1
|
Rozich E, Ozkurede U, Pakkiriswami S, Gemilere R, Azarin SM, Liu JC. Mitochondrial oxidative stress, calcium and dynamics in cardiac ischaemia-reperfusion injury. J Physiol 2025. [PMID: 40448972 DOI: 10.1113/jp287770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 05/07/2025] [Indexed: 06/02/2025] Open
Abstract
Ischaemia-reperfusion injury (IRI) is a major cause of cardiomyocyte damage and death from myocardial infarction. Oxidative stress, dysregulated calcium (Ca2+) handling and disrupted mitochondrial dynamics are all key factors in IRI and can play a role in cell death. Mitochondria are a primary source of oxidative stress, which is generated by electron leak from the respiratory chain complexes and the oxidation of accumulated succinate upon reperfusion. The mitochondrial permeability transition pore (mPTP), a high conductance channel that forms following reperfusion of ischaemic mitochondria, has been implicated in reperfusion-induced cell death. Although factors including mitochondrial Ca2+ overload and oxidative stress that regulate mPTP opening have been well characterized, the composition of the mPTP is still actively investigated. Clinically, mPTP opening and IRI complicate treatment of myocardial infarction. Therefore, many possible therapeutics to reduce the damaging effects of reperfusion are under investigation. Antioxidants, pharmaceutical approaches, postconditioning and synthetic polymers have all been investigated for use in IRI. Still, many of these therapeutics of interest have shown mixed evidence underlying their use in preclinical and clinical research. In this review we discuss our current understanding of the contributions of mitochondrial oxidative stress, mitochondrial Ca2+ and mitochondrial dynamics to cardiomyocyte damage and death in IRI, and where further clarification of these mechanisms is needed to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Emily Rozich
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ulas Ozkurede
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Ryan Gemilere
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Julia C Liu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Pisani DF, Blondeau N. Deciphering the brain glucose metabolism: A gateway to innovative stroke therapies. J Cereb Blood Flow Metab 2025:271678X251346277. [PMID: 40439074 PMCID: PMC12122490 DOI: 10.1177/0271678x251346277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
Stroke is the leading cause of physical disability and death among adults in most Western countries. Consecutive to a vascular occlusion, cells face a brutal reduction in supply of oxygen and glucose and thus an energy failure, which in turn triggers cell death mechanisms. Among brain cells, neurons are the most susceptible to ischemia because of their high metabolic demand and low reservoir of energy substrates. In neurons, glycolysis uses glucose coming from blood or from glycogen stored in astrocytes, underlying the deep astrocyte-neuron metabolic cooperation. During ischemia, both the aerobic and anaerobic pathways and thus energy production are compromised, which disrupts proper cell functioning, notably Na+/K+ ATPase and mitochondria. This results in altered Ca2+ homeostasis and overproduction of ROS, the latter being further exacerbated during the reperfusion phase. Consequently, glucose metabolism in the different brain cell populations plays a central role in injury and recovery after stroke, and has recently emerged as a promising target for therapeutic intervention. In this context, the overall objective of this article is to review the interconnections between stroke and brain glucose metabolism and to explore how its targeting may offer new therapeutic opportunities in addressing the global stroke epidemic.
Collapse
Affiliation(s)
- Didier F Pisani
- Université Côte d’Azur, CNRS, LP2M, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Nicolas Blondeau
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
- Université Côte d’Azur, CNRS, Inserm, IPMC, Valbonne, France
| |
Collapse
|
3
|
Wang K, Liao L, Liang H, Huang P, Li Q, Zhuang B, Xie C, Mo X, Deng X, Li J, Lei Y, Zeng M, Mao C, Xu R, Liu C, Wu X, Zhou J, Wang B, Li Y, Li C. Ceramide(d18:1/18:1)-NDUFA6 interaction inactivates respiratory complex I to attenuate oxidative-stress-driven pathogenesis in liver ischemia/reperfusion injury. JCI Insight 2025; 10:e187083. [PMID: 40244698 DOI: 10.1172/jci.insight.187083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Oxidative stress driven by malfunctioning respiratory complex I (RC-I) is a crucial pathogenic factor in liver ischemia/reperfusion (I/R) injury. This study investigated the role of alkaline ceramidase 3 (ACER3) and its unsaturated long-chain ceramide (CER) substrates in regulating liver I/R injury through RC-I. Our findings demonstrated that I/R upregulated ACER3 and decreased unsaturated long-chain CER levels in human and mouse livers. Both global and hepatocyte-specific Acer3 ablation, as well as treatment with CER(d18:1/18:1), led to a significant increase in CER(d18:1/18:1) levels in the liver, which mitigated the I/R-induced hepatocyte damage and inflammation in mice. Mechanistically, ACER3 modulated CER(d18:1/18:1) levels in mitochondria-associated membranes and the endoplasmic reticulum (ER), thereby influencing the transport of CER(d18:1/18:1) from the ER to mitochondria. Acer3 ablation and CER(d18:1/18:1) treatment elevated CER(d18:1/18:1) in mitochondria, where CER(d18:1/18:1) bound to the RC-I subunit NDUFA6 to inactivate RC-I and reduced reactive oxygen species production in the I/R-injured mouse liver. These findings underscore the role of the CER(d18:1/18:1)-NDUFA6 interaction in suppressing RC-I-mediated oxidative-stress-driven pathogenesis in liver I/R injury.
Collapse
Affiliation(s)
- Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pengxiang Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hepatobiliary Surgery, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Baoxiong Zhuang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Xie
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangyue Mo
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jieyuan Li
- Department of Hepatobiliary Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Lei
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, China
| | - Cungui Mao
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Ruijuan Xu
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | | | - Xianqiu Wu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Nakamura T, Longchamp A, Markmann JF. Innovations to Expand the Liver Donor Pool: Machine Perfusion and Xenotransplantation. Clin Liver Dis 2025; 29:337-346. [PMID: 40287275 DOI: 10.1016/j.cld.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The number of patients awaiting liver transplant exceeds the number of liver grafts available. However, emerging technologies offer hope. Machine perfusion enhances the preservation, graft quality, and utilization of marginal livers, thereby reducing unnecessary graft discards. Xenotransplantation provides an alternative organ source, augmenting the donor supply or serving as a bridge for critically ill patients. These innovations are described in this review, as the recent clinical applications of these technologies promise to alleviate organ scarcity, improve transplant outcomes, and save lives.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Division of Transplant Surgery, Department of Surgery, University of Arkansas for Medical Sciences, AR, USA
| | - Alban Longchamp
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Penn Transplant Institute, The University of Pennsylvania, 1 Convention Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Barbouti A, Varvarousis DN, Kanavaros P. The Role of Oxidative Stress-Induced Senescence in the Pathogenesis of Preeclampsia. Antioxidants (Basel) 2025; 14:529. [PMID: 40427411 PMCID: PMC12108173 DOI: 10.3390/antiox14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Preeclampsia is a hypertension condition of human pregnancy that poses a significant risk to pregnant women and their fetus. It complicates about 2-8% of human pregnancies worldwide and displays multifactorial pathogenesis, including increased placental oxidative stress because of disturbed utero-placental blood flow. Recent evidence suggests that increased oxidative stress promotes acceleration of the placental senescence which is implicated in the pathogenesis of preeclampsia. This review focuses on the mechanisms that lead to oxidative stress in preeclamptic patients and examines the role of oxidative stress-induced placental senescence in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (D.N.V.); (P.K.)
| | | | | |
Collapse
|
6
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 1: their emergence from injuries to the donor organ. FRONTIERS IN TRANSPLANTATION 2025; 4:1571516. [PMID: 40343197 PMCID: PMC12060192 DOI: 10.3389/frtra.2025.1571516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 1 of a bipartite review commences with a succinct exposition of innate alloimmunity in light of the danger/injury hypothesis in Immunology. The model posits that an alloimmune response, along with the presentation of alloantigens, is driven by DAMPs released from various forms of regulated cell death (RCD) induced by any severe injury to the donor or the donor organ, respectively. To provide a strong foundation for this review, which examines RCD and DAMPs as biomarkers and therapeutic targets in normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) to improve outcomes in organ transplantation, key insights are presented on the nature, classification, and functions of DAMPs, as well as the signaling mechanisms of RCD pathways, including ferroptosis, necroptosis, pyroptosis, and NETosis. Subsequently, a comprehensive discussion is provided on major periods of injuries to the donor or donor organs that are associated with the induction of RCD and DAMPs and precede the onset of the innate alloimmune response in recipients. These periods of injury to donor organs include conditions associated with donation after brain death (DBD) and donation after circulatory death (DCD). Particular emphasis in this discussion is placed on the different origins of RCD-associated DAMPs in DBD and DCD and the different routes they use within the circulatory system to reach potential allografts. The review ends by addressing another particularly critical period of injury to donor organs: their postischemic reperfusion following implantation into the recipient-a decisive factor in determining transplantation outcome. Here, the discussion focuses on mechanisms of ischemia-induced oxidative injury that causes RCD and generates DAMPs, which initiate a robust innate alloimmune response.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
7
|
Zhu Y, Yang Y, Lan Y, Yang Z, Gao X, Zhou J. The role of PKM2-mediated metabolic reprogramming in the osteogenic differentiation of BMSCs under diabetic periodontitis conditions. Stem Cell Res Ther 2025; 16:186. [PMID: 40251642 PMCID: PMC12008901 DOI: 10.1186/s13287-025-04301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and periodontitis have a bidirectional relationship, with each being a high-risk factor for the other. Prolonged hyperglycemia exacerbates periodontal inflammation and disrupts bone homeostasis. Pyruvate kinase M2 (PKM2), a key enzyme in glycolysis, is involved in metabolic reprogramming, but its role in osteogenesis under high-glucose (HG) inflammatory conditions remains largely unknown. This study aimed to investigate the effects of HG and inflammation on bone marrow mesenchymal stem cells (BMSCs) under indirect co-culture conditions and to explore how PKM2 regulates metabolism and mitochondrial function during osteogenic differentiation in HG inflammatory environments, elucidating its role in diabetic periodontitis (DP). METHODS Expose BMSCs to conditioned medium (CM) collected from RAW264.7 cells stimulated with HG and/or lipopolysaccharide (LPS). BMSCs functionality was assessed using CCK8, EdU, Annexin V-PI apoptosis assay, alkaline phosphatase (ALP), and Alizarin Red S (ARS) staining. Metabolic characteristics were evaluated through Seahorse assays, lactate production, glucose uptake, and ATP measurements. Mitochondrial function was assessed via JC-1, and ROS staining, Mito-Tracker staining, and transmission electron microscopy (TEM). Gene and protein expression were analyzed by quantitative real-time PCR and western blotting. In vivo therapeutic effects of shikonin were validated via micro-CT and histological staining in a diabetic periodontitis mouse model. RESULTS In vitro experiments demonstrated that HG inflammatory conditions impaired the survival of BMSCs, suppressed osteogenic differentiation, and induced metabolic reprogramming. This reprogramming was characterized by enhanced glycolysis, impaired oxidative phosphorylation (OXPHOS), abnormal upregulation of PKM2 expression, and mitochondrial dysfunction accompanied by morphological alterations. Shikonin effectively reversed these adverse effects by inhibiting PKM2 tetramerization, rescuing the loss of osteogenic function in BMSCs. The therapeutic potential of shikonin was confirmed in the diabetic periodontitis mouse model. CONCLUSION PKM2 impairs the osteogenesis of BMSCs by affecting metabolism and mitochondrial function, suggesting it as a potential therapeutic target for diabetic periodontitis.
Collapse
Affiliation(s)
- Yanlin Zhu
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Yuhan Yang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Zun Yang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China.
| |
Collapse
|
8
|
Cong Y, Guo R, Li C, Li Q, Qi S. Irisin protects against cerebral ischemia reperfusion injury in a SIRT3-dependent manner. Front Pharmacol 2025; 16:1558457. [PMID: 40235548 PMCID: PMC11996646 DOI: 10.3389/fphar.2025.1558457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Background Cerebral ischemia-reperfusion (CIR) injury critically impacts stroke prognosis, yet effective therapeutic strategies remain limited. Irisin, an exercise-induced myokine, exhibits neuroprotective effects against cerebral ischemia. SIRT3, a mitochondrial deacetylase, is similarly implicated in mitigating ischemia-reperfusion injury. Given that irisin exerts protection via AMPK/PGC-1α pathway activation and SIRT3 acts downstream of PGC-1α , we hypothesized that SIRT3 mediates irisin's neuroprotection in CIR injury. Methods In vivo cerebral ischemia-reperfusion injury was modeled by inducing transient middle cerebral artery occlusion (MCAO) in mice, while in vitro CIR conditions were replicated using oxygen-glucose deprivation (OGD) in PC12 neuronal cultures. To elucidate the mechanistic role of SIRT3, targeted interventions were implemented: SIRT3 expression was silenced via transfection with small interfering RNA (siRNA), and its enzymatic activity was pharmacologically inhibited using 3-TYP, a selective SIRT3 inhibitor. Apoptotic were systematically evaluated through TUNEL staining, Western blot analysis of caspase-3, Bax and Bcl-2. Oxidative stress parameters, including malondialdehyde (MDA) levels and glutathione (GSH) content, were measured using colorimetric assays. Neurological function in mice was quantified using the modified Neurological Severity Score (mNSS). Results Our results demonstrated that irisin mitigates apoptosis and oxidative stress by dose-dependently activating SIRT3 signaling. At the optimal dosage, irisin effectively restored SIRT3 expression levels, reduced neuronal damage, and improved neurological recovery in CIR injury models. Notably, the therapeutic effects of irisin were significantly attenuated by 3-TYP, a specific SIRT3 inhibitor. Further validation through in vitro experiments revealed that SIRT3 overexpression synergistically enhanced irisin-mediated protection against OGD-induced injury, whereas SIRT3 knockout substantially diminished its efficacy. Conclusion Our data shown that irisin exerted a protective role in CIR injury, at least in part, through SIRT3 activation. This study establishes the irisin/SIRT3 as a novel therapeutic target for ischemic stroke, providing mechanistic insights for future interventions.
Collapse
Affiliation(s)
- Yushuang Cong
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Ruichun Guo
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Dingfelder J, Kollmann D, Rauter L, Pereyra D, Kacar S, Weijler AM, Saffarian Zadeh T, Tortopis C, Silberhumer G, Salat A, Soliman T, Berlakovich G, Györi GP. Validation of mitochondrial FMN as a predictor for early allograft dysfunction and patient survival measured during hypothermic oxygenated perfusion. Liver Transpl 2025; 31:476-488. [PMID: 39787526 PMCID: PMC11895825 DOI: 10.1097/lvt.0000000000000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/21/2024] [Indexed: 01/12/2025]
Abstract
Hypothermic oxygenated machine perfusion (HOPE) preconditions liver grafts before transplantation. While beneficial effects on patient outcomes were demonstrated, biomarkers for viability assessment during HOPE are scarce and lack validation. This study aims to validate the predictive potential of perfusate flavin mononucleotide (FMN) during HOPE to enable the implementation of FMN-based assessment into clinical routine and to identify safe organ acceptance thresholds. FMN was measured in perfusate samples of 50 liver grafts at multiple time points. After transplantation, patients were followed up for development of early allograft dysfunction (EAD), transplantation, and 1-year survival. FMN concentrations were significantly higher for grafts that developed EAD at 5 and 60 minutes into HOPE ( p = 0.008, p = 0.026). The strongest predictive potential of FMN for EAD was observed at 5 minutes of HOPE with an AUC of 0.744. Similarly, 5-minute FMN was predictive for 1-year mortality ( p < 0.001), reaching a remarkable AUC of 0.890. Cutoffs for prediction of EAD (10.6 ng/mL) and early mortality (23.5 ng/mL) were determined and allowed risk stratification of grafts. Particularly, patients receiving low-risk grafts developed EAD in 9% of cases, while all patients survived the first postoperative year. In contrast, high-risk organs developed an incidence of EAD at 62%, accompanied by the necessity of retransplantation in 38% of cases. One-year mortality in the high-risk cohort was 62%. Evaluation of FMN as early as 5 minutes during HOPE allows for risk stratification of liver grafts. Low-risk grafts, according to FMN, display a negligible risk for patients. Yet, high-risk grafts are associated with increased risk for EAD, transplantation, and early mortality and should not be used for transplantation without further assessment.
Collapse
Affiliation(s)
- Jule Dingfelder
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Dagmar Kollmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Laurin Rauter
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Sertac Kacar
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Anna M. Weijler
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Tina Saffarian Zadeh
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Chiara Tortopis
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Gerd Silberhumer
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Salat
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Thomas Soliman
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Gabriela Berlakovich
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Georg P. Györi
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Firouzeh G, Samira MH, Zeinab K. Rosmarinic acid: a promising agent for male rats' renal protection against ischemia/reperfusion injury. Mol Biol Rep 2025; 52:325. [PMID: 40106003 DOI: 10.1007/s11033-025-10422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND This study investigated the potential anti-inflammatory and antioxidant renoprotective effects of rosmarinic acid, a naturally occurring phenylpropanoid, against renal damage and dysfunction following renal ischemia/reperfusion (I/R) in male rats. METHODS The rats were divided into four separate groups (n = 7 per group): sham (1 ml 1% DMSO, i.p.), sham + RA (rosmarinic acid, 100 mg/kg in 1 ml 1% DMSO, i.p.), I/R (bilateral renal ischemia for 45 min followed by 24 h reperfusion), I/R + RA (rosmarinic acid, 100 mg/kg in 1 ml 1% DMSO, i.p. once, 30 min prior to ischemia). After the 24-hour reperfusion period, kidney tissue samples, blood, and 24-hour urine were taken. RESULTS In contrast to the sham and sham + RA groups, IR injury (IRI) resulted in renal dysfunction (increased fractional excretion of sodium and decreased creatinine clearance), raised malondialdehyde levels, enhanced TLR4 (Toll-like receptor 4), NFĸB (nuclear factor-ĸB) and TNF-α (tumor necrosis factor-alpha) gene expression levels, and histological lesions in kidney tissue Administration of rosmarinic acid attenuated each change. CONCLUSIONS Rosmarinic acid protects the kidney against IRI by reducing inflammation and oxidative stress. Rosmarinic acid's anti-inflammatory and antioxidant properties most likely play an important role in addressing functional problems and protecting the kidney from IRI.
Collapse
Affiliation(s)
| | | | - Karimi Zeinab
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Fogo GM, Raghunayakula S, Emaus KJ, Torres Torres FJ, Shangguan G, Wider JM, Hüttemann M, Sanderson TH. Mitochondrial dynamics and quality control regulate proteostasis in neuronal ischemia-reperfusion. Autophagy 2025:1-15. [PMID: 40016670 DOI: 10.1080/15548627.2025.2472586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Mitochondrial damage and dysfunction are hallmarks of neuronal injury during cerebral ischemia-reperfusion (I/R). Critical mitochondrial functions including energy production and cell signaling are perturbed during I/R, often exacerbating damage and contributing to secondary injury. The integrity of the mitochondrial proteome is essential for efficient function. Mitochondrial proteostasis is mediated by the cooperative forces of mitophagy and intramitochondrial proteolysis. The aim of this study was to elucidate the patterns of mitochondrial protein dynamics and their key regulators during an in vitro model of neuronal I/R injury. Utilizing the MitoTimer reporter, we quantified mitochondrial protein oxidation and turnover during I/R injury, highlighting a key point at 2 h reoxygenation for aged/oxidized protein turnover. This turnover was found to be mediated by both LONP1-dependent proteolysis and PRKN/parkin-dependent mitophagy. Additionally, the proteostatic response of neuronal mitochondria is influenced by both mitochondrial fusion and fission machinery. Our findings highlight the involvement of both mitophagy and intramitochondrial proteolysis in the response to I/R injury.Abbreviations: cKO: conditional knockout; CLPP: caseinolytic mitochondrial matrix peptidase proteolytic subunit; DIV: days in vitro; DNM1L/DRP1: dynamin 1 like; ETC: electron transport chain; hR: hours after reoxygenation; I/R: ischemia-reperfusion; LONP1: lon peptidase 1, mitochondrial; mtUPR: mitochondrial unfolded protein response; OGD: oxygen glucose deprivation; OGD/R: oxygen glucose deprivation and reoxygenation; OPA1: OPA1 mitochondrial dynamin like GTPase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROI: region of interest; WT: wild-type.
Collapse
Affiliation(s)
- Garrett M Fogo
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katlynn J Emaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Gary Shangguan
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph M Wider
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Thomas H Sanderson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Charlanne L, Bertile F, Geffroy A, Hippauf L, Chery I, Zahn S, Guinet C, Piot E, Badaut J, Ancel A, Gilbert C, Bergouignan A. Ready to dive? Early constraints help juvenile southern elephant seals (Mirounga leonina) acclimatize to aquatic life. J Exp Biol 2025; 228:jeb249813. [PMID: 39925150 DOI: 10.1242/jeb.249813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Breath-holding foraging implies different adaptations to limit oxygen (O2) depletion and maximize foraging time. Physiological adjustments can be mediated through O2 consumption, driven by muscle mitochondria, which can also produce reactive oxygen species during reoxygenation. Southern elephant seals spend months foraging at sea, diving for up to 1 h. Pups transition abruptly to aquatic life after a post-weaning period, during which they fast and progressively increase their activity, making this period critical for the development of an adaptive response to oxygen restriction and oxidative stress. We compared the functional capacity of a swimming muscle in 5 recently weaned and 6 adult female southern elephant seals. High-resolution respirometry was employed to examine muscle mitochondrial respiratory capacity and differences in protein and gene expression of the main regulatory pathways were determined using LC-MS/MS and RT-qPCR, respectively. Oxidative damage was measured in the plasma. We found that juveniles have higher mitochondrial coupling efficiency compared with adults, probably as a response to growth and significant physical activity reported during the post-weaning period. There were no differences in oxidative damage, but adults had a higher level of antioxidant defenses. Both hypoxia and oxidative response pathways appeared less activated in juveniles. This study highlights the differences in muscle metabolism and the likely adaptive response to hypoxia and oxidative stress between juvenile and adult south elephant seals. It also suggests that early constraints such as fasting, physical activity and short-term low O2 partial pressure exposure could contribute to immediate and long-term responses and help to acclimatize juveniles to aquatic life.
Collapse
Affiliation(s)
- Laura Charlanne
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Proteomics French Infrastructure, FR2048, ProFI, 67000 Strasbourg, France
| | - Alexandre Geffroy
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Proteomics French Infrastructure, FR2048, ProFI, 67000 Strasbourg, France
| | - Lea Hippauf
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christophe Guinet
- Centre d'Études Biologiques de Chizé, UMR 7372 CNRS/Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Erwan Piot
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
- UMR 7179, CNRS/MNHN, Laboratoire MECADEV, 1 avenue du petit château, 91400 Brunoy, France
| | - Jérome Badaut
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - André Ancel
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Caroline Gilbert
- UMR 7179, CNRS/MNHN, Laboratoire MECADEV, 1 avenue du petit château, 91400 Brunoy, France
- Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | | |
Collapse
|
13
|
Liu J, Jin Y, Lv F, Yang Y, Li J, Zhang Y, Zhong L, Liu W. Identification of biomarkers associated with programmed cell death in liver ischemia-reperfusion injury: insights from machine learning frameworks and molecular docking in multiple cohorts. Front Med (Lausanne) 2025; 12:1501467. [PMID: 40160318 PMCID: PMC11949969 DOI: 10.3389/fmed.2025.1501467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Liver ischemia-reperfusion injury (LIRI) is a major reason for liver injury that occurs during surgical procedures such as hepatectomy and liver transplantation and is a major cause of graft dysfunction after transplantation. Programmed cell death (PCD) has been found to correlate with the degree of LIRI injury and plays an important role in the treatment of LIRI. We aim to comprehensively explore the expression patterns and mechanism of action of PCD-related genes in LIRI and to find novel molecular targets for early prevention and treatment of LIRI. Methods We first compared the expression profiles, immune profiles, and biological function profiles of LIRI and control samples. Then, the potential mechanisms of PCD-related differentially expressed genes in LIRI were explored by functional enrichment analysis. The hub genes for LIRI were further screened by applying multiple machine learning methods and Cytoscape. GSEA, GSVA, immune correlation analysis, transcription factor prediction, ceRNA network analysis, and single-cell analysis further revealed the mechanisms and regulatory network of the hub gene in LIRI. Finally, potential therapeutic agents for LIRI were explored based on the CMap database and molecular docking technology. Results Forty-seven differentially expressed genes associated with PCD were identified in LIRI, and functional enrichment analysis showed that they were involved in the regulation of the TNF signaling pathway as well as the regulation of hydrolase activity. By utilizing machine learning methods, 11 model genes were identified. ROC curves and confusion matrix from the six cohorts illustrate the superior diagnostic value of our model. MYC was identified as a hub PCD-related target in LIRI by Cytoscape. Finally, BMS-536924 and PF-431396 were identified as potential therapeutic agents for LIRI. Conclusion This study comprehensively characterizes PCD in LIRI and identifies one core molecule, providing a new strategy for early prevention and treatment of LIRI.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yeheng Jin
- Department of Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Fengchen Lv
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Yang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junchen Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
14
|
Calva Lopez A, Robles Garcia JE, Yanez Ruiz CA, Tapia Tapia MD, Talavera Cobo V, Muñoz Bastidas CA, Miñana Lopez B, Sanchez Zalabardo D. Does Oxygen Work? Evidence for Oxygenation During Kidney Graft Preservation: A Review. J Clin Med 2025; 14:1927. [PMID: 40142735 PMCID: PMC11942664 DOI: 10.3390/jcm14061927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Kidney transplantation (KT) is the gold-standard treatment of end-stage kidney disease (ESKD). Traditional preservation methods, such as static cold storage (SCS), have been replaced by modern and more effective preservation methods, especially hypothermic machine perfusion (HMP). Regardless of improved preservation, ischemia-reperfusion injury (IRI) is inevitable, limiting graft functionality through delayed graft function (DGF) and graft survival. Supplementing the ischemic kidney graft with oxygen during hypothermic preservation has been used in different methods as an attempt to counteract IRI and its effects on graft function and survival. Various oxygenation methods have been studied, from adaptations of classic and well-known preservation strategies, like the addition of oxygen carriers to SCS, or more innovative preservation methods, like hyperbaric oxygenation or retrograde oxygen persufflation. In this review, we will attempt to provide a summary of the available evidence on oxygen carriers, hyperbaric oxygenation, the two-layer method, retrograde oxygen persufflation, and hypothermic oxygenated machine perfusion (HOPE) and discuss the effect these strategies have on kidney graft functionality.
Collapse
Affiliation(s)
| | - Jose Enrique Robles Garcia
- Department of Urology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.C.L.); (C.A.Y.R.); (M.D.T.T.); (V.T.C.); (C.A.M.B.); (B.M.L.); (D.S.Z.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Casey AM, Ryan DG, Prag HA, Chowdhury SR, Marques E, Turner K, Gruszczyk AV, Yang M, Wolf DM, Miljkovic JL, Valadares J, Chinnery PF, Hartley RC, Frezza C, Prudent J, Murphy MP. Pro-inflammatory macrophages produce mitochondria-derived superoxide by reverse electron transport at complex I that regulates IL-1β release during NLRP3 inflammasome activation. Nat Metab 2025; 7:493-507. [PMID: 39972217 PMCID: PMC11946910 DOI: 10.1038/s42255-025-01224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Macrophages stimulated by lipopolysaccharide (LPS) generate mitochondria-derived reactive oxygen species (mtROS) that act as antimicrobial agents and redox signals; however, the mechanism of LPS-induced mitochondrial superoxide generation is unknown. Here we show that LPS-stimulated bone-marrow-derived macrophages produce superoxide by reverse electron transport (RET) at complex I of the electron transport chain. Using chemical biology and genetic approaches, we demonstrate that superoxide production is driven by LPS-induced metabolic reprogramming, which increases the proton motive force (∆p), primarily as elevated mitochondrial membrane potential (Δψm) and maintains a reduced CoQ pool. The key metabolic changes are repurposing of ATP production from oxidative phosphorylation to glycolysis, which reduces reliance on F1FO-ATP synthase activity resulting in a higher ∆p, while oxidation of succinate sustains a reduced CoQ pool. Furthermore, the production of mtROS by RET regulates IL-1β release during NLRP3 inflammasome activation. Thus, we demonstrate that ROS generated by RET is an important mitochondria-derived signal that regulates macrophage cytokine production.
Collapse
Affiliation(s)
- Alva M Casey
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Dylan G Ryan
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Suvagata Roy Chowdhury
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Eloïse Marques
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Keira Turner
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ming Yang
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Genetics, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Dane M Wolf
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Joyce Valadares
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Christian Frezza
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Genetics, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Yu HC, Chung BH, Kim Y, Lee Y, Sim H, Lee S, Hwang HP, Yu HC, Jeon S, Maeng HJ, Shin D, Kang KP, Seo SY, Bae EJ, Park BH. p21-Activated Kinase 4 and Ischemic Acute Kidney Injury in Mice and Humans. J Am Soc Nephrol 2025:00001751-990000000-00576. [PMID: 40019790 DOI: 10.1681/asn.0000000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/14/2025] [Indexed: 04/06/2025] Open
Abstract
Background AKI after ischemia-reperfusion remains a substantial perioperative challenge lacking effective treatment. p21-activated kinase 4 (PAK4), a downstream effector of Rho GTPase, has been explored in hepatic ischemia-reperfusion injury, but its role in renal ischemia-reperfusion is unknown. Methods Wild-type and proximal tubule–specific Pak4 knockout mice underwent 25 minutes of ischemia followed by 24 hours of reperfusion injury. Primary tubular cells and human kidney-2 cells were exposed to hypoxia-reoxygenation injury to investigate the in vitro effect of PAK4. Selective degradation of PAK4 was employed using proteolysis-targeting chimera (PROTAC) to ameliorate AKI. Results Post–ischemia-reperfusion, the expression of PAK4 was upregulated through hypoxia-inducible factor 1 α in mouse kidneys. Deletion of PAK4 in proximal tubule cells, but not in myeloid cells, significantly mitigated ischemia-reperfusion–induced AKI, as evidenced by decreased levels of BUN, creatinine, tubular necrosis, apoptosis, macrophage infiltration, and lipid accumulation compared with control mice. Further investigation revealed that PAK4 phosphorylated GSH peroxidase 3 (GPx3) at T47, leading to its proteasomal degradation. In addition, pretreatment of mice with the PAK4 PROTAC preserved GPx3 and enhanced fatty acid β-oxidation, thereby protecting against AKI. In kidney tissues from people with a kidney transplant, elevated levels of PAK4 protein and phosphorylation of GPx3 at T47 were observed. Conclusions Renal tubular PAK4 contributes to tissue damage during ischemia-reperfusion injury, whereas PAK4 PROTAC mitigates ischemia-reperfusion injury by reducing oxidative stress and promoting fatty acid β-oxidation.
Collapse
Affiliation(s)
- Hwang Chan Yu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | - Byeoung Hoon Chung
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yoejin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyunchae Sim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong Pil Hwang
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seunggyu Jeon
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| |
Collapse
|
17
|
Myszko M, Bychowski J, Skrzydlewska E, Łuczaj W. The Dual Role of Oxidative Stress in Atherosclerosis and Coronary Artery Disease: Pathological Mechanisms and Diagnostic Potential. Antioxidants (Basel) 2025; 14:275. [PMID: 40227238 PMCID: PMC11939617 DOI: 10.3390/antiox14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of atherosclerosis and coronary artery disease (CAD), with both beneficial and detrimental effects on cardiovascular health. On one hand, the excessive production of reactive oxygen species (ROS) contributes to endothelial dysfunction, inflammation, and vascular remodeling, which are central to the development and progression of CAD. These pathological effects drive key processes such as atherosclerosis, plaque formation, and thrombosis. On the other hand, moderate levels of oxidative stress can have beneficial effects on cardiovascular health. These include regulating vascular tone by promoting blood vessel dilation, supporting endothelial function through nitric oxide production, and enhancing the immune response to prevent infections. Additionally, oxidative stress can stimulate cellular adaptation to stress, promote cell survival, and encourage angiogenesis, which helps form new blood vessels to improve blood flow. Oxidative stress also holds promise as a source of biomarkers that could aid in the diagnosis, prognosis, and monitoring of CAD. Specific oxidative markers, such as malondialdehyde (MDA), isoprostanes (isoP), ischemia-modified albumin, and antioxidant enzyme activity, have been identified as potential indicators of disease severity and therapeutic response. This review explores the dual nature of oxidative stress in atherosclerosis and CAD, examining its mechanisms in disease pathogenesis as well as its emerging role in clinical diagnostics and targeted therapies. The future directions for research aimed at harnessing the diagnostic and therapeutic potential of oxidative stress biomarkers are also discussed. Understanding the balance between the detrimental and beneficial effects of oxidative stress could lead to innovative approaches in the prevention and management of CAD.
Collapse
Affiliation(s)
- Marcin Myszko
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| |
Collapse
|
18
|
Lu Q, Ling H, Lao Y, Liu J, Su W, Huang Z. Immune-mediated mechanisms in acute osteofascial compartment syndrome: insights from multi-omics analysis. Eur J Med Res 2025; 30:79. [PMID: 39910406 PMCID: PMC11796005 DOI: 10.1186/s40001-025-02285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Acute Osteofascial Compartment Syndrome (AOCS) stands as a critical surgical emergency, often secondary to various diseases. Its clinical manifestation arises from increased pressure within the fascial compartment, resulting in diminished tissue perfusion and consequential ischemic damage. Presently, clinical diagnostics lack effective biological markers, and patients face a grim prognosis, experiencing muscle contractures, necrosis, amputations, renal failure, and even mortality. The primary treatment, fasciotomy, poses infection risks and potential nerve damage. Hence, there is an urgent need for research elucidating AOCS's pathogenic mechanism and exploring novel treatments. METHODS To address this, we established a rat model of AOCS, extracting toe flexor muscles from both experimental and control groups. Employing second-generation high-throughput sequencing, we obtained comprehensive mRNA, lncRNA, circRNA, and miRNA data. Comparative analysis of expression differences between AOCS and control groups, followed by in-depth examination, allowed us to unravel the intricacies of AOCS occurrence from a multi-omics perspective. RESULTS Our research findings indicate that AOCS is an immune-mediated inflammatory disease, primarily involving immune cells, especially neutrophils. In addition, genes associated with ferroptosis, a form of regulated cell death, are found to be upregulated in the rat model, with non-coding RNAs playing a role in regulatory interactions. CONCLUSIONS These results suggest that neutrophils may undergo ferroptosis, thereby enhancing inflammation and immune responses in the fascial compartment, which promotes disease progression. Furthermore, these findings reveal the interactions between immune molecules and pathways in AOCS, which are significant for a deeper understanding of the pathogenesis of the disease and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qinzhen Lu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - He Ling
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Yonghui Lao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Junjie Liu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Wei Su
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Zhao Huang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China.
| |
Collapse
|
19
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
20
|
Jaiswal A, Baran DA. Moving Beyond the Ice Age in Heart Transplant Procurement. Transplantation 2025; 109:245-246. [PMID: 39107866 DOI: 10.1097/tp.0000000000005170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- Abhishek Jaiswal
- Department of Cardiology, Hartford HealthCare Heart and Vascular Institute, Hartford, CT
| | - David A Baran
- Department of Cardiology, Cleveland Clinic Florida, Heart, Vascular and Thoracic Institute, Advanced Heart Failure Program, Weston, FL
| |
Collapse
|
21
|
Pissas G, Divani M, Tziastoudi M, Poulianiti C, Polyzou-Konsta MA, Lykotsetas E, Stefanidis I, Eleftheriadis T. In renal proximal tubular epithelial cells of the hibernator Syrian hamster, anoxia-reoxygenation-induced reactive oxygen species bursts do not trigger a DNA damage response and cellular senescence. J Comp Physiol B 2025; 195:91-101. [PMID: 39907746 PMCID: PMC11839863 DOI: 10.1007/s00360-025-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Ischemia-reperfusion (I-R) injury represents a predominant etiology of acute kidney injury (AKI), for which effective treatments remain unavailable. In contrast, hibernating mammals exhibit notable resistance to cell death induced by I-R injury. However, the impact of I-R injury on cellular senescence-an important factor in AKI-has not been extensively studied in these species. Comparative biology may offer novel therapeutic insights. Renal proximal tubular epithelial cells (RPTECs) from the native hibernator Syrian hamster or mouse RPTECs were subjected to anoxia-reoxygenation. Proteins involved in DNA damage response (DDR) and cellular senescence were assessed using western blotting, reactive oxygen species (ROS) levels and cell death were quantified colorimetrically, and IL-6 with ELISA. Anoxia-reoxygenation induced oxidative stress in both mouse and hamster RPTECs; however, cell death was observed exclusively in mouse cells. While anoxia-reoxygenation elicited a DDR and subsequent senescence in mouse RPTECs, such responses were not detected in hamster RPTECs. Thus, RPTECs from the Syrian hamster exhibited increased ROS production upon reoxygenation but did not show DDR or cellular senescence. Further research is required to elucidate the specific protective molecular mechanisms in hibernators, which could potentially lead to the development of novel therapeutic approaches for I-R injury in non-hibernating species, including humans.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Maria-Anna Polyzou-Konsta
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece.
| |
Collapse
|
22
|
Liu C, Zhang J, Mao K, Xu H, He Y. Astragalus membranaceus-Carthamus tinctorius herb pair antagonizes parthanatos in cerebral ischemia/reperfusion injury via regulating PARP-1/TAX1BP1-mediated mitochondrial respiratory chain complex I. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119260. [PMID: 39701216 DOI: 10.1016/j.jep.2024.119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Astragalus membranaceus (Huang Qi in Chinese, HQ) and Carthamus tinctorius (Hong Hua in Chinese, HH) is commonly employed for treating ischemic stroke (IS). The heavily oxidative environment of cerebral ischemia/reperfusion injury (CI/RI) promotes activation of poly (ADP-ribose) polymerase-1 (PARP-1), which initiates parthanatos, a regulated cell death mode. Reactive oxygen species (ROS) bursting in mitochondrial respiratory chain complex I (Complex I) is a key cause of CI/RI. Nevertheless, the intrinsic mechanism of its involvement in Complex I in the parthanatos cascade remains obscure. AIM OF THE STUDY This experiment aimed to investigate that HQ-HH antagonized parthanatos via regulating PARP-1/TAX1BP1-mediated Complex I to attenuate CI/RI. MATERIALS AND METHODS The HPLC fingerprint of HQ-HH was established, and the contents of 9 components were determined. The neuroprotective effect of HQ-HH in CI/RI was evaluated by rat middle cerebral artery occlusion/reperfusion (MCAO/R) and BV2 cell oxygen glucose deprivation/reoxygenation (OGD/R) models. Pathological changes in brain tissue of MCAO/R rats were observed using TTC staining, HE staining, and TEM. Complex I activity was measured in MCAO/R rats and OGD/R-treated BV2 cells. qRT-PCR and Western blot were performed to detect the expressions of related genes and proteins of parthanatos and Complex I as well as tax1 binding protein 1 (TAX1BP1). Immunofluorescence staining was employed to certify the nuclear translocation of apoptosis-inducing factor (AIF) in MCAO/R rats. RESULTS The HPLC fingerprint of HQ-HH with 25 common peaks and the contents of 9 components were obtained. HQ-HH improved behavioral function and alleviated cerebral infarction in MCAO/R rats in a dose-dependent manner. HQ-HH alleviated parthanatos and exhibited the same repressive effect on PARP-1 transcription and translation as PJ34 (PARP-1 inhibitor). Moreover, the migration of TAX1BP1 to the mitochondria was restrained with HQ-HH treatment as a downstream of PARP-1, resulting in the inhibition of Complex I activity and less ROS production, accompanied by a decrease in mRNA and protein levels of ND1 and ND2. Subsequently, the nuclear translocation of AIF and the generation of poly(ADP-ribose) (PAR) polymers were suppressed. CONCLUSIONS HQ-HH mitigated CI/RI by regulating PARP-1/TAX1BP1 to inhibit the Complex I activity with less ROS production, further impeding nuclear translocation of AIF, and ultimately antagonizing parthanatos. By emphasizing the link between parthanatos and Complex I, we anticipate providing new empirical evidence for HQ-HH therapy of IS.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kunjun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huaping Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China.
| |
Collapse
|
23
|
Liu Q, Gao Z, Zhang X, Duan Q, Zhang Y, Midgley AC, Jiao L, Liu R, Zhu M, Kong D, Zhuang J, Huang X. Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging. Nat Commun 2025; 16:1123. [PMID: 39875380 PMCID: PMC11775132 DOI: 10.1038/s41467-025-56414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9H2E) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG). Utilizing endosome-escaping ability, we design iFTn-based tetrameric cascade nanozymes with high superoxide dismutase- and catalase-mimicking activities. The in vivo protective effects of these ionizable cascade nanozymes against cardiac oxidative injury are demonstrated in female mouse models of cardiac ischemia-reperfusion (IR). RNA-sequencing analysis highlight the crucial role of these nanozymes in modulating superoxide anions-, hydrogen peroxide- and mitochondrial functions-relevant genes in IR injured cardiac tissue. These genetically engineered ionizable protein nanocarriers provide opportunities for developing ionizable drug delivery systems.
Collapse
Affiliation(s)
- Qiqi Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Zhanxia Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Qiannan Duan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Yue Zhang
- Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Li Jiao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Ruming Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Patil R, Wang H, Kazaleh M, Ailawadi G, Salmon M. Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases. Pharmaceuticals (Basel) 2025; 18:112. [PMID: 39861173 PMCID: PMC11768260 DOI: 10.3390/ph18010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression. We will also discuss potential implications of targeting mitochondrial regulation as therapeutic targets to treat vascular disease formation.
Collapse
Affiliation(s)
- Ricky Patil
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Hui Wang
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Matthew Kazaleh
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
- Frankel Cardiovascular Center, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
- Frankel Cardiovascular Center, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Zhang X, Liu Q, Zhao R, Pang Z, Zhang W, Qi T, Zhu M, Kang H, Qian M, Wan Y, Wang R, Wang S, Huang X, Zhuang J. Rational Design of Genetically Engineered Mitochondrial-Targeting Nanozymes for Alleviating Myocardial Ischemic-Reperfusion Injury. NANO LETTERS 2025; 25:663-672. [PMID: 39651838 DOI: 10.1021/acs.nanolett.4c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The development of mitochondria-targeting nanozymes holds significant promise for treating myocardial ischemia-reperfusion (IR) injury but faces significant biological barriers. To overcome these obstacles, we herein utilized genetically engineered ferritin nanocages (i.e., imFTn) to develop mitochondria-targeting nanozymes consisting of three ferritin subunit assembly modules: an IR-injured cardiomyocyte-targeting module, a lysosome-escaping module, and a mitochondria-targeting module. Using imFTn as a nanozyme platform, we developed nanozymes capable of efficiently catalyzing the l-Arg substrate to produce NO. The imFTn-Ru exhibits NO-generating activities, reduces mitochondrial reactive oxygen species generation, inhibits mitochondrial permeability transition pore opening, and enhances mitochondrial membrane potential. Furthermore, imFTn-Ru provides synergistic effects by specifically targeting myocardial IR-injured tissues, facilitating their accumulation in mitochondria, and protecting mitochondria against myocardial IR-induced injury in both in vitro and in vivo models. This study underscores a rational approach to designing nanozymes for targeting specific subcellular organelles in the treatment of IR injury.
Collapse
Affiliation(s)
- Xiangyun Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rongping Zhao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhihua Pang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Weiyu Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tianyi Qi
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Helong Kang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yajuan Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Zhylko A, Morawski M, Rykowski P, Krasnodębski M, Wyporski A, Borkowski J, Zhylko D, Kobryń K, Stankiewicz R, Stypułkowski J, Hołówko W, Patkowski W, Wróblewski T, Szczepankiewicz B, Górnicka B, Mielczarek-Puta M, Struga M, Krawczyk M, Grąt M. Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion. J Clin Med 2025; 14:471. [PMID: 39860477 PMCID: PMC11766178 DOI: 10.3390/jcm14020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Hypothermic oxygenated machine perfusion has emerged as a strategy to alleviate ischemic-reperfusion injury in liver grafts. Nevertheless, there is limited data on the effectiveness of hypothermic liver perfusion in evaluating organ quality. This study aimed to introduce a readily accessible real-time predictive biomarker measured in machine perfusate for post-transplant liver graft function. Methods: The study evaluated perfusate analytes over a 90-day postoperative period in 26 patients randomly assigned to receive a liver graft following dual hypothermic machine perfusion in a prospective randomized controlled trial. Machine perfusion was consistently conducted end-ischemically for at least 120 min, with real-time perfusate assessment at 30-min intervals. Graft functionality was assessed using established metrics, including Early Allograft Dysfunction (EAD). Results: Perfusate lactate concentration after 120 min of machine perfusion demonstrated significant predictive value for EAD (AUC ROC: 0.841, p = 0.009). Additionally, it correlated with post-transplant peak transaminase levels and extended hospital stays. Subgroup analysis revealed significantly higher lactate accumulation in livers with post-transplant EAD. Conclusions: Liver graft quality can be effectively assessed during hypothermic machine perfusion using simple perfusate lactate measurements. The reliability and accessibility of this evaluation support its potential integration into diverse transplant centers.
Collapse
Affiliation(s)
- Andriy Zhylko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marcin Morawski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Anya Wyporski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Jan Borkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Dmytro Zhylko
- Computer Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Konrad Kobryń
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Rafał Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Jan Stypułkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Tadeusz Wróblewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | | | - Barbara Górnicka
- Department of Pathology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | | | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (M.M.); (M.K.); (M.G.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
27
|
Fang S, Huang W, Qu X, Chai W. The mitochondria as a potential therapeutic target in cerebral I/R injury. Front Neurosci 2025; 18:1500647. [PMID: 39844858 PMCID: PMC11752919 DOI: 10.3389/fnins.2024.1500647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking. Accumulating data supports a paradigm whereby cerebral ischemia/reperfusion (I/R) injury is coupled with impaired mitochondrial function, contributing to the pathogenesis of ischemic stroke. Herein, we review recent evidence demonstrating a heterogeneous mitochondrial response following cerebral I/R injury, placing a specific focus on mitochondrial protein modifications, reactive oxygen species, calcium (Ca2+), inflammation, and quality control under experimental conditions using animal models.
Collapse
Affiliation(s)
- Susu Fang
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wenzhou Huang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, Jiangxi, China
| | - Xinhui Qu
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Xue J, Zhuang J, Wang X, Meng T, Wu J, Zhang X, Zhang G. Mechanisms and Therapeutic Strategies for Myocardial Ischemia-Reperfusion Injury in Diabetic States. ACS Pharmacol Transl Sci 2024; 7:3691-3717. [PMID: 39698288 PMCID: PMC11651189 DOI: 10.1021/acsptsci.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
In patients with myocardial infarction, one of the complications that may occur after revascularization is myocardial ischemia-reperfusion injury (IRI), characterized by a depleted myocardial oxygen supply and absence of blood flow recovery after reperfusion, leading to expansion of myocardial infarction, poor healing of myocardial infarction and reversal of left ventricular remodeling, and an increase in the risk for major adverse cardiovascular events such as heart failure, arrhythmia, and cardiac cell death. As a risk factor for cardiovascular disease, diabetes mellitus increases myocardial susceptibility to myocardial IRI through various mechanisms, increases acute myocardial infarction and myocardial IRI incidence, decreases myocardial responsiveness to protective strategies and efficacy of myocardial IRI protective methods, and increases diabetes mellitus mortality through myocardial infarction. This Review summarizes the mechanisms, existing therapeutic strategies, and potential therapeutic targets of myocardial IRI in diabetic states, which has very compelling clinical significance.
Collapse
Affiliation(s)
- Jing Xue
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jialu Zhuang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Xinyue Wang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoqian Zhang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Guiyang Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
29
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
30
|
Huang R, Zhang C, Xiang Z, Lin T, Ling J, Hu H. Role of mitochondria in renal ischemia-reperfusion injury. FEBS J 2024; 291:5365-5378. [PMID: 38567754 DOI: 10.1111/febs.17130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 12/19/2024]
Abstract
Acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (IRI) has a high morbidity and mortality, representing a worldwide problem. The kidney is an essential organ of metabolism that has high blood perfusion and is the second most mitochondria-rich organ after the heart because of the high ATP demands of its essential functions of nutrient reabsorption, acid-base and electrolyte balance, and hemodynamics. Thus, these energy-intensive cells are particularly vulnerable to mitochondrial dysfunction. As the bulk of glomerular ultrafiltrate reabsorption by proximal tubules occurs via active transport, the mitochondria of proximal tubules must be equipped for detecting and responding to fluctuations in energy availability to guarantee efficient basal metabolism. Any insults to mitochondrial quality control mechanisms may lead to biological disruption, blocking the clearance of damaged mitochondria and resulting in morphological change and tissue dysfunction. Extensive research has shown that mitochondria have pivotal roles in acute kidney disease, so in this article, we discuss the role of mitochondria, their dynamics and mitophagy in renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Zhengjie Xiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Tao Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Jian Ling
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
31
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
32
|
Antonetti DA, Lin CM, Shanmugam S, Hager H, Cao M, Liu X, Dreffs A, Habash A, Abcouwer SF. Diabetes Renders Photoreceptors Susceptible to Retinal Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 39570639 PMCID: PMC11585066 DOI: 10.1167/iovs.65.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose Studies have suggested that photoreceptors (PR) are altered by diabetes, contributing to diabetic retinopathy (DR) pathology. Here, we explored the effect of diabetes on retinal ischemic injury. Methods Retinal ischemia-reperfusion (IR) injury was caused by elevation of intraocular pressure in 10-week-old BKS db/db type 2 diabetes mellitus (T2DM) mice or C57BL/6J mice at 4 or 12 weeks after streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), and respective nondiabetic controls. Retinal neurodegeneration was evaluated by retinal layer thinning, TUNEL staining, and neuron loss. Vascular permeability was evaluated as retinal accumulation of circulating fluorescent albumin. The effects of pretreatment with a sodium-glucose co-transporter (SGLT1/2) inhibitor, phlorizin, were examined. Results Nondiabetic control mice exhibited no significant outer retinal layer thinning or PR loss after IR injury. In contrast, db/db mice exhibited significant outer retina thinning (49%, P < 0.0001), loss of PR nuclei (45%, P < 0.05) and inner segment (IS) length decline (45%, P < 0.0001). STZ-induced diabetic mice at 4 weeks showed progressive thinning of the outer retina (55%, by 14 days, P < 0.0001) and 4.3-fold greater number of TUNEL+ cells in the outer nuclear layer (ONL) than injured retinas of control mice (P < 0.0001). After 12 weeks of diabetes, the retinas exhibited similar outer layer thinning and PR loss after IR. Diabetes also delayed restoration of the blood-retinal barrier after IR injury. Phlorizin reduced outer retinal layer thinning from 49% to 3% (P < 0.0001). Conclusions Diabetes caused PR to become highly susceptible to IR injury. The ability of phlorizin pretreatment to block outer retinal thinning after IR suggests that the effects of diabetes on PR are readily reversible.
Collapse
Affiliation(s)
- David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Manjing Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Alyssa Dreffs
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Adam Habash
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
33
|
Azuma R, Yamasaki T, Sano K, Mukai T. Detection of lipid radicals generated via cerebral ischemia/reperfusion injury using a radiolabeled nitroxide probe. Free Radic Biol Med 2024; 224:678-684. [PMID: 39303954 DOI: 10.1016/j.freeradbiomed.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Reactive oxygen species generated via reperfusion cause lipid damage and induce lipid peroxidation, leading to cerebral ischemia/reperfusion injury and exacerbation of cerebral infarction. Lipid radicals are key molecules generated during lipid peroxidation. Therefore, understanding the spatiotemporal behavior of lipid radicals is important to improve the therapeutic outcomes of cerebral infarction. However, the behaviors of lipid radicals in the brain remain unclear. In this study, we aimed to evaluate the distribution of radioactivity in a transient middle cerebral artery occlusion (tMCAO) model using lipid radical detection probe [125I]1 to assess the behaviors of lipid radicals after cerebral ischemia/reperfusion. The tMCAO model administered [125I]1 exhibited significant differences in the timing and location of radioactivity accumulation between the ischemic and non-ischemic regions. Liquid chromatography/mass spectrometry analysis identified the lipid radical adducts formed by the reaction of 1 with the lipid radicals generated after reperfusion. More adducts were detected in the ischemic region samples than in the non-ischemic region samples. Therefore, 1 successfully detected the lipid radicals generated after cerebral ischemia/reperfusion. Overall, this study demonstrates the potential of nuclear medical imaging using radiolabeled 1 to detect the lipid radicals generated after cerebral ischemia/reperfusion. Our approach can aid in the development of new therapeutic agents scavenging lipid radicals after cerebral reperfusion by facilitating the determination of therapeutic efficacy and optimal administration period.
Collapse
Affiliation(s)
- Risa Azuma
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
34
|
Ducros L, Lavoie-Rochon AS, Pichaud N, Lamarre SG. Metabolic rate and mitochondrial physiology adjustments in Arctic char (Salvelinus alpinus) during cyclic hypoxia. J Exp Biol 2024; 227:jeb247834. [PMID: 39319396 DOI: 10.1242/jeb.247834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Diel fluctuations of oxygen levels characterize cyclic hypoxia and pose a significant challenge to wild fish populations. Although recent research has been conducted on the effects of hypoxia and reoxygenation, mechanisms by which fish acclimatize to cyclic hypoxia remain unclear, especially in hypoxia-sensitive species. We hypothesized that acclimation to cyclic hypoxia requires a downregulation of aerobic metabolic rate and an upregulation of mitochondrial respiratory capacities to mitigate constraints on aerobic metabolism and the elevated risk of oxidative stress upon reoxygenation. We exposed Arctic char (Salvelinus alpinus) to 10 days of cyclic hypoxia and measured their metabolic rate and mitochondrial physiology to determine how they cope with fluctuating oxygen concentrations. We measured oxygen consumption as a proxy of metabolic rate and observed that Arctic char defend their standard metabolic rate but decrease their routine metabolic rate during hypoxic phases, presumably through the repression of spontaneous swimming activities. At the mitochondrial level, acute cyclic hypoxia increases oxygen consumption without ADP (CI-LEAK) in the liver and heart. Respiration in the presence of ADP (OXPHOS) temporarily increases in the liver and decreases in the heart. Cytochrome c oxidase oxygen affinity also increases at day 3 in the liver. However, no change occurs in the brain, which is likely primarily preserved through preferential perfusion (albeit not measured in this study). Finally, in vivo measurements of reactive oxygen species revealed the absence of an oxidative burst in mitochondria in the cyclic hypoxia group. Our study shows that Arctic char acclimatize to cyclic hypoxia through organ-specific mitochondrial adjustments.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - A S Lavoie-Rochon
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
35
|
Pissas G, Tziastoudi M, Divani M, Poulianiti C, Konsta MAP, Lykotsetas E, Liakopoulos V, Stefanidis I, Eleftheriadis T. Malate dehydrogenase-2 inhibition shields renal tubular epithelial cells from anoxia-reoxygenation injury by reducing reactive oxygen species. J Biochem Mol Toxicol 2024; 38:e23854. [PMID: 39287333 DOI: 10.1002/jbt.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Ischemia-reperfusion (I-R) injury is the most common cause of acute kidney injury. In experiments involving primary human renal proximal tubular epithelial cells (RPTECs) exposed to anoxia-reoxygenation, we explored the hypothesis that mitochondrial malate dehydrogenase-2 (MDH-2) inhibition redirects malate metabolism from the mitochondria to the cytoplasm, towards the malate-pyruvate cycle and reversed malate-aspartate shuttle. Colorimetry, fluorometry, and western blotting showed that MDH2 inhibition accelerates the malate-pyruvate cycle enhancing cytoplasmic NADPH, thereby regenerating the potent antioxidant reduced glutathione. It also reversed the malate-aspartate shuttle and potentially diminished mitochondrial reactive oxygen species (ROS) production by transferring electrons, in the form of NADH, from the mitochondria to the cytoplasm. The excessive ROS production induced by anoxia-reoxygenation led to DNA damage and protein modification, triggering DNA damage and unfolded protein response, ultimately resulting in apoptosis and senescence. Additionally, ROS induced lipid peroxidation, which may contribute to the process of ferroptosis. Inhibiting MDH-2 proved effective in mitigating ROS overproduction during anoxia-reoxygenation, thereby rescuing RPTECs from death or senescence. Thus, targeting MDH-2 holds promise as a pharmaceutical strategy against I-R injury.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
36
|
Kawamura M, Parmentier C, Ray S, Clotet-Freixas S, Leung S, John R, Mazilescu L, Nogueira E, Noguchi Y, Goto T, Arulratnam B, Ganesh S, Tamang T, Lees K, Reichman TW, Andreazza AC, Kim PK, Konvalinka A, Selzner M, Robinson LA. Normothermic ex vivo kidney perfusion preserves mitochondrial and graft function after warm ischemia and is further enhanced by AP39. Nat Commun 2024; 15:8086. [PMID: 39278958 PMCID: PMC11402965 DOI: 10.1038/s41467-024-52140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
We previously reported that normothermic ex vivo kidney perfusion (NEVKP) is superior in terms of organ protection compared to static cold storage (SCS), which is still the standard method of organ preservation, but the mechanisms are incompletely understood. We used a large animal kidney autotransplant model to evaluate mitochondrial function during organ preservation and after kidney transplantation, utilizing live cells extracted from fresh kidney tissue. Male porcine kidneys stored under normothermic perfusion showed preserved mitochondrial function and higher ATP levels compared to kidneys stored at 4 °C (SCS). Mitochondrial respiration and ATP levels were further enhanced when AP39, a mitochondria-targeted hydrogen sulfide donor, was administered during warm perfusion. Correspondingly, the combination of NEVKP and AP39 was associated with decreased oxidative stress and inflammation, and with improved graft function after transplantation. In conclusion, our findings suggest that the organ-protective effects of normothermic perfusion are mediated by maintenance of mitochondrial function and enhanced by AP39 administration. Activation of mitochondrial function through the combination of AP39 and normothermic perfusion could represent a new therapeutic strategy for long-term renal preservation.
Collapse
Affiliation(s)
- Masataka Kawamura
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Catherine Parmentier
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Samrat Ray
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Sergi Clotet-Freixas
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Division of Nephrology, McMaster University and St. Joseph's Healthcare, Hamilton, Canada
| | - Sharon Leung
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Rohan John
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology, University Health Network, Toronto, Canada
| | - Laura Mazilescu
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Emmanuel Nogueira
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Yuki Noguchi
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Toru Goto
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | | | - Sujani Ganesh
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Tomas Tamang
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Kaitlin Lees
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Trevor W Reichman
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Ana C Andreazza
- Departments of Pharmacology & Toxicology and Psychiatry, Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, Canada
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Ana Konvalinka
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada.
- Division of General Surgery, University Health Network, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada.
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
Liao FH, Chen SP, Yao CN, Wu TH, Liu MT, Hsu CS, Chen HM, Lin SY. Oxygen-Binding Sites of Enriched Gold Nanoclusters for Capturing Mitochondrial Reverse Electrons. NANO LETTERS 2024; 24:11202-11209. [PMID: 39207943 PMCID: PMC11403762 DOI: 10.1021/acs.nanolett.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reverse electron transfer (RET), an abnormal backward flow of electrons from complexes III/IV to II/I of mitochondria, causes the overproduction of a reduced-type CoQ to boost downstream production of mitochondrial superoxide anions that leads to ischemia-reperfusion injury (IRI) to organs. Herein, we studied low-coordinated gold nanoclusters (AuNCs) with abundant oxygen-binding sites to form an electron-demanding trapper that allowed rapid capture of electrons to compensate for the CoQ/CoQH2 imbalance during RET. The AuNCs were composed of only eight gold atoms that formed a Cs-symmetrical configuration with all gold atoms exposed on the edge site. The geometry and atomic configuration enhance oxygen intercalation to attain a d-band electron deficiency in frontier orbitals, forming an unusually high oxidation state for rapid mitochondrial reverse electron capture under a transient imbalance of CoQ/CoQH2 redox cycles. Using hepatic IRI cells/animals, we corroborated that the CoQ-like AuNCs prevent inflammation and liver damage from IRI via recovery of the mitochondrial function.
Collapse
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Meng-Ting Liu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
38
|
Alabi BA, Nku-Ekpang OA, Lawal SK, Iwalewa EO, Omobowale T, Ajike R, Lawal RA. Mitigative role of cysteamine against unilateral renal reperfusion injury in Wistar rats. Front Pharmacol 2024; 15:1456903. [PMID: 39372204 PMCID: PMC11450295 DOI: 10.3389/fphar.2024.1456903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Background Ischemia-reperfusion injury (IRI) is unavoidable during kidney transplant and it is responsible for delayed or non-function after kidney transplantation. Cysteamine is the standard drug in the management of nephropathic cystinosis and its extra-renal complications. Thus, we designed this study to investigate its potential against renal reperfusion injury. Results Significant elevation of H2O2, MDA, and nitrite and reduced GPx, GSH, and protein thiol in the Ischemia-reperfusion injury rats was reversed by cysteamine (50 and 100 mg/kg). Serum MPO, TNF-α, IL-1β, creatinine, and AOPP were significantly elevated in IRI while rats treated with cysteamine revealed a significant decrease (p < 0.05) in the activities of these pro-inflammatory and renal injury markers. Conclusion Based on its activity against inflammation, apoptosis, and free radical-induced stress, cysteamine has great potential to be used as a kidney transplant pre-operative drug to prevent renal reperfusion injury.
Collapse
Affiliation(s)
- Babatunde Adebola Alabi
- Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
- Department of Pharmacy, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | - Okot-Asi Nku-Ekpang
- Department of Physiology, University of Calabar, Calabar, Cross River, Nigeria
| | | | | | - Temidayo Omobowale
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Richard Ajike
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo, Nigeria
| | | |
Collapse
|
39
|
Qi Y, Zheng J, Zi Y, Song W, Chen X, Cao S, Zhou Q, Fu H, Hu X. Loureirin C improves mitochondrial function by promoting NRF2 nuclear translocation to attenuate oxidative damage caused by renal ischemia-reperfusion injury. Int Immunopharmacol 2024; 138:112596. [PMID: 38981224 DOI: 10.1016/j.intimp.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome worldwide, with no effective treatment strategy. Renal ischemia-reperfusion (IR) injury is one of the main AKI features, and the excessive reactive oxygen species (ROS) production during reperfusion causes severe oxidative damage to the kidney. Loureirin C (LC), an active ingredient in the traditional Chinese medicine Chinese dragon's blood, possesses excellent antioxidative properties, but its role in renal IR injury is not clear. In this study, we evaluated the protective effects of LC against renal IR injury in vivo and in vitro by establishing a mice renal IR injury model and a human proximal renal tubular epithelial cell (HK-2) hypoxia/reoxygenation (HR) model. We found that LC ameliorated renal function and tissue structure injury and inhibited renal oxidative stress and ferroptosis in vivo. In vitro, LC scavenged ROS and attenuated mitochondrial dysfunction in HK-2 cells, thereby inhibiting oxidative cellular injury. Furthermore, we found that LC effectively promoted nuclear factor erythroid 2-related factor 2 (NRF2) nuclear translocation and activated downstream target genes heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) to enhance cellular antioxidant function. Moreover, NRF2 knockdown and pharmacological inhibition of NRF2 partially eliminated the protective effect of LC. These results confirm that LC can effectively inhibit renal IR injury, and the mechanism may be associated with NRF2 activation by LC.
Collapse
Affiliation(s)
- Yucheng Qi
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China; The Fourth People's Hospital of Hengyang, China
| | - Jinli Zheng
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, China
| | - Yuan Zi
- The Fourth People's Hospital of Hengyang, China
| | - Wenke Song
- Department of Medical Department, Affiliated Nanhua Hospital, University of South China, China
| | - Xuancai Chen
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Shahuang Cao
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Qun Zhou
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Hao Fu
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China.
| | - Xinyi Hu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, China.
| |
Collapse
|
40
|
Zhang Y, Jiang M, Wang T. Reactive oxygen species (ROS)-responsive biomaterials for treating myocardial ischemia-reperfusion injury. Front Bioeng Biotechnol 2024; 12:1469393. [PMID: 39286345 PMCID: PMC11402825 DOI: 10.3389/fbioe.2024.1469393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mantang Jiang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Nwaduru C, Ovalle LA, Hoareau GL, Baker E, Buff M, Selim M, Baker TB, Zimmerman MA. Ectonucleotidases in Ischemia Reperfusion Injury: Unravelling the Interplay With Mitochondrial Dysfunction in Liver Transplantation. Transplant Proc 2024; 56:1598-1606. [PMID: 39183080 DOI: 10.1016/j.transproceed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) profoundly impacts organ transplantation, especially in orthotopic liver transplantation (OLT). Disruption of the mitochondrial respiratory chain during ischemia leads to ATP loss and ROS production. Reperfusion exacerbates mitochondrial damage, triggering the release of damage-associated molecular patterns (DAMPs) and inflammatory responses. Mitochondrial dysfunction, a pivotal aspect of IRI, is explored in the context of the regulatory role of ectonucleotidases in purinergic signaling and immune responses. CD39, by hydrolyzing ATP and ADP; and CD73, by converting AMP to adenosine, emerge as key players in mitigating liver IRI, particularly through ischemic preconditioning and adenosine receptor signaling. Despite established roles in vascular health and immunity, the impact of ectonucleotidases on mitochondrial function during hepatic IRI is unclear. This review aims to elucidate the interplay between CD39/73 and mitochondria, emphasizing their potential as therapeutic targets for liver transplantation. This article explores the role of CD39/73 in tissue hypoxia, emphasizing adenosine production during inflammation. CD39 and CD73 upregulation under hypoxic conditions regulate immune responses, demonstrating protective effects in various organ-specific ischemic models. However, prolonged adenosine activation may have dual effects, beneficial in acute settings but detrimental in chronic hypoxia. Herein, we raise questions about ectonucleotidases influencing mitochondrial function during hepatic IRI, drawing parallels with cancer cell responses to chemotherapy. The review underscores the need for comprehensive research into the intricate interplay between ectonucleotidases, mitochondrial dynamics, and their therapeutic implications in hepatic IRI, providing valuable insights for advancing transplantation outcomes.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guillaume L Hoareau
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
42
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
43
|
Yutsyschyna MA, Shaftoe JB, Gillis TE. Mitochondria from the systemic heart of Pacific hagfish (Eptatretus stoutii) are insensitive to one hour of anoxia followed by reoxygenation. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111022. [PMID: 39151663 DOI: 10.1016/j.cbpb.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pacific hagfish (Eptatretus stoutii) are an ancient agnathan vertebrate known to be anoxia tolerant. To study their metabolic organization and the role of the mitochondria in anoxia tolerance we developed a novel protocol to measure mitochondrial function in permeabilized cardiomyocytes and how this is affected by one hour of anoxia followed by reoxygenation. When measured at 10 °C the mitochondria had a respiration rate of 2.1 ± 0.1pmol/s/mg WW during OXPHOS with saturating concentrations of glutamate, malate, and succinate. This is comparatively low compared to other ectothermic species. The functional characteristics of the mitochondria were quantified with mitochondrial control ratios. These demonstrated that proton leak contributed to just under 50% of the oxygen flux, with the remainder going towards ATP phosphorylation. Finally, when the preparations were exposed to an anoxia-reoxygenation protocol there was no difference in respiration compared to that of a heart sample from the same animal maintained under normoxia for the same time. When Complex I alone or Complex I and II were stimulated following one hour of anoxia there was no decline in oxygen flux observed. However, if Complex II was activated alone there was a significant decline in respiration. This decrease was however also observed in the mitochondria maintained in normoxia for one hour. In conclusion, Pacific hagfish cardiac mitochondria demonstrated a low rate of oxygen consumption, a loosely coupled electron transfer system, and a resistance to one hour of anoxia.
Collapse
Affiliation(s)
| | - Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| |
Collapse
|
44
|
Mahmoud DSE, Kamel MA, El-Sayed IET, Binsuwaidan R, Elmongy EI, Razzaq MK, Abd Eldaim MA, Ahmed ESAM, Shaker SA. Astaxanthin ameliorated isoproterenol induced myocardial infarction via improving the mitochondrial function and antioxidant activity in rats. J Biochem Mol Toxicol 2024; 38:e23804. [PMID: 39132813 DOI: 10.1002/jbt.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.
Collapse
Affiliation(s)
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohand Kareem Razzaq
- Department of Biochemistry, College of Medicine, University of Sumer, Thi-Qar, Iraq
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt
| | | | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
Abe J, Vujic A, Prag HA, Murphy MP, Krieg T. Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury. Basic Res Cardiol 2024; 119:691-697. [PMID: 38864895 PMCID: PMC11319474 DOI: 10.1007/s00395-024-01063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The mitochondrial metabolite succinate is a key driver of ischemia/reperfusion injury (IRI). Targeting succinate metabolism by inhibiting succinate dehydrogenase (SDH) upon reperfusion using malonate is an effective therapeutic strategy to achieve cardioprotection in the short term (< 24 h reperfusion) in mouse and pig in vivo myocardial infarction (MI) models. We aimed to assess whether inhibiting IRI with malonate given upon reperfusion could prevent post-MI heart failure (HF) assessed after 28 days. Male C57BL/6 J mice were subjected to 30 min left anterior coronary artery (LAD) occlusion, before reperfusion for 28 days. Malonate or without-malonate control was infused as a single dose upon reperfusion. Cardiac function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Reperfusion without malonate significantly reduced ejection fraction (~ 47%), fractional shortening (~ 23%) and elevated collagen deposition 28 days post-MI. Malonate, administered as a single infusion (16 mg/kg/min for 10 min) upon reperfusion, gave a significant cardioprotective effect, with ejection fraction (~ 60%) and fractional shortening (~ 30%) preserved and less collagen deposition. Using an acidified malonate formulation, to enhance its uptake into cardiomyocytes via the monocarboxylate transporter 1, both 1.6 and 16 mg/kg/min 10 min infusion led to robust long-term cardioprotection with preserved ejection fraction (> 60%) and fractional shortening (~ 30%), as well as significantly less collagen deposition than control hearts. Malonate administration upon reperfusion prevents post-MI HF. Acidification of malonate enables lower doses of malonate to also achieve long-term cardioprotection post-MI. Therefore, the administration of acidified malonate upon reperfusion is a promising therapeutic strategy to prevent IRI and post-MI HF.
Collapse
Affiliation(s)
- Jiro Abe
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ana Vujic
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
46
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
47
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024; 16:1347-1362. [PMID: 38913043 PMCID: PMC12096906 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Sorby-Adams A, Prime TA, Miljkovic JL, Prag HA, Krieg T, Murphy MP. A model of mitochondrial superoxide production during ischaemia-reperfusion injury for therapeutic development and mechanistic understanding. Redox Biol 2024; 72:103161. [PMID: 38677214 PMCID: PMC11066467 DOI: 10.1016/j.redox.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.
Collapse
Affiliation(s)
- Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
49
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|