1
|
Pletsch EA, Dawson HD, Cheung L, Ragonese JS, Chen CT, Smith AD. A type 4 resistant potato starch alters the cecal microbiome, gene expression and resistance to colitis in mice fed a Western diet based on NHANES data. Food Funct 2025; 16:3439-3464. [PMID: 40207550 DOI: 10.1039/d4fo04697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Four major types of resistant starch (RS1-4) are present in foods and can be fermented to produce short-chain fatty acids (SCFAs), alter the microbiome and modulate post-prandial glucose metabolism. While studies in rodents have examined the effects of RS4 consumption on the microbiome, fewer have examined its effect on gene expression in the cecum or colon or resistance to bacterial-induced colitis, and those that have, use diets that do not reflect what is typically consumed by humans. Here we fed mice a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data for 6-7 weeks and then supplemented their diet with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch. After three weeks, mice were infected with Citrobacter rodentium (Cr) to induce colitis. Infected mice fed the 10% VF diet had the highest levels of Cr fecal excretion at days 4, 7 and 11 post-infection. Infected mice fed the 5% and 10%VF diets had increased hyperplasia and colonic damage compared with the control. Changes in bacterial genera relative abundance, and alpha and beta diversity due to diet were most evident in mice fed 10% VF. Cr infection also resulted in specific changes to the microbiome and gene expression both in the cecum and the colon compared with diet alone, including the expression of multiple antimicrobial genes, Reg3b, Reg3g, NOS2 and Ifng. These results demonstrate that VF, a RS4, alters cecal and colonic gene expression, the microbiome composition and resistance to bacterial-induced colitis.
Collapse
Affiliation(s)
- Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Jack S Ragonese
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine T Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
2
|
Naydenov NG, Marino-Melendez A, Campellone KG, Ivanov AI. Cytoskeletal mechanisms regulating attaching/effacing bacteria interactions with host cells: It takes a village to build the pedestal. Bioessays 2024; 46:e2400160. [PMID: 39301984 PMCID: PMC11502255 DOI: 10.1002/bies.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
The actin cytoskeleton is a key cellular structure subverted by pathogens to infect and survive in or on host cells. Several pathogenic strains of Escherichia coli, such as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), developed a unique mechanism to remodel the actin cytoskeleton that involves the assembly of actin filament-rich pedestals beneath the bacterial attachment sites. Actin pedestal assembly is driven by bacterial effectors injected into the host cells, and this structure is important for EPEC and EHEC colonization. While the interplay between bacterial effectors and the actin polymerization machinery of host cells is well-understood, how other mechanisms of actin filament remodelling regulate pedestal assembly and bacterial attachment are poorly investigated. This review discusses the gaps in our understanding of the complexity of the actin cytoskeletal remodelling during EPEC and EHEC infection. We describe possible roles of actin depolymerizing, crosslinking and motor proteins in pedestal dynamics, and bacterial interactions with the host cells. We also discuss the biological significance of pedestal assembly for bacterial infection.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Kenneth G. Campellone
- Department of Molecular & Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
3
|
Sanchez-Garrido J, Baghshomali YN, Kaushal P, Kozik Z, Perry RW, Williams HRT, Choudhary J, Frankel G. Impaired neutrophil migration underpins host susceptibility to infectious colitis. Mucosal Immunol 2024; 17:939-957. [PMID: 38936619 DOI: 10.1016/j.mucimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Citrobacter rodentium models infection with enteropathogenic Escherichia coli and ulcerative colitis (UC). While C57BL/6 (C57) mice recover, C3H/HeN (C3H) mice succumb to infection, partially due to increased colonic neutrophil elastase activity, also seen in UC patients; however, the underlying cause was unknown. Here, we found that bone marrow, blood, and colonic C57 neutrophils expressed (CD)11bHi and reached the infected colonic lumen, where they underwent productive NETosis. In contrast, while the number of C3H neutrophils increased in the bone marrow, blood, and colon, they remained CD11bLo and got trapped in the submucosa, away from C. rodentium, where they underwent harmful NETosis. CD11bLo neutrophils in C3H mice infected with CRi9, which triggers expression of neutrophil chemoattractants, reached the colonization site, resulting in host survival. UC patient neutrophils also displayed decreased levels of the activation/differentiation markers CD16/CXCR4. These results, suggesting that neutrophil malfunction contributes to exacerbated colitis, provide insight for future therapeutic prospects.
Collapse
Affiliation(s)
| | | | - Prashant Kaushal
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Robert W Perry
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Horace R T Williams
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Jyoti Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Department of Life Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
4
|
Wale KR, O’Boyle N, McHugh RE, Serrano E, Mark DR, Douce GR, Connolly JPR, Roe AJ. A master regulator of central carbon metabolism directly activates virulence gene expression in attaching and effacing pathogens. PLoS Pathog 2024; 20:e1012451. [PMID: 39405360 PMCID: PMC11508082 DOI: 10.1371/journal.ppat.1012451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The ability of the attaching and effacing pathogens enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium to overcome colonisation resistance is reliant on a type 3 secretion system used to intimately attach to the colonic epithelium. This crucial virulence factor is encoded on a pathogenicity island known as the Locus of Enterocyte Effacement (LEE) but its expression is regulated by several core-genome encoded transcription factors. Here, we unveil that the core transcription factor PdhR, traditionally known as a regulator of central metabolism in response to cellular pyruvate levels, is a key activator of the LEE. Through genetic and molecular analyses, we demonstrate that PdhR directly binds to a specific motif within the LEE master regulatory region, thus activating type 3 secretion directly and enhancing host cell adhesion. Deletion of pdhR in EHEC significantly impacted the transcription of hundreds of genes, with pathogenesis and protein secretion emerging as the most affected functional categories. Furthermore, in vivo studies using C. rodentium, a murine model for EHEC infection, revealed that PdhR is essential for effective host colonization and maximal LEE expression within the host. Our findings provide new insights into the complex regulatory networks governing bacterial pathogenesis. This research highlights the intricate relationship between virulence and metabolic processes in attaching and effacing pathogens, demonstrating how core transcriptional regulators can be co-opted to control virulence factor expression in tandem with the cell's essential metabolic circuitry.
Collapse
Affiliation(s)
- Kabo R. Wale
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Nicky O’Boyle
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rebecca E. McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Ester Serrano
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - David R. Mark
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Gillian R. Douce
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - James P. R. Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew J. Roe
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Yin N, Xu B, Huang Z, Fu Y, Huang H, Fan J, Huang C, Mei Q, Zeng Y. Inhibition of Pck1 in intestinal epithelial cells alleviates acute pancreatitis via modulating intestinal homeostasis. FASEB J 2024; 38:e23618. [PMID: 38651689 DOI: 10.1096/fj.202400039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.
Collapse
Affiliation(s)
- Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zehua Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huizheng Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Junjie Fan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunlan Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Hartley VL, Qaqish AM, Wood MJ, Studnicka BT, Iwai K, Liu TC, MacDuff DA. HOIL1 Regulates Group 3 Innate Lymphoid Cells in the Colon and Protects against Systemic Dissemination, Colonic Ulceration, and Lethality from Citrobacter rodentium Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1823-1834. [PMID: 37902285 PMCID: PMC10841105 DOI: 10.4049/jimmunol.2300351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.
Collapse
Affiliation(s)
- Victoria L. Hartley
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Arwa M. Qaqish
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Matthew J. Wood
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Brian T. Studnicka
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Donna A. MacDuff
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Novak EA, Crawford EC, Mentrup HL, Griffith BD, Fletcher DM, Flanagan MR, Schneider C, Firek B, Rogers MB, Morowitz MJ, Piganelli JD, Wang Q, Mollen KP. Epithelial NAD + depletion drives mitochondrial dysfunction and contributes to intestinal inflammation. Front Immunol 2023; 14:1231700. [PMID: 37744380 PMCID: PMC10512956 DOI: 10.3389/fimmu.2023.1231700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1α expression and activity during IBD is not yet clear. Methods Mice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study. Results We demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1α levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1α within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1α axis. Discussion Our results emphasize the importance of PGC1α expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients.
Collapse
Affiliation(s)
- Elizabeth A. Novak
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Erin C. Crawford
- Division of Gastroenterology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Heather L. Mentrup
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brian D. Griffith
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - David M. Fletcher
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Corinne Schneider
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Matthew B. Rogers
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jon D. Piganelli
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Qian Wang
- Department of Pathology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin P. Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Baker R, Hontecillas R. Modulation of colonic immunometabolic responses during Clostridioides difficile infection ameliorates disease severity and inflammation. Sci Rep 2023; 13:14708. [PMID: 37679643 PMCID: PMC10485029 DOI: 10.1038/s41598-023-41847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea, and its clinical symptoms can span from asymptomatic colonization to pseudomembranous colitis and even death. The current standard of care for CDI is antibiotic treatment to achieve bacterial clearance; however, 15 to 35% of patients experience recurrence after initial response to antibiotics. We have conducted a comprehensive, global colonic transcriptomics analysis of a 10-day study in mice to provide new insights on the local host response during CDI and identify novel host metabolic mechanisms with therapeutic potential. The analysis indicates major alterations of colonic gene expression kinetics at the acute infection stage, that are restored during the recovery phase. At the metabolic level, we observe a biphasic response pattern characterized by upregulated glycolytic metabolism during the peak of inflammation, while mitochondrial metabolism predominates during the recovery/healing stage. Inhibition of glycolysis via 2-Deoxy-D-glucose (2-DG) administration during CDI decreases disease severity, protects from mortality, and ameliorates colitis in vivo. Additionally, 2-DG also protects intestinal epithelial cells from C. difficile toxin damage, preventing loss of barrier integrity and secretion of proinflammatory mediators. These data postulate the pharmacological targeting of host immunometabolic pathways as novel treatment modalities for CDI.
Collapse
Affiliation(s)
| | | | | | | | - Ryan Baker
- NIMML Institute, Blacksburg, VA, 24060, USA
| | | |
Collapse
|
9
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Sah P, Zenewicz LA. Modulation of innate lymphoid cells by enteric bacterial pathogens. Front Immunol 2023; 14:1219072. [PMID: 37483638 PMCID: PMC10358831 DOI: 10.3389/fimmu.2023.1219072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Innate lymphoid cells (ILCs) are key regulators of tissue homeostasis, inflammation, and immunity to infections. ILCs rapidly respond to environmental cues such as cytokines, microbiota and invading pathogens which regulate their function and phenotype. Even though ILCs are rare cells, they are enriched at barrier surfaces such as the gastrointestinal (GI) tract, and they are often critical to the host's immune response to eliminate pathogens. On the other side of host-pathogen interactions, pathogenic bacteria also have the means to modulate these immune responses. Manipulation or evasion of the immune cells is often to the pathogen's benefit and/or to the detriment of competing microbiota. In some instances, specific bacterial virulence factors or toxins have been implicated in how the pathogen modulates immunity. In this review, we discuss the recent progress made towards understanding the role of non-cytotoxic ILCs during enteric bacterial infections, how these pathogens can modulate the immune response, and the implications these have on developing new therapies to combat infection.
Collapse
Affiliation(s)
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
11
|
Harishankar A, Viswanathan VK. Attaching and effacing pathogens modulate host mitochondrial structure and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 377:65-86. [PMID: 37268351 PMCID: PMC11321239 DOI: 10.1016/bs.ircmb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.
Collapse
Affiliation(s)
- Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States; The BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States; Department of Immunobiology, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
12
|
Liu F, Smith AD, Wang TTY, Pham Q, Cheung L, Yang H, Li RW. Biological pathways via which the anthocyanin malvidin alleviated the murine colitis induced by Citrobacter rodentium. Food Funct 2023; 14:1048-1061. [PMID: 36562464 DOI: 10.1039/d2fo02873e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enteropathogenic E. coli (EPEC) is a causal agent for diarrheal diseases and contributes to morbidity and mortality in children under the age of five years. The emergence and rapid spread of antibiotic resistant EPEC strains necessitate the search for novel alternatives to antibiotics. In this study, we used Citrobacter rodentium, a natural mouse pathogen that mimics many aspects of human EPEC infections, to investigate the antimicrobial properties of the blueberry anthocyanin malvidin 3-glucoside (MG) using a multi-omics approach. MG supplementation reversed the bodyweight loss induced by C. rodentium infection and improved colonic hyperplasia and histopathological scores. In the colon tissue, MG supplementation significantly increased the expression of Hace1, a key regulator of TNFα-driven signaling, and impacted multiple pathways, such as TGFβ signaling. MG partially restored C. rodentium-induced microbial dysbiosis and significantly enhanced the abundance of the probiotic Bifidobacterium animalis. Moreover, MG disrupted the interactions of E. coli with other gut microbes. MG significantly mediated several host- and microbiota-derived metabolites, such as cytosine, ureidopropionic acid, and glutaric acid. MG normalized the bioactive lipid oleoylethanolamine, a member of the endocannabinoid system, from the dysregulated level in infected mice, directly contributing to its overall beneficial effects. Our findings provided novel insights into molecular processes via which the flavonoid malvidin exerts its biological effects in the gastrointestinal tract.
Collapse
Affiliation(s)
- Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Allen D Smith
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Thomas T Y Wang
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Quynhchi Pham
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Lumei Cheung
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Robert W Li
- USDA-ARS, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA.
| |
Collapse
|
13
|
Chakraborty S, Handrick B, Yu D, Bode KA, Hafner A, Schenz J, Schaack D, Uhle F, Tachibana T, Kamitani S, Vogl T, Kubatzky KF. Gα q modulates the energy metabolism of osteoclasts. Front Cell Infect Microbiol 2023; 12:1016299. [PMID: 36699722 PMCID: PMC9869164 DOI: 10.3389/fcimb.2022.1016299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The bacterial protein toxin Pasteurella multocida toxin (PMT) mediates RANKL-independent osteoclast differentiation. Although these osteoclasts are smaller, their resorptive activity is high which helps in efficient destruction of nasal turbinate bones of pigs. Methods The proteome of bone marrow-derived macrophages differentiated into osteoclasts with either RANKL or PMT was analysed. The results were verified by characterizing the metabolic activity using Seahorse analysis, a protein translation assay, immunoblots, real-time PCR as well as flow cytometry-based monitoring of mitochondrial activity and ROS production. A Gαq overexpression system using ER-Hoxb8 cells was used to identify Gαq-mediated metabolic effects on osteoclast differentiation and function. Results PMT induces the upregulation of metabolic pathways, which included strong glycolytic activity, increased expression of GLUT1 and upregulation of the mTOR pathway. As OxPhos components were expressed more efficiently, cells also displayed increased mitochondrial respiration. The heterotrimeric G protein Gαq plays a central role in this hypermetabolic cell activation as it triggers mitochondrial relocalisation of pSerSTAT3 and an increase in OPA1 expression. This seems to be caused by a direct interaction between STAT3 and OPA1 resulting in enhanced mitochondrial respiration. Overexpression of Gαq mimicked the hypermetabolic phenotype observed for PMT-induced osteoclasts and resulted in higher glycolytic and mitochondrial activity as well as increased bone resorptive activity. In addition, rheumatoid arthritis (RA) patients showed an increase in GNAQ expression, especially in the synovial fluid. Discussion Our study suggests that Gαq plays a key role in PMT-induced osteoclastogenesis. Enhanced expression of GNAQ at the site of inflammation in RA patients indicates its pathophysiological relevance in the context of inflammatory bone disorders.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Bianca Handrick
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Dayoung Yu
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Konrad A. Bode
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Anna Hafner
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik Schaack
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Taro Tachibana
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Shigeki Kamitani
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Roxas JL, Ramamurthy S, Cocchi K, Rutins I, Harishankar A, Agellon A, Wilbur JS, Sylejmani G, Vedantam G, Viswanathan V. Enteropathogenic Escherichia coli regulates host-cell mitochondrial morphology. Gut Microbes 2022; 14:2143224. [PMID: 36476073 PMCID: PMC9733699 DOI: 10.1080/19490976.2022.2143224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The diarrheagenic pathogen enteropathogenic Escherichia coli is responsible for significant childhood mortality and morbidity. EPEC and related attaching-and-effacing (A/E) pathogens use a type III secretion system to hierarchically deliver effector proteins into host cells and manipulate epithelial structure and function. Subversion of host mitochondrial biology is a key aspect of A/E pathogen virulence strategy, but the mechanisms remain poorly defined. We demonstrate that the early-secreted effector EspZ and the late-secreted effector EspH have contrasting effects on host mitochondrial structure and function. EspZ interacts with FIS1, a protein that induces mitochondrial fragmentation and mitophagy. Infection of epithelial cells with either wildtype EPEC or an isogenic espZ deletion mutant (ΔespZ) robustly upregulated FIS1 abundance, but a marked increase in mitochondrial fragmentation and mitophagy was seen only in ΔespZ-infected cells. FIS1-depleted cells were protected against ΔespZ-induced fission, and EspZ-expressing transfected epithelial cells were protected against pharmacologically induced mitochondrial fission and membrane potential disruption. Thus, EspZ interacts with FIS1 and blocks mitochondrial fragmentation and mitophagy. In contrast to WT EPEC, ΔespH-infected epithelial cells had minimal FIS1 upregulation and exhibited hyperfused mitochondria. Consistent with the contrasting impacts on organelle shape, mitochondrial membrane potential was preserved in ΔespH-infected cells, but profoundly disrupted in ΔespZ-infected cells. Collectively, our studies reveal hitherto unappreciated roles for two essential EPEC virulence factors in the temporal and dynamic regulation of host mitochondrial biology.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Katie Cocchi
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ilga Rutins
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - John Scott Wilbur
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gresa Sylejmani
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,Department of Immunobiology, University of Arizona, Tucson, AZ, USA,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA,Research Service, Southern Arizona VA Healthcare System, Tucson, AZ, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,Department of Immunobiology, University of Arizona, Tucson, AZ, USA,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA,CONTACT V.K. Viswanathan School of Animal & Comparative Biomedical Sciences, the University of Arizona, Room 227, 1117 E. Lowell Street, Tucson, AZ85721, USA
| |
Collapse
|
15
|
Valdes J, Gagné-Sansfaçon J, Reyes V, Armas A, Marrero G, Moyo-Muamba M, Ramanathan S, Perreault N, Ilangumaran S, Rivard N, Fortier LC, Menendez A. Defects in the expression of colonic host defense factors associate with barrier dysfunction induced by a high-fat/high-cholesterol diet. Anat Rec (Hoboken) 2022; 306:1165-1183. [PMID: 36196983 DOI: 10.1002/ar.25083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022]
Abstract
The effect of Western diets in the gastrointestinal system is largely mediated by their ability to promote alterations in the immunity and physiology of the intestinal epithelium, and to affect the composition of the commensal microbiota. To investigate the response of the colonic epithelium to high-fat/high-cholesterol diets (HFHCDs), we evaluated the synthesis of host defense factors involved in the maintenance of the colonic homeostasis. C57BL/6 mice were fed an HFHCD for 3 weeks and their colons were evaluated for histopathology, gene expression, and microbiota composition. In addition, intestinal permeability and susceptibility to Citrobacter rodentium were also studied. HFHCD caused colonic hyperplasia, loss of goblet cells, thinning of the mucus layer, moderate changes in the composition of the intestinal microbiota, and an increase in intestinal permeability. Gene expression analyses revealed significant drops in the transcript levels of Muc1, Muc2, Agr2, Atoh1, Spdef, Ang4, Camp, Tff3, Dmbt1, Fcgbp, Saa3, and Retnlb. The goblet cell granules of HFHCD-fed mice were devoid of Relmβ and Tff3, indicating defective production of those two factors critical for intestinal epithelial defense and homeostasis. In correspondence with these defects, colonic bacteria were in close contact with, and invading the epithelium. Fecal shedding of C. rodentium showed an increased bacterial burden in HFHCD-fed animals accompanied by increased epithelial damage. Collectively, our results show that HFHCD perturbs the synthesis of colonic host defense factors, which associate with alterations in the commensal microbiota, the integrity of the intestinal barrier, and the host's susceptibility to enteric infections.
Collapse
Affiliation(s)
- Jennifer Valdes
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jessica Gagné-Sansfaçon
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anny Armas
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gisela Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mitterrand Moyo-Muamba
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
16
|
Simulated Colonic Fluid Replicates the In Vivo Growth Capabilities of Citrobacter rodentium cpxRA Mutants and Uncovers Additive Effects of Cpx-Regulated Genes on Fitness. Infect Immun 2022; 90:e0031422. [PMID: 36000875 PMCID: PMC9476912 DOI: 10.1128/iai.00314-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Citrobacter rodentium is an attaching and effacing (A/E) pathogen used to model enteropathogenic and enterohemorrhagic Escherichia coli infections in mice. During colonization, C. rodentium must adapt to stresses in the gastrointestinal tract, such as antimicrobial peptides, pH changes, and bile salts. The Cpx envelope stress response (ESR) is a two-component system used by some bacteria to remediate stress by modulating gene expression, and it is necessary for C. rodentium pathogenesis in mice. Here, we utilized simulated colonic fluid (SCF) to mimic the gastrointestinal environment, which we show strongly induces the Cpx ESR and highlights a fitness defect specific to the ΔcpxRA mutant. While investigating genes in the Cpx regulon that may contribute to C. rodentium pathogenesis, we found that the absence of the Cpx ESR resulted in higher expression of the locus of enterocyte effacement (LEE) master regulator, ler, and that the genes yebE, ygiB, bssR, and htpX relied on CpxRA for proper expression. We then determined that CpxRA and select gene mutants were essential for proper growth in SCF when in the presence of extraneous stressors and in competition. Although none of the Cpx-regulated gene mutants exhibited marked virulence phenotypes in vivo, the ΔcpxRA mutant had reduced colonization and attenuated virulence, as previously determined, which replicated the in vitro growth phenotypes specific to SCF. Overall, these results indicate that the ΔcpxRA virulence defect is not due to any single Cpx regulon gene examined. Instead, attenuation may be the result of defective growth in the colonic environment resulting from the collective impact of multiple Cpx-regulated genes.
Collapse
|
17
|
Li C, Li S, Liu J, Cai H, Liu G, Deng X, Chang W. Escherichia coli O88 induces intestinal damage and inflammatory response through the oxidative phosphorylation and ribosome pathway in Pekin ducks. Front Cell Infect Microbiol 2022; 12:940847. [PMID: 36061867 PMCID: PMC9433110 DOI: 10.3389/fcimb.2022.940847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Colibacillosis is one of the major health threats in the poultry industry worldwide. Understanding the pathogenic mechanisms involved in Escherichia coli-induced inflammatory response may lead to the development of new therapies to combat the disease. To address this, a total of 96 1-day-old male lean Pekin ducklings were employed and randomly allocated to two treatments, each with six replicates of eight ducks. Ducks in the experiment group (EG) and the control group (CG) were separately orally administered with 0.2 ml of pathogenic E. coli O88 (3 × 109 CFU/ml) or equivalent volumes of 0.9% sterile saline solution on day 7, two times with an 8-h interval. Serum and intestinal samples were collected on days 9, 14, and 28. Results showed that ducks challenged with E. coli had lower average daily gain and higher feed intake/weight gain during days 9–14 and overall (P < 0.05). Histopathological examination showed that E. coli decreased the villus height and the ratio of villus height/crypt depth in the jejunum (P < 0.05) on days 9 and 14. The intestinal barrier was disrupted, presenting in E. coli ducks having higher serum DAO and D-LA on days 9 and 14 (P < 0.05) and greater content of serum LPS on day 9 (P < 0.05). Escherichia coli infection also triggered a systemic inflammatory response including the decrease of the serum IgA, IgM, and jejunal sIgA on day 14 (P < 0.05). In addition to these, 1,062 differentially expressed genes were detected in the jejunum tissues of ducks by RNA-seq, consisting of 491 upregulated and 571 downregulated genes. Based on the KEGG database, oxidative phosphorylation and the ribosome pathway were the most enriched. These findings reveal the candidate pathways and genes that may be involved in E. coli infection, allow a better understanding of the molecular mechanisms of inflammation progression and may facilitate the genetic improvement of ducks, and provide further insights to tackle the drug sensitivity and animal welfare issues.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jinmei Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Research and Development Department, National Engineering Research Center of Biological Feed, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xuejuan Deng
- Research and Development Department, National Engineering Research Center of Biological Feed, Beijing, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- *Correspondence: Wenhuan Chang,
| |
Collapse
|
18
|
Jin J, Wang J, Cheng R, Ren Y, Miao Z, Luo Y, Zhou Q, Xue Y, Shen X, He F, Tian H. Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota. Front Microbiol 2022; 13:908327. [PMID: 36046024 PMCID: PMC9421266 DOI: 10.3389/fmicb.2022.908327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the possible anti-obesity effects of orlistat and ezetimibe and determine the mechanism by which they alter the composition of gut microbiota and short-chain fatty acids (SCFAs) in mice with a high-fat diet (HFD)-induced obesity. Eighty male, specific pathogen-free C57BL/6J mice aged 3 weeks were divided into four groups (n = 20). The NCD group was fed with a normal diet, and the HFD, HFD+ORL, and HFD+EZE groups were fed with HFD for 20 weeks. From the 13th week onward, the HFD+ORL and HFD+EZE groups were administered with orlistat and ezetimibe, respectively. The glucose and lipid metabolism of the tested mice were evaluated by analyzing blood biochemical indicators during the intervention. Furthermore, the changes in the structure of the fecal microbiota and the fecal SCFA content were analyzed by 16S rRNA sequencing and gas chromatography-mass spectrometry, respectively. HFD induced the obesity phenotype in mice. Compared to the HFD group, the body weight, visceral fat-to-body weight ratio, serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and oral glucose tolerance test (OGTT) of the HFD+ORL group significantly decreased, whereas fecal butyric acid levels significantly increased. Ezetimibe intervention significantly reduced the OGTT, serum TC, and HDL-C levels only. The α-diversity of the gut microbiota significantly decreased after intervention with orlistat and ezetimibe. Orlistat altered the relative abundance of some bacteria in the fecal microbiota. The populations of Firmicutes, Alistipes, and Desulfovibrio decreased, whereas those of Verrucomicrobia and Akkermansia significantly increased. Ezetimibe caused changes only in some low-abundance bacteria, as manifested by a decrease in Proteobacteria and Desulfovibrio, and an increase in Bacteroides. The administration of orlistat and ezetimibe can characteristically influence the body weight and serum lipid metabolism, and glucolipid levels in diet-induced obese mice and is accompanied by significant changes in the gut microbiota and SCFAs. These results suggest that the two drugs might exert their own specific anti-obesity effects by modulating the gut microbiota in a different manner. The enhanced health-promoting effect of orlistat might result from its stronger ability to alter the gut microbiota and SCFAs, at least partly.
Collapse
Affiliation(s)
- Jin Jin
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiani Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhonghua Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingqing Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yigui Xue
- Frontier Medical Service Training Battalion of Army Military Medical University, Changji Hui Autonomous Prefecture, Xinjiang, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Fang He
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Haoming Tian
| |
Collapse
|
19
|
Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5 + intestinal stem cell function. Nat Commun 2022; 13:3998. [PMID: 35810180 PMCID: PMC9271096 DOI: 10.1038/s41467-022-31725-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 06/13/2022] [Indexed: 01/07/2023] Open
Abstract
Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/β-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy. Here the authors report that inhibition of de novo fatty acid synthesis by deleting the enzyme Acetyl-CoA-Carboxylase 1 in the intestinal epithelium results in the loss of crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells.
Collapse
|
20
|
Sanchez-Garrido J, Ruano-Gallego D, Choudhary JS, Frankel G. The type III secretion system effector network hypothesis. Trends Microbiol 2022; 30:524-533. [PMID: 34840074 DOI: 10.1016/j.tim.2021.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Type III secretion system (T3SS) effectors are key virulence factors that underpin the infection strategy of many clinically important Gram-negative pathogens, including Salmonella enterica, Shigella spp., enteropathogenic and enterohemorrhagic Escherichia coli and their murine equivalent, Citrobacter rodentium. The cellular processes or proteins targeted by the effectors can be common to multiple pathogens or pathogen-specific. The main approach to understanding T3SS-mediated pathogenesis has been to determine the contribution of one effector at a time, with the aim of piecing together individual functions and unveiling infection mechanisms. However, in contrast to this prevailing approach, simultaneous deletion of multiple effectors revealed that they function as an interconnected network in vivo, uncovering effector codependency and context-dependent effector essentiality. This paradigm shift in T3SS biology is at the heart of this opinion article.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| | - David Ruano-Gallego
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), Madrid, Spain.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
21
|
Zindl CL, Witte SJ, Laufer VA, Gao M, Yue Z, Janowski KM, Cai B, Frey BF, Silberger DJ, Harbour SN, Singer JR, Turner H, Lund FE, Vallance BA, Rosenberg AF, Schoeb TR, Chen JY, Hatton RD, Weaver CT. A nonredundant role for T cell-derived interleukin 22 in antibacterial defense of colonic crypts. Immunity 2022; 55:494-511.e11. [PMID: 35263568 PMCID: PMC9126440 DOI: 10.1016/j.immuni.2022.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Steven J Witte
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vincent A Laufer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zongliang Yue
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen M Janowski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Baiyi Cai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Blake F Frey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel J Silberger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stacey N Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R Singer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Henrietta Turner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce A Vallance
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Lan R, Zhou Y, Wang Z, Fu S, Gao Y, Gao X, Zhang J, Han X, Phouthapane V, Xu Y, Miao J. Reduction of ROS-HIF1α-driven glycolysis by taurine alleviates Streptococcus uberis infection. Food Funct 2022; 13:1774-1784. [PMID: 35112684 DOI: 10.1039/d1fo03909a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotic-resistant strains of Streptococcus uberis (S. uberis) frequently cause clinical mastitis in dairy cows resulting in enormous economic losses. The regulation of immunometabolism is a promising strategy for controlling this bacterial infection. To investigate whether taurine alleviates S. uberis infection by the regulation of host glycolysis via HIF1α, the murine mammary epithelial cell line (EpH4-Ev) and C57BL/6J mice were challenged with S. uberis. Our data indicate that HIF1α-driven glycolysis promotes inflammation and damage in response to the S. uberis challenge. The activation of HIF1α is dependent on mTOR-mediated ROS production. These results were confirmed in vivo. Taurine, an intracellular metabolite present in most animal tissues, has been shown to effectively modulate HIF1α-triggered metabolic reprogramming and contributes to a reduction of inflammation, which reduces mammary tissue damage and prevents mammary gland dysfunction in S. uberis-induced mastitis. These data provide a novel putative prophylactic and therapeutic strategy for amelioration of dairy cow mastitis and bacterial inflammation.
Collapse
Affiliation(s)
- Riguo Lan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yabing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Barnes NM, Wu H. Mechanisms regulating the airborne survival of Klebsiella pneumoniae under different relative humidity and temperature levels. INDOOR AIR 2022; 32:e12991. [PMID: 35225398 DOI: 10.1111/ina.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, Klebsiella pneumoniae was suspended in synthetic saliva in a nebulizer (N0 ) and nebulized for 5 min (N5 ) into an aerosol chamber and further prolonged in the aerosolization phase for 15 min (A15 ) under four different conditions: 20°C, 50% relative humidity (RH); 20°C, 80% RH; 30°C, 50% RH; and 30°C, 80% RH. Samples were collected at N0 , N5 , and A15 , then subjected to survival analysis and comparative transcriptomic analysis in order to help elucidate the underlying mechanisms of airborne survival. Survival analysis shows that a higher humidity and lower temperature were favorable for the airborne survival of K. pneumoniae, and the effect of RH was more remarkable at 20°C than that at 30°C. The RNA-seq results show that during the nebulization phase (N0 vs. N5 ), a total number of 201 differentially expressed genes (DEGs) were identified (103 downregulated and 98 upregulated). Comparison between nebulization and aerosolization phases (N5 vs. A15 ) indicates up to 132 DEGs, with 46 downregulated and 86 upregulated. The most notable groups of genes are those involved in cellular remodeling, metabolism and energy processes. Alarmingly, the mbl gene, which encodes antibiotic resistance in K. pneumoniae, was upregulated during the suspension phase under all the tested conditions. This study provides insights into the control of airborne transmitted diseases.
Collapse
Affiliation(s)
- Natasha Maria Barnes
- Department of Biology, Hong Kong Special Administrative Region, Hong Kong Baptist University, Hong Kong, China
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
| | - Haoxiang Wu
- Department of Biology, Hong Kong Special Administrative Region, Hong Kong Baptist University, Hong Kong, China
- Institute of Bioresource and Agriculture, Hong Kong Special Administrative Region, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
24
|
Nogales J, Garmendia J. Bacterial metabolism and pathogenesis intimate intertwining: time for metabolic modelling to come into action. Microb Biotechnol 2022; 15:95-102. [PMID: 34672429 PMCID: PMC8719832 DOI: 10.1111/1751-7915.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022] Open
Abstract
We take a snapshot of the recent understanding of bacterial metabolism and the bacterial-host metabolic interplay during infection, and highlight key outcomes and challenges for the practical implementation of bacterial metabolic modelling computational tools in the pathogenesis field.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems BiologyCentro Nacional de BiotecnologíaCSICMadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de NavarraMutilvaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| |
Collapse
|
25
|
Abstract
The gut microbiota plays a crucial role in susceptibility to enteric pathogens, including Citrobacter rodentium, a model extracellular mouse pathogen that colonizes the colonic mucosa. C. rodentium infection outcomes vary between mouse strains, with C57BL/6 and C3H/HeN mice clearing and succumbing to the infection, respectively. Kanamycin (Kan) treatment at the peak of C57BL/6 mouse infection with Kan-resistant C. rodentium resulted in relocalization of the pathogen from the colonic mucosa and cecum to solely the cecal luminal contents; cessation of the Kan treatment resulted in rapid clearance of the pathogen. We now show that in C3H/HeN mice, following Kan-induced displacement of C. rodentium to the cecum, the pathogen stably colonizes the cecal lumens of 65% of the mice in the absence of continued antibiotic treatment, a phenomenon that we term antibiotic-induced bacterial commensalization (AIBC). AIBC C. rodentium was well tolerated by the host, which showed few signs of inflammation; passaged AIBC C. rodentium robustly infected naive C3H/HeN mice, suggesting that the AIBC state is transient and did not select for genetically avirulent C. rodentium mutants. Following withdrawal of antibiotic treatment, 35% of C3H/HeN mice were able to prevent C. rodentium commensalization in the gut lumen. These mice presented a bloom of a commensal species, Citrobacter amalonaticus, which inhibited the growth of C. rodentiumin vitro in a contact-dependent manner and the luminal growth of AIBC C. rodentiumin vivo. Overall, our data suggest that commensal species can confer colonization resistance to closely related pathogenic species.
Collapse
|
26
|
Type III secretion system effector subnetworks elicit distinct host immune responses to infection. Curr Opin Microbiol 2021; 64:19-26. [PMID: 34537517 DOI: 10.1016/j.mib.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
Citrobacter rodentium, a natural mouse pathogen which colonises the colon of immuno-competent mice, provides a robust model for interrogating host-pathogen-microbiota interactions in vivo. This model has been key to providing new insights into local host responses to enteric infection, including changes in intestinal epithelial cell immunometabolism and mucosal immunity. C. rodentium injects 31 bacterial effectors into epithelial cells via a type III secretion system (T3SS). Recently, these effectors were shown to be able to form multiple intracellular subnetworks which can withstand significant contractions whilst maintaining virulence. Here we highlight recent advances in understanding gut mucosal responses to infection and effector biology, as well as potential uses for artificial intelligence (AI) in understanding infectious disease and speculate on the role of T3SS effector networks in host adaption.
Collapse
|
27
|
Caballero-Flores G, Pickard JM, Núñez G. Regulation of Citrobacter rodentium colonization: virulence, immune response and microbiota interactions. Curr Opin Microbiol 2021; 63:142-149. [PMID: 34352594 DOI: 10.1016/j.mib.2021.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
Citrobacter rodentium is a mouse-specific pathogen commonly used to model infection by human Enteropathogenic Escherichia coli, an important cause of infant diarrhea and mortality worldwide. In the early phase of infection, C. rodentium overcomes competition by the gut microbiota for successful replication. Then, the pathogen uses a type three secretion system (T3SS) to inject effector proteins into intestinal epithelial cells and induce metabolic and inflammatory conditions that promote colonization of the intestinal epithelium. C. rodentium also elicits highly coordinated innate and adaptive immune responses in the gut that regulate pathogen colonization and eradication. In this review, we highlight recent work on the regulation and function of the C. rodentium T3SS, the mechanisms employed by the pathogen to evade competition by the microbiota, and the function of the host immune response against infection.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Liang Q, Vallance BA. What's for dinner? How Citrobacter rodentium's metabolism helps it thrive in the competitive gut. Curr Opin Microbiol 2021; 63:76-82. [PMID: 34243134 DOI: 10.1016/j.mib.2021.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Enteric bacterial infections impose a significant and global health burden on society, and their threat is increasing in concert with a rise in antibiotic resistance. There is thus a great need to quickly develop new antimicrobial treatments and interest is growing in targeting pathogen nutrition and metabolism. In this review, we highlight recent research on the metabolism of Citrobacter rodentium, a murine-specific relative of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). We focus on the mechanisms by which C. rodentium acquires nutrients as well as the distinct metabolic strategies that C. rodentium employs in varying spatiotemporal niches. We propose that identifying and targeting nutrients found essential for bacterial pathogenesis is an attractive anti-microbial approach in the new post-antibiotic era.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Wale KR, Cottam C, Connolly JP, Roe AJ. Transcriptional and metabolic regulation of EHEC and Citrobacter rodentium pathogenesis. Curr Opin Microbiol 2021; 63:70-75. [PMID: 34224961 DOI: 10.1016/j.mib.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a gastrointestinal pathogen that colonizes the colonic epithelium of humans and ruminants using a Type Three Secretion System (T3SS). This system is indispensable for disease and is regulated in response to a plethora of host and microbiota derived signals. The murine pathogen, Citrobacter rodentium, has become an instrumental tool in studying EHEC infection mechanisms in vivo, given its natural ability to infect mice and reliance on the same colonisation machinery. Here, we provide a review of the most recent advancements in EHEC infection biology, focusing on transcriptional regulation of the T3SS in response to physiologically relevant signals and how colonisation impacts on the metabolic micro-environment of the host niche. We pay particular attention to studies that have employed the C. rodentium model for elucidation of such mechanisms in vivo.
Collapse
Affiliation(s)
- Kabo R Wale
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Curtis Cottam
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - James Pr Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Andrew J Roe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
30
|
Lan R, Wan Z, Xu Y, Wang Z, Fu S, Zhou Y, Lin X, Han X, Luo Z, Miao J, Yin Y. Taurine Reprograms Mammary-Gland Metabolism and Alleviates Inflammation Induced by Streptococcus uberis in Mice. Front Immunol 2021; 12:696101. [PMID: 34177964 PMCID: PMC8222520 DOI: 10.3389/fimmu.2021.696101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis.
Collapse
Affiliation(s)
- Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Wan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaodong Fu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinguang Lin
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha, China
| |
Collapse
|
31
|
Nanduri LSY, Duddempudi PK, Yang WL, Tamarat R, Guha C. Extracellular Vesicles for the Treatment of Radiation Injuries. Front Pharmacol 2021; 12:662437. [PMID: 34084138 PMCID: PMC8167064 DOI: 10.3389/fphar.2021.662437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.
Collapse
Affiliation(s)
- Lalitha Sarad Yamini Nanduri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Phaneendra K. Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
32
|
Schoels M, Zhuang M, Fahrner A, Küchlin S, Sagar, Franz H, Schmitt A, Walz G, Yakulov TA. Single-cell mRNA profiling reveals changes in solute carrier expression and suggests a metabolic switch during zebrafish pronephros development. Am J Physiol Renal Physiol 2021; 320:F826-F837. [PMID: 33749326 DOI: 10.1152/ajprenal.00610.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Developing organisms need to adapt to environmental variations as well as to rapid changes in substrate availability and energy demands imposed by fast-growing tissues and organs. Little is known about the adjustments that kidneys undergo in response to these challenges. We performed single-cell RNA sequencing of zebrafish pronephric duct cells to understand how the developing kidney responds to changes in filtered substrates and intrinsic energy requirements. We found high levels of glucose transporters early in development and increased expression of monocarboxylate transporters at later times. This indicates that the zebrafish embryonic kidney displays a high glucose transporting capacity during early development, which is replaced by the ability to absorb monocarboxylates and amino acids at later stages. This change in transport capacity was accompanied by the upregulation of mitochondrial carriers, indicating a switch to increased oxidative phosphorylation to meet the increasing energy demand of a developing kidney.NEW & NOTEWORTHY The zebrafish embryonic kidney has high levels of glucose transporters during early development, which are replaced by monocarboxylate and amino acid transporters later on. Inhibition of Na+-glucose cotransporter-dependent glucose transport by sotagliflozin also increased slc2a1a expression, supporting the idea that the glucose transport capacity is dynamically adjusted during zebrafish pronephros development. Concurrent upregulation of mitochondrial SCL25 transporters at later stages supports the idea that the pronephros adjusts to changing substrate supplies and/or energy demands during embryonic development.
Collapse
Affiliation(s)
- Maximilian Schoels
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Mingyue Zhuang
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Andreas Fahrner
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sebastian Küchlin
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Ophthamology, Faculty of Medicine, University Freiburg Medical Center, University of Freiburg, Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Henriette Franz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Annette Schmitt
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
33
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
34
|
Citrobacter rodentium Infection Induces Persistent Molecular Changes and Interferon Gamma-Dependent Major Histocompatibility Complex Class II Expression in the Colonic Epithelium. mBio 2021; 13:e0323321. [PMID: 35100877 PMCID: PMC8805023 DOI: 10.1128/mbio.03233-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most studies of infections at mucosal surfaces have focused on the acute phase of the disease. Consequently, little is known about the molecular processes that underpin tissue recovery and the long-term consequences postinfection. Here, we conducted temporal deep quantitative proteomic analysis of colonic intestinal epithelial cells (cIECs) from mice infected with the natural mouse pathogen Citrobacter rodentium over time points corresponding to the late steady-state phase (10 days postinfection [DPI]), the clearance phase (13 to 20 DPI), and 4 weeks after the pathogen has been cleared (48 DPI). C. rodentium, which relies on a type III secretion system to infect, is used to model infections with enteropathogenic and enterohemorrhagic Escherichia coli. We observe a strong upregulation of inflammatory signaling and nutritional immunity responses during the clearance phase of the infection. Despite morphological tissue recovery, chromogranin B (ChgB)-positive endocrine cells remained significantly below baseline levels at 48 DPI. In contrast, we observed an increased abundance of proteins involved in antigen processing and presentation 4 weeks after pathogen clearance. In particular, long-term changes were characterized by a persistent interferon gamma (IFN-γ) response and the expression of major histocompatibility complex class II (MHCII) molecules in 60% of the EpCAM+ cIECs, which were not seen in Ifnγ-/- mice. Nonetheless, both wild-type and Ifnγ-/- mice mounted similar systemic and colonic IgG responses to C. rodentium and were equally protected from rechallenge, suggesting that cIEC MHCII is not necessary for protective immunity against C. rodentium. IMPORTANCE Mucosal surfaces respond to infection by mounting an array of metabolic, inflammatory, and tissue repair responses. While these have been well studied during acute infection, less is known about tissue recovery after pathogen clearance. We employ the mouse pathogen Citrobacter rodentium, which binds colonic intestinal epithelial cells (cIECs), to investigate the long-term effects of bacterial infection on gut physiology. Using global proteomic analysis, we study cIEC temporal responses during and after the clearance phase of infection. While the overall tissue morphology recovered, cIECs showed persistent signs of infection 4 weeks after pathogen clearance. These were characterized by a strong IFN-γ signature, including the upregulation of major histocompatibility complex class II (MHCII) antigen presentation proteins, suggesting that the tissue remains on "high alert" for weeks after the acute insult is resolved. However, we demonstrate that cIEC MHCII expression, which is induced by IFN-γ, is not required for protective IgG-mediated immunity against C. rodentium; instead, it may play a role in mucosal recovery.
Collapse
|
35
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
36
|
Hopkins EGD, Frankel G. Overview of the Effect of Citrobacter rodentium Infection on Host Metabolism and the Microbiota. Methods Mol Biol 2021; 2291:399-418. [PMID: 33704766 DOI: 10.1007/978-1-0716-1339-9_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Citrobacter rodentium is a natural enteric mouse pathogen that models human intestinal diseases, such as pathogenic E. coli infections, ulcerative colitis, and colon cancer. Upon reaching the monolayer of intestinal epithelial cells (IECs) lining the gut, a complex web of interactions between the host, the pathogen, and the microbiota ensues. A number of studies revealed surprisingly rapid changes in IEC bioenergetics upon infection, involving a switch from oxidative phosphorylation to aerobic glycolysis, leading to mucosal oxygenation and subsequent changes in microbiota composition. Microbiome studies have revealed a bloom in Enterobacteriaceae during C. rodentium infection in both resistant (i.e., C57BL/6) and susceptible (i.e., C3H/HeN) strains of mice concomitant with a depletion of butyrate-producing Clostridia. The emerging understanding that dysbiosis of cholesterol metabolism is induced by enteric infection further confirms the pivotal role immunometabolism plays in disease outcome. Inversely, the host and microbiota also impact upon the progression of infection, from the susceptibility of the distal colon to C. rodentium colonization to clearance of the pathogen, both via opsonization from the host adaptive immune system and out competition by the resident microbiota. Further complicating this compendium of interactions, C. rodentium exploits microbiota metabolites to fine-tune virulence gene expression and promote colonization. This chapter summarizes the current knowledge of the myriad of pathogen-host-microbiota interactions that occur during the progression of C. rodentium infection in mice and the broader implications of these findings on our understanding of enteric disease.
Collapse
Affiliation(s)
- Eve G D Hopkins
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
37
|
Abstract
There are 100 trillion diverse bacterial residents in the mammalian gut. Commensal bacterial species/strains cooperate and compete with each other to establish a well-balanced community, crucial for the maintenance of host health. Pathogenic bacteria hijack cooperative mechanisms or use strategies to evade competitive mechanisms to establish infection. Moreover, pathogenic bacteria cause marked environmental changes in the gut, such as the induction of inflammation, which fosters the selective growth of pathogens. In this review, we summarize the latest findings concerning the mechanisms by which commensal bacterial species/strains colonize the gut through cooperative or competitive behaviors. We also review the mechanisms by which pathogenic bacteria adapt to the inflamed gut and thrive at the expense of commensal bacteria. The understanding of bacterial adaptation to the healthy and the inflamed gut may provide new bacteria-targeted therapeutic approaches that selectively promote the expansion of beneficial commensal bacteria or limit the growth of pathogenic bacteria.
Collapse
Affiliation(s)
- Yijie Guo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,CONTACT Nobuhiko Kamada Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
38
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
39
|
Slater SL, Frankel G. Advances and Challenges in Studying Type III Secretion Effectors of Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2020; 10:337. [PMID: 32733819 PMCID: PMC7358347 DOI: 10.3389/fcimb.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sabrina L Slater
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
McKay DM, Mancini NL, Shearer J, Shutt T. Perturbed mitochondrial dynamics, an emerging aspect of epithelial-microbe interactions. Am J Physiol Gastrointest Liver Physiol 2020; 318:G748-G762. [PMID: 32116020 DOI: 10.1152/ajpgi.00031.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria exist in a complex network that is constantly remodeling via the processes of fission and fusion in response to intracellular conditions and extracellular stimuli. Excessive fragmentation of the mitochondrial network because of an imbalance between fission and fusion reduces the cells' capacity to generate ATP and can be a forerunner to cell death. Given the critical roles mitochondria play in cellular homeostasis and innate immunity, it is not surprising that many microbial pathogens can disrupt mitochondrial activity. Here we note the putative contribution of mitochondrial dysfunction to gut disease and review data showing that infection with microbial pathogens can alter the balance between mitochondrial fragmentation and fusion, preventing normal remodeling (i.e., dynamics) and can lead to cell death. Current data indicate that infection of epithelia or macrophages with microbial pathogens will ultimately result in excessive fragmentation of the mitochondrial network. Concerted research efforts are required to elucidate fully the processes that regulate mitochondrial dynamics, the mechanisms by which microbes affect epithelial mitochondrial fission and/or fusion, and the implications of this for susceptibility to infectious disease. We speculate that the commensal microbiome of the gut may be important for normal epithelial mitochondrial form and function. Drugs designed to counteract the effect of microbial pathogen interference with mitochondrial dynamics may be a new approach to infectious disease at mucosal surfaces.
Collapse
Affiliation(s)
- Derek M McKay
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Wilson KM, Rodrigues DR, Briggs WN, Duff AF, Chasser KM, Bottje WG, Bielke LR. Impact of in ovo administered pioneer colonizers on intestinal proteome on day of hatch. Poult Sci 2020; 99:1254-1266. [PMID: 32111303 PMCID: PMC7587751 DOI: 10.1016/j.psj.2019.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Pioneer colonization of the gastrointestinal tract (GIT) by bacteria is thought to have major influence on neonatal tissue development. Previous studies have shown in ovo inoculation of embryos with saline (S), species of Citrobacter (C, C2), or lactic acid bacteria (L) resulted in an altered microbiome on day of the hatch (DOH). The present study investigated GIT proteomic changes at DOH in relation to different inoculations. Embryos were inoculated in ovo with S or ∼102 cfu of C, C2, or L at 18 embryonic days. On DOH, the GIT was collected, and tissue proteins were extracted for analysis via tandem mass spectrometry. A total of 493 proteins were identified for differential comparison with S at P ≤ 0.10. Different levels were noted in 107, 39, and 78 proteins in C, C2, and L groups, respectively, which were uploaded to Ingenuity Pathway Analysis to determine canonical pathways and biological functions related to these changes. Three members of the cytokine family (interleukin [IL]-1β, IL6, and Oncostatin M) were predicted to be activated in C2, indicated with Z-score ≥ 1.50, which suggested an overall proinflammatory GIT condition. This was consistent with the activation of the acute-phase response signaling pathway seen exclusively in C2 (Z-score = 2.00, P < 0.01). However, activation (Z-score = 2.00) of IL-13, upregulation of peroxiredoxin-1 and superoxide dismutase 1, in addition to activation of nitric oxide signaling in the cardiovascular system of the L treatment may predict a state of increased antioxidant capacity and decreased inflammatory status. The nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress response (Z-score = 2.00, P < 0.01) was predicted to be upregulated in C which suggested that chicks were in an inflammatory state and associated oxidative stress, but the impact of these pathways differed from that of C2. These changes in the proteome suggest that pioneer colonizing microbiota may have a strong impact on pathways associated with GIT immune and cellular development.
Collapse
Affiliation(s)
- K M Wilson
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - D R Rodrigues
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - W N Briggs
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - A F Duff
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - K M Chasser
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - W G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR
| | - L R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH.
| |
Collapse
|
42
|
Faecal neutrophil elastase-antiprotease balance reflects colitis severity. Mucosal Immunol 2020; 13:322-333. [PMID: 31772324 PMCID: PMC7039808 DOI: 10.1038/s41385-019-0235-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Given the global burden of diarrheal diseases on healthcare it is surprising how little is known about the drivers of disease severity. Colitis caused by infection and inflammatory bowel disease (IBD) is characterised by neutrophil infiltration into the intestinal mucosa and yet our understanding of neutrophil responses during colitis is incomplete. Using infectious (Citrobacter rodentium) and chemical (dextran sulphate sodium; DSS) murine colitis models, as well as human IBD samples, we find that faecal neutrophil elastase (NE) activity reflects disease severity. During C. rodentium infection intestinal epithelial cells secrete the serine protease inhibitor SerpinA3N to inhibit and mitigate tissue damage caused by extracellular NE. Mice suffering from severe infection produce insufficient SerpinA3N to control excessive NE activity. This activity contributes to colitis severity as infection of these mice with a recombinant C. rodentium strain producing and secreting SerpinA3N reduces tissue damage. Thus, uncontrolled luminal NE activity is involved in severe colitis. Taken together, our findings suggest that NE activity could be a useful faecal biomarker for assessing disease severity as well as therapeutic target for both infectious and chronic inflammatory colitis.
Collapse
|
43
|
Micali G, Endres RG. Maximal information transmission is compatible with ultrasensitive biological pathways. Sci Rep 2019; 9:16898. [PMID: 31729454 PMCID: PMC6858467 DOI: 10.1038/s41598-019-53273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
Cells are often considered input-output devices that maximize the transmission of information by converting extracellular stimuli (input) via signaling pathways (communication channel) to cell behavior (output). However, in biological systems outputs might feed back into inputs due to cell motility, and the biological channel can change by mutations during evolution. Here, we show that the conventional channel capacity obtained by optimizing the input distribution for a fixed channel may not reflect the global optimum. In a new approach we analytically identify both input distributions and input-output curves that optimally transmit information, given constraints from noise and the dynamic range of the channel. We find a universal optimal input distribution only depending on the input noise, and we generalize our formalism to multiple outputs (or inputs). Applying our formalism to Escherichia coli chemotaxis, we find that its pathway is compatible with optimal information transmission despite the ultrasensitive rotary motors.
Collapse
Affiliation(s)
- Gabriele Micali
- Department of Life Sciences, Imperial College, London, UK.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, UK.,Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Robert G Endres
- Department of Life Sciences, Imperial College, London, UK. .,Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, UK.
| |
Collapse
|
44
|
Woodward SE, Krekhno Z, Finlay BB. Here, there, and everywhere: How pathogenicEscherichia colisense and respond to gastrointestinal biogeography. Cell Microbiol 2019; 21:e13107. [DOI: 10.1111/cmi.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - Zakhar Krekhno
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
45
|
Carson D, Barry R, Hopkins EGD, Roumeliotis TI, García-Weber D, Mullineaux-Sanders C, Elinav E, Arrieumerlou C, Choudhary JS, Frankel G. Citrobacter rodentium induces rapid and unique metabolic and inflammatory responses in mice suffering from severe disease. Cell Microbiol 2019; 22:e13126. [PMID: 31610608 PMCID: PMC7003488 DOI: 10.1111/cmi.13126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell‐based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP‐heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.
Collapse
Affiliation(s)
- Danielle Carson
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Rachael Barry
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Eve G D Hopkins
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Diego García-Weber
- Inserm U1016, Institute Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Caroline Mullineaux-Sanders
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Cécile Arrieumerlou
- Inserm U1016, Institute Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
46
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|
47
|
OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat Commun 2019; 10:3957. [PMID: 31477712 PMCID: PMC6718652 DOI: 10.1038/s41467-019-11756-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Carbapenem-resistance in Klebsiella pneumoniae (KP) sequence type ST258 is mediated by carbapenemases (e.g. KPC-2) and loss or modification of the major non-selective porins OmpK35 and OmpK36. However, the mechanism underpinning OmpK36-mediated resistance and consequences of these changes on pathogenicity remain unknown. By solving the crystal structure of a clinical ST258 OmpK36 variant we provide direct structural evidence of pore constriction, mediated by a di-amino acid (Gly115-Asp116) insertion into loop 3, restricting diffusion of both nutrients (e.g. lactose) and Carbapenems. In the presence of KPC-2 this results in a 16-fold increase in MIC to Meropenem. Additionally, the Gly-Asp insertion impairs bacterial growth in lactose-containing medium and confers a significant in vivo fitness cost in a murine model of ventilator-associated pneumonia. Our data suggests that the continuous selective pressure imposed by widespread Carbapenem utilisation in hospital settings drives the expansion of KP expressing Gly-Asp insertion mutants, despite an associated fitness cost. Carbapenem-resistance in Klebsiella pneumoniae sequence type ST258 can be enhanced by modification of the porins OmpK35 and OmpK36. Here, Wong et al. solve the crystal structure of a clinical ST258 OmpK36 variant, elucidating the mechanism of resistance and consequences on pathogenicity in vivo.
Collapse
|
48
|
Luu L, Johnston LJ, Derricott H, Armstrong SD, Randle N, Hartley CS, Duckworth CA, Campbell BJ, Wastling JM, Coombes JL. An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium. Front Cell Infect Microbiol 2019; 9:300. [PMID: 31555604 PMCID: PMC6723115 DOI: 10.3389/fcimb.2019.00300] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.
Collapse
Affiliation(s)
- Lisa Luu
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Luke J. Johnston
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hayley Derricott
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Stuart D. Armstrong
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Nadine Randle
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Catherine S. Hartley
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A. Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Wastling
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Janine L. Coombes
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
49
|
Intestinal Epithelial Cells and the Microbiome Undergo Swift Reprogramming at the Inception of Colonic Citrobacter rodentium Infection. mBio 2019; 10:mBio.00062-19. [PMID: 30940698 PMCID: PMC6445932 DOI: 10.1128/mbio.00062-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mouse pathogen C. rodentium is a widely used model for colonic infection and has been a major tool in fundamental discoveries in the fields of bacterial pathogenesis and mucosal immunology. Despite extensive studies probing acute C. rodentium infection, our understanding of the early stages preceding the infection climax remains relatively undetailed. To this end, we apply a multiomics approach to resolve temporal changes to the host and microbiome during early infection. Unexpectedly, we found immediate and dramatic responses occurring on the day of colonic infection, both in the host intestinal epithelial cells and in the microbiome. Our study suggests changes in cholesterol and carbon metabolism in epithelial cells are instantly induced upon pathogen detection in the colon, corresponding with a shift to primarily facultative anaerobes constituting the microbiome. This study contributes to our knowledge of disease pathogenesis and mechanisms of barrier regulation, which is required for development of novel therapeutics targeting the intestinal epithelium. We used the mouse attaching and effacing (A/E) pathogen Citrobacter rodentium, which models the human A/E pathogens enteropathogenic Escherichia coli and enterohemorrhagic E. coli (EPEC and EHEC), to temporally resolve intestinal epithelial cell (IEC) responses and changes to the microbiome during in vivo infection. We found the host to be unresponsive during the first 3 days postinfection (DPI), when C. rodentium resides in the caecum. In contrast, at 4 DPI, the day of colonic colonization, despite only sporadic adhesion to the apex of the crypt, we observed robust upregulation of cell cycle and DNA repair processes, which were associated with expansion of the crypt Ki67-positive replicative zone, and downregulation of multiple metabolic processes (including the tricarboxylic acid [TCA] cycle and oxidative phosphorylation). Moreover, we observed dramatic depletion of goblet and deep crypt secretory cells and an atypical regulation of cholesterol homeostasis in IECs during early infection, with simultaneous upregulation of cholesterol biogenesis (e.g., 3-hydroxy-3-methylglutaryl–coenzyme A reductase [Hmgcr]), import (e.g., low-density lipoprotein receptor [Ldlr]), and efflux (e.g., AbcA1). We also detected interleukin 22 (IL-22) responses in IECs (e.g., Reg3γ) on the day of colonic colonization, which occurred concomitantly with a bloom of commensal Enterobacteriaceae on the mucosal surface. These results unravel a new paradigm in host-pathogen-microbiome interactions, showing for the first time that sensing a small number of pathogenic bacteria triggers swift intrinsic changes to the IEC composition and function, in tandem with significant changes to the mucosa-associated microbiome, which parallel innate immune responses.
Collapse
|
50
|
Ramirez VT, Godinez DR, Brust-Mascher I, Nonnecke EB, Castillo PA, Gardner MB, Tu D, Sladek JA, Miller EN, Lebrilla CB, Bevins CL, Gareau MG, Reardon C. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog 2019; 15:e1007719. [PMID: 30973939 PMCID: PMC6478367 DOI: 10.1371/journal.ppat.1007719] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/23/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.
Collapse
Affiliation(s)
- Valerie T. Ramirez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Dayn R. Godinez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Eric B. Nonnecke
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Patricia A. Castillo
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Mariana Barboza Gardner
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Diane Tu
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Jessica A. Sladek
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Elaine N. Miller
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Melanie G. Gareau
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|