1
|
Liébana-García R, López-Almela I, Olivares M, Romaní-Pérez M, Manghi P, Torres-Mayo A, Tolosa-Enguís V, Flor-Duro A, Bullich-Vilarrubias C, Rubio T, Rossini V, Segata N, Sanz Y. Gut commensal Phascolarctobacterium faecium retunes innate immunity to mitigate obesity and metabolic disease in mice. Nat Microbiol 2025:10.1038/s41564-025-01989-7. [PMID: 40328980 DOI: 10.1038/s41564-025-01989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiota may protect against obesity and chronic metabolic conditions by regulating the immune response to dietary triggers. Yet the specific bacteria that control the overactivation of the immune system in obesity and their mode of action remain largely unknown. Here we surveyed 7,569 human metagenomes and observed an association between the gut symbiont Phascolarctobacterium faecium and non-obese adults regardless of nationality, sex or age. In a mouse model of diet-induced obesity, we confirmed the specificity of P. faecium DSM 32890 anti-obesogenic properties compared with other species of the same genus. P. faecium reversed the inflammatory phenotype associated with obesity. Specifically, P. faecium promoted polarization of alternatively activated macrophages (M2), which reversed the obesity-induced increase in gut-resident type 1 innate lymphoid cells. This resulted in mitigation of glucose intolerance, adiposity and body weight gain irrespective of treatment with live or pasteurized bacteria. The metabolic benefits were independent of the adaptive immune system, but they were abolished by an inhibitor of M2 polarization in mice. P. faecium directly promoted M2-macrophage polarization through TLR2 signalling and these effects seemed to be independent of gut microbiota changes. Overall, we identify a previously undescribed gut commensal bacterium that could help mitigate obesity and metabolic comorbidities by retuning the innate immune response to hypercaloric diets.
Collapse
Affiliation(s)
- Rebeca Liébana-García
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marta Olivares
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
- Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Alba Torres-Mayo
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Verónica Tolosa-Enguís
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alejandra Flor-Duro
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Teresa Rubio
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valerio Rossini
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Yolanda Sanz
- Microbiome Innovation in Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
2
|
Martínez‐Augustin O, Tena‐Garitaonaindia M, Ceacero‐Heras D, Jiménez‐Ortas Á, Enguix‐Huete JJ, Álvarez‐Mercado AI, Ruiz‐Henares G, Aranda CJ, Gámez‐Belmonte R, Sánchez de Medina F. Macronutrients as Regulators of Intestinal Epithelial Permeability: Where Do We Stand? Compr Rev Food Sci Food Saf 2025; 24:e70178. [PMID: 40421830 PMCID: PMC12108046 DOI: 10.1111/1541-4337.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 05/28/2025]
Abstract
The intestinal barrier function (IBF) is essential for intestinal homeostasis. Its alterations have been linked to intestinal and systemic disease. Regulation of intestinal permeability is key in the maintenance of the IBF, in which the intestinal epithelium and tight junctions, the mucus layer, sIgA, and antimicrobial peptides are important factors. This review addresses the concept of IBF, focusing on permeability, and summarizes state-of-the-art information on how starvation and macronutrients regulate it. Novel mechanisms regulate intestinal permeability, like its induction by the normal process of nutrient absorption, the contribution of starvation-induced autophagy, or the stimulation of sIgA production by high-protein diets in a T-cell-independent fashion. In addition, observations evidence that starvation and protein restriction increase intestinal permeability, compromising mucin, antimicrobial peptides, and/or intestinal sIgA production. Regarding specific macronutrients, substantial evidence indicates that casein (compared to other protein sources), specific protein-derived peptides and glutamine reinforce IBF. Dietary carbohydrates regulate intestinal permeability in a structure- and composition-dependent fashion; fructose, glucose, and sucrose increase it, while nondigestible oligosaccharides (NDOs) decrease it. Among NDOs, human milk oligosaccharides (HMOs) stand as a promising tool. NODs effects are mediated by intestinal microbiota modulation, production of short-chain fatty acids, and direct interactions with intestinal cells. Finally, evidence supports avoiding high-fat diets for their detrimental effects on IBF. Most studies have been carried out in vitro or in animal models. More information is needed from clinical studies to substantiate beneficial effects and the use of macronutrients in the treatment and prevention of IBF-related diseases.
Collapse
Affiliation(s)
- Olga Martínez‐Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Mireia Tena‐Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Diego Ceacero‐Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ángela Jiménez‐Ortas
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Juan J. Enguix‐Huete
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ana I. Álvarez‐Mercado
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Guillermo Ruiz‐Henares
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Carlos J. Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐ IBIMA Plataforma BIONANDRICORS “Enfermedades inflamatorias”MálagaSpain
| | - Reyes Gámez‐Belmonte
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
- Department of Medicine 1University of Erlangen‐NurembergErlangenGermany
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| |
Collapse
|
3
|
Makassy D, Williams K, Karwi QG. The Evolving Role of Macrophage Metabolic Reprogramming in Obesity. Can J Cardiol 2025:S0828-282X(25)00320-4. [PMID: 40311669 DOI: 10.1016/j.cjca.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Recent research has extensively explored the critical role of energy metabolism in shaping the inflammatory response and polarization of macrophages in obesity. This rapidly growing field emphasizes the need to understand the connection between metabolic processes that support macrophage polarization in obesity. Although most published research in this area has focused on glucose and fatty acids, how the flux through other metabolic pathways (such as ketone and amino acid oxidation) in macrophages is altered in obesity is not well defined. This review summarizes the main alterations in uptake, storage, and oxidation of oxidative substrates (glucose, fatty acids, ketone bodies, and amino acids) in macrophages and how these alterations are linked to macrophage polarization and contribution to augmented inflammatory markers in obesity. The review also discusses how oxidative substrates could modulate macrophage energy metabolism and inflammatory responses via feeding into other nonoxidative pathways (such as the pentose phosphate pathway, triacylglycerol synthesis/accumulation), via acting as signalling molecules, or via mediating post-translational modifications (such as O-GlcNAcylation or β-hydroxybutyrylation). The review also identifies several critical unanswered questions regarding the characteristics (functional and metabolic) of macrophages from different origins (adipose tissue, skeletal muscle, bone marrow) in obesity and how these characteristics contribute to early vs late phases of obesity. We also identified a number of new therapeutic targets that could be evaluated in future investigations. Targeting macrophage metabolism in obesity is an exciting and active area of research with significant potential to help identify new treatments to limit the detrimental effects of inflammation in obesity.
Collapse
Affiliation(s)
- Dorcus Makassy
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Kyra Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
4
|
Zhuang J, Hai Y, Lu X, Sun B, Fan R, Zhang B, Wang W, Han B, Luo L, Yang L, Zhang C, Zhao M, Wei G. A Self-Assembled Metabolic Regulator Reprograms Macrophages to Combat Cytokine Storm and Boost Sepsis Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0663. [PMID: 40171016 PMCID: PMC11959697 DOI: 10.34133/research.0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025]
Abstract
Sepsis, a life-threatening inflammatory disorder characterized by multiorgan failure, arises from a dysregulated immune response to infection. Modulating macrophage polarization has emerged as a promising strategy to control sepsis-associated inflammation. The endogenous metabolite itaconate has shown anti-inflammatory potential by suppressing the stimulator of interferon genes (STING) pathway, but its efficacy is inhibited by hyperactive glycolysis, which sustains macrophage overactivation. Here, we revealed a critical crosstalk between the itaconate-STING axis and glycolysis in macrophage-mediated inflammation. Building on this interplay, we developed a novel nanoparticle LDO (lonidamine disulfide 4-octyl-itaconate), a self-assembled metabolic regulator integrating an itaconate derivative with the glycolysis inhibitor Lonidamine. By concurrently targeting glycolysis and STING pathways, LDO reprograms macrophages to restore balanced polarization. In sepsis models, LDO effectively attenuates CCL2-driven cytokine storms, alleviates acute lung injury, and significantly enhances survival via metabolic reprogramming. This study offers a cytokine-regulatory strategy rooted in immunometabolism, providing a foundation for the translational development of immune metabolite-based sepsis therapies.
Collapse
Affiliation(s)
- Junyan Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yongrui Hai
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xintong Lu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Borui Sun
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Renming Fan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Bingjie Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Wenhui Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Bingxue Han
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Li Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, Shaanxi, China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, Shaanxi, China
| | - Chun Zhang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Minggao Zhao
- Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, Shaanxi, China
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
5
|
Jeerawattanawart S, Angkasekwinai P. Intestinal IL-25 prevents high-fat diet-induced obesity by modulating the cholesterol transporter NPC1L1 expression in the intestinal epithelial cells. Sci Rep 2025; 15:10445. [PMID: 40140439 PMCID: PMC11947149 DOI: 10.1038/s41598-025-95516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
The intestine is essential for digestion and nutrient absorption, and its altered function contributes to metabolic dysregulation and obesity-induced intestinal inflammation. Intestinal immune responses have been associated with the regulation of metabolic dysfunction during obesity. Given that the epithelial cell-derived cytokine IL-25 has been demonstrated to regulate metabolic disorders, we sought to examine the role of intestinal IL-25 in modulating a high-fat diet (HFD)-induced obesity. We found that mice on a high-fat diet exhibited decreased IL-25 expression in the small intestine. Intestinal IL-25 mRNA levels displayed an inverse association with plasma triglycerides, total cholesterol, glucose levels, and the expression of the cholesterol transporter Npc1l1 in the intestine. In HFD-induced obesity, transgenic mice overexpressing IL-25 in the intestinal epithelial cells demonstrated diminished mRNA expression of intestinal genes related to glucose, cholesterol, and fat absorption, along with chylomicron production, while also systemically decreasing plasma glucose, total cholesterol, and triglyceride levels, fat accumulation, and weight gain. In vitro, IL-25 treatment of human intestinal Caco-2 cells directly decreased cholesterol uptake and downregulated the expression of NPC1L1 and its transcriptional regulator, SREBP2. These findings highlight IL-25 as a potential modulator in the intestine that regulates intestinal cholesterol absorption and systemic metabolism in obesity.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, 12000, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Xu Y, Zhang X, Li G, Guo R, Zhang H, Zhao B, Zhao X, Chen K, Huang X. New insights into DEHP-induced inflammatory injury in chicken spleen: ROS/TLR4/MyD88 pathway and apoptosis/necroptosis-M1 polarization crosstalk. Poult Sci 2025; 104:105074. [PMID: 40245538 PMCID: PMC12032333 DOI: 10.1016/j.psj.2025.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
The environmental endocrine disruptor di(2-ethylhexyl) phthalate (DEHP) is a plasticiser used in large quantities in plastics and is hazardous to the health of humans and various animals. DEHP can be immunotoxic to the spleen through oxidative stress. Still, the role of splenic macrophage polarization in lymphocyte apoptosis and necroptosis, whether they interact with each other, and the mechanism of the effect on splenic inflammatory injury are unknown. In this study, based on the construction of a time-and dose-dependent model of DEHP-exposed chicken spleen, chicken lymphoma cell (MSB-1) and chicken macrophage (HD11) models were established to investigate the mechanism of apoptosis/necroptosis-M1 polarization crosstalk in DEHP-induced toxicity in chicken spleen injury. The results showed that DEHP exposure activated the ROS/TLR4/MyD88 pathway, up-regulated the expression of chemokines, induced macrophage M1 polarization, caused apoptosis and necroptosis in lymphocytes and inflicted inflammatory damage to the spleen, however, these effects could be alleviated by NAC. DEHP exposure of the HD11/MSB-1 cell co-culture system showed that M1 polarization promoted apoptosis and necroptosis and vice versa. In conclusion, DEHP exposure is involved in mediating the crosstalk between apoptosis/necroptosis and M1 polarization through the activation of the ROS/TLR4/MyD88 pathway, which in turn exacerbates inflammatory injury in the chicken spleen.
Collapse
Affiliation(s)
- Yue Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiandan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rong Guo
- Shandong Vocational Animal Science and Veterinary College, PR China
| | - Hong Zhang
- Liaoning Petmate Biotechnology Co, PR China
| | - Bolin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoyu Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Toshimitsu T, Irie J. An update and overview of the various health-related benefits of probiotics: A focus on clinical trials demonstrating efficacy, tolerability and use in patients with impaired glucose tolerance and type 2 diabetes. Diabetes Obes Metab 2025; 27 Suppl 1:15-22. [PMID: 39989436 PMCID: PMC11894779 DOI: 10.1111/dom.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
Recently, probiotics have been investigated as potential therapeutic agents for various diseases. Clinical studies using probiotics have been conducted in humans with impaired glucose tolerance and type 2 diabetes mellitus. Chronic inflammation plays a pivotal role in initiating insulin resistance in the pathogenesis of type 2 diabetes, leading to cardiovascular diseases. Intestinal dysfunction and inflammation have been postulated to trigger systemic chronic inflammation, and it is assumed that the suppression of inflammation in the intestine is the point of activity of probiotics. Therefore, in this review, among the randomised controlled trials that evaluated the effects of probiotics in patients with impaired glucose tolerance and type 2 diabetes, we selected trials that evaluated the indices of glycaemic control and inflammation-related markers. Some trials have shown that the probiotics administration improved glycaemic indices, such as HbA1c levels, and reduced C-reactive protein levels and proinflammatory cytokines, such as IL-6, in the blood, suggesting the suppression of inflammation. Two trials showed improvements in glycaemic indices, implying that they were mediated by IL-10, an anti-inflammatory cytokine. Although a correlation between the suppression of inflammation by probiotics and improvement in glycaemic control has not been documented, one trial revealed that glycaemic control worsened, accompanied by a decrease in anti-inflammatory cytokine levels, after probiotics were discontinued. Other studies have shown that probiotics can reduce blood endotoxin levels and increase intestinal mucin production. These findings suggest that probiotic administration has enormous potential to suppress chronic inflammation in metabolic disorders, leading to improved glycaemic control. Suppression of chronic inflammation has been speculated to prevent vascular diseases in type 2 diabetes.
Collapse
Affiliation(s)
- Takayuki Toshimitsu
- Health Science Research Unit, Division of Research and DevelopmentMeiji Co., LtdTokyoJapan
| | - Junichiro Irie
- Division of Diabetes, Department of Medicine IIKansai Medical UniversityOsakaJapan
| |
Collapse
|
8
|
Abe T. Isoschaftoside in Fig Leaf Tea Alleviates Nonalcoholic Fatty Liver Disease in Mice via the Regulation of Macrophage Polarity. Nutrients 2025; 17:757. [PMID: 40077628 PMCID: PMC11902273 DOI: 10.3390/nu17050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a subset of fatty liver disease that is not caused by alcohol or viruses, and its increasing incidence presents a major global health concern. As few pharmacotherapies are available for NAFLD, lifestyle modifications, including diet and exercise, serve as the foundation for treatment. Therefore, NAFLD prevention is more important than cure, emphasizing the need for drugs with excellent safety and long-term efficacy. Fig leaf tea contains rutin and isoschaftoside (ISS), which may possess anti-inflammatory properties. Therefore, the aim of this murine-model-based study was to investigate the potential benefits of fig leaf tea in alleviating NAFLD and to determine the underlying mechanism by gene expression analysis. RESULTS We found that in mice with NAFLD induced by a high-fat diet, the administration of high concentration fig leaf tea or 50 µM ISS significantly ameliorated lobule inflammation. In contrast, low concentration fig leaf tea containing 75 µM ISS did not improve inflammation. The balance between the NAFLD-promoting component of fig leaf tea and the inhibitory effect of ISS was thought to be affected. Gene expression analysis of the liver showed that high concentration fig leaf tea or ISS significantly suppressed the expression of M1 macrophage markers such as CD antigens, toll-like receptors (TLR), chemokines, and cytokines. Further, ISS suppressed the amount of TNF-α released during the M1 polarization of macrophage cells upon lipopolysaccharide (LPS) stimulation. CONCLUSIONS Overall, these results suggest that controlling macrophage polarization may improve NAFLD. Furthermore, these findings highlight the potential clinical applicability of ISS.
Collapse
Affiliation(s)
- Tatsuya Abe
- Toyo Institute of Food Technology, 23-2, 4-chome, Minami-Hanayashiki, Kawanishi 666-0026, Hyogo, Japan
| |
Collapse
|
9
|
Vanhie JJ, Orloff LE, Tate A, Goode C, Collao N, Pisanko A, Power KA, DE Lisio M. Obesity Promotes Marrow-Derived Myeloid Cell Accumulation While Exercise Reduces Proliferative Signaling in Colon Cancer. Med Sci Sports Exerc 2025; 57:317-326. [PMID: 39350427 DOI: 10.1249/mss.0000000000003572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
PURPOSE Obesity increases colon cancer risk that has been previously linked to marrow-derived myeloid cells. We previously demonstrated that exercise training (EX) prevents colon cancer initiation, potentially through reduced myelopoiesis. However, it remains unknown whether early myeloid cell accumulation and inflammation in the colon precedes carcinogenesis with high-fat diet (HFD)-induced obesity, and if EX can attenuate these effects. We hypothesized that obesity would promote colon carcinogenesis that was preceded by myeloid cell accumulation and inflammation that would be attenuated by EX. METHODS C57BL/6 mice were randomized to a HFD or control (CON) diet for 8 weeks. The HFD mice switched to CON diet and all mice were given intraperitoneal injections of azoxymethane (AOM) to induce colon cancer and randomized into EX or sedentary (SED) conditions. RESULTS HFD mice developed more aberrant crypt foci (ACF), a marker for early carcinogenesis, compared with CON ( P < 0.01), and EX developed fewer ACF compared with SED ( P < 0.0001). Marrow-derived ( P < 0.001) CD206 + macrophages were elevated in HFD compared with CON at study week 16 ( P < 0.01). Marrow-derived CD206 - macrophages ( P < 0.05) and marrow-derived ( P < 0.05) CD206 + macrophages were more abundant in HFD compared with CON at study week 42. EX did not alter colon immune cell populations. β-catenin protein was higher in HFD compared with CON at study week 42 ( P < 0.05), and STAT3 protein content was lower at study week 28 with EX compared with SED ( P < 0.05). CONCLUSIONS The results suggest that obesity promotes colon ACF formation, potentially through early inflammatory myeloid cell accumulation. Despite attenuating ACF, EX did not alter myeloid cell accumulation in the colon, suggesting that EX inhibits ACF formation through alternative mechanisms which may include reduced β-catenin and STAT3 signaling.
Collapse
Affiliation(s)
- James J Vanhie
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | - Lisa Ek Orloff
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | - Alice Tate
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | - Cole Goode
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | | | - Anastasia Pisanko
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, CANADA
| | | | | |
Collapse
|
10
|
Mao X, Paerhati G, Wu Y, Cheng LF. Modulation of gut microbiota, up-regulation of ZO-1, and promotion of metabolism as therapeutic mechanisms of indole-3-carbinol against obesity in mice. Front Pharmacol 2025; 15:1499142. [PMID: 39830328 PMCID: PMC11739362 DOI: 10.3389/fphar.2024.1499142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Indole-3-carbinol (I3C) is a compound derived from Cruciferous vegetables. We aim to ascertain whether I3C mediates the relations between mouse gut microbiota, intestinal barrier function, and metabolism to treat obesity in mice. Methods The experimental analyses focused on the changes in lipid distribution, inflammatory cytokines, glucose tolerance, gut microbiota composition, and serum metabolomics of 60 C57BL/6N mice. Results The experimental results demonstrated that I3C reduced body weight, hepatic steatosis, and systemic inflammation and improved insulin resistance in mice on a high-fat diet (HFD). Furthermore, I3C remarkably enhanced the enrichment of probiotics Akkermansia and Ligilactobacillus as well as SCFA-producing bacteria (Eubacterium, Lactococcus, and Coprococcus), while reducing the abundance of Eisenbergiella and Rikenellaceae_RC9_gut_group. Also, I3C notably up-regulated the levels of Claudin4, Occludin, and ZO-1 proteins and modulated the metabolism of argininosuccinic acid and galactose. Conclusion The aforementioned findings suggest that I3C exerts a significant anti-obesity effect in mice by regulating abnormal gut microbiome, enhancing intestinal barrier function, and improving metabolic disorders.
Collapse
Affiliation(s)
- XuWen Mao
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| | - Guliruoyi Paerhati
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| | - Yuche Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Ürümqi, China
| | - Lu Feng Cheng
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
11
|
Li G, Wu M, Chen K, Xu Y, Zhang X, Chen Y, Zhang H, Zhang R, Huang X. ROS-mediated M1 polarization-necroptosis crosstalk involved in Di-(2-ethylhexyl) phthalate-induced chicken liver injury. Poult Sci 2025; 104:104558. [PMID: 39631278 PMCID: PMC11665341 DOI: 10.1016/j.psj.2024.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The widespread use of plasticizers poses a serious threat to the environment and poultry health. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer that can cause liver damage with prolonged exposure. Oxidative stress is closely associated with DEHP toxicity. Macrophage polarization plays an important role in many physiological and pathological processes and regulates disease development. This study aims to elucidate the mechanism of chronic DEHP exposure leading to chicken liver injury through oxidative stress-induced M1 polarization-necroptosis. In this study, the DEHP exposure model of chicken liver and the single and co-culture model of LMH and HD11 cells were established. With increasing dose and time, DEHP decreased body weight, increased liver coefficient, raised activities of liver function indicators and caused pathological liver damage in chickens. Further studies revealed the increase of reactive oxygen species (ROS) level and malonaldehyde (MDA) content, and the decrease of total antioxidant capacity (T-AOC) level, total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities, which led to excessive oxidative stress in the liver. In addition, there was increased infiltration of liver macrophages (CD68), upregulation of M1 polarization indicators (CD86, iNOS, IL-1β, TNF-α) and downregulation of M2 polarization indicators (CD163, Arg-1, IL-10, TGF-β) and appearance of necroptosis (RIPK1, RIPK3, MLKL). The vitro experiments confirmed the addition of N-acetylcysteine (NAC) inhibited M1 polarization and necroptosis. Besides, M1 polarization of HD11 cells promoted necroptosis of LMH cells in the HD11-LMH co-culture system. In brief, ROS-mediated M1 polarization-necroptosis is involved in DEHP-induced liver injury. This study provides a reference for environmental toxicant exposure in livestock and poultry farming.
Collapse
Affiliation(s)
- Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menglin Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiandan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong Zhang
- Liaoning Petmate Biotechnology Co, PR China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Hu J, Li G, He X, Gao X, Pan D, Dong X, Huang W, Qiu F, Chen LF, Hu X. Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice. Commun Biol 2024; 7:1708. [PMID: 39733044 DOI: 10.1038/s42003-024-07437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024] Open
Abstract
High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage. Upon 4-week HFD, myeloid-lineage-specific Brd4 deletion (Brd4-CKO) mice showed reduced colonic inflammation and macrophage infiltration with decreased expression of Ccr2 and Ccr5. Mechanistically, Brd4 was recruited by NF-κB to the enhancer regions of Ccr2 and Ccr5, promoting enhancer RNA expression, which facilitated Ccr2/Ccr5 expression and macrophage migration. Furthermore, decreased infiltration of Ccr2/Ccr5-positive colonic macrophages in Brd4-CKO mice altered gut microbiota composition and reduced intestinal permeability, thereby lowering metabolic endotoxemia. Finally, Brd4-CKO mice subjected to a 4-week LPS infusion exhibited restored susceptibility to HFD-induced obesity and insulin resistance. This study identifies Brd4 as a critical initiator of colonic macrophage-mediated inflammation and metabolic endotoxemia upon HFD, suggesting Brd4 as a potential target for mitigating HFD-induced inflammation, obesity, and its metabolic complications.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoxin He
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xuming Gao
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wentao Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Funan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China.
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Cong F, Zhang Y, Xu J, Fang X, Li X, Xue Q, Wang J, Liu Y. The effect of abnormal lipid metabolism on immunosenescence of the colonic lamina propria in mice of different ages. Immunol Lett 2024; 270:106940. [PMID: 39477189 DOI: 10.1016/j.imlet.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/13/2024]
Abstract
Immunosenescence is an age-associated change in immunological function. The intestinal mucosal immune system is considered the largest immune system in the human body, and its immunosenescence is closely related to the occurrence and development of many diseases. In recent years, studies have identified a crucial correlation between abnormal lipid metabolism induced by high-fat diet (HFD) and immunity, but the effect and mechanism of HFD on colonic mucosal immunosenescence are still unclear. In this study, we established an abnormal lipid metabolism model at different ages by feeding male wild-type mice HFD and compared the immunosenescence of the spleen, which reflects systemic immunity, and the colonic lamina propria (LP), which reflects local immunity. The results showed that HFD could lead to abnormal lipid metabolism at different ages, accelerate systemic and local immunosenescence, and increase the expression of inflammatory factors in colonic tissue. The levels of abnormal biochemical indicators induced by HFD were closely related to the proportions of T cell subsets associated with immunosenescence. Overall, the results showed that HFD had the most significant impact on aged mice. This study provides new ideas for further understanding the relationship between abnormal lipid metabolism and intestinal mucosal immunosenescence.
Collapse
Affiliation(s)
- Fangyuan Cong
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Yang Zhang
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Jun Xu
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Xiaohui Fang
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Xia Li
- Geriatric Department, Peking University People's Hospital, Beijing, China
| | - Qian Xue
- Geriatric Department, Peking University People's Hospital, Beijing, China
| | - Jingtong Wang
- Geriatric Department, Peking University People's Hospital, Beijing, China.
| | - Yulan Liu
- Gastroenterology Department, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
14
|
Cruz Tleugabulova M, Melo SP, Wong A, Arlantico A, Liu M, Webster JD, Lau J, Lechner A, Corak B, Hodgins JJ, Garlapati VS, De Simone M, Korin B, Avraham S, Lund J, Jeet S, Reiss A, Bender H, Austin CD, Darmanis S, Modrusan Z, Brightbill H, Durinck S, Diamond MS, Schneider C, Shaw AS, Nitschké M. Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade. Nat Commun 2024; 15:9575. [PMID: 39505846 PMCID: PMC11541919 DOI: 10.1038/s41467-024-53700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pleiotropic and diverse cells that populate all tissues of the body. Besides tissue-specific resident macrophages such as alveolar macrophages, Kupffer cells, and microglia, multiple organs harbor at least two subtypes of other resident macrophages at steady state. During certain circumstances, like tissue insult, additional subtypes of macrophages are recruited to the tissue from the monocyte pool. Previously, a recruited macrophage population marked by expression of Spp1, Cd9, Gpnmb, Fabp5, and Trem2, has been described in several models of organ injury and cancer, and has been linked to fibrosis in mice and humans. Here, we show that Notch2 blockade, given systemically or locally, leads to an increase in this putative pro-fibrotic macrophage in the lung and that this macrophage state can only be adopted by monocytically derived cells and not resident alveolar macrophages. Using a bleomycin and COVID-19 model of lung injury and fibrosis, we find that the expansion of these macrophages before lung injury does not promote fibrosis but rather appears to ameliorate it. This suggests that these damage-associated macrophages are not, by themselves, drivers of fibrosis in the lung.
Collapse
Affiliation(s)
- Mayra Cruz Tleugabulova
- Department of Cancer Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Sandra P Melo
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Aaron Wong
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Julia Lau
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Antonie Lechner
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Basak Corak
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Jonathan J Hodgins
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Venkata S Garlapati
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Marco De Simone
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Ben Korin
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Shimrit Avraham
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Reiss
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hannah Bender
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Cary D Austin
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Spyros Darmanis
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Steffen Durinck
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Andrey S Shaw
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Maximilian Nitschké
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| |
Collapse
|
15
|
von Voss L, Arora T, Assis J, Kuentzel KB, Arfelt KN, Nøhr MK, Grevengoed TJ, Arumugam M, Mandrup-Poulsen T, Rosenkilde MM. Sexual Dimorphism in the Immunometabolic Role of Gpr183 in Mice. J Endocr Soc 2024; 8:bvae188. [PMID: 39545055 PMCID: PMC11561910 DOI: 10.1210/jendso/bvae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/17/2024] Open
Abstract
Context Excessive eating and intake of a Western diet negatively affect the intestinal immune system, resulting in compromised glucose homeostasis and lower gut bacterial diversity. The G protein-coupled receptor GPR183 regulates immune cell migration and intestinal immune response and has been associated with tuberculosis, type 1 diabetes, and inflammatory bowel diseases. Objective We hypothesized that with these implications, GPR183 has an important immunometabolic role and investigated this using a global Gpr183 knockout mouse model. Methods Wild-type (WT) and Gpr183-deficient (Gpr183-/-) mice were fed a high-fat, high-sucrose diet (HFSD) for 15 weeks. We investigated changes in weight, body composition, fecal immunoglobulin A (IgA) levels, fecal microbiome, and glucose tolerance before and after the diet. Macrophage infiltration into visceral fat was determined by flow cytometry, and hepatic gene expression was measured. Results A sexual dimorphism was discovered, whereby female Gpr183-/- mice showed adverse metabolic outcomes compared to WT counterparts with inferior glucose tolerance, lower fecal IgA levels, and increased macrophage infiltration in visceral fat. In contrast, male Gpr183-/- mice had significantly lower fasting blood glucose after diet than male WT mice. Liver gene expression showed reduced inflammation and macrophage markers in Gpr183-/- livers, regardless of sex, while the pancreatic islet area did not differ between the groups. No conclusive differences were found after microbiome sequencing. Conclusion Gpr183 maintains metabolic homeostasis in female but not in male mice independent of diet. If confirmed in humans, future therapy targeting GPR183 should consider this sexual dimorphism.
Collapse
Affiliation(s)
- Liv von Voss
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Juliana Assis
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, SE 223 63 Lund, Sweden
| | - Katharina B Kuentzel
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Kristine N Arfelt
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mark K Nøhr
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Trisha J Grevengoed
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Ye C, Wu C, Li Y, Chen C, Li X, Zhang J, Xu Z, Chen H, Guo Y. Traditional medicine Xianglian pill suppresses high-fat diet-related colorectal cancer via inactivating TLR4/MyD88 by remodeling gut microbiota composition and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118411. [PMID: 38824980 DOI: 10.1016/j.jep.2024.118411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous studies have revealed that a high-fat diet (HFD) promotes the progression of colorectal cancer (CRC) in close association with disturbances in the intestinal flora and metabolic disorders. Xianglian pill (XLP) is a well-established traditional prescription with unique advantages in controlling intestinal flora imbalance and inflammation. However, its therapeutic effects on HFD-related CRC remain largely unknown. AIM OF THE STUDY The primary objective of this research was to investigate the anticancer mechanism of XLP in countering HFD-related CRC. MATERIALS AND METHODS The protective effect of XLP was evaluated using azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CRC model of mice exposed to a HFD. The degree of colorectal carcinogenesis, including body weight, colon length, and histopathology, was measured in mice treated with XLP and untreated mice. The effect of XLP on gut microbiota and its metabolites was detected using 16S rDNA and liquid chromatography/mass spectrometry analysis. Furthermore, a "pseudo-sterile" mouse model was constructed using antibiotics (Abx) to verify whether the gut microbiota and metabolites play a role in the pathogenesis of CRC. RESULTS XLP inhibited colorectal tumorigenesis in a dose-dependent fashion. Our findings also highlighted that XLP protected the integrity of the intestinal barrier by reducing the expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, as well as the infiltration of pro-inflammatory macrophages. Mechanistically, XLP inhibited the TLR4/MyD88 pathway. Notably, the XLP treatment increased the proportion of probiotics (particularly Akkermansia) and significantly reduced fecal deoxycholic acid (DCA), a microbiota-derived metabolite of bile acids (BA) closely related to Muribaculaceae. Furthermore, after Abx treatment, XLP showed no clear antitumor effects on CRC. Simultaneously, DCA-supplemented feedings promoted colorectal tumorigenesis and provoked obvious colonic inflammation, M1 macrophage infiltration, and colonic injury. In vitro, the results of RAW-264.7 macrophages and normal intestinal epithelial cells treated with DCA corroborated our in vivo findings, demonstrating consistent patterns in inflammatory responses and intestinal barrier protein expression. CONCLUSION Our findings suggest that XLP inhibits colorectal cancer associated with HFD via inactivating TLR4/MyD88 by remodeling gut microbiota composition and BA metabolism.
Collapse
Affiliation(s)
- Chenxiao Ye
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Changhong Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Chao Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China; Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Xinrong Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China; Department of Integrative Medicine & Medical Oncology, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, 312400, Zhejiang, China
| | - Jin Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China; Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhili Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China; Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Haitao Chen
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
17
|
Wang Y, Yan F, Chen Q, Liu F, Xu B, Liu Y, Huo G, Xu J, Li B, Wang S. High-fat diet promotes type 2 diabetes mellitus by disrupting gut microbial rhythms and short-chain fatty acid synthesis. Food Funct 2024; 15:10838-10852. [PMID: 39405046 DOI: 10.1039/d4fo02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diabetes ranks among the top 10 causes of death globally, with over 90% of individuals diagnosed with diabetes having type 2 diabetes mellitus (T2DM). It is acknowledged that a high-fat diet (HFD) poses a serious risk for T2DM. The imbalance of intestinal flora, mediated by HFD, can potentially exacerbate the onset and progression of T2DM. However, the impact of HFD on pathological indicators and the intestinal microbiome in the development of T2DM has not been systematically investigated. Therefore, a HFD mouse model and a T2DM mouse model were established, respectively, in this study. The role of HFD as a driving factor in the development of T2DM was assessed using various measures, including basic pathological indicators of T2DM, lipid metabolism, liver oxidative stress, intestinal permeability, levels of inflammatory factors, gut microbiota, and short-chain fatty acids (SCFAs). The findings indicated that HFD could influence the aforementioned measures to align with T2DM changes, but the contribution of HFD varied across different pathological metrics of T2DM. The impact of HFD on low-density lipoprotein cholesterol, glutathione peroxidase, malondialdehyde, and tumor necrosis factor-α did not show a statistically significant difference from those observed in T2DM during its development. In addition, regarding gut microbes, HFD primarily influenced the alterations in bacteria capable of synthesizing SCFAs. The notable decrease in SCFA content in both serum and cecal matter further underscored the effect of HFD on SCFA-synthesising bacteria in mice. Hence, this research provided a systematic assessment of HFD's propelling role in T2DM's progression. It was inferred that gut microbes, particularly those capable of synthesizing SCFAs, could serve as potential targets for the future prevention and treatment of T2DM instigated by HFD.
Collapse
Affiliation(s)
- Yangrui Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fenfen Yan
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baofeng Xu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuanyuan Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinsheng Xu
- Shanghai Binhan International Trade Co., Ltd, Shanghai, 200000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, Shandong, 251200, China
| |
Collapse
|
18
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
19
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
20
|
Zheng Y, Zhao L, Xiong Z, Huang C, Yong Q, Fang D, Fu Y, Gu S, Chen C, Li J, Zhu Y, Liu J, Liu F, Li Y. Ursolic acid targets secreted phosphoprotein 1 to regulate Th17 cells against metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:449-467. [PMID: 38623614 PMCID: PMC11261229 DOI: 10.3350/cmh.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) has become an increasingly important health challenge, with a substantial rise linked to changing lifestyles and global obesity. Ursolic acid, a natural pentacyclic triterpenoid, has been explored for its potential therapeutic effects. Given its multifunctional bioactive properties, this research further revealed the pharmacological mechanisms of ursolic acid on MASLD. METHODS Drug target chips and bioinformatics analysis were combined in this study to explore the potential therapeutic effects of ursolic acid on MASLD. Molecular docking simulations, surface plasmon resonance analyses, pull-down experiments, and co-immunoprecipitation assays were used to verify the direct interactions. Gene knockdown mice were generated, and high-fat diets were used to validate drug efficacy. Furthermore, initial CD4+ T cells were isolated and stimulated to demonstrate our findings. RESULTS In this study, the multifunctional extracellular matrix phosphorylated glycoprotein secreted phosphoprotein 1 (SPP1) was investigated, highlighting its capability to induce Th17 cell differentiation, amplifying inflammatory cascades, and subsequently promoting the evolution of MASLD. In addition, this study revealed that in addition to the canonical TGF-β/IL-6 cytokine pathway, SPP1 can directly interact with ITGB1 and CD44, orchestrating Th17 cell differentiation via their joint downstream ERK signaling pathway. Remarkably, ursolic acid intervention notably suppressed the protein activity of SPP1, suggesting a promising avenue for ameliorating the immunoinflammatory trajectory in MASLD progression. CONCLUSION Ursolic acid could improve immune inflammation in MASLD by modulating SPP1-mediated Th17 cell differentiation via the ERK signaling pathway, which is orchestrated jointly by ITGB1 and CD44, emerging as a linchpin in this molecular cascade.
Collapse
Affiliation(s)
- Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Chaoyuan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Fang
- Medical Affairs Department, Ton-Bridge Medical Technology Co., Ltd., Zhuhai, China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
22
|
Li Y, Tian X, Yu Q, Bao T, Dai C, Jiang L, Niu K, Yang J, Wang S, Wu X. Alleviation of hepatic insulin resistance and steatosis with NMN via improving endoplasmic reticulum-Mitochondria miscommunication in the liver of HFD mice. Biomed Pharmacother 2024; 175:116682. [PMID: 38703507 DOI: 10.1016/j.biopha.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. β-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Qian Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chao Dai
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Liang Jiang
- ERA Biotechnology (Shenzhen) Co., Ltd, Shenzhen 518115, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Jianying Yang
- The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| |
Collapse
|
23
|
Toshimitsu T, Gotou A, Sashihara T, Hojo K, Hachimura S, Shioya N, Iwama Y, Irie J, Ichihara Y. Ingesting probiotic yogurt containing Lactiplantibacillus plantarum OLL2712 improves glycaemic control in adults with prediabetes in a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:2239-2247. [PMID: 38454743 DOI: 10.1111/dom.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
AIM The ingestion of Lactiplantibacillus plantarum OLL2712 (OLL2712) cells has been shown to improve glucose metabolism by suppressing chronic inflammation in murine models and clinical studies. This study aimed to clarify the effect of OLL2712 on glycaemic control in healthy adults with prediabetes. MATERIALS AND METHODS The study was a randomized, double-blind, placebo-controlled, parallel-group design. Adult participants with prediabetes [n = 148, glycated haemoglobin (HbA1c) range: 5.6%-6.4%, age range: 20-64 years] were assigned randomly to placebo or OLL2712 groups (n = 74/group) and administered daily for 12 weeks either conventional yogurt or yogurt containing >5 × 109 heat-treated OLL2712 cells, respectively. In addition, the participants were followed for 8 weeks after the discontinuation of either yogurt. The primary outcome was the changes in HbA1c levels at weeks 12 and 16 by analysis of covariance. RESULTS The levels of HbA1c and glycoalbumin decreased significantly in both groups at week 12 in comparison with those at week 0, but only in the OLL2712 group at week 16. HbA1c levels decreased significantly at weeks 12 and 16 in the OLL2712 group in comparison with the placebo group (p = .014 and p = .006, respectively). No significant inter- and intragroup differences in HbA1c levels were observed at week 20. CONCLUSIONS The ingestion of OLL2712 prevents the deterioration of glycaemic control and maintains the HbA1c levels within the normal range in adults with prediabetes; yogurt probably exhibits similar effects, which may contribute to reducing the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Takayuki Toshimitsu
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Ayako Gotou
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Kenichi Hojo
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhiko Shioya
- Statistical Analysis Department, KSO Corporation, Tokyo, Japan
| | | | - Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitatsu Ichihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
24
|
Angelini G, Russo S, Mingrone G. Intestinal heat shock proteins in metabolic syndrome: Novel mediators of obesity and its comorbidities resolution after metabolic surgery. Cell Stress Chaperones 2024; 29:217-226. [PMID: 38412940 PMCID: PMC10939036 DOI: 10.1016/j.cstres.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities. Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity. In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Sara Russo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Ke Z, Huang Y, Xu J, Liu Y, Zhang Y, Wang Y, Zhang Y, Liu Y. Escherichia coli NF73-1 disrupts the gut-vascular barrier and aggravates high-fat diet-induced fatty liver disease via inhibiting Wnt/β-catenin signalling pathway. Liver Int 2024; 44:776-790. [PMID: 38225740 DOI: 10.1111/liv.15823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND & AIMS Gut-vascular barrier (GVB) dysfunction has been shown to be a prerequisite for nonalcoholic fatty liver disease (NAFLD) development. However, the causes of GVB disruption and the underlying mechanisms are still elusive. Here, we explored whether and how Escherichia coli (E. coli) NF73-1, a pathogenic E. coli strain isolated from nonalcoholic steatohepatitis patients, contributes to NAFLD by modulating the GVB. METHODS C57BL/6J mice were fed with high-fat diet (HFD) or normal diet in the presence or absence of E. coli NF73-1 for the indicated time periods. Intestinal barrier function and infiltration of immune cells were evaluated in these mice. Endothelial cells were exposed to E. coli NF73-1 for barrier integrity analysis. RESULTS HFD-induced GVB disruption preceded the damage of intestinal epithelial barrier (IEB) as well as intestinal and hepatic inflammatory changes and can be reversed by vascular endothelial growth factor A blockade. Antibiotic treatment prevented mice from HFD-induced liver steatosis by restoration of the GVB. Notably, E. coli NF73-1 caused a more conspicuous damage of GVB than that of the IEB and contributed to NAFLD development. Mechanistically, E. coli NF73-1 dismantled the GVB by inhibiting the Wnt/β-catenin signalling pathway. Activation of Wnt/β-catenin improved the GVB and impeded the translocation of E. coli NF73-1 into the liver in vitro and in vivo. CONCLUSIONS E. coli NF73-1 disrupts GVB and aggravates NAFLD via inhibiting the Wnt/β-catenin signalling pathway. Targeting E. coli NF73-1 or selectively enhancing the GVB may act as potential avenues for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ziliang Ke
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yibo Huang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yifan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
26
|
Almasri F, Collotta D, Aimaretti E, Sus N, Aragno M, Dal Bello F, Eva C, Mastrocola R, Landberg R, Frank J, Collino M. Dietary Intake of Fructooligosaccharides Protects against Metabolic Derangements Evoked by Chronic Exposure to Fructose or Galactose in Rats. Mol Nutr Food Res 2024; 68:e2300476. [PMID: 38158337 DOI: 10.1002/mnfr.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Indexed: 01/03/2024]
Abstract
SCOPE Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.
Collapse
Affiliation(s)
- Fidèle Almasri
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Debora Collotta
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Torino, 10126, Piemonte, Italy
| | - Carola Eva
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| |
Collapse
|
27
|
Xiong M, Zhang Z, Cui J, Du X, Chen Y, Zhang T. Dengyinnaotong attenuates atherosclerotic lesions, gut dysbiosis and intestinal epithelial barrier impairment in the high fat diet-fed ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116916. [PMID: 37453620 DOI: 10.1016/j.jep.2023.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengyinnaotong (DYNT) is a traditional Chinese medicine-based patent drug officially approved for the treatment of ischemic stroke primarily based on its indigenous application for the treatment of cardiovascular and cerebrovascular diseases in Southwest China. Atherosclerosis is the principal pathology underlying the pathogenesis of ischemic stroke and coronary artery disease. However, whether DYNT is effective at mitigating atherosclerosis remains unknown. AIMS OF THE STUDY The purpose of the current study is to evaluate the potential impact of DYNT treatment on the atherosclerotic lesions and associated pathological mechanisms. MATERIALS AND METHODS Histological, immunohistochemical, molecular biological approaches were adopted to investigate the pharmacological impact of DYNT treatment on atherosclerosis and associated pathophysiological alterations in the high fat diet (HFD)-fed ApoE gene deficient (ApoE-/-) mice. RESULTS DYNT treatment reduced the size of the atherosclerotic plaques, alleviated the necrotic core, lowered the lipid retention, mitigated the macrophagic burden and decreased the expression of proatherogenic chemokine Ccl2 in the atherosclerotic lesions. DYNT treatment also offered partial protection against atherogenic dyslipidemia and mitigated hepatic lipid content as well as fatty liver pathologies in the HFD-fed ApoE-/- mice. Furthermore, DYNT treatment protected against atherosclerosis-associated gut dysbiosis and impairment in the intestinal epithelial barrier. CONCLUSIONS Our work provides novel preclinical evidence that underpins the multifaceted effects of DYNT in the control of atherosclerosis.
Collapse
Affiliation(s)
- Minqi Xiong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Zilong Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China; Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
28
|
Arifuzzaman M, Collins N, Guo CJ, Artis D. Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity 2024; 57:14-27. [PMID: 38198849 PMCID: PMC10795735 DOI: 10.1016/j.immuni.2023.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10021, USA.
| |
Collapse
|
29
|
Kobayashi K, Mochizuki J, Yamazaki F, Sashihara T. Yogurt starter strains ameliorate intestinal barrier dysfunction via activating AMPK in Caco-2 cells. Tissue Barriers 2024; 12:2184157. [PMID: 36852963 PMCID: PMC10832913 DOI: 10.1080/21688370.2023.2184157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.
Collapse
Affiliation(s)
- Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
30
|
Li RJW, Barros DR, Kuah R, Lim YM, Gao A, Beaudry JL, Zhang SY, Lam TKT. Small intestinal CaSR-dependent and CaSR-independent protein sensing regulates feeding and glucose tolerance in rats. Nat Metab 2024; 6:39-49. [PMID: 38167726 DOI: 10.1038/s42255-023-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Proteins activate small intestinal calcium sensing receptor (CaSR) and/or peptide transporter 1 (PepT1) to increase hormone secretion1-8, but the effect of small intestinal protein sensing and the mechanistic potential of CaSR and/or PepT1 in feeding and glucose regulation remain inconclusive. Here we show that, in male rats, CaSR in the upper small intestine is required for casein infusion to increase glucose tolerance and GLP1 and GIP secretion, which was also dependent on PepT1 (ref. 9). PepT1, but not CaSR, is required for casein infusion to lower feeding. Upper small intestine casein sensing fails to regulate feeding, but not glucose tolerance, in high-fat-fed rats with decreased PepT1 but increased CaSR expression. In the ileum, a CaSR-dependent but PepT1-independent pathway is required for casein infusion to lower feeding and increase glucose tolerance in chow-fed rats, in parallel with increased PYY and GLP1 release, respectively. High fat decreases ileal CaSR expression and disrupts casein sensing on feeding but not on glucose control, suggesting an ileal CaSR-independent, glucose-regulatory pathway. In summary, we discover small intestinal CaSR- and PepT1-dependent and -independent protein sensing mechanisms that regulate gut hormone release, feeding and glucose tolerance. Our findings highlight the potential of targeting small intestinal CaSR and/or PepT1 to regulate feeding and glucose tolerance.
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Daniel R Barros
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Rachel Kuah
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Anna Gao
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Kashihara H, Okikawa S, Morine Y, Yoshikawa K, Tokunaga T, Nishi M, Takasu C, Nishiyama M, Zushi M, Shimada M. Impact of Daikenchuto (TU-100) on the early postoperative period in duodenal-jejunal bypass. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:210-218. [PMID: 39462554 DOI: 10.2152/jmi.71.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
INTRODUCTION We investigated the effect of Daikenchuto (TU-100) on the early postoperative period in duodenal-jejunal bypass (DJB). METHODS Study 1:The effect of TU-100 on diabetic rats was investigated. Rats were sacrificed after receiving TU-100 for one week. Study 2:The effect of TU-100 on DJB was investigated. Rats in the DJB and TU-100 treated DJB groups were sacrificed 24 hours postoperation to evaluate blood glucose, cytokine expression, and gut microbiome. RESULTS Study 1:TU-100 did not affect glucose or body weight. TU-100 suppressed intestinal inflammation and modified the gut microbiome. Specifically, Bifidobacterium and Blautia were increased, and Turicibacter were decreased in this group. Study 2:Both DJB and TU-100 treated DJB rats showed lower blood glucose at 24 hours postoperation than at preoperation. Cytokine expression in the liver and small intestine of the TU-100 treated DJB group was significantly lower than that of the DJB group. The gut microbiome composition in TU-100 treated DJB rats was altered. In particular, Bifidobacterium and Blautia were increased in this group. CONCLUSION DJB suppressed blood glucose during the early postoperative period. TU-100 may enhance the anti-diabetic effect of metabolic surgery by changing the gut microbiome and suppressing inflammation in the early postoperative period. J. Med. Invest. 71 : 210-218, August, 2024.
Collapse
Affiliation(s)
| | - Shohei Okikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Mitsue Nishiyama
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Makoto Zushi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
32
|
Kawamata T, Wakimoto A, Nishikawa T, Ikezawa M, Hamada M, Inoue Y, Kulathunga K, Salim FN, Kanai M, Nishino T, Gentleman K, Liu C, Mathis BJ, Obana N, Fukuda S, Takahashi S, Taya Y, Sakai S, Hiramatsu Y. Natto consumption suppresses atherosclerotic plaque progression in LDL receptor-deficient mice transplanted with iRFP-expressing hematopoietic cells. Sci Rep 2023; 13:22469. [PMID: 38110459 PMCID: PMC10728071 DOI: 10.1038/s41598-023-48562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice. Notably, high vitamin K natto significantly reduced aortic staining and iRFP fluorescence, indicative of decreased atherosclerosis. Furthermore, mice administered natto showed changes in gut microbiota, including an increase in natto bacteria within the cecum, and a significant reduction in serum CCL2 expression. In experiments with LPS-stimulated macrophages, adding natto decreased CCL2 expression and increased anti-inflammatory cytokine IL-10 expression. This suggests that natto inhibits atherosclerosis through suppression of intestinal inflammation and reduced CCL2 expression in macrophages.
Collapse
Affiliation(s)
- Takeshi Kawamata
- Tsukuba Medical Center Hospital, 1-3-1, Amakubo, Tsukuba, Ibaraki, 305-8558, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takanobu Nishikawa
- Department of Natto Research and Development, Takanofoods Corporation, 1542, Noda, Omitama, Ibaraki, 311-3411, Japan.
| | - Masaya Ikezawa
- Department of Natto Research and Development, Takanofoods Corporation, 1542, Noda, Omitama, Ibaraki, 311-3411, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Physiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, P.O. Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Filiani Natalia Salim
- Centre for Medical Science and Technology and Healthcare Equity, Parahyangan Catholic University, Bandung, 40141, Indonesia
- Magister Program of Biomedical Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Teppei Nishino
- Tsukuba Medical Center Hospital, 1-3-1, Amakubo, Tsukuba, Ibaraki, 305-8558, Japan
| | - Kyle Gentleman
- Integrated Master of Science Natural Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, Hampshire, UK
| | - Chang Liu
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Bryan J Mathis
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata, 997-0052, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuki Taya
- Department of Natto Research and Development, Takanofoods Corporation, 1542, Noda, Omitama, Ibaraki, 311-3411, Japan
| | - Satoshi Sakai
- Department of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Faculty of Health Sciences, Tsukuba University of Technology, 4-12-7, Kasuga, Tsukuba, Ibaraki, 305-8521, Japan.
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
33
|
Jiang G, Shao J, Tang T, Wang M, Wang J, Jia X, Lai S. TMT-Based Proteomics Analysis Revealed the Protein Changes in Perirenal Fat from Obese Rabbits. Int J Mol Sci 2023; 24:17167. [PMID: 38138996 PMCID: PMC10743514 DOI: 10.3390/ijms242417167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity has become increasingly prevalent in recent years, and there is a need for a deeper understanding of the complex pathogenesis underlying the obesity condition. Therefore, the objective of this study was to investigate how a high-fat diet (HFD) affects protein expression in a female-rabbit model compared to a standard normal-diet group (SND), to gain comprehensive insights into the molecular mechanisms involved in obesity. To achieve this objective, a tandem mass tag (TMT)-based quantitative proteomics analysis was conducted to examine the molecular changes occurring in the white adipose tissue (WAT) from the HFD and SND groups. The sequencing results identified a total of 4215 proteins, among which 151 proteins exhibited significant differential expression. Specifically, there were 85 upregulated proteins and 66 downregulated proteins in the HFD group compared to the SND group. Further analysis of these differentially expressed proteins (DEPs) revealed their involvement in crucial biological processes, including energy metabolism, hormonal regulation, and inflammatory response. In conclusion, this study sheds light on the impact of HFD on protein expression in a female-rabbit model, providing new insights into the molecular mechanisms underlying obesity and the associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.J.); (J.S.); (T.T.); (M.W.); (J.W.); (X.J.)
| |
Collapse
|
34
|
Fujita M, Miyazawa T, Uchida K, Uchida N, Haji S, Yano S, Iwahashi N, Hatayama T, Katsuhara S, Nakamura S, Takeichi Y, Yokomoto-Umakoshi M, Miyachi Y, Sakamoto R, Iwakura Y, Ogawa Y. Dectin-2 Deficiency Promotes Proinflammatory Cytokine Release From Macrophages and Impairs Insulin Secretion. Endocrinology 2023; 165:bqad181. [PMID: 38038367 DOI: 10.1210/endocr/bqad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic islet inflammation plays a crucial role in the etiology of type 2 diabetes (T2D). Macrophages residing in pancreatic islets have emerged as key players in islet inflammation. Macrophages express a plethora of innate immune receptors that bind to environmental and metabolic cues and integrate these signals to trigger an inflammatory response that contributes to the development of islet inflammation. One such receptor, Dectin-2, has been identified within pancreatic islets; however, its role in glucose metabolism remains largely unknown. Here we have demonstrated that mice lacking Dectin-2 exhibit local inflammation within islets, along with impaired insulin secretion and β-cell dysfunction. Our findings indicate that these effects are mediated by proinflammatory cytokines, such as interleukin (IL)-1α and IL-6, which are secreted by macrophages that have acquired an inflammatory phenotype because of the loss of Dectin-2. This study provides novel insights into the mechanisms underlying the role of Dectin-2 in the development of islet inflammation.
Collapse
Affiliation(s)
- Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Miyazawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiichiro Uchida
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shojiro Haji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Seiichi Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomomi Hatayama
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shunsuke Katsuhara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yukina Takeichi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasutaka Miyachi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
35
|
Castoldi A, Sanin DE, van Teijlingen Bakker N, Aguiar CF, de Brito Monteiro L, Rana N, Grzes KM, Kabat AM, Curtis J, Cameron AM, Caputa G, Antônio de Souza T, Souto FO, Buescher JM, Edwards-Hicks J, Pearce EL, Pearce EJ, Saraiva Camara NO. Metabolic and functional remodeling of colonic macrophages in response to high-fat diet-induced obesity. iScience 2023; 26:107719. [PMID: 37674984 PMCID: PMC10477064 DOI: 10.1016/j.isci.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.
Collapse
Affiliation(s)
- Angela Castoldi
- Department of Immunology, University of Sao Paulo, Sao Paulo, Brazil
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Institute Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil
| | - David E. Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Lauar de Brito Monteiro
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Nisha Rana
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Katarzyna M. Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Agnieszka M. Kabat
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Curtis
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alanna M. Cameron
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - George Caputa
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Fabrício O. Souto
- Institute Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil
| | - Joerg M. Buescher
- Metabolomics Facility, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Erika L. Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward J. Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
36
|
Li D, Zhou J, Wang L, Gong Z, Le H, Huang Y, Xu C, Tian C, Cai W, Wu J. Gut microbial metabolite deoxycholic acid facilitates Th17 differentiation through modulating cholesterol biosynthesis and participates in high-fat diet-associated colonic inflammation. Cell Biosci 2023; 13:186. [PMID: 37789469 PMCID: PMC10548658 DOI: 10.1186/s13578-023-01109-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND High-fat diet (HFD) is closely associated with the increased prevalence of inflammatory bowel disease (IBD). Excessive gut microbial metabolite deoxycholic acid (DCA) caused by HFD plays significant roles in eliciting intestinal inflammation, however, the mechanism underlining the induction of inflammatory response by DCA has not been fully elucidated. The purpose of this study was to investigate the role of DCA in the triggering of inflammation via affecting CD4+ T cell differentiation. RESULTS Murine CD4+T cells were cultured under Th1, Th2 or Th17-polarizing conditions treated with or without different dosage of DCA, and flowcytometry was conducted to detect the effect of DCA on CD4+ T cell differentiation. Alteration of gene expression in CD4+ T cells upon DCA treatment was determined by RNA-sequencing and qRT-PCR. Bioinformatic analysis, cholesterol metabolic profiling, ChIP assay and immuno-fluorescent staining were further applied to explore the DCA-regulated pathway that involved in CD4+T cell differentiation. The results showed that DCA could dose-dependently promote the differentiation of CD4+ T cell into Th17 linage with pathogenic signature. Mechanistically, DCA stimulated the expression of cholesterol biosynthetic enzymes CYP51 and led to the increased generation of endogenous RORγt agonists, including zymosterol and desmosterol, therefore facilitating Th17 differentiation. Up-regulation of CYP51 by DCA was largely mediated via targeting transcription factor SREBP2 and at least partially through bile acid receptor TGR5. In addition, DCA-supplemented diet significantly increased intestinal Th17 cell infiltration and exacerbated TNBS-induced colitis. Administration of cholestyramine to eliminate fecal bile acid obviously alleviated colonic inflammation accompanied by decreased Th17 cells in HFD-fed mice. CONCLUSIONS Our data establish a link between DCA-induced cholesterol biosynthesis in immune cells and gut inflammation. Modulation of bile acid level or targeting cholesterol metabolic pathway may be potential therapeutic measurements for HFD-related colitis.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lingyu Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Zizhen Gong
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Huijuan Le
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ye Huang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Jin Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
- Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
37
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
38
|
Li J, Sun J, Zeng Z, Liu Z, Ma M, Zheng Z, He Y, Kang W. Tumour-associated macrophages in gastric cancer: From function and mechanism to application. Clin Transl Med 2023; 13:e1386. [PMID: 37608500 PMCID: PMC10444973 DOI: 10.1002/ctm2.1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumour, with high morbidity and mortality rates worldwide. The occurrence and development of GC is a complex process involving genetic changes in tumour cells and the influence of the surrounding tumour microenvironment (TME). Accumulative evidence shows that tumour-associated macrophages (TAMs) play a vital role in GC, acting as plentiful and active infiltrating inflammatory cells in the TME. MAIN BODY In this review, the different functions and mechanisms of TAMs in GC progression, including the conversion of phenotypic subtypes; promotion of tumour proliferation, invasion and migration; induction of chemoresistance; promotion of angiogenesis; modulation of immunosuppression; reprogramming of metabolism; and interaction with the microbial community are summarised. Although the role of TAMs in GC remains controversial in clinical settings, clarifying their significance in the treatment selection and prognostic prediction of GC could support optimising TAM-centred clinicaltherapy. CONCLUSION In summary, we reviewed the the phenotypic polarisation, function and molecular mechanism of TAMs and their potential applications in the treatment selection and prognostic prediction of GC.
Collapse
Affiliation(s)
- Jie Li
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Juan Sun
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Ziyang Zeng
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Zhen Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Mingwei Ma
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Zicheng Zheng
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Yixuan He
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Weiming Kang
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
39
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Baumann Z, Parayil N, Noreen F, Roux J, Meier DT, Cavelti-Weder C. Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice. Part Fibre Toxicol 2023; 20:25. [PMID: 37400850 DOI: 10.1186/s12989-023-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants. METHODS To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways. RESULTS Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure. CONCLUSION In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Faiza Noreen
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4031, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4031, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, 4031, Switzerland.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland.
- University Hospital Zurich, Rämistrasse 100, Zürich, 8009, Switzerland.
| |
Collapse
|
40
|
Wu Y, Yang L, Wu X, Wang L, Qi H, Feng Q, Peng B, Ding Y, Tang J. Identification of the hub genes in polycystic ovary syndrome based on disease-associated molecule network. FASEB J 2023; 37:e23056. [PMID: 37342921 DOI: 10.1096/fj.202202103r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Revealing the key genes involved in polycystic ovary syndrome (PCOS) and elucidating its pathogenic mechanism is of extreme importance for the development of targeted clinical therapy for PCOS. Investigating disease by integrating several associated and interacting molecules in biological systems will make it possible to discover new pathogenic genes. In this study, an integrative disease-associated molecule network, combining protein-protein interactions and protein-metabolites interactions (PPMI) network was constructed based on the PCOS-associated genes and metabolites systematically collected. This new PPMI strategy identified several potential PCOS-associated genes, which have unreported in previous publications. Moreover, the systematic analysis of five benchmarks data sets indicated the DERL1 was identified as downregulated in PCOS granulosa cell and has good classification performance between PCOS patients and healthy controls. CCR2 and DVL3 were upregulated in PCOS adipose tissues and have good classification performance. The expression of novel gene FXR2 identified in this study is significantly increased in ovarian granulosa cells of PCOS patients compared with controls via quantitative analysis. Our study uncovers substantial differences in the PCOS-specific tissue and provides a plethora of information on dysregulated genes and metabolites that are linked to PCOS. This knowledgebase could have the potential to benefit the scientific and clinical community. In sum, the identification of novel gene associated with PCOS provides valuable insights into the underlying molecular mechanisms of PCOS and could potentially lead to the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yue Wu
- School of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Lingping Yang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, P.R. China
| | - Xianglu Wu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, P.R. China
| | - Lidan Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qian Feng
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Bin Peng
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, P.R. China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, P.R. China
| | - Jing Tang
- School of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
41
|
Kadowaki S, Tamura Y, Sugimoto D, Kaga H, Suzuki R, Someya Y, Yamasaki N, Sato M, Kakehi S, Kanazawa A, Kawamori R, Watada H. A Short-Term High-Fat Diet Worsens Insulin Sensitivity with Changes in Metabolic Parameters in Non-Obese Japanese Men. J Clin Med 2023; 12:4084. [PMID: 37373776 DOI: 10.3390/jcm12124084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A short-term high-calorie high-fat diet (HCHFD) impairs insulin sensitivity in non-obese South Asian but not Caucasian men; however, the effect of short-term HCHFD on insulin sensitivity in East Asians is unknown. We recruited 21 healthy non-obese Japanese men to evaluate metabolic parameters and gut microbiota before and after 6-day HCHFD consisting of a regular diet plus a 45% energy excess with dairy fat supplementation. We evaluated tissue-specific insulin sensitivity and metabolic clearance rate of insulin (MCRI) using a two-step hyperinsulinemic euglycemic clamp, glucose tolerance using the glucose tolerance test, and measured ectopic fat in muscle and the liver using ¹H-magnetic resonance spectroscopy. The primary outcome of this study was insulin sensitivity measured by the clamp study. The secondary/exploratory outcomes were other metabolic changes. After HCHFD, levels of circulating lipopolysaccharide binding protein (LBP), a marker of endotoxemia, increased by 14%. In addition, intramyocellular lipid levels in the tibialis anterior and soleus and intrahepatic lipid levels increased by 47%, 31%, and 200%, respectively. Insulin sensitivity decreased by 4% in muscle and 8% in liver. However, even with reduced insulin sensitivity, glucose metabolism was maintained by increased serum insulin concentrations due to lower MCRI and higher endogenous insulin secretion during the clamp. Glucose levels during the meal tolerance test were comparable before and after HCHFD. In conclusion, short-term HCHFD impaired insulin sensitivity in the muscle and livers of non-obese Japanese men with increased LBP and ectopic fat accumulation. Elevated insulin levels from modulated insulin secretion and clearance might contribute to the maintenance of normal glucose metabolism during the clamp and meal tolerance test.
Collapse
Affiliation(s)
- Satoshi Kadowaki
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sports Medicine & Sportology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Sugimoto
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ruriko Suzuki
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nozomu Yamasaki
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Motonori Sato
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Saori Kakehi
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sports Medicine & Sportology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akio Kanazawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sports Medicine & Sportology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
42
|
Watanabe-Yasuoka Y, Gotou A, Shimizu S, Sashihara T. Lactiplantibacillus plantarum OLL2712 Induces Autophagy via MYD88 and Strengthens Tight Junction Integrity to Promote the Barrier Function in Intestinal Epithelial Cells. Nutrients 2023; 15:2655. [PMID: 37375559 DOI: 10.3390/nu15122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy is an important system conserved in eukaryotes that maintains homeostasis by degrading abnormal proteins. Autophagy incompetence in intestinal epithelial cells causes the abnormal function of intestinal stem cells and other cells and damages intestinal barrier function. The disruption of the intestinal barrier causes chronic inflammation throughout the body, followed by impaired glucose and lipid metabolism. Lactiplantibacillus plantarum OLL2712 (OLL2712) is a lactic acid bacterium that induces interleukin-10 production from immune cells, alleviates chronic inflammation, and improves glucose and lipid metabolism. In this study, we hypothesized that OLL2712 exerts anti-inflammatory effects by inducing autophagy and ameliorating intestinal barrier dysfunction, and we investigated its autophagy-inducing activities and functions. Caco-2 cells stimulated with OLL2712 for 24 h showed an increased number of autolysosomes per cell, compared with unstimulated cells. Therefore, the permeability of fluorescein isothiocyanate dextran 4000 (FD-4) was suppressed by inducing autophagy. In contrast, mucin secretion in HT-29-MTX-E12 cells was also increased by OLL2712 but not via autophagy induction. Finally, the signaling pathway involved in autophagy induction by OLL2712 was found to be mediated by myeloid differentiation factor 88 (MYD88). In conclusion, our findings suggest that OLL2712 induces autophagy in intestinal epithelial cells via MYD88, and that mucosal barrier function is strengthened by inducing autophagy.
Collapse
Affiliation(s)
- Yumiko Watanabe-Yasuoka
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| | - Ayako Gotou
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| |
Collapse
|
43
|
Wang HW, Tang J, Sun L, Li Z, Deng M, Dai Z. Mechanism of immune attack in the progression of obesity-related type 2 diabetes. World J Diabetes 2023; 14:494-511. [PMID: 37273249 PMCID: PMC10236992 DOI: 10.4239/wjd.v14.i5.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity and overweight are widespread issues in adults, children, and adolescents globally, and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM. This proinflammatory activation occurs in multiple organs and tissues. Immune cell-mediated systemic attack is considered to contribute strongly to impaired insulin secretion, insulin resistance, and other metabolic disorders. This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut, islet, and insulin-targeting organs (adipose tissue, liver, skeletal muscle) in obesity-related T2DM. There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Hua-Wei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
44
|
Breznik JA, Jury J, Verdú EF, Sloboda DM, Bowdish DME. Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factor. Am J Physiol Gastrointest Liver Physiol 2023; 324:G305-G321. [PMID: 36749921 DOI: 10.1152/ajpgi.00231.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Macrophages are essential for homeostatic maintenance of the anti-inflammatory and tolerogenic intestinal environment, yet monocyte-derived macrophages can promote local inflammation. Proinflammatory macrophage accumulation within the intestines may contribute to the development of systemic chronic inflammation and immunometabolic dysfunction in obesity. Using a model of high-fat diet-induced obesity in C57BL/6J female mice, we assessed intestinal paracellular permeability by in vivo and ex vivo assays and quantitated intestinal macrophages in ileum and colon tissues by multicolor flow cytometry after short (6 wk), intermediate (12 wk), and prolonged (18 wk) diet allocation. We characterized monocyte-derived CD4-TIM4- and CD4+TIM4- macrophages, as well as tissue-resident CD4+TIM4+ macrophages. Diet-induced obesity had tissue- and time-dependent effects on intestinal permeability, as well as monocyte and macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and tumor necrosis factor (TNF). We found that obese mice had increased paracellular permeability, in particular within the ileum, but this did not elicit recruitment of monocytes nor a local proinflammatory response by monocyte-derived or tissue-resident macrophages in either the ileum or colon. Proliferation of monocyte-derived and tissue-resident macrophages was also unchanged. Wild-type and TNF-/- littermate mice had similar intestinal permeability and macrophage population characteristics in response to diet-induced obesity. These data are unique from reported effects of diet-induced obesity on macrophages in metabolic tissues, as well as outcomes of acute inflammation within the intestines. These experiments also collectively indicate that TNF does not mediate effects of diet-induced obesity on paracellular permeability or intestinal monocyte-derived and tissue-resident intestinal macrophages in young female mice.NEW & NOTEWORTHY We found that diet-induced obesity in female mice has tissue- and time-dependent effects on intestinal paracellular permeability as well as monocyte-derived and tissue-resident macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. These changes were not mediated by TNF.
Collapse
Affiliation(s)
- Jessica A Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdú
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Nagahisa T, Kosugi S, Yamaguchi S. Interactions between Intestinal Homeostasis and NAD + Biology in Regulating Incretin Production and Postprandial Glucose Metabolism. Nutrients 2023; 15:nu15061494. [PMID: 36986224 PMCID: PMC10052115 DOI: 10.3390/nu15061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The intestine has garnered attention as a target organ for developing new therapies for impaired glucose tolerance. The intestine, which produces incretin hormones, is the central regulator of glucose metabolism. Glucagon-like peptide-1 (GLP-1) production, which determines postprandial glucose levels, is regulated by intestinal homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) biosynthesis in major metabolic organs such as the liver, adipose tissue, and skeletal muscle plays a crucial role in obesity- and aging-associated organ derangements. Furthermore, NAMPT-mediated NAD+ biosynthesis in the intestines and its upstream and downstream mediators, adenosine monophosphate-activated protein kinase (AMPK) and NAD+-dependent deacetylase sirtuins (SIRTs), respectively, are critical for intestinal homeostasis, including gut microbiota composition and bile acid metabolism, and GLP-1 production. Thus, boosting the intestinal AMPK-NAMPT-NAD+-SIRT pathway to improve intestinal homeostasis, GLP-1 production, and postprandial glucose metabolism has gained significant attention as a novel strategy to improve impaired glucose tolerance. Herein, we aimed to review in detail the regulatory mechanisms and importance of intestinal NAMPT-mediated NAD+ biosynthesis in regulating intestinal homeostasis and GLP-1 secretion in obesity and aging. Furthermore, dietary and molecular factors regulating intestinal NAMPT-mediated NAD+ biosynthesis were critically explored to facilitate the development of new therapeutic strategies for postprandial glucose dysregulation.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
46
|
Pathophysiology of Prediabetes, Diabetes, and Diabetic Remission in Cats. Vet Clin North Am Small Anim Pract 2023; 53:511-529. [PMID: 36898862 DOI: 10.1016/j.cvsm.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Diabetes mellitus (DM) has a heterogenous cause, and the exact pathogenesis differs between patients. Most diabetic cats have a cause similar to human type 2 DM but, in some, DM is associated with underlying conditions, such as hypersomatotropism, hyperadrenocorticism, or administration of diabetogenic drugs. Predisposing factors for feline DM include obesity, reduced physical activity, male sex, and increasing age. Gluco(lipo)toxicity and genetic predisposition also likely play roles in pathogenesis. Prediabetes cannot be accurately diagnosed in cats at the current time. Diabetic cats can enter remission, but relapses are common, as these cats might have ongoing, abnormal glucose homeostasis.
Collapse
|
47
|
Takeuchi T, Kameyama K, Miyauchi E, Nakanishi Y, Kanaya T, Fujii T, Kato T, Sasaki T, Tachibana N, Negishi H, Matsui M, Ohno H. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab 2023; 35:361-375.e9. [PMID: 36652945 DOI: 10.1016/j.cmet.2022.12.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Although recent studies have highlighted the impact of gut microbes on the progression of obesity and its comorbidities, it is not fully understood how these microbes promote these disorders, especially in terms of the role of microbial metabolites. Here, we report that Fusimonas intestini, a commensal species of the family Lachnospiraceae, is highly colonized in both humans and mice with obesity and hyperglycemia, produces long-chain fatty acids such as elaidate, and consequently facilitates diet-induced obesity. High fat intake altered the expression of microbial genes involved in lipid production, such as the fatty acid metabolism regulator fadR. Monocolonization with a FadR-overexpressing Escherichia coli exacerbated the metabolic phenotypes, suggesting that the change in bacterial lipid metabolism is causally involved in disease progression. Mechanistically, the microbe-derived fatty acids impaired intestinal epithelial integrity to promote metabolic endotoxemia. Our study thus provides a mechanistic linkage between gut commensals and obesity through the overproduction of microbe-derived lipids.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Keishi Kameyama
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takayoshi Fujii
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroki Negishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Misato Matsui
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| |
Collapse
|
48
|
Cao C, Tan X, Yan H, Shen Q, Hua R, Shao Y, Yao Q. Sleeve gastrectomy decreases high-fat diet induced colonic pro-inflammatory status through the gut microbiota alterations. Front Endocrinol (Lausanne) 2023; 14:1091040. [PMID: 37008903 PMCID: PMC10061349 DOI: 10.3389/fendo.2023.1091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Background High-fat diet (HFD) induced obesity is characterized with chronic low-grade inflammation in various tissues and organs among which colon is the first to display pro-inflammatory features associated with alterations of the gut microbiota. Sleeve gastrectomy (SG) is currently one of the most effective treatments for obesity. Although studies reveal that SG results in decreased levels of inflammation in multiple tissues such as liver and adipose tissues, the effects of surgery on obesity related pro-inflammatory status in the colon and its relation to the microbial changes remain unknown. Methods To determine the effects of SG on the colonic pro-inflammatory condition and the gut microbiota, SG was performed on HFD-induced obese mice. To probe the causal relationship between alterations of the gut microbiota and improvements of pro-inflammatory status in the colon following SG, we applied broad-spectrum antibiotics cocktails on mice that received SG to disturb the gut microbial changes. The pro-inflammatory shifts in the colon were assessed based on morphology, macrophage infiltration and expressions of a variety of cytokine genes and tight junction protein genes. The gut microbiota alterations were analyzed using 16s rRNA sequencing. RNA sequencing of colon was conducted to further explore the role of the gut microbiota in amelioration of colonic pro-inflammation following SG at a transcriptional level. Results Although SG did not lead to pronounced changes of colonic morphology and macrophage infiltration in the colon, there were significant decreases in the expressions of several pro-inflammatory cytokines including interleukin-1β (IL-1β), IL-6, IL-18, and IL-23 as well as increased expressions of some tight junction proteins in the colon following SG, suggesting an improvement of pro-inflammatory status. This was accompanied by changing populations of the gut microbiota such as increased richness of Lactobacillus subspecies following SG. Importantly, oral administrations of broad-spectrum antibiotics to delete most intestinal bacteria abrogated surgical effects to relieve colonic pro-inflammation. This was further confirmed by transcriptional analysis of colon indicating that SG regulated inflammation related pathways in a manner that was gut microbiota relevant. Conclusion These results support that SG decreases obesity related colonic pro-inflammatory status through the gut microbial alterations.
Collapse
Affiliation(s)
- Chong Cao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaozhuo Tan
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Hai Yan
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Qiwei Shen
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Rong Hua
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yikai Shao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
49
|
High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice. Commun Biol 2023; 6:20. [PMID: 36624306 PMCID: PMC9829864 DOI: 10.1038/s42003-022-04406-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
A high-fat diet can lead to gut microbiota dysbiosis, chronic intestinal inflammation, and metabolic syndrome. Notably, resulting phenotypes, such as glucose and insulin levels, colonic crypt cell proliferation, and macrophage infiltration, exhibit sex differences, and females are less affected. This is, in part, attributed to sex hormones. To investigate if there are sex differences in the microbiota and if estrogenic ligands can attenuate high-fat diet-induced dysbiosis, we used whole-genome shotgun sequencing to characterize the impact of diet, sex, and estrogenic ligands on the microbial composition of the cecal content of mice. We here report clear host sex differences along with remarkably sex-dependent responses to high-fat diet. Females, specifically, exhibited increased abundance of Blautia hansenii, and its levels correlated negatively with insulin levels in both sexes. Estrogen treatment had a modest impact on the microbiota diversity but altered a few important species in males. This included Collinsella aerofaciens F, which we show correlated with colonic macrophage infiltration. In conclusion, male and female mice exhibit clear differences in their cecal microbial composition and in how diet and estrogens impact the composition. Further, specific microbial strains are significantly correlated with metabolic parameters.
Collapse
|
50
|
Wang Y, Takano T, Zhou Y, Wang R, Toshimitsu T, Sashihara T, Tanokura M, Miyakawa T, Nakajima-Adachi H, Hachimura S. Orally administered Lactiplantibacillus plantarum OLL2712 decreased intestinal permeability, especially in the ileum: Ingested lactic acid bacteria alleviated obesity-induced inflammation by collaborating with gut microbiota. Front Immunol 2023; 14:1123052. [PMID: 36911680 PMCID: PMC9995389 DOI: 10.3389/fimmu.2023.1123052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chronic inflammation caused by dietary obesity has been considered to induce lifestyle-related diseases and functional ingredients with anti-inflammatory effects are attracting attention. Although multiple studies on obesity had proved the anti-inflammatory effects of ingestion of lactic acid bacteria (LAB) and other functional ingredients on adipose tissue, the precise effects on the intestine, especially on the individual intestinal segments have not been made clear. In this study, we elucidated the mechanisms of Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) OLL2712 in suppressing obesity-induced inflammation using high fat diet (HFD)-fed mice obesity model. Methods We orally administered heat-treated LAB to HFD-fed mice model, and investigated the inflammatory changes in adipose tissue and intestinal immune cells. We also analyzed gut microbiota, and evaluated the inflammation and permeability of the duodenum, jejunum, ileum and colon; four intestinal segments differing in gut bacteria composition and immune response. Results After 3-week LAB administration, the gene expression levels of proinflammatory cytokines were downregulated in adipose tissue, colon, and Peyer's patches (PP)-derived F4/80+ cells. The LAB treatment alleviated obesity-related gut microbiota imbalance. L. plantarum OLL2712 treatment helps maintain intestinal barrier function, especially in the ileum, possibly by preventing ZO-1 and Occludin downregulation. Discussion Our results suggest that the oral administration of the LAB strain regulated the gut microbiota, suppressed intestinal inflammation, and improved the gut barrier, which could inhibit the products of obesity-induced gut dysbiosis from translocating into the bloodstream and the adipose tissue, through which the LAB finally alleviated the inflammation caused by dietary obesity. Barrier improvement was observed, especially in the ileum, suggesting collaborative modulation of the intestinal immune responses by ingested LAB and microbiota.
Collapse
Affiliation(s)
- Yimei Wang
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan
| | - Yingyu Zhou
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Rong Wang
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | - Masaru Tanokura
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan.,Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Satoshi Hachimura
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan
| |
Collapse
|