize the current data on physiological and pathophysiological actions of the endocrine FGF subfamily and recent research concerning the therapeutic potential of the endocrine FGF pathways.
Collapse
|
14
|
Kozuka C, Efthymiou V, Sales VM, Zhou L, Osataphan S, Yuchi Y, Chimene-Weiss J, Mulla C, Isganaitis E, Desmond J, Sanechika S, Kusuyama J, Goodyear L, Shi X, Gerszten RE, Aguayo-Mazzucato C, Carapeto P, Teixeira SD, Sandoval D, Alonso-Curbelo D, Wu L, Qi J, Patti ME. Bromodomain Inhibition Reveals FGF15/19 As a Target of Epigenetic Regulation and Metabolic Control. Diabetes 2022; 71:1023-1033. [PMID: 35100352 PMCID: PMC9044127 DOI: 10.2337/db21-0574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022]
Abstract
Epigenetic regulation is an important factor in glucose metabolism, but underlying mechanisms remain largely unknown. Here we investigated epigenetic control of systemic metabolism by bromodomain-containing proteins (Brds), which are transcriptional regulators binding to acetylated histone, in both intestinal cells and mice treated with the bromodomain inhibitor JQ-1. In vivo treatment with JQ-1 resulted in hyperglycemia and severe glucose intolerance. Whole-body or tissue-specific insulin sensitivity was not altered by JQ-1; however, JQ-1 treatment reduced insulin secretion during both in vivo glucose tolerance testing and ex vivo incubation of isolated islets. JQ-1 also inhibited expression of fibroblast growth factor (FGF) 15 in the ileum and decreased FGF receptor 4-related signaling in the liver. These adverse metabolic effects of Brd4 inhibition were fully reversed by in vivo overexpression of FGF19, with normalization of hyperglycemia. At a cellular level, we demonstrate Brd4 binds to the promoter region of FGF19 in human intestinal cells; Brd inhibition by JQ-1 reduces FGF19 promoter binding and downregulates FGF19 expression. Thus, we identify Brd4 as a novel transcriptional regulator of intestinal FGF15/19 in ileum and FGF signaling in the liver and a contributor to the gut-liver axis and systemic glucose metabolism.
Collapse
Affiliation(s)
- Chisayo Kozuka
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Vissarion Efthymiou
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Vicencia M. Sales
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Liyuan Zhou
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
| | - Soravis Osataphan
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Yixing Yuchi
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeremy Chimene-Weiss
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
| | - Christopher Mulla
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Elvira Isganaitis
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jessica Desmond
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
| | - Suzuka Sanechika
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
| | - Joji Kusuyama
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Laurie Goodyear
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Xu Shi
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Robert E. Gerszten
- Harvard Medical School, Boston, MA
- Cardiology Division, Beth Israel Deaconess Medical Center, Boston, MA
| | - Cristina Aguayo-Mazzucato
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Priscila Carapeto
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | | - Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lei Wu
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Jun Qi
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Mary-Elizabeth Patti
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
16
|
Kim Y, Lee S, Kim S, Kim TY, Lee SH, Chang JH, Kweon MN. LKB1 in Intestinal Epithelial Cells Regulates Bile Acid Metabolism by Modulating FGF15/19 Production. Cell Mol Gastroenterol Hepatol 2021; 13:1121-1139. [PMID: 34973477 PMCID: PMC8873961 DOI: 10.1016/j.jcmgh.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Liver kinase B1 (LKB1) is a master upstream protein kinase involved in nutrient sensing and glucose and lipid metabolism in many tissues; however, its metabolic role in intestinal epithelial cells (IEC) remains unclear. In this study, we investigated the regulatory role of LKB1 on bile acid (BA) homeostasis. METHODS We generated mice with IEC-specific deletion of LKB1 (LKB1ΔIEC) and analyzed the characteristics of IEC development and BA level. In vitro assays with small interfering RNA, liquid chromatography/mass spectrometry, metagenomics, and RNA-sequencing were used to elucidate the regulatory mechanisms underlying perturbed BA homeostasis. RESULTS LKB1 deletion resulted in abnormal differentiation of secretory cell lineages. Unexpectedly, BA pool size increased substantially in LKB1ΔIEC mice. A significant reduction of the farnesoid X receptor (FXR) target genes, including fibroblast growth factor 15/19 (FGF15/19), known to inhibit BA synthesis, was found in the small intestine (SI) ileum of LKB1ΔIEC mice. We observed that LKB1 depletion reduced FGF15/19 protein level in human IECs in vitro. Additionally, a lower abundance of bile salt hydrolase-producing bacteria and elevated levels of FXR antagonist (ie, T-βMCA) were observed in the SI of LKB1ΔIEC mice. Moreover, LKB1ΔIEC mice showed impaired conversion of retinol to retinoic acids in the SI ileum. Subsequently, vitamin A treatment failed to induce FGF15 production. Thus, LKB1ΔIEC mice fed with a high-fat diet showed improved glucose tolerance and increased energy expenditure. CONCLUSIONS LKB1 in IECs manages BA homeostasis by controlling FGF15/19 production.
Collapse
Affiliation(s)
- Yeji Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sohyeon Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea,Correspondence Address correspondence to: Dr Mi-Na Kweon, Asan Medical Center, Department of Convergence Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505 Republic of Korea. tel: 82-2-3010-2096.
| |
Collapse
|
17
|
Koelfat KV, Picot D, Chang X, Desille‐Dugast M, van Eijk HM, van Kuijk SM, Lenicek M, Layec S, Carsin M, Dussaulx L, Seynhaeve E, Trivin F, Lacaze L, Thibault R, Schaap FG, Olde Damink SW. Chyme Reinfusion Restores the Regulatory Bile Salt-FGF19 Axis in Patients With Intestinal Failure. Hepatology 2021; 74:2670-2683. [PMID: 34133768 PMCID: PMC8596508 DOI: 10.1002/hep.32017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Automated chyme reinfusion (CR) in patients with intestinal failure (IF) and a temporary double enterostomy (TDE) restores intestinal function and protects against liver injury, but the mechanisms are incompletely understood. The aim was to investigate whether the beneficial effects of CR relate to functional recovery of enterohepatic signaling through the bile salt-FGF19 axis. APPROACH AND RESULTS Blood samples were collected from 12 patients, 3 days before, at start, and 1, 3, 5, and 7 weeks after CR initiation. Plasma FGF19, total bile salts (TBS), 7-α-hydroxy-4-cholesten-3-one (C4; a marker of bile salt synthesis), citrulline (CIT), bile salt composition, liver tests, and nutritional risk indices were determined. Paired small bowel biopsies prior to CR and after 21 days were taken, and genes related to bile salt homeostasis and enterocyte function were assessed. CR induced an increase in plasma FGF19 and decreased C4 levels, indicating restored regulation of bile salt synthesis through endocrine FGF19 action. TBS remained unaltered during CR. Intestinal farnesoid X receptor was up-regulated after 21 days of CR. Secondary and deconjugated bile salt fractions were increased after CR, reflecting restored microbial metabolism of host bile salts. Furthermore, CIT and albumin levels gradually rose after CR, while abnormal serum liver tests normalized after CR, indicating restored intestinal function, improved nutritional status, and amelioration of liver injury. CR increased gene transcripts related to enterocyte number, carbohydrate handling, and bile salt homeostasis. Finally, the reciprocal FGF19/C4 response after 7 days predicted the plasma CIT time course. CONCLUSIONS CR in patients with IF-TDE restored bile salt-FGF19 signaling and improved gut-liver function. Beneficial effects of CR are partly mediated by recovery of the bile salt-FGF19 axis and subsequent homeostatic regulation of bile salt synthesis.
Collapse
Affiliation(s)
- Kiran V.K. Koelfat
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Denis Picot
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Xinwei Chang
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Mireille Desille‐Dugast
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Hans M. van Eijk
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Sander M.J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology AssessmentMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Martin Lenicek
- Institute of Medical Biochemistry and Laboratory Diagnostics1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Sabrina Layec
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Marie Carsin
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Laurence Dussaulx
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Eloi Seynhaeve
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Florence Trivin
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Laurence Lacaze
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Ronan Thibault
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Frank G. Schaap
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Steven W.M. Olde Damink
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| |
Collapse
|
18
|
Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Front Cell Infect Microbiol 2021; 11:634780. [PMID: 34490132 PMCID: PMC8417472 DOI: 10.3389/fcimb.2021.634780] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, defined as the presence of excess fat or lipids in the blood, has been considered as a high-risk factor and key indicator of many metabolic diseases. The gut microbiota has been reported playing a vital role in regulating host lipid metabolism. The pathogenic role of gut microbiota in the development of hyperlipidemia has been revealed through fecal microbiota transplantation experiment to germ-free mice. The effector mechanism of microbiota-related metabolites such as bile acids, lipopolysaccharide, and short-chain fatty acids in the regulation of hyperlipidemia has been partially unveiled. Moreover, studies on gut-microbiota-targeted hyperlipidemia interventions, including the use of prebiotics, probiotics, fecal microbiota transplantation, and natural herbal medicines, also have shown their efficacy in the treatment of hyperlipidemia. In this review, we summarize the relationship between gut microbiota and hyperlipidemia, the impact of gut microbiota and microbiota-related metabolites on the development and progression of hyperlipidemia, and the potential therapeutic management of hyperlipidemia targeted at gut microbiota.
Collapse
Affiliation(s)
- Xiaokang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
19
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
20
|
Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.
Collapse
|
21
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
22
|
Wang LX, Frey MR, Kohli R. The Role of FGF19 and MALRD1 in Enterohepatic Bile Acid Signaling. Front Endocrinol (Lausanne) 2021; 12:799648. [PMID: 35116006 PMCID: PMC8804323 DOI: 10.3389/fendo.2021.799648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bile acids are the catabolic end products of cholesterol metabolism that are best known for their role in the digestion of lipids. In the last two decades, extensive investigation has shown bile acids to be important signaling molecules in metabolic processes throughout the body. Bile acids are ligands that can bind to several receptors, including the nuclear receptor farnesoid X receptor (FXR) in ileal enterocytes. FXR activation induces the expression of fibroblast growth factor (FGF) 15/19, a hormone that can modulate bile acid levels, repress gluconeogenesis and lipogenesis, and promote glycogen synthesis. Recent studies have described a novel intestinal protein, MAM and LDL Receptor Class A Domain containing 1 (MALRD1) that positively affects FGF15/19 levels. This signaling pathway presents an exciting target for treating metabolic disease and bile acid-related disorders.
Collapse
|
23
|
Hagenaars SP, Coleman JRI, Choi SW, Gaspar H, Adams MJ, Howard DM, Hodgson K, Traylor M, Air TM, Andlauer TFM, Arolt V, Baune BT, Binder EB, Blackwood DHR, Boomsma DI, Campbell A, Cearns M, Czamara D, Dannlowski U, Domschke K, de Geus EJC, Hamilton SP, Hayward C, Hickie IB, Hottenga JJ, Ising M, Jones I, Jones L, Kutalik Z, Lucae S, Martin NG, Milaneschi Y, Mueller-Myhsok B, Owen MJ, Padmanabhan S, Penninx BWJH, Pistis G, Porteous DJ, Preisig M, Ripke S, Shyn SI, Sullivan PF, Whitfield JB, Wray NR, McIntosh AM, Deary IJ, Breen G, Lewis CM. Genetic comorbidity between major depression and cardio-metabolic traits, stratified by age at onset of major depression. Am J Med Genet B Neuropsychiatr Genet 2020; 183:309-330. [PMID: 32681593 PMCID: PMC7991693 DOI: 10.1002/ajmg.b.32807] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/02/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023]
Abstract
It is imperative to understand the specific and shared etiologies of major depression and cardio-metabolic disease, as both traits are frequently comorbid and each represents a major burden to society. This study examined whether there is a genetic association between major depression and cardio-metabolic traits and if this association is stratified by age at onset for major depression. Polygenic risk scores analysis and linkage disequilibrium score regression was performed to examine whether differences in shared genetic etiology exist between depression case control status (N cases = 40,940, N controls = 67,532), earlier (N = 15,844), and later onset depression (N = 15,800) with body mass index, coronary artery disease, stroke, and type 2 diabetes in 11 data sets from the Psychiatric Genomics Consortium, Generation Scotland, and UK Biobank. All cardio-metabolic polygenic risk scores were associated with depression status. Significant genetic correlations were found between depression and body mass index, coronary artery disease, and type 2 diabetes. Higher polygenic risk for body mass index, coronary artery disease, and type 2 diabetes was associated with both early and later onset depression, while higher polygenic risk for stroke was associated with later onset depression only. Significant genetic correlations were found between body mass index and later onset depression, and between coronary artery disease and both early and late onset depression. The phenotypic associations between major depression and cardio-metabolic traits may partly reflect their overlapping genetic etiology irrespective of the age depression first presents.
Collapse
Affiliation(s)
- Saskia P Hagenaars
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Shing Wan Choi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Héléna Gaspar
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Karen Hodgson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Tracy M Air
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Douglas H R Blackwood
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Dorret I Boomsma
- Netherlands Twin Register, Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Archie Campbell
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Micah Cearns
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eco J C de Geus
- Netherlands Twin Register, Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Steven P Hamilton
- Department of Psychiatry, Kaiser Permanente Northern California, San Francisco, California, USA
| | - Caroline Hayward
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jouke Jan Hottenga
- Netherlands Twin Register, Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Ian Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lisa Jones
- Department of Psychological Medicine, University of Worcester, Worcester, UK
| | - Zoltan Kutalik
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Nicholas G Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience Research Institutes, Amsterdam UMC/Vrije Universiteit, Amsterdam, The Netherlands
| | - Bertram Mueller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Sandosh Padmanabhan
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience Research Institutes, Amsterdam UMC/Vrije Universiteit, Amsterdam, The Netherlands
| | - Giorgio Pistis
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David J Porteous
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Maryland, USA
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Stanley I Shyn
- Behavioral Health Services, Kaiser Permanente Washington, Seattle, Washington, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John B Whitfield
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| |
Collapse
|
24
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
25
|
Wang Q, Hao C, Yao W, Zhu D, Lu H, Li L, Ma B, Sun B, Xue D, Zhang W. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol 2020; 20:59. [PMID: 32143645 PMCID: PMC7060658 DOI: 10.1186/s12876-020-01195-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The gut microbiota participates in the metabolism of substances and energy, promotes the development and maturation of the immune system, forms the mucosal barrier, and protects the host from pathogen attacks. Although the pathogenesis of cholesterol gallstones is still not clear, studies have suggested that gut microbiota dysbiosis plays an important role in their formation. METHODS Microbial DNA from faeces of normal control patients and those of patients with calculi was subjected to 16S rRNA gene sequencing to detect gene expression changes in intestinal microbes. ELISA kits were used to measure free bile acids, secondary bile acids and coprostanol according to the manufacturer's instructions. The relationship between flora and their metabolites was then analysed. RESULTS In the gallstone group, the diversity of intestinal bacteria and the abundances of certain phylogroups were significantly decreased (p < 0.05), especially Firmicutes (p < 0.05), the largest phylum represented by the gut microbiota. This study found an increase in free bile acids (p < 0.001) and secondary bile acids (p < 0.01) in the enterohepatic circulation. Bile salt hydrolase activity was not related to the abundances of BSH-active bacteria. 7a-dehydroxylating gut bacteria were significantly increased (p < 0.01), whereas cholesterol-lowering bacteria were significantly reduced (p < 0.05). The Ruminococcus gnavus group could be used as a biomarker to distinguish the gallstone group from the control group. CONCLUSION We conclude that intestinal flora imbalance affects bile acid and cholesterol metabolism and is associated with gallstone formation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Chenjun Hao
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Wenchao Yao
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Defu Zhu
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Haifeng Lu
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Long Li
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Biao Ma
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Bei Sun
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| | - Dongbo Xue
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China.
| | - Weihui Zhang
- Department of General Surgery, Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Harbin, 150001, China
| |
Collapse
|
26
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
27
|
Xie Y, Matsumoto H, Kennedy S, Newberry EP, Moritz W, DeBosch BJ, Moley KH, Rubin DC, Warner BW, Kau AL, Tarr PI, Wylie TN, Wylie KM, Davidson NO. Impaired Chylomicron Assembly Modifies Hepatic Metabolism Through Bile Acid-Dependent and Transmissible Microbial Adaptations. Hepatology 2019; 70:1168-1184. [PMID: 31004524 PMCID: PMC6783349 DOI: 10.1002/hep.30669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
The mechanisms by which alterations in intestinal bile acid (BA) metabolism improve systemic glucose tolerance and hepatic metabolic homeostasis are incompletely understood. We examined metabolic adaptations in mice with conditional intestinal deletion of the abetalipoproteinemia (ABL) gene microsomal triglyceride transfer protein (Mttp-IKO), which blocks chylomicron assembly and impairs intestinal lipid transport. Mttp-IKO mice exhibit improved hepatic glucose metabolism and augmented insulin signaling, without weight loss. These adaptations included decreased BA excretion, increased pool size, altered BA composition, and increased fibroblast growth factor 15 production. Mttp-IKO mice absorb fructose normally but are protected against dietary fructose-induced hepatic steatosis, without weight loss or changes in energy expenditure. In addition, Mttp-IKO mice exhibit altered cecal microbial communities, both at baseline and following fructose feeding, including increased abundance of Bacteroides and Lactobacillus genera. Transplantation of cecal microbiota from chow-fed Mttp-IKO mice into antibiotic-treated wild-type recipients conferred transmissible protection against fructose-induced hepatic steatosis in association with a bloom in Akkermansia and increased Clostridium XIVa genera, whose abundance was positively correlated with fecal coprostanol and total neutral sterol excretion in recipient mice. However, antibiotic-treated Mttp-IKO mice were still protected against fructose-induced hepatic steatosis, suggesting that changes in microbiota are not required for this phenotype. Nevertheless, we found increased abundance of fecal Akkermansia from two adult ABL subjects with MTTP mutations compared to their heterozygous parents and within the range noted in six healthy control subjects. Furthermore, Akkermansia abundance across all subjects was positively correlated with fecal coprostanol excretion. Conclusion: The findings collectively suggest multiple adaptive pathways of metabolic regulation following blocked chylomicron assembly, including shifts in BA signaling and altered microbial composition that confer a transmissible phenotype.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hitoshi Matsumoto
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William Moritz
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah C. Rubin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brad W. Warner
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Kau
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact
| |
Collapse
|
28
|
Abstract
Inflammation of the blood vessels that serve the central nervous system has been increasingly identified as an early and possibly initiating event among neurodegenerative conditions such as Alzheimer's disease and related dementias. However, the causal relevance of vascular inflammation to major retinal degenerative diseases is unresolved. Here, we describe how genetics, aging-associated changes, and environmental factors contribute to vascular inflammation in age-related macular degeneration, diabetic retinopathy, and glaucoma. We highlight the importance of mouse models in studying the underlying mechanisms and possible treatments for these diseases. We conclude that data support vascular inflammation playing a central if not primary role in retinal degenerative diseases, and this association should be a focus of future research.
Collapse
Affiliation(s)
- Ileana Soto
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, USA;
| | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA; .,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
29
|
Kim YC, Byun S, Seok S, Guo G, Xu HE, Kemper B, Kemper JK. Small Heterodimer Partner and Fibroblast Growth Factor 19 Inhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption. Gastroenterology 2019; 156:1052-1065. [PMID: 30521806 PMCID: PMC6409196 DOI: 10.1053/j.gastro.2018.11.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-α- and -β-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Grace Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - H Eric Xu
- Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
30
|
Zhang P, Csaki LS, Ronquillo E, Baufeld LJ, Lin JY, Gutierrez A, Dwyer JR, Brindley DN, Fong LG, Tontonoz P, Young SG, Reue K. Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. J Clin Invest 2018; 129:281-295. [PMID: 30507612 DOI: 10.1172/jci122595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
The lipin phosphatidic acid phosphatase (PAP) enzymes are required for triacylglycerol (TAG) synthesis from glycerol 3-phosphate in most mammalian tissues. The 3 lipin proteins (lipin 1, lipin 2, and lipin 3) each have PAP activity, but have distinct tissue distributions, with lipin 1 being the predominant PAP enzyme in many metabolic tissues. One exception is the small intestine, which is unique in expressing exclusively lipin 2 and lipin 3. TAG synthesis in small intestinal enterocytes utilizes 2-monoacylglycerol and does not require the PAP reaction, making the role of lipin proteins in enterocytes unclear. Enterocyte TAGs are stored transiently as cytosolic lipid droplets or incorporated into lipoproteins (chylomicrons) for secretion. We determined that lipin enzymes are critical for chylomicron biogenesis, through regulation of membrane phospholipid composition and association of apolipoprotein B48 with nascent chylomicron particles. Lipin 2/3 deficiency caused phosphatidic acid accumulation and mammalian target of rapamycin complex 1 (mTORC1) activation, which were associated with enhanced protein levels of a key phospholipid biosynthetic enzyme (CTP:phosphocholine cytidylyltransferase α) and altered membrane phospholipid composition. Impaired chylomicron synthesis in lipin 2/3 deficiency could be rescued by normalizing phospholipid synthesis levels. These data implicate lipin 2/3 as a control point for enterocyte phospholipid homeostasis and chylomicron biogenesis.
Collapse
Affiliation(s)
- Peixiang Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lauren S Csaki
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emilio Ronquillo
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lynn J Baufeld
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jason Y Lin
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alexis Gutierrez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer R Dwyer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Loren G Fong
- Department of Medicine, Division of Cardiology, and
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, and.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
31
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
32
|
Bustos AY, Font de Valdez G, Fadda S, Taranto MP. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 2018; 112:250-262. [DOI: 10.1016/j.foodres.2018.06.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
|
33
|
Abstract
Semisynthetic bile acid (BA) obeticholic acid, a potent farnesoid X receptor (FXR) agonist, exhibited beneficial effects on nonalcoholic fatty liver disease (NAFLD). Obeticholic acid, however, did not cause a resolution of nonalcoholic steatohepatitis. Here we discuss several prominent knowledge gaps in BA/FXR biology. Firstly, although many groups reported elevated serum BA levels, there are reports of decreased or normal serum BA levels in NAFLD, underlining the complexity of BA regulation by environmental and genetic factors. Secondly, conflicting data exist in animal studies regarding the effects of FXR signaling on obesity and associated metabolic abnormalities. Thirdly, it remains obscure how the gut microbiome and the BA pool interact and influence the pathogenesis of NAFLD. Lastly, it is not known how FXR-mediated signaling interact with G protein-coupled BA receptor 1-mediated signaling. Answering these questions may lead to an improved pharmaceutical intervention for NAFLD targeting the FXR signaling pathway.
Collapse
|
34
|
Abstract
In most cholestatic liver diseases the primary cholestasis-causing lesions are located in the biliary tree and may be of (auto)immune origin. Bile salts are responsible for the secondary toxic consequences. Bile salt and nuclear hormone directed therapies primarily aim at improving this secondary toxic injury. In primary biliary cholangitis, trials show statistically significant responses on biochemical endpoints. Preclinical studies suggest that FXR- and PPAR-agonists, inhibitors of the apical sodium-dependent bile salt transporter (ASBT-inhibitors) and the C23 UDCA derivative nor-UDCA are promising agents for the treatment of primary sclerosing cholangitis (PSC). Area covered: Pharmaceuticals that interfere with bile salt signaling in humans for the treatment of chronic cholestatic liver disease are reviewed. Expert commentary: Nuclear hormone receptors, bile salt transport proteins and receptors provide targets for novel therapies of cholestatic liver disease. These drugs show positive results on biochemical endpoints. For histological endpoints, survival and transplant-free survival, long-term trials are needed. For relief of symptoms, such as fatigue and pruritus, these drugs have yet to prove their value.
Collapse
Affiliation(s)
- Peter L M Jansen
- a Maastricht Center for Systems Biology (MaCSBio) , Maastricht University , Maastricht , The Netherlands.,b Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
35
|
Li Q, Zhao Q, Zhang C, Zhang P, Hu A, Zhang L, Schroder PM, Ma Y, Guo Z, Zhu X, He X. The ileal FGF15/19 to hepatic FGFR4 axis regulates liver regeneration after partial hepatectomy in mice. J Physiol Biochem 2018; 74:247-260. [PMID: 29468415 DOI: 10.1007/s13105-018-0610-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8-12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.
Collapse
Affiliation(s)
- Qiang Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China
| | - Chuanzhao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China
| | - Peng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China
| | - Longjuan Zhang
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Paul M Schroder
- University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China.
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, Guangzhou, 510080, China.
| |
Collapse
|
36
|
Lee JM, Ong JR, Vergnes L, de Aguiar Vallim TQ, Nolan J, Cantor RM, Walters JRF, Reue K. Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants. J Lipid Res 2018; 59:429-438. [PMID: 29295820 DOI: 10.1194/jlr.m078279] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/29/2017] [Indexed: 01/12/2023] Open
Abstract
Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1-null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1-/- mice on the C57BL/6J genetic background. C57BL/6J Diet1-/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant (rs12256835) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Jessica M Lee
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Jessica R Ong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry and Division of Cardiology, University of California, Los Angeles, Los Angeles, CA
| | - Jonathan Nolan
- Department of Medicine, Section of Hepatology and Gastroenterology, Imperial College London and Imperial College Healthcare, London, United Kingdom
| | - Rita M Cantor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Julian R F Walters
- Department of Medicine, Section of Hepatology and Gastroenterology, Imperial College London and Imperial College Healthcare, London, United Kingdom
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA .,David Geffen School of Medicine, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
37
|
Termignoni-García F, Jaramillo-Correa JP, Chablé-Santos J, Liu M, Shultz AJ, Edwards SV, Escalante-Pliego P. Genomic footprints of adaptation in a cooperatively breeding tropical bird across a vegetation gradient. Mol Ecol 2017; 26:4483-4496. [DOI: 10.1111/mec.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/06/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Termignoni-García
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan P. Jaramillo-Correa
- Department of Evolutionary Ecology; Institute of Ecology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan Chablé-Santos
- Department of Zoology; Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma de Yucatán; Yucatán México
| | - Mark Liu
- Biodiversity Research Center; Academia Sinica; Taipei Nankang Taiwan
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Patricia Escalante-Pliego
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| |
Collapse
|
38
|
Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression. Biochem Pharmacol 2017; 142:194-203. [PMID: 28756207 DOI: 10.1016/j.bcp.2017.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Obesity has become a significant global health problem, and is a high risk factor for a variety of metabolic diseases. Fibroblast growth factor (FGF) 15 plays an important role in the regulation of metabolism. Xenobiotic-sensing nuclear receptors pregnane X receptor (PXR/NR1I2) and constitutive androstane receptor (CAR/NR1I3) play important roles in xenobiotic detoxification and metabolism, and also are involved in the regulation of energy metabolism. However, the effects that PXR and CAR have on the regulation of FGF15 are unknown. Here, we found that body weight, hepatic triglyceride levels, liver steatosis, and hepatic mRNA expression levels of cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1), the key enzymes in the bile acid classical synthesis pathway, were significantly decreased in high fat diet (HFD)-fed PXR knockout (KO) mice compared to HFD-fed wild-type mice. Interestingly, intestinal FGF15 expression levels were significantly elevated in HFD-fed PXR KO mice compared with HFD-fed wild-type mice. Additionally, serum total bile acid levels were significantly decreased in PXR KO mice than those in wild-type mice when fed a control diet or HFD. Total lipids in feces were significantly increased in HFD-fed PXR KO mice compared to HFD-fed wild-type mice. However, these alterations were not found in HFD-fed CAR KO mice. These results indicate that PXR deficiency improves HFD-induced obesity via induction of FGF15 expression, resulting in suppression of bile acid synthesis and reduction of lipid absorption, hepatic lipid accumulation and liver triglyceride levels. Our findings suggest that PXR may negatively regulate FGF15 expression and represent a potential therapeutic target for the treatment for metabolic disorders such as obesity.
Collapse
|
39
|
Alvarez-Sola G, Uriarte I, Latasa MU, Jimenez M, Barcena-Varela M, Santamaría E, Urtasun R, Rodriguez-Ortigosa C, Prieto J, Berraondo P, Fernandez-Barrena MG, Berasain C, Avila MA. Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1326-1334. [PMID: 28709961 DOI: 10.1016/j.bbadis.2017.06.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
The liver has an extraordinary regenerative capacity rapidly triggered upon injury or resection. This response is intrinsically adjusted in its initiation and termination, a property termed the "hepatostat". Several molecules have been involved in liver regeneration, and among them bile acids may play a central role. Intrahepatic levels of bile acids rapidly increase after resection. Through the activation of farnesoid X receptor (FXR), bile acids regulate their hepatic metabolism and also promote hepatocellular proliferation. FXR is also expressed in enterocytes, where bile acids stimulate the expression of fibroblast growth factor 15/19 (FGF15/19), which is released to the portal blood. Through the activation of FGFR4 on hepatocytes FGF15/19 regulates bile acids synthesis and finely tunes liver regeneration as part of the "hepatostat". Here we review the experimental evidences supporting the relevance of the FXR-FGF15/19-FGFR4 axis in liver regeneration and discuss potential therapeutic applications of FGF15/19 in the prevention of liver failure. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Gloria Alvarez-Sola
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Iker Uriarte
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Maria U Latasa
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Maddalen Jimenez
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Marina Barcena-Varela
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Carlos Rodriguez-Ortigosa
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Jesús Prieto
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Maite G Fernandez-Barrena
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Carmen Berasain
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain.
| | - Matías A Avila
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain.
| |
Collapse
|
40
|
Izaguirre M, Gil MJ, Monreal I, Montecucco F, Frühbeck G, Catalán V. The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes. Curr Diab Rep 2017; 17:43. [PMID: 28451950 DOI: 10.1007/s11892-017-0866-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Obesity and its associated metabolic diseases have reached epidemic proportions worldwide, reducing life expectancy and quality of life. Several drugs have been tested to treat these diseases but many of them have damaging side effects. Consequently, there is an urgent need to develop more effective therapies. Recently, endocrine fibroblast growth factors (FGFs) have become attractive targets in the treatment of metabolic diseases. This review summarizes their most important functions as well as FGF-based therapies for the treatment of obesity and type 2 diabetes (T2D). RECENT FINDINGS Recent studies demonstrate that circulating levels of FGF19 are reduced in obesity. In fact, exogenous FGF19 administration is associated with a reduction in food intake as well as with improvements in glycaemia. In contrast, FGF21 levels are elevated in subjects with abdominal obesity, insulin resistance and T2D, probably representing a compensatory response. Additionally, elevated levels of circulating FGF23 in individuals with obesity and T2D are reported in most clinical studies. Finally, increased FGF1 levels in obese patients associated with adipogenesis have been described. FGFs constitute important molecules in the treatment of metabolic diseases due to their beneficial effects on glucose and lipid metabolism. Among all members, FGF19 and FGF21 have demonstrated the ability to improve glucose, lipid and energy homeostasis, along with FGF1, which was recently discovered to have beneficial effects on metabolic homeostasis. Additionally, FGF23 may also play a role in insulin resistance or energy homeostasis beyond mineral metabolism control. These results highlight the relevant use of FGFs as potential biomarkers for the early diagnosis of metabolic diseases. In this regard, notable progress has been made in the development of FGF-based therapies and different approaches are being tested in different clinical trials. However, further studies are needed to determine their potential therapeutic use in the treatment of obesity and obesity-related comorbidities.
Collapse
Affiliation(s)
- Maitane Izaguirre
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - María J Gil
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Monreal
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
41
|
Chuang YH, Quach A, Absher D, Assimes T, Horvath S, Ritz B. Coffee consumption is associated with DNA methylation levels of human blood. Eur J Hum Genet 2017; 25:608-616. [PMID: 28198392 PMCID: PMC5437893 DOI: 10.1038/ejhg.2016.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
Beneficial health effects have been attributed to coffee consumption, but it is not yet known whether epigenetics may have a role in this process. Here we associate epigenome-wide DNA methylation levels to habitual coffee consumption from two studies with blood (2100 and 215 participants), and one with saliva samples (256 participants). Adjusting for age, gender, and blood cell composition, one CpG (cg21566642 near ALPPL2) surpassed genome-wide significance (P=3.7 × 10-10) and from among 10 additional CpGs significant at P≤5.0 × 10-6, six were located within 1500 bps of a transcriptional start site. Results for these 11 top-ranked CpGs remained significant after further adjusting for smoking. Also, methylation levels of another 135 CpGs were influenced by both coffee drinking and smoking (P≤1.0 × 10-7). Functional enrichment analysis suggested that coffee-associated CpGs were located near transcription factor binding (P=1.2 × 10-6) and protein kinase activity genes (P=2.9 × 10-5). Interestingly, when we stratified by menopausal hormone therapy (MHT), methylation differences with coffee consumption were observed only in women who never used MHT. We did not replicate any of the associations found in blood in our saliva samples, suggesting that coffee may affect DNA methylation levels in immune cells of the blood but not in saliva.
Collapse
Affiliation(s)
- Yu-Hsuan Chuang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Austin Quach
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Devin Absher
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Themistocles Assimes
- School of Medicine (Cardiovascular Medicine), Stanford University, Palo Alto, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Picard A, Soyer J, Berney X, Tarussio D, Quenneville S, Jan M, Grouzmann E, Burdet F, Ibberson M, Thorens B. A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion. Cell Rep 2016; 17:1795-1806. [PMID: 27829151 PMCID: PMC5120348 DOI: 10.1016/j.celrep.2016.10.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
The counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL) controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons, of the parasympathetic nerve, and lowered glucagon secretion. In contrast, silencing Fgf15 in the dorsomedial hypothalamus increased neuroglucopenia-induced glucagon secretion. These data identify hypothalamic Fgf15 as a regulator of glucagon secretion.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Josselin Soyer
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Quenneville
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Eric Grouzmann
- Service de Biomédicine, Laboratoire des Catécholamines et Peptides, Centre Hospitalier Universitaire Vaudois CHUV, 1011 Lausanne, Switzerland
| | - Frédéric Burdet
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Mark Ibberson
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Myeloid Cell-Specific Lipin-1 Deficiency Stimulates Endocrine Adiponectin-FGF15 Axis and Ameliorates Ethanol-Induced Liver Injury in Mice. Sci Rep 2016; 6:34117. [PMID: 27666676 PMCID: PMC5036185 DOI: 10.1038/srep34117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023] Open
Abstract
Lipin-1 is a phosphatidate phosphohydrolase (PAP) required for the generation of diacylglycerol during glycerolipid synthesis, and exhibits dual functions in the regulation of lipid metabolism. Lipin-1 has been implicated in the pathogenesis of alcoholic liver disease (ALD). In the present study, we assessed lipin-1 function in myeloid cells in ALD using a myeloid cell-specific lipin-1 knockout (mLipin-1KO) mouse model. Utilizing the Gao-binge ethanol feeding protocol, matched mLipin-1KO mice and littermate loxP control (WT) mice were pair-fed with either an ethanol-containing diet or an ethanol-free diet (control). Surprisingly, deletion of lipin-1 in myeloid cells dramatically attenuated liver inflammatory responses and ameliorated liver injury that would normally occur following the ethanol feeding protocol, but slightly exacerbated the ethanol-induced steatosis in mice. Mechanistically, myeloid cell-specific lipin-1 deficiency concomitantly increased the fat-derived adiponectin and ileum-derived fibroblast growth factor (FGF) 15. In concordance with concerted elevation of circulating adiponectin and FGF15, myeloid cell-specific lipin-1 deficiency diminished hepatic nuclear factor kappa B (NF-κB) activity, limited liver inflammatory responses, normalized serum levels of bile acids, and protected mice from liver damage after ethanol challenge. Our novel data demonstrate that myeloid cell-specific deletion of lipin-1 ameliorated inflammation and alcoholic hepatitis in mice via activation of endocrine adiponectin-FGF15 signaling.
Collapse
|
44
|
Zhu XW, Lu WC, Pan GD. Insulin combined with hepatocyte growth factor improves posthepatectomy liver regeneration in rats. Shijie Huaren Xiaohua Zazhi 2016; 24:3607-3611. [DOI: 10.11569/wcjd.v24.i24.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether portal infusion of insulin combined with hepatocyte growth factor improves posthepatectomy liver regeneration in rats.
METHODS Rats that underwent partial hepatectomy were assigned into an insulin group, a hepatocyte growth factor group, an insulin plus hepatocyte growth factor group, and a control group, which were treated with insulin alone, hepatocyte growth factor alone, insulin plus hepatocyte growth factor, and 0.9% sodium chloride via the portal vein, respectively. Liver volume, speed of liver regeneration, liver function, serum tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) were measured after operation.
RESULTS Recovery of liver function in the insulin plus hepatocyte growth factor group was faster than that in the insulin group and hepatocyte growth factor group (P < 0.01).The speed of liver regeneration was slower in the control group than in hepatocyte growth factor group and insulin group, but was faster in the hepatocyte growth factor than in the insulin group and hepatocyte growth factor group. Serum levels of TNF-α and IL-6 were higher in the three treatment groups than in the control group, and in the hepatocyte growth factor and insulin group than in the hepatocyte growth factor group and insulin group.
CONCLUSION Infusion of insulin and hepatocyte growth factor via the portal vein can significantly improve posthepatectomy liver regeneration.
Collapse
|
45
|
Takeuchi T, Yamada L, Shinzato C, Sawada H, Satoh N. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics. PLoS One 2016; 11:e0156424. [PMID: 27253604 PMCID: PMC4890752 DOI: 10.1371/journal.pone.0156424] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/14/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
- * E-mail:
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517–0004, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517–0004, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
| |
Collapse
|
46
|
Guan D, Zhao L, Chen D, Yu B, Yu J. Regulation of fibroblast growth factor 15/19 and 21 on metabolism: in the fed or fasted state. J Transl Med 2016; 14:63. [PMID: 26931208 PMCID: PMC4774037 DOI: 10.1186/s12967-016-0821-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/23/2016] [Indexed: 12/26/2022] Open
Abstract
Fibroblast growth factor (FGF) 15/19 and FGF21 are two atypical members of FGF19 subfamily that function as hormones. Exogenous FGF15/19 and FGF21 have pharmacological effects, and endogenous FGF15/19 and FGF21 play vital roles in the maintenance of energy homeostasis. Recent reports have expanded the effects of FGF15/19 and FGF21 on carbohydrate and lipid metabolism. However, the regulations of FGF15/19 and FGF21 on metabolism are different. FGF15/19 is mainly secreted from the small intestine in response to feeding, and FGF21 is secreted from the liver in response to extended fasting and from the liver and adipose tissue in response to feeding. In this work, we reviewed the regulatory effects of FGF15/19 and FGF21 on metabolism in the fast and fed states. This information may provide some insight into the metabolic regulation of FGF15/19 and FGF21 in different physiological condition.
Collapse
Affiliation(s)
- Dandan Guan
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lidan Zhao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
47
|
Johnston IM, Nolan JD, Pattni SS, Appleby RN, Zhang JH, Kennie SL, Madhan GK, Jameie-Oskooei S, Pathmasrirengam S, Lin J, Hong A, Dixon PH, Williamson C, Walters JRF. Characterizing Factors Associated With Differences in FGF19 Blood Levels and Synthesis in Patients With Primary Bile Acid Diarrhea. Am J Gastroenterol 2016; 111:423-32. [PMID: 26856750 DOI: 10.1038/ajg.2015.424] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic diarrhea caused by primary bile acid diarrhea (PBAD) is a common condition. We have previously shown PBAD is associated with low fasting serum levels of the ileal hormone, fibroblast growth factor 19 (FGF19). FGF19 is a negative regulator of hepatic bile acid synthesis and is stimulated by farnesoid X receptor agonists, which produce symptomatic improvement in PBAD. We aimed to assess possible causes for low serum FGF19 in patients with PBAD. METHODS Patients with PBAD, defined by reduced (75)Se-labelled homocholic acid taurine (SeHCAT) retention, and idiopathic diarrhea controls had measurements of fasting lipids and fasting/post-prandial FGF19 serum profiles. Specific functional variants in candidate genes were investigated in exploratory studies. In further groups, basal and bile acid-stimulated transcript expression was determined in ileal biopsies and explant cultures by quantitative PCR. RESULTS FGF19 profiles in PBAD patients included low fasting and meal-stimulated responses, which were both strongly correlated with SeHCAT. A subgroup of 30% of PBAD patients had fasting hypertriglyceridemia and higher FGF19. No clear significant differences were found for any genetic variant but there were borderline associations with FGFR4 and KLB. SeHCAT retention significantly correlated with the basal ileal transcript expression of FGF19 (rs=0.59, P=0.03) and apical sodium-dependent bile acid transporter (ASBT) (rs=0.49, P=0.04), and also with the degree of stimulation by chenodeoxycholic acid at 6 h for transcripts of FGF19 (median 184-fold, rs=0.50, P=0.02) and ileal bile acid binding protein (IBABP) (median 2.2-fold, rs=0.47, P=0.04). Median stimulation of FGF19 was lower in patients with SeHCAT retention <10% (P=0.01). CONCLUSIONS These studies demonstrate a complex, multifactorial etiology of PBAD, including impairments in ileal FGF19 expression and responsiveness.
Collapse
Affiliation(s)
- Ian M Johnston
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Jonathan D Nolan
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Sanjeev S Pattni
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Richard N Appleby
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Justine H Zhang
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Sarah L Kennie
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Gaganjit K Madhan
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Sina Jameie-Oskooei
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Shivani Pathmasrirengam
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Jeremy Lin
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Albert Hong
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| | - Peter H Dixon
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Division of Women's Health, King's College London, Guy's Hospital, London, UK
| | - Catherine Williamson
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Division of Women's Health, King's College London, Guy's Hospital, London, UK
| | - Julian R F Walters
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, and Division of Digestive Diseases, Imperial College London, London, UK
| |
Collapse
|
48
|
Heidker RM, Caiozzi GC, Ricketts ML. Dietary procyanidins selectively modulate intestinal farnesoid X receptor-regulated gene expression to alter enterohepatic bile acid recirculation: elucidation of a novel mechanism to reduce triglyceridemia. Mol Nutr Food Res 2016; 60:727-36. [PMID: 26718753 DOI: 10.1002/mnfr.201500795] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022]
Abstract
SCOPE Understanding the molecular basis by which dietary procyanidins modulate triglyceride and cholesterol homeostasis has important implications for the use of natural products in the treatment and prevention of cardiovascular disease. METHODS To determine whether modulation of bile acid (BA) homeostasis contributes to the hypotriglyceridemic action of grape seed procyanidin extract (GSPE) we examined the effect on genes regulating BA absorption, transport and synthesis in vitro, in Caco-2 cells, and in vivo, in wild type (C57BL/6) and farnesoid x receptor knockout (Fxr(-/-)) mice. RESULTS We provide novel evidence demonstrating that GSPE is a naturally occurring gene-selective bile acid receptor modulator (BARM). Mechanistically, GSPE down-regulates genes involved in intestinal BA absorption and transport in an Fxr-dependent manner, resulting in decreased enterohepatic BA recirculation. This correlates with increased fecal BA output, decreased serum triglyceride and cholesterol levels, increased hepatic cholesterol 7α-hydroxylase (Cyp7a1), and decreased intestinal fibroblast growth factor 15 (Fgf15) expression. GSPE also increased hepatic HmgCoA reductase (Hmgcr) and synthase (Hmgcs1) expression, while concomitantly decreasing sterol regulatory element-binding protein 1c (Srebp1c). CONCLUSION GSPE selectively regulates intestinal Fxr-target gene expression in vivo, and modulation of BA absorption and transport is a critical regulatory point for the consequential hypotriglyceridemic effects of GSPE.
Collapse
Affiliation(s)
- Rebecca M Heidker
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, Nevada, 89557
| | - Gianella C Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, Nevada, 89557
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, Nevada, 89557
| |
Collapse
|
49
|
Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev 2015; 26:625-35. [DOI: 10.1016/j.cytogfr.2015.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/07/2023]
|
50
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|