1
|
Singh S, Pavan MK, Barella LF, Telang J, Shree A, Agarwal S, Goel A, Thaleshwari S, Wess J, Zafar H, Pydi SP. A Temporal Single-Cell Multi-Omics Atlas of Murine Pancreatic Islet Remodeling During Hyperglycaemia Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.29.656754. [PMID: 40568114 PMCID: PMC12190480 DOI: 10.1101/2025.05.29.656754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Pancreatic islets undergo coordinated cellular remodeling during obesity-induced insulin resistance (IR). However, the associated molecular changes across endocrine and non-endocrine compartments remain largely unexplored. Here, using longitudinal single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) on islets from C57BL/6 mice subjected to high-fat diet (HFD) feeding for 8, 16, and 24 weeks, along with age-matched controls on regular chow, we mapped dynamic changes in islet cell composition and transcriptional states. Beta cells demonstrated pronounced stress-induced reprogramming, with the emergence of proliferative and dysfunctional subsets. Alpha and delta cell fractions declined under HFD, despite increased polyhormonal biosynthesis, suggesting functional rather than numerical adaptation. Immune profiling showed robust expansion of proinflammatory M1 macrophages and upregulation of NF-κB and chemotaxis pathways, particularly at 16 weeks. Notably, cell-cell communication analyses revealed diet-specific disruption in signaling networks. Under HFD conditions, intercellular communication among beta cells, macrophages, and delta cells was markedly altered, leading to the disruption of key signaling pathways such as the gastric inhibitory polypeptide receptor (GIPR) and major histocompatibility complex-I (MHC-I). Notably, C-C motif chemokine ligand 27A ( Ccl27a ) expression and chromatin accessibility were significantly altered in a distinct subpopulation of beta cells under HFD condition, indicative of a niche-specific regulatory mechanism. Integration with human islet datasets from obese and type 2 diabetes (T2D) donors confirmed conserved shifts in beta cell identity and immune activation. This study presents a comprehensive high-resolution atlas of islet remodeling under metabolic stress, identifying key communication nodes and transcriptional programs pertinent to T2D pathogenesis.
Collapse
|
2
|
Alén R, Garcia-Martinez I, Cobo-Vuilleumier N, Fernández-Millán E, Gallardo-Villanueva P, Ferreira V, Izquierdo M, Moro MÁ, Lizasoain I, Nieto N, Gauthier BR, Valverde ÁM. Effect of lipotoxic hepatocyte-derived extracellular vesicles in pancreas inflammation: essential role of macrophage TLR4 in beta cell functionality. Diabetologia 2025:10.1007/s00125-025-06445-z. [PMID: 40387904 DOI: 10.1007/s00125-025-06445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 05/20/2025]
Abstract
AIMS/HYPOTHESIS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common feature of obesity and type 2 diabetes. Under lipotoxic stress, hepatocytes release small extracellular vesicles (sEVs) which act locally and contribute to MASLD progression, but their role in beta cell function and development of type 2 diabetes remains largely unexplored. We aimed to examine whether hepatocyte-derived sEVs (Hep-sEVs) under lipotoxic conditions impact on liver and pancreas inflammation and subsequent effects on beta cell function. METHODS Primary mouse hepatocytes and Huh7 human hepatocytes were treated with palmitic acid and Hep-sEVs were purified from the culture medium by differential ultracentrifugation. In vitro and in vivo approaches were used to decipher the role of Hep-sEVs in liver and pancreas inflammation and beta cell dysfunction in mouse and human pancreatic islets. The contribution of the Toll-like receptor 4 (TLR4) to Hep-sEV-mediated effects was investigated in pancreatic islets from myeloid-specific TLR4-deficient mice. RESULTS Lipotoxic Hep-sEVs targeted pancreatic islet macrophages and induced TLR4-mediated inflammation. The subsequent inflammatory response downregulated beta cell identity genes and impaired glucose-stimulated insulin secretion in both INS-1 beta cells (p<0.05) and isolated pancreatic islets from mice (p<0.01) and humans (p<0.05). Specific deletion of TLR4 in macrophages protected pancreatic islets against inflammation and the impairment of glucose-stimulated insulin secretion induced by lipotoxic Hep-sEVs. Chronic administration of lipotoxic Hep-sEVs in lean mice induced liver and pancreas inflammation through the recruitment of immune cells. This intervention induced hepatocyte injury and fibrotic damage together with detrimental immunometabolic systemic effects. Insulin resistance in hepatocytes (p<0.01) and a compensatory insulin secretion (p<0.001) that prevented glucose intolerance were also observed in mice treated with lipotoxic Hep-sEVs. CONCLUSIONS/INTERPRETATION This study has provided evidence of liver and pancreas inflammation and beta cell dysfunction induced by lipotoxic Hep-sEVs. Our data also envision TLR4-mediated signalling in islet macrophages as a key mediator of the effects of lipotoxic Hep-sEVs on beta cell function.
Collapse
Affiliation(s)
- Rosa Alén
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Nadia Cobo-Vuilleumier
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Paula Gallardo-Villanueva
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Vitor Ferreira
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
| | - María Ángeles Moro
- Fisiopatología Neurovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Natalia Nieto
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, Chicago, IL, USA
| | - Benoit R Gauthier
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
3
|
Wang W, Liu X, Gao X, Zhou X, Gao W, Sang Y, Yang B. Characterization, digestive properties and glucose metabolism regulation of curcumin-loaded Pickering emulsion. Carbohydr Polym 2025; 356:123408. [PMID: 40049978 DOI: 10.1016/j.carbpol.2025.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
Curcumin, a polyphenolic compound with antioxidant and hypoglycemic properties, has limited applications due to low stability and poor oral bioavailability. This study aimed to overcome these challenges by developing stable oil-in-water Pickering emulsions with curcumin and evaluating their stability and digestive characteristics. Using a T2DM mouse model, we further examined the effects of curcumin-loaded Pickering emulsions on glucose metabolism. The emulsions demonstrated high curcumin encapsulation efficiency (96.72 % ± 2.15 %) and minimal average droplet size. Both emulsions showed stable zeta potential, favorable rheological properties, and strong environmental and storage stability, lasting up to 60 days. In vitro digestion studies indicated that the Pickering emulsion substantially improved curcumin bioavailability (25.48 %-36.43 %) and increased antioxidant and hypoglycemic activity compared to oil-soluble curcumin, both before and after digestion. In animal experiments, the curcumin-loaded Pickering emulsion enhanced fasting blood glucose, glucose tolerance, and insulin resistance in T2DM mice, compared to the untreated model group. It also supported tissue repair in the pancreas, liver, and colon, reduced oxidative stress in the liver, activated the PI3K/Akt signaling pathway, and favorably influenced gut microbiota and short-chain fatty acids. These findings suggest that Pickering emulsions are an effective delivery system for curcumin in functional foods, supporting their application in curcumin-based product development.
Collapse
Affiliation(s)
- Wanjia Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinghua Liu
- Hebei Livestock Breeding Station, Shijiazhuang, China
| | - Xingchen Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xingxing Zhou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wei Gao
- Chen Guang Biotechnology Group Co., Ltd., Handan, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
4
|
Guney C, Alcigir ME, Akar F. Excess Fructose Intake Activates Hyperinsulinemia and Mitogenic MAPK Pathways in Association With Cellular Stress, Inflammation, and Apoptosis in the Pancreas of Rats. Mol Nutr Food Res 2025; 69:e70048. [PMID: 40152093 PMCID: PMC12087730 DOI: 10.1002/mnfr.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
The increase in sugar consumption has been associated with current metabolic disease epidemics. This study aimed to investigate the pancreatic molecular mechanisms involved in cellular stress, inflammation, mitogenesis, and apoptosis in metabolic disease induced by high-fructose diet. Here, we used biochemical, histopathological, Western blot, and immunohistochemistry methods to determine the metabolic and pancreatic alterations in male Wistar rats fed 20% fructose in drinking water for 15 weeks. High-fructose consumption in rats increased the immunopositivity and protein expression of glucose transporter 2 (GLUT2) and insulin in the pancreatic tissue, in association with abdominal adiposity, hyperglycemia, and hypertriglyceridemia. The expressions of cellular stress markers, glucose-regulated protein-78 (GRP78) and PTEN-induced putative kinase 1 (PINK1), were increased in the pancreas. The levels of interleukin (IL)-6, nuclear factor kappa B (NFκB), tumor necrosis factor α (TNFα), and IL-1β and components of the Nod-like receptor protein 3 (NLRP3) inflammasome were elevated. Excess fructose intake stimulated the activation of mitogenic extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK)1 as well as the apoptotic p53 and Fas pathways in the pancreas of rats. There was also an increase in caspase-8 and caspase-3 cleavage. Our findings revealed that dietary high-fructose in the pancreas causes hyperinsulinemia due to the upregulation of GLUT2 together with cellular stress and inflammatory markers, thereby stimulates mitogenic mitogen-activated protein kinase (MAPK) and apoptosis pathways, resulting in a complex pathological situation.
Collapse
Affiliation(s)
- Ceren Guney
- Department of Pharmacology, Faculty of PharmacyGazi UniversityAnkaraTurkey
- Department of Pharmacology, Faculty of PharmacyDüzce UniversityDüzceTurkey
| | - Mehmet Eray Alcigir
- Department of Pathology, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTurkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of PharmacyGazi UniversityAnkaraTurkey
| |
Collapse
|
5
|
Jiang Q, Zhao Q, Li P. Galectin-3 in metabolic disorders: mechanisms and therapeutic potential. Trends Mol Med 2025; 31:424-437. [PMID: 39690058 DOI: 10.1016/j.molmed.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Abstract
Galectin-3 (Gal3), a β-galactoside-binding lectin, is expressed predominantly in immunological and inflammatory cells. Gal3 expression is elevated in metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD), and plays an important role in the progression of these diseases. In this review, we summarize the structure and post-translational modifications of Gal3 and the cellular functions of Gal3 according to its subcellular localization. We focused on the pathological functions and molecular mechanisms of Gal3 in various cell types. In particular, extracellular Gal3 and intracellular Gal3 may have different physiological and pathological functions. We also discuss promising Gal3 inhibitors or antibodies that are currently in clinical trials and outstanding questions and challenges for future pursuit.
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing 100050, China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing 100050, China.
| |
Collapse
|
6
|
Chen X, Shao J, Brandenburger I, Qian W, Hahnefeld L, Bonnavion R, Cho H, Wang S, Hidalgo J, Wettschureck N, Geisslinger G, Gurke R, Wang Z, Offermanns S. FFAR4-mediated IL-6 release from islet macrophages promotes insulin secretion and is compromised in type-2 diabetes. Nat Commun 2025; 16:3422. [PMID: 40210633 PMCID: PMC11986018 DOI: 10.1038/s41467-025-58706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
The function of islet macrophages is poorly understood. They promote glucose-stimulated insulin secretion (GSIS) in lean mice, however, the underlying mechanism has remained unclear. We show that activation of the free fatty acid receptor FFAR4 on islet macrophages leads to interleukin-6 (IL-6) release and that IL-6 promotes β-cell function. This mechanism is required for GSIS in lean male mice, but does not function anymore in islets from people with obesity and obese type 2 diabetic male mice. In islets from obese mice, FFAR4 downstream signaling in macrophages is strongly reduced, resulting in impaired FFAR4-mediated IL-6 release. However, IL-6 treatment can still improve GSIS in islets from people with obesity and obese type 2 diabetic mice. These data show that a defect in FFAR4-mediated macrophage activation contributes to reduced GSIS in type 2 diabetes and suggest that reactivating islet macrophage FFAR4 and promoting or mimicking IL-6 release from islet macrophages improves GSIS in type 2 diabetes.
Collapse
Affiliation(s)
- Xinyi Chen
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Isabell Brandenburger
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an, China
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Frankfurt, Germany
| | - Rémy Bonnavion
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Haaglim Cho
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, China
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology, and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt/Rhine-Main, Bad Nauheim, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Frankfurt, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Frankfurt, Germany
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an, China
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, China.
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt/Rhine-Main, Bad Nauheim, Germany.
| |
Collapse
|
7
|
Lai F, Zhou K, Ma Y, Lv H, Wang W, Wang R, Xu T, Huang R. Single-cell RNA sequencing identifies endothelial-derived HBEGF as promoting pancreatic beta cell proliferation in mice via the EGFR-Kmt5a-H4K20me pathway. Diabetologia 2025; 68:835-853. [PMID: 39694915 PMCID: PMC11950091 DOI: 10.1007/s00125-024-06341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell mass is dynamically regulated in response to increased physiological and pathological demands. Understanding the mechanisms that control physiological beta cell proliferation could provide valuable insights into novel therapeutic approaches to diabetes. Here, we aimed to analyse the intracellular and extracellular signalling pathways involved in regulating the physiological proliferation of beta cells using single-cell RNA-seq (scRNA-seq) and in vitro functional assays. METHODS Islets isolated from nulliparous mice, mice at different time points of gestation and mice at day 4 after delivery were analysed using scRNA-seq. Bioinformatics analyses of scRNA-seq data were performed to determine the heterogeneous transcriptomic characteristics of beta cells and to identify the proliferating subpopulation. CellChat was used to analyse cell-cell communication and identify the ligand-receptor pairs between beta cell subclusters as well as between non-beta cells and proliferating beta cells. In vitro functional assays were conducted in mouse and rat beta cell lines and isolated mouse primary islets to validate the role of Kmt5a- mono-methylation of histone H4 at lysine 20 (H4K20me) signalling and endothelial-derived heparin-binding EGF-like growth factor (HBEGF) in beta cell proliferation. RESULTS Of 43,724 endocrine and non-endocrine cells within islets analysed by scRNA-seq, 15,569 beta cells were clustered into eight distinct populations, each exhibiting unique heterogeneity. A proliferating beta cell subcluster was identified that highly expressed the histone methyltransferase Kmt5a. Activation of Kmt5a-H4K20me signalling upregulated the expression of Cdk1 and promoted beta cell proliferation. The crosstalk between endothelial cells and the proliferating beta cell subcluster, mediated by the HBEGF-EGF receptor (EGFR) ligand-receptor interaction, increased as beta cell mass expanded. HBEGF increased the expression levels of genes involved in the cell cycle and promoted beta cell proliferation by regulating the Kmt5a-H4K20me signalling pathway. CONCLUSIONS/INTERPRETATION Our study demonstrates that, under physiological conditions, endothelial-derived HBEGF regulates beta cell proliferation through the Kmt5a-H4K20me signalling pathway, which may serve as a potential target to promote beta cell expansion and treat diabetes. DATA AVAILABILITY The scRNA-seq and RNA-seq datasets are available from the Gene Expression Omnibus (GEO) using the accession numbers GSE278860 and GSE278861, respectively.
Collapse
Affiliation(s)
- Fengling Lai
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaixin Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Yingjie Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Lv
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weilin Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Rundong Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tao Xu
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Rong Huang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
8
|
Filipowska J, Cisneros Z, Varghese SS, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Shih HP, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. Mol Metab 2025; 92:102097. [PMID: 39788290 PMCID: PMC11788739 DOI: 10.1016/j.molmet.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets. Although LGR4 has regenerative, anti-inflammatory, and anti-apoptotic effects in other tissues, its functional significance in β-cells remains unknown. We have previously identified Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) as a negative regulator of β-cell health. In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo. METHODS We evaluated Lgr4 expression in mouse and human islets in response to acute (proinflammatory cytokines), or chronic (high fat fed mice, db/db mice, and aging) stress. To determine the role of LGR4 we employed in vitro Lgr4 loss and gain of function in primary rodent and human β-cells and examined its mechanism of action in the rodent INS1 cell line. Using Lgr4fl/fl and Lgr4fl/fl/Rankfl/fl × Ins1-Cre mice we generated β-cell-specific conditional knockout (cko) mice to test the role of LGR4 and its interaction with RANK in vivo under basal and stress-induced conditions. RESULTS Lgr4 expression in rodent and human islets was reduced by multiple stressors. In vitro, Lgr4 knockdown decreased proliferation and survival in rodent β-cells, while overexpression protected against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 protects β-cells by suppressing RANK- Tumor necrosis factor receptor associated factor 6 (TRAF6) interaction and subsequent activation of NFκB. Lgr4cko mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased β-cell proliferation and maturation only in females. Male Lgr4cko mice under stress displayed reduced β-cell proliferation and a further increase in β-cell death. The impaired β-cell phenotype in Lgr4cko mice was rescued in Lgr4/Rank double ko (dko) mice. Upon aging, both male and female Lgr4cko mice displayed impaired β-cell homeostasis, however, only female mice became glucose intolerant with decreased plasma insulin. CONCLUSIONS These data demonstrate a novel role for LGR4 as a positive regulator of β-cell health under basal and stress-induced conditions, through suppressing the negative effects of RANK.
Collapse
Affiliation(s)
- Joanna Filipowska
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Zelda Cisneros
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Sneha S Varghese
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, and Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Geming Lu
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Computational Quantitative Medicine, City of Hope, Duarte, CA 91010, USA
| | - Hung-Ping Shih
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA 91010, USA
| | - Sangeeta Dhawan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Nagesha Guthalu Kondegowda
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Rupangi C Vasavada
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2025; 68:3-16. [PMID: 39496966 DOI: 10.1007/s00125-024-06306-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Increased activity of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-IL-1β pathway is observed in obesity and contributes to the development of type 2 diabetes and its complications. In this review, we describe the pathological activation of IL-1β by metabolic stress, ageing and the microbiome and present data on the role of IL-1β in metabolism. We explore the physiological role of the IL-1β pathway in insulin secretion and the relationship between circulating levels of IL-1β and the development of diabetes and associated diseases. We highlight the paradoxical nature of IL-1β as both a friend and a foe in glucose regulation and provide details on clinical translation, including the glucose-lowering effects of IL-1 antagonism and its impact on disease modification. We also discuss the potential role of IL-1β in obesity, Alzheimer's disease, fatigue, gonadal dysfunction and related disorders such as rheumatoid arthritis and gout. Finally, we address the safety of NLRP3 inhibition and IL-1 antagonists and the prospect of using this therapeutic approach for the treatment of type 2 diabetes and its comorbidities.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Joyce de Paula Souza
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Gottmann P, Speckmann T, Stadion M, Chawla P, Saurenbach J, Ninov N, Lickert H, Schürmann A. Transcriptomic heterogeneity of non-beta islet cells is associated with type 2 diabetes development in mouse models. Diabetologia 2025; 68:166-185. [PMID: 39508880 DOI: 10.1007/s00125-024-06301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024]
Abstract
AIMS/HYPOTHESIS The aim of this work was to understand the role of non-beta cells in pancreatic islets at early stages of type 2 diabetes pathogenesis. METHODS Specific clustering was employed to single-cell transcriptome data from islet cells of obese mouse strains differing in their diabetes susceptibility (diabetes-resistant B6.V.Lepob/ob [OB] and diabetes-susceptible New Zealand Obese [NZO] mice) on a diabetogenic diet. RESULTS Refined clustering analysis revealed several heterogeneous subpopulations for alpha cells, delta cells and macrophages, of which 133 mapped to human diabetes genes identified by genome-wide association studies. Importantly, a similar non-beta cell heterogeneity was found in a dataset of human islets from donors at different stages of type 2 diabetes. The predominant alpha cell cluster in NZO mice displayed signs of cellular stress and lower mitochondrial capacity (97 differentially expressed genes [DEGs]), whereas delta cells from these mice exhibited higher expression levels of maturation marker genes (Hhex and Sst) but lower somatostatin secretion than OB mice (184 DEGs). Furthermore, a cluster of macrophages was almost twice as abundant in islets of OB mice, and displayed extensive cell-cell communication with beta cells of OB mice. Treatment of beta cells with IL-15, predicted to be released by macrophages, activated signal transducer and activator of transcription (STAT3), which may mediate anti-apoptotic effects. Similar to mice, humans without diabetes possess a greater number of macrophages than those with prediabetes (39 mmol/mol [5.7%] < HbA1c < 46 mmol/mol [6.4%]) and diabetes. CONCLUSIONS/INTERPRETATION Our study indicates that the transcriptional heterogeneity of non-beta cells has an impact on intra-islet crosstalk and participates in beta cell (dys)function. DATA AVAILABILITY scRNA-seq data from the previous study are available in gene expression omnibus under gene accession number GSE159211 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159211 ).
Collapse
Affiliation(s)
- Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Prateek Chawla
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Judith Saurenbach
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Nikolay Ninov
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
11
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
12
|
Garcia CC, Venkat A, McQuaid DC, Agabiti S, Tong A, Cardone RL, Starble R, Sogunro A, Jacox JB, Ruiz CF, Kibbey RG, Krishnaswamy S, Muzumdar MD. Beta cells are essential drivers of pancreatic ductal adenocarcinoma development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626079. [PMID: 39677599 PMCID: PMC11642786 DOI: 10.1101/2024.11.29.626079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pancreatic endocrine-exocrine crosstalk plays a key role in normal physiology and disease. For instance, endocrine islet beta (β) cell secretion of insulin or cholecystokinin (CCK) promotes progression of pancreatic adenocarcinoma (PDAC), an exocrine cell-derived tumor. However, the cellular and molecular mechanisms that govern endocrine-exocrine signaling in tumorigenesis remain incompletely understood. We find that β cell ablation impedes PDAC development in mice, arguing that the endocrine pancreas is critical for exocrine tumorigenesis. Conversely, obesity induces β cell hormone dysregulation, alters CCK-dependent peri-islet exocrine cell transcriptional states, and enhances islet proximal tumor formation. Single-cell RNA-sequencing, in silico latent-space archetypal and trajectory analysis, and genetic lineage tracing in vivo reveal that obesity stimulates postnatal immature β cell expansion and adaptation towards a pro-tumorigenic CCK+ state via JNK/cJun stress-responsive signaling. These results define endocrine-exocrine signaling as a driver of PDAC development and uncover new avenues to target the endocrine pancreas to subvert exocrine tumorigenesis.
Collapse
|
13
|
Chen Y, Li X, Yang M, Jia C, He Z, Zhou S, Ruan P, Wang Y, Tang C, Pan W, Long H, Zhao M, Lu L, Peng W, Akbar A, Wu IX, Li S, Wu H, Lu Q. Time-restricted eating reveals a "younger" immune system and reshapes the intestinal microbiome in human. Redox Biol 2024; 78:103422. [PMID: 39561680 PMCID: PMC11616606 DOI: 10.1016/j.redox.2024.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Time-restricted eating (TRE) has been shown to extent lifespans in drosophila and mouse models by affecting metabolic and anti-inflammatory activities. However, the effect of TRE on the human immune system, especially on immunosenescence, intestinal microbiome, and metabolism remains unclear. We conducted a 30-day 16:8 TRE single-arm clinical trial with 49 participants. Participants consumed daily meals from 9 a.m. to 5 p.m., provided by a nutrition canteen with a balanced, calorie-appropriate nutrition, which is designed by clinical nutritionists (ChiCTR2200058137). We monitored weight changes and weight-related parameters and focused on changes in the frequency of CD4+ senescent T cells, immune repertoire from peripheral blood, as well as serum metabolites and gut microbiota. We found that up to 95.9 % of subjects experienced sustained weight loss after TRE. The frequency of circulating senescent CD4+ T cells was decreased, while the frequency of Th1, Treg, Tfh-like, and B cells was increased. Regarding the immune repertoire, the proportions of T cell receptor alpha and beta chains were increased, whereas B cell receptor kappa and lambda chains were reduced. In addition, a reduced class switch recombination from immunoglobulin M (IgM) to immunoglobulin A (IgA) was observed. TRE upregulated the levels of anti-inflammatory and anti-aging serum metabolites named sphingosine-1-phosphate and prostaglandin-1. Additionally, several anti-inflammatory bacteria and probiotics were increased, such as Akkermansia and Rikenellaceae, and the composition of the gut microbiota tended to be "younger". Overall, TRE showed multiple anti-aging effects, which may help humans maintain a healthy lifestyle to stay "young". Clinical Trial Registration URL: https://www.chictr.org.cn/showproj.html?proj=159876.
Collapse
Affiliation(s)
- Yiran Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China
| | - Xi Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ming Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Chen Jia
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Zhenghao He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Suqing Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Pinglang Ruan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, 210046, China
| | - Wenjing Pan
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, 210046, China; Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hai Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 518057, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Arne Akbar
- Associate of the Institute of Healthy Ageing, Division of Infection & Immunity, University College of London, London, WC1E 6BT, United Kingdom
| | - Irene Xy Wu
- Xiangya School of Public Health, Central South University, 4/F, Changsha, Hunan, 410006, China
| | - Song Li
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang Medical School, University of South China, Hengyang, Hunan, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Wang J, Shen Y, Chen H, Guan J, Li Z, Liu X, Guo S, Wang L, Yan B, Jin C, Li H, Guo T, Sun Y, Zhang W, Zhang Z, Tian Y, Tian Z. Non-lethal sonodynamic therapy inhibits high glucose and palmitate-induced macrophage inflammasome activation through mtROS-DRP1-mitophagy pathway. FASEB J 2024; 38:e70178. [PMID: 39556373 DOI: 10.1096/fj.202402008r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Obesity plays a crucial role in the development and progression of type 2 diabetes mellitus (T2DM) by causing excessive release of free fatty acid from adipose tissue, which in turn leads to systemic infiltration of macrophages. In individuals with T2DM, the infiltration of macrophages into pancreatic islets results in islet inflammation that impairs beta cell function, as evidenced by increased apoptosis and decreased glucose-stimulated insulin secretion. The present study aimed to investigate the effects of non-lethal sonodynamic therapy (NL-SDT) on bone marrow-derived macrophages (BMDMs) exposed to high glucose and palmitic acid (HG/PA). These findings indicate that NL-SDT facilitates the expression of DRP1 through the transient production of mitochondrial ROS, which subsequently promotes mitophagy. This mitophagy was shown to limit the activation of the NLRP3 inflammasome and the secretion of IL-1β in BMDMs exposed to HG/PA. In co-culture experiments, beta cells exhibited significant dysfunction when interacting with HG/PA-treated BMDMs. However, this dysfunction was markedly alleviated when the BMDMs had undergone NL-SDT treatment. Moreover, NL-SDT was found to lower blood glucose levels and elevate serum insulin concentrations in db/db mice. Furthermore, NL-SDT effectively reduced the infiltration of F4/80-positive macrophages and the expression of CASP1 within islets. These findings provide fundamental insights into the mechanisms through which NL-SDT may serve as a promising approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Yicheng Shen
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Heyu Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Jinwei Guan
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Xianna Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Shuyuan Guo
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Linxin Wang
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Baoyue Yan
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Chenrun Jin
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - He Li
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Tian Guo
- Medical College of Jining Medical University, Jining, P. R. China
| | - Yun Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Zhiguo Zhang
- School of Physics, Harbin Institute of Technology, Harbin, P. R. China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Ye Tian
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| |
Collapse
|
15
|
Li Q, Li Z, Guo S, Li S, Yao M, Li Y, Luo X. Increased circulating serpinB1 levels in children with overweight/obesity are associated with obesity-related parameters: a cross‑sectional study. BMC Pediatr 2024; 24:762. [PMID: 39578813 PMCID: PMC11585230 DOI: 10.1186/s12887-024-05251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Circulating serpinB1 levels are increased in obese mice and have been shown to promote β-cell proliferation in several species. However, the data on serum serpinB1 levels in children with obesity are scarce. This study aimed to determine serum serpinB1 levels in children with overweight/obesity, and to study its association with obesity-related parameters. METHODS A total of 54 children with overweight/obesity and 36 normal-weight healthy controls aged 6-14 were recruited in this study. Anthropometric parameters, glucolipid metabolic biochemical parameters, sex hormones, and serum serpinB1 levels were measured in all subjects. The association of serum serpinB1 levels with obesity-related parameters and the risk of overweight/obesity were analyzed using correlation analysis and binary regression analysis, respectively. RESULTS The serum serpinB1 level in overweight/obese children was notably greater than in normal-weight controls (2.03 ± 0.70 vs. 1.41 ± 0.58 ng/mL, p < 0.001). SerpinB1 levels were positively correlated with body mass index (BMI), BMI Z-score, triglyceride (TG), uric acid, fasting insulin, C-peptide, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Additionally, we found that elevated circulating serpinB1 levels were associated with the increased risk of childhood overweight/obesity even after adjustment for age, gender, and HOMA-IR (odds ratio, 4.132; 95% confidence interval, 1.315-12.983; p = 0.015). CONCLUSIONS Circulating serpinB1 level was significantly increased in children with overweight/obesity and positively associated with obesity-related glucolipid metabolic parameters. These results indicate a close association between serum serpinB1 concentrations and childhood overweight/obesity.
Collapse
Affiliation(s)
- Qing Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuxi Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusen Guo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sujuan Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglan Yao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan, China.
| |
Collapse
|
16
|
Bourgeois S, Coenen S, Degroote L, Willems L, Van Mulders A, Pierreux J, Heremans Y, De Leu N, Staels W. Harnessing beta cell regeneration biology for diabetes therapy. Trends Endocrinol Metab 2024; 35:951-966. [PMID: 38644094 DOI: 10.1016/j.tem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sophie Coenen
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Laure Degroote
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Lien Willems
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Annelore Van Mulders
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Julie Pierreux
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Yves Heremans
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nico De Leu
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Endocrinology, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium.
| | - Willem Staels
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
| |
Collapse
|
17
|
Fan MW, Tian JL, Chen T, Zhang C, Liu XR, Zhao ZJ, Zhang SH, Chen Y. Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway in diabetes and its complications. World J Diabetes 2024; 15:2041-2057. [PMID: 39493568 PMCID: PMC11525733 DOI: 10.4239/wjd.v15.i10.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus (DM) is one of the major causes of mortality worldwide, with inflammation being an important factor in its onset and development. This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway in mediating inflammatory responses. Furthermore, it comprehensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM, diabetic gastroenteropathy, diabetic cardiomyopathy, non-alcoholic fatty liver disease, and other complications. Additionally, the role of cGAS-STING in autonomic dysfunction and intestinal dysregulation, which can lead to digestive complications, has been discussed. Altogether, this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM.
Collapse
Affiliation(s)
- Ming-Wei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Jin-Lan Tian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Tan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Xin-Ru Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Zi-Jian Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Shu-Hui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| |
Collapse
|
18
|
Moeller J, Meier DT. Ablation of PC1/3 in POMC-Expressing Tissues but Not in Immune Cells Induces Sepsis Hypersensitivity. J Endocr Soc 2024; 8:bvae171. [PMID: 39435302 PMCID: PMC11492489 DOI: 10.1210/jendso/bvae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 10/23/2024] Open
Abstract
Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neuropeptide and endocrine peptide precursors; it is expressed in neuroendocrine tissues as well as in immune cells. In response to endotoxemia, global PC1/3 knockout mice mount a cytokine storm and die rapidly. Further, immune cells isolated from these mice have a pro-inflammatory signature, suggesting that PC1/3 activates an unknown anti-inflammatory peptide precursor in immune cells. Here, we tested this hypothesis using tissue-specific PC1/3 ablation models. Knocking out PC1/3 in the myeloid or the hematopoietic compartment did not induce any phenotype. In contrast, proopiomelanocortin (POMC)-specific PC1/3 knockout mice phenocopied global PC1/3 knockout mice, including an enlarged spleen size and a hyperinflammatory sepsis phenotype in response to mild endotoxemia. This phenotype was prevented by steroid therapy and mimicked by blocking corticoid receptors in wild-type mice. Thus, our data suggest that sepsis hypersensitivity in PC1/3 deficiency is uncoupled from immune cell intrinsic PC1/3 expression and is driven by a lack of anti-inflammatory glucocorticoids due to an impairment in the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Jana Moeller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
19
|
Hatano R, Zhang X, Lee E, Kaneda A, Tanaka T, Miki T. Mosaic ablation of pancreatic β cells induces de-differentiation and repetitive proliferation of residual β cells in adult mice. iScience 2024; 27:110656. [PMID: 39310764 PMCID: PMC11416228 DOI: 10.1016/j.isci.2024.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes mellitus is induced by quantitative and qualitative decline in pancreatic β cells. Although its radical therapy has not yet been established, β cell regeneration is a promising option. We investigate here two mouse models of β cell regeneration induced after ∼80% reduction in β cell number: Cre/loxP-mediated β cell ablation and partial pancreatectomy. Cre/loxP-mediated, mosaic-pattern of β cell ablation by diphtheria toxin (DT) prompted rapid β cell replenishment through repeated proliferation of rare, highly proliferative DT receptor-negative β cells along with increase in Hes1, Neurog3, Ascl1, and Aldh1a3 (immature/dedifferentiated β cell markers) and decrease in Mafa (a mature β cell marker) in the islets. In contrast, pancreatectomy also prompted active proliferation, but with no change in these immature/dedifferentiated or mature β cell markers. Our findings demonstrate that the mode of β cell regeneration differs between Cre/loxP-mediated β cell ablation and surgical β cell reduction, and the former involves β cell dedifferentiation followed by active repetitive cell proliferation of a small population of β cells.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomoaki Tanaka
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Molecular Diagnosis, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
20
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
21
|
Hu Y, Zeng X, Luo Y, Pei X, Zhou D, Zhu B. Trans, trans-2,4-decadienal, a lipid peroxidation product, aggravates insulin resistance in obese mice by promoting adipose inflammation. Food Sci Nutr 2024; 12:6398-6410. [PMID: 39554331 PMCID: PMC11561848 DOI: 10.1002/fsn3.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 11/19/2024] Open
Abstract
Peroxidation of polyunsaturated fatty acids results in the creation of numerous α, β-unsaturated aldehydes, many of which are complicated by the development of diabetes. Trans, trans-2,4-decadienal (DDE) is a dietary α, β-unsaturated aldehyde that is commonly found in food and the environment. However, it is unknown whether DDE exposure has some negative effects on glucose homeostasis and insulin sensitivity. This study investigated the biological effects of long-term DDE exposure in normal chow diet (NCD)-fed non-obese mice and high-fat diet (HFD)-fed obese mice. Results showed that oral administration of DDE for 14 weeks did not cause severe toxicity in NCD-fed non-obese mice but had significant adverse effects in HFD-fed obese mice. It was found that DDE exposure caused significant increases in LDL and ALT levels and aggravated glucose intolerance and insulin resistance in obese mice. Moreover, DDE robustly accumulated in adipose tissue and promoted the impairment of the insulin signaling pathway in the adipose tissue of obese mice while not affecting the skeletal muscle or liver. Mechanistically, DDE aggravated adipose tissue inflammation by promoting M1 macrophage accumulation and increasing proinflammatory cytokines in the adipocytes of obese mice, thus leading to impaired systemic insulin resistance. These findings provide crucial insights into the potential health impacts of long-term DDE exposure.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Xiangbo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Ying Luo
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Xuechen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| |
Collapse
|
22
|
Zhou X, Wang S, Yu D, Niu T. Investigating CR1 as an indicated Gene for mild cognitive impairment in type 2 diabetes mellitus. Diabetol Metab Syndr 2024; 16:206. [PMID: 39182129 PMCID: PMC11344402 DOI: 10.1186/s13098-024-01449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) has beenis known as an important risk factor for cognitive impairment. Meanwhile, the liver plays a central role in the development of T2DM and insulin resistance. The present study attempted to identify and validate marker genes for mild cognitive impairment (MCI) in patients with T2DM. METHODS In this study, insulin resistance-related differentially expressed genes were identified from the liver tissues of individuals with T2DM and those with normal glucose tolerance using the Gene Expression Omnibus database and MCI-associated genes were identified using the GeneCards database. Next, enrichment analysis was performed with overlapping T2DM and MCI genes, followed by the identification of specific genes using the LASSO logistic regression and SVM-RFE algorithms. An important experiment involved the implementation of clinical and in vitro validation using real-time quantitative polymerase chain reaction (RT-qPCR). Finally, multiple linear regression, binary logistic regression, and receiver operating characteristic curve analyses were performed to investigate the relationship between the key gene and cognitive function in these patients. RESULT The present study identified 40 overlapping genes between MCI and T2DM, with subsequent enrichment analysis revealing their significant association with the roles of neuronal and glial projections. The marker gene complement receptor 1(CR1) was identified for both diseases using two regression algorithms. Based on RT-qPCR validation in 65 T2DM patients with MCI (MCI group) and 65 T2DM patients without MCI (NC group), a significant upregulation of CR1 mRNA in peripheral blood mononuclear cells was observed in the MCI group (P < 0.001). Furthermore, the CR1 gene level was significantly negatively associated with MoCA and MMSE scores, which reflect the overall cognitive function, and positively correlated with TMTB scores, which indicate the executive function. Finally, elevated CR1 mRNA levels were identified as an independent risk factor for MCI (OR = 1.481, P < 0.001). CONCLUSION These findings suggest that CR1 is an important predictor of MCI in patients with T2DM. Thus, CR1 has potential clinical significance, which may offer new ideas and directions for the management and treatment of T2DM. The identification and clinical validation of dysregulated marker genes in both T2DM and MCI can offer valuable insights into the intrinsic association between these two conditions. The current study insights may inspire the development of novel strategies for addressing the complicated issues related to cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Xueling Zhou
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shaohua Wang
- School of Medicine, Southeast University, Nanjing, China.
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Dandan Yu
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Tong Niu
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
23
|
Baars DP, Fondevila MF, Meijnikman AS, Nieuwdorp M. The central role of the gut microbiota in the pathophysiology and management of type 2 diabetes. Cell Host Microbe 2024; 32:1280-1300. [PMID: 39146799 DOI: 10.1016/j.chom.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The inhabitants of our intestines, collectively called the gut microbiome, comprise fungi, viruses, and bacterial strains. These microorganisms are involved in the fermentation of dietary compounds and the regulation of our adaptive and innate immune systems. Less known is the reciprocal interaction between the gut microbiota and type 2 diabetes mellitus (T2DM), as well as their role in modifying therapies to reduce associated morbidity and mortality. In this review, we aim to discuss the existing literature on gut microbial strains and their diet-derived metabolites involved in T2DM. We also explore the potential diagnostics and therapeutic avenues the gut microbiota presents for targeted T2DM management. Personalized treatment plans, driven by diet and medication based on the patient's microbiome and clinical markers, could optimize therapy.
Collapse
Affiliation(s)
- Daniel P Baars
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Marcos F Fondevila
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abraham S Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Diabetes Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Rampazzo Morelli N, Pipella J, Thompson PJ. Establishing evidence for immune surveillance of β-cell senescence. Trends Endocrinol Metab 2024; 35:576-585. [PMID: 38307810 DOI: 10.1016/j.tem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Cellular senescence is a programmed state of cell cycle arrest that involves a complex immunogenic secretome, eliciting immune surveillance and senescent cell clearance. Recent work has shown that a subpopulation of pancreatic β-cells becomes senescent in the context of diabetes; however, it is not known whether these cells are normally subject to immune surveillance. In this opinion article, we advance the hypothesis that immune surveillance of β-cells undergoing a senescence stress response normally limits their accumulation during aging and that the breakdown of these mechanisms is a driver of senescent β-cell accumulation in diabetes. Elucidation and therapeutic activation of immune surveillance mechanisms in the pancreas holds promise for the improvement of approaches to target stressed senescent β-cells in the treatment of diabetes.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
25
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
26
|
Zhu S, Waeckel-Énée E, Oshima M, Moser A, Bessard MA, Gdoura A, Roger K, Mode N, Lipecka J, Yilmaz A, Bertocci B, Diana J, Saintpierre B, Guerrera IC, Scharfmann R, Francesconi S, Mauvais FX, van Endert P. Islet cell stress induced by insulin-degrading enzyme deficiency promotes regeneration and protection from autoimmune diabetes. iScience 2024; 27:109929. [PMID: 38799566 PMCID: PMC11126816 DOI: 10.1016/j.isci.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-βH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Masaya Oshima
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Anna Moser
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Marie-Andrée Bessard
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Abdelaziz Gdoura
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Kevin Roger
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Nina Mode
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Joanna Lipecka
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Ayse Yilmaz
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Barbara Bertocci
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Julien Diana
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Ida Chiara Guerrera
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Raphael Scharfmann
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Stefania Francesconi
- Genome Dynamics Unit, Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525, F-75015 Paris, France
| | - François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service de Physiologie – Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
27
|
Schonblum A, Ali Naser D, Ovadia S, Egbaria M, Puyesky S, Epshtein A, Wald T, Mercado-Medrez S, Ashery-Padan R, Landsman L. Beneficial islet inflammation in health depends on pericytic TLR/MyD88 signaling. J Clin Invest 2024; 134:e179335. [PMID: 38885342 PMCID: PMC11245159 DOI: 10.1172/jci179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
While inflammation is beneficial for insulin secretion during homeostasis, its transformation adversely affects β cells and contributes to diabetes. However, the regulation of islet inflammation for maintaining glucose homeostasis remains largely unknown. Here, we identified pericytes as pivotal regulators of islet immune and β cell function in health. Islets and pancreatic pericytes express various cytokines in healthy humans and mice. To interfere with the pericytic inflammatory response, we selectively inhibited the TLR/MyD88 pathway in these cells in transgenic mice. The loss of MyD88 impaired pericytic cytokine production. Furthermore, MyD88-deficient mice exhibited skewed islet inflammation with fewer cells, an impaired macrophage phenotype, and reduced IL-1β production. This aberrant pericyte-orchestrated islet inflammation was associated with β cell dedifferentiation and impaired glucose response. Additionally, we found that Cxcl1, a pericytic MyD88-dependent cytokine, promoted immune IL-1β production. Treatment with either Cxcl1 or IL-1β restored the mature β cell phenotype and glucose response in transgenic mice, suggesting a potential mechanism through which pericytes and immune cells regulate glucose homeostasis. Our study revealed pericyte-orchestrated islet inflammation as a crucial element in glucose regulation, implicating this process as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Anat Schonblum
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Dunia Ali Naser
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mohammed Egbaria
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shani Puyesky
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Alona Epshtein
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Tomer Wald
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Sophia Mercado-Medrez
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| |
Collapse
|
28
|
Han J, Chen Y, Xu X, Li Q, Xiang X, Shen J, Ma X. Development of Recombinant High-Density Lipoprotein Platform with Innate Adipose Tissue-Targeting Abilities for Regional Fat Reduction. ACS NANO 2024; 18:13635-13651. [PMID: 38753978 DOI: 10.1021/acsnano.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.
Collapse
Affiliation(s)
- Junhua Han
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yingxian Chen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolong Xu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Qingmeng Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xin Xiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, P. R. China
| |
Collapse
|
29
|
Zhang S, Zhu X, Chen Y, Wen Z, Shi P, Ni Q. The role and therapeutic potential of macrophages in the pathogenesis of diabetic cardiomyopathy. Front Immunol 2024; 15:1393392. [PMID: 38774880 PMCID: PMC11106398 DOI: 10.3389/fimmu.2024.1393392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yupeng Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhige Wen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiyu Shi
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Jiang Q, Zhao Q, Chen Y, Ma C, Peng X, Wu X, Liu X, Wang R, Hou S, Kong L, Wan Y, Wang S, Meng ZX, Cui B, Chen L, Li P. Galectin-3 impairs calcium transients and β-cell function. Nat Commun 2024; 15:3682. [PMID: 38693121 PMCID: PMC11063191 DOI: 10.1038/s41467-024-47959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
In diabetes, macrophages and inflammation are increased in the islets, along with β-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in β-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. β-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic β-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.
Collapse
Grants
- the National Natural Science Foundation China (82104263 to Q.J., 81622010 to P.L., 82104259 to Q.Z., and 82304591 to Y.W.), the National Key R&D Program of China (2017YFA0205400 to P.L.), the Chinese Academy of Medical Sciences (CAMS) Central Public-Interest Scientific Institution Basal Research Fund (2017RC31009 and 2018PT35004), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-026 to Q.J. and 2021-I2M-1-016), the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910023028 to P.L.), and the Special Research Fund for Central Universities, Peking Union Medical College (3332021041 to Q.Z., 3332022047 Y.W.)
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Xiaohong Peng
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xingfeng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Ruoran Wang
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Yanjun Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Zhuo-Xian Meng
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Liangyi Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China.
| |
Collapse
|
31
|
Grannes H, Ueland T, Simeone P, Liani R, Guagnano MT, Aukrust P, Michelsen AE, Birkeland K, di Castelnuovo A, Cipollone F, Consoli A, Halvorsen B, Gregersen I, Santilli F. Liraglutide and not lifestyle intervention reduces soluble CD163 after comparable weight loss in obese participants with prediabetes or type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:146. [PMID: 38685051 PMCID: PMC11059692 DOI: 10.1186/s12933-024-02237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The GLP-1 receptor agonist liraglutide is used to treat hyperglycemia in type 2 diabetes but is also known to induce weight loss, preserve the beta cell and reduce cardiovascular risk. The mechanisms underlying these effects are however still not completely known. Herein we explore the effect of liraglutide on markers of immune cell activity in a population of obese individuals with prediabetes or newly diagnosed type 2 diabetes mellitus. METHOD Plasma levels of the monocyte/macrophage markers, soluble (s)CD163 and sCD14, the neutrophil markers myeloperoxidase (MPO) and neutrophil gelatinase-associated lipocalin (NGAL),the T-cell markers sCD25 and T-cell immunoglobulin mucin domain-3 (sTIM-3) and the inflammatory marker TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) were measured by enzyme-linked immunosorbent assays in obese individuals with prediabetes or diabetes diagnosed within the last 12 months, prior to and after comparable weight loss achieved with lifestyle changes (n = 20) or liraglutide treatment (n = 20), and in healthy subjects (n = 13). RESULTS At baseline, plasma levels of the macrophage marker sCD163, and the inflammatory marker LIGHT were higher in cases as compared to controls. Plasma levels of sCD14, NGAL, sTIM-3 and sCD25 did not differ at baseline between patients and controls. After weight reduction following lifestyle intervention or liraglutide treatment, sCD163 decreased significantly in the liraglutide group vs. lifestyle (between-group difference p = 0.023, adjusted for visceral adipose tissue and triglycerides basal values). MPO and LIGHT decreased significantly only in the liraglutide group (between group difference not significant). Plasma levels of MPO and in particular sCD163 correlated with markers of metabolic dysfunction and inflammation. After weight loss, only sCD163 showed a trend for decreased levels during OGTT, both in the whole cohort as in those of liraglutide vs lifestyle group. CONCLUSION Weight loss following treatment with liraglutide was associated with reduced circulating levels of sCD163 when compared to the same extent of weight loss after lifestyle changes. This might contribute to reduced cardiometabolic risk in individuals receiving treatment with liraglutide.
Collapse
Affiliation(s)
- Helene Grannes
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Paola Simeone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Teresa Guagnano
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Annika E Michelsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kåre Birkeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Francesco Cipollone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Agostino Consoli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
| | - Francesca Santilli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
32
|
Zhang Y, Cong R, Lv T, Liu K, Chang X, Li Y, Han X, Zhu Y. Islet-resident macrophage-derived miR-155 promotes β cell decompensation via targeting PDX1. iScience 2024; 27:109540. [PMID: 38577099 PMCID: PMC10993184 DOI: 10.1016/j.isci.2024.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic inflammation is critical for the initiation and progression of type 2 diabetes mellitus via causing both insulin resistance and pancreatic β cell dysfunction. miR-155, highly expressed in macrophages, is a master regulator of chronic inflammation. Here we show that blocking a macrophage-derived exosomal miR-155 (MDE-miR-155) mitigates the insulin resistances and glucose intolerances in high-fat-diet (HFD) feeding and type-2 diabetic db/db mice. Lentivirus-based miR-155 sponge decreases the level of miR-155 in the pancreas and improves glucose-stimulated insulin secretion (GSIS) ability of β cells, thus leading to improvements of insulin sensitivities in the liver and adipose tissues. Mechanistically, miR-155 increases its expression in HFD and db/db islets and is released as exosomes by islet-resident macrophages under metabolic stressed conditions. MDE-miR-155 enters β cells and causes defects in GSIS function and insulin biosynthesis via the miR-155-PDX1 axis. Our findings offer a treatment strategy for inflammation-associated diabetes via targeting miR-155.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Rong Cong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Tingting Lv
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
33
|
Hopkins JW, Sulka KB, Sawden M, Carroll KA, Brown RD, Bunnell SC, Poltorak A, Tai A, Reed ER, Sharma S. STING promotes homeostatic maintenance of tissues and confers longevity with aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588107. [PMID: 38645182 PMCID: PMC11030237 DOI: 10.1101/2024.04.04.588107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Local immune processes within aging tissues are a significant driver of aging associated dysfunction, but tissue-autonomous pathways and cell types that modulate these responses remain poorly characterized. The cytosolic DNA sensing pathway, acting through cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING), is broadly expressed in tissues, and is poised to regulate local type I interferon (IFN-I)-dependent and independent inflammatory processes within tissues. Recent studies suggest that the cGAS/STING pathway may drive pathology in various in vitro and in vivo models of accelerated aging. To date, however, the role of the cGAS/STING pathway in physiological aging processes, in the absence of genetic drivers, has remained unexplored. This remains a relevant gap, as STING is ubiquitously expressed, implicated in multitudinous disorders, and loss of function polymorphisms of STING are highly prevalent in the human population (>50%). Here we reveal that, during physiological aging, STING-deficiency leads to a significant shortening of murine lifespan, increased pro-inflammatory serum cytokines and tissue infiltrates, as well as salient changes in histological composition and organization. We note that aging hearts, livers, and kidneys express distinct subsets of inflammatory, interferon-stimulated gene (ISG), and senescence genes, collectively comprising an immune fingerprint for each tissue. These distinctive patterns are largely imprinted by tissue-specific stromal and myeloid cells. Using cellular interaction network analyses, immunofluorescence, and histopathology data, we show that these immune fingerprints shape the tissue architecture and the landscape of cell-cell interactions in aging tissues. These age-associated immune fingerprints are grossly dysregulated with STING-deficiency, with key genes that define aging STING-sufficient tissues greatly diminished in the absence of STING. Changes in immune signatures are concomitant with a restructuring of the stromal and myeloid fractions, whereby cell:cell interactions are grossly altered and resulting in disorganization of tissue architecture in STING-deficient organs. This altered homeostasis in aging STING-deficient tissues is associated with a cross-tissue loss of homeostatic tissue-resident macrophage (TRM) populations in these tissues. Ex vivo analyses reveal that basal STING-signaling limits the susceptibility of TRMs to death-inducing stimuli and determines their in situ localization in tissue niches, thereby promoting tissue homeostasis. Collectively, these data upend the paradigm that cGAS/STING signaling is primarily pathological in aging and instead indicate that basal STING signaling sustains tissue function and supports organismal longevity. Critically, our study urges caution in the indiscriminate targeting of these pathways, which may result in unpredictable and pathological consequences for health during aging.
Collapse
Affiliation(s)
- Jacob W. Hopkins
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Katherine B. Sulka
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Machlan Sawden
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Kimberly A. Carroll
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Ronald D. Brown
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 12853
| | | | | | - Albert Tai
- Department of Immunology, Tufts University, Boston, MA 02111
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Eric R. Reed
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Shruti Sharma
- Department of Immunology, Tufts University, Boston, MA 02111
| |
Collapse
|
34
|
Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, Yu X, Su Z. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chin Med J (Engl) 2024; 137:791-805. [PMID: 38479993 PMCID: PMC10997226 DOI: 10.1097/cm9.0000000000003034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Pancreatic β-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing β-cells and hence restoring insulin production are gaining attention in translational diabetes research, and β-cell replenishment has been the main focus for diabetes treatment. Significant findings in β-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate β-cells. In this review, we summarize current knowledge on the mechanisms implicated in β-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to β-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting β-cell proliferation, inducing non-β-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for β-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous β-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.
Collapse
Affiliation(s)
- Daxin Cui
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingrong Feng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siman Lei
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Villaca CBP, Mastracci TL. Pancreatic Crosstalk in the Disease Setting: Understanding the Impact of Exocrine Disease on Endocrine Function. Compr Physiol 2024; 14:5371-5387. [PMID: 39109973 PMCID: PMC11425433 DOI: 10.1002/cphy.c230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.
Collapse
Affiliation(s)
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Zhao T, Tian Y, Zhao J, Sun D, Ma Y, Wang W, Yan W, Jiao P, Ma J. Loss of mitogen-activated protein kinase phosphate-5 aggravates islet dysfunction in mice with type 1 and type 2 diabetes. FASEB J 2024; 38:e23437. [PMID: 38305849 DOI: 10.1096/fj.202301479r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Impaired functionality and loss of islet β-cells are the primary abnormalities underlying the pathogenesis of both type 1 and 2 diabetes (T1DM and T2DM). However, specific therapeutic and preventive mechanisms underlying these conditions remain unclear. Mitogen-activated protein kinase phosphatase-5 (MKP-5) has been implicated in carcinogenesis, lipid metabolism regulation, and immune cell activation. In a previous study, we demonstrated the involvement of exogenous MKP-5 in the regulation of obesity-induced T2DM. However, the role of endogenous MKP-5 in the T1DM and T2DM processes is unclear. Thus, mice with MKP-5 knockout (KO) were generated and used to establish mouse models of both T1DM and T2DM. Our results showed that MKP-5 KO exacerbated diabetes-related symptoms in mice with both T1DM and T2DM. Given that most phenotypic studies on islet dysfunction have focused on mice with T2DM rather than T1DM, we specifically aimed to investigate the role of endoplasmic reticulum stress (ERS) and autophagy in T2DM KO islets. To accomplish this, we performed RNA sequence analysis to gain comprehensive insight into the molecular mechanisms associated with ERS and autophagy in T2DM KO islets. The results showed that the islets from mice with MKP-5 KO triggered 5' adenosine monophosphate-activated protein kinase (AMPK)-mediated autophagy inhibition and glucose-regulated protein 78 (GRP-78)-dominated ERS. Hence, we concluded that the autophagy impairment, resulting in islet dysfunction in mice with MKP-5 KO, is mediated through GRP-78 involvement. These findings provide valuable insights into the molecular pathogenesis of diabetes and highlight the significant role of MKP-5. Moreover, this knowledge holds promise for novel therapeutic strategies targeting MKP-5 for diabetes management.
Collapse
Affiliation(s)
- Tongjian Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianan Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yongjun Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weiqun Yan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
38
|
Ren W, Hua M, Cao F, Zeng W. The Sympathetic-Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306128. [PMID: 38039489 PMCID: PMC10885671 DOI: 10.1002/advs.202306128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Indexed: 12/03/2023]
Abstract
Sympathetic innervation plays a crucial role in maintaining energy balance and contributes to metabolic pathophysiology. Recent evidence has begun to uncover the innervation landscape of sympathetic projections and sheds light on their important functions in metabolic activities. Additionally, the immune system has long been studied for its essential roles in metabolic health and diseases. In this review, the aim is to provide an overview of the current research progress on the sympathetic regulation of key metabolic organs, including the pancreas, liver, intestine, and adipose tissues. In particular, efforts are made to highlight the critical roles of the peripheral nervous system and its potential interplay with immune components. Overall, it is hoped to underscore the importance of studying metabolic organs from a comprehensive and interconnected perspective, which will provide valuable insights into the complex mechanisms underlying metabolic regulation and may lead to novel therapeutic strategies for metabolic diseases.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Meng Hua
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Fang Cao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563000China
| | - Wenwen Zeng
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijing100084China
| |
Collapse
|
39
|
Hong Z, Chen S, Sun J, Cheng D, Guo H, Mei J, Zhang X, Maimaiti M, Hao H, Cao P, Hu H, Wang C. STING signaling in islet macrophages impairs insulin secretion in obesity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:345-359. [PMID: 37906411 DOI: 10.1007/s11427-022-2371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 11/02/2023]
Abstract
The innate immune regulator stimulator of interferon genes (STING) mediates self-DNA sensing and leads to the induction of type I interferons and inflammatory cytokines, which promotes the progression of various inflammatory and autoimmune diseases. Innate immune system plays a critical role in regulating obesity-induced islet dysfunction, whereas the potential effect of STING signaling is not fully understood. Here, we demonstrate that STING is mainly expressed and activated in islet macrophages upon high-fat diet (HFD) feeding. Sting-/- alleviates HFD-induced islet inflammation by inhibiting the expression of pro-inflammatory cytokines and the infiltration of macrophages. Mechanically, palmitic acid incubation promotes mitochondrial DNA leakage into the cytosol and subsequently activates STING pathway in macrophages. Additionally, STING activation in macrophages impairs glucose-stimulated insulin secretion by mediating the engulfment of β cell insulin secretory granules. Pharmacologically inhibiting STING activation enhances insulin secretion to control hyperglycemia. Together, our results reveal a regulatory mechanism in controlling the islet inflammation and insulin secretion in diet--induced obesity and suggest that selective blocking of the STING activation may be a promising strategy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Saihua Chen
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Sun
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Dan Cheng
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Hanli Guo
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahao Mei
- School of Life Sciences, Westlake University, Hangzhou, 310012, China
| | - Xiang Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Munire Maimaiti
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
40
|
Holendová B, Benáková Š, Křivonosková M, Pavluch V, Tauber J, Gabrielová E, Ježek P, Plecitá-Hlavatá L. NADPH oxidase 4 in mouse β cells participates in inflammation on chronic nutrient overload. Obesity (Silver Spring) 2024; 32:339-351. [PMID: 38086768 DOI: 10.1002/oby.23956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic β cells (βNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of β-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS The authors performed basic phenotyping of βNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1β immunochemistry, and real-time polymerase chain reaction during coculturing of β cells with macrophages. RESULTS The phenotype of βNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and β cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1β protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in βNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS Experimental evidence suggests that NOX4 pro-oxidant activity in β cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Štěpánka Benáková
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Křivonosková
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtěch Pavluch
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Gabrielová
- Department of Medical Chemistry and Biochemistry, Palacký University, Olomouc, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
41
|
Gallardo-Villanueva P, Fernández-Marcelo T, Villamayor L, Valverde AM, Ramos S, Fernández-Millán E, Martín MA. Synergistic Effect of a Flavonoid-Rich Cocoa-Carob Blend and Metformin in Preserving Pancreatic Beta Cells in Zucker Diabetic Fatty Rats. Nutrients 2024; 16:273. [PMID: 38257166 PMCID: PMC10821282 DOI: 10.3390/nu16020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The loss of functional beta-cell mass in diabetes is directly linked to the development of diabetic complications. Although dietary flavonoids have demonstrated antidiabetic properties, their potential effects on pancreatic beta-cell preservation and their synergistic benefits with antidiabetic drugs remain underexplored. We have developed a potential functional food enriched in flavonoids by combining cocoa powder and carob flour (CCB), which has shown antidiabetic effects. Here, we investigated the ability of the CCB, alone or in combination with metformin, to preserve pancreatic beta cells in an established diabetic context and their potential synergistic effect. Zucker diabetic fatty rats (ZDF) were fed a CCB-rich diet or a control diet, with or without metformin, for 12 weeks. Markers of pancreatic oxidative stress and inflammation, as well as relative beta-cell mass and beta-cell apoptosis, were analyzed. Results demonstrated that CCB feeding counteracted pancreatic oxidative stress by enhancing the antioxidant defense and reducing reactive oxygen species. Moreover, the CCB suppressed islet inflammation by preventing macrophage infiltration into islets and overproduction of pro-inflammatory cytokines, along with the inactivation of nuclear factor kappa B (NFκB). As a result, the CCB supplementation prevented beta-cell apoptosis and the loss of beta cells in ZDF diabetic animals. The observed additive effect when combining the CCB with metformin underscores its potential as an adjuvant therapy to delay the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Paula Gallardo-Villanueva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - Laura Villamayor
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIB-CSIC), 28029 Madrid, Spain
| | - Angela M. Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIB-CSIC), 28029 Madrid, Spain
| | - Sonia Ramos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - María Angeles Martín
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| |
Collapse
|
42
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
43
|
Babaeijandaghi F, Kajabadi N, Long R, Tung LW, Cheung CW, Ritso M, Chang CK, Cheng R, Huang T, Groppa E, Jiang JX, Rossi FMV. DPPIV + fibro-adipogenic progenitors form the niche of adult skeletal muscle self-renewing resident macrophages. Nat Commun 2023; 14:8273. [PMID: 38092736 PMCID: PMC10719395 DOI: 10.1038/s41467-023-43579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.
Collapse
Affiliation(s)
- Farshad Babaeijandaghi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
- Altos Labs Inc, San Diego, CA, USA.
| | - Nasim Kajabadi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Reece Long
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Lin Wei Tung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chun Wai Cheung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Morten Ritso
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chih-Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Ryan Cheng
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Tiffany Huang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, TX, USA
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
| |
Collapse
|
44
|
Linder T, Eppel D, Kotzaeridi G, Yerlikaya-Schatten G, Rosicky I, Morettini M, Tura A, Göbl CS. Glucometabolic Alterations in Pregnant Women with Overweight or Obesity but without Gestational Diabetes Mellitus: An Observational Study. Obes Facts 2023; 17:121-130. [PMID: 38061341 PMCID: PMC10987186 DOI: 10.1159/000535490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/19/2023] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Maternal overweight is a risk factor for gestational diabetes mellitus (GDM). However, emerging evidence suggests that an increased maternal body mass index (BMI) promotes the development of perinatal complications even in women who do not develop GDM. This study aims to assess physiological glucometabolic changes associated with increased BMI. METHODS Twenty-one women with overweight and 21 normal weight controls received a metabolic assessment at 13 weeks of gestation, including a 60-min frequently sampled intravenous glucose tolerance test. A further investigation was performed between 24 and 28 weeks in women who remained normal glucose tolerant. RESULTS At baseline, mothers with overweight showed impaired insulin action, whereby the calculated insulin sensitivity index (CSI) was lower as compared to normal weight controls (3.5 vs. 6.7 10-4 min-1 [microU/mL]-1, p = 0.025). After excluding women who developed GDM, mothers with overweight showed higher average glucose during the oral glucose tolerance test (OGTT) at the third trimester. Moreover, early pregnancy insulin resistance and secretion were associated with increased placental weight in normal glucose-tolerant women. CONCLUSION Mothers with overweight or obesity show an unfavorable metabolic environment already at the early stage of pregnancy, possibly associated with perinatal complications in women who remain normal glucose tolerant.
Collapse
Affiliation(s)
- Tina Linder
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Daniel Eppel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Grammata Kotzaeridi
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Ingo Rosicky
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica Delle Marche, Ancona, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| | - Christian S. Göbl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
45
|
Bosch AJT, Keller L, Steiger L, Rohm TV, Wiedemann SJ, Low AJY, Stawiski M, Rachid L, Roux J, Konrad D, Wueest S, Tugues S, Greter M, Böni-Schnetzler M, Meier DT, Cavelti-Weder C. CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice. Diabetologia 2023; 66:2292-2306. [PMID: 37792013 PMCID: PMC10627931 DOI: 10.1007/s00125-023-06007-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
AIMS/HYPOTHESIS Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1β+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1β as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1β prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION Macrophages and macrophage-derived factors, such as IL-1β, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Steiger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Andy J Y Low
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Daniel T Meier
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
46
|
Peng J, Yu L, Huang L, Paschoal VA, Chu H, de Souza CO, Varre JV, Oh DY, Kohler JJ, Xiao X, Xu L, Holland WL, Shaul PW, Mineo C. Hepatic sialic acid synthesis modulates glucose homeostasis in both liver and skeletal muscle. Mol Metab 2023; 78:101812. [PMID: 37777009 PMCID: PMC10583174 DOI: 10.1016/j.molmet.2023.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.
Collapse
Affiliation(s)
- Jun Peng
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Liming Yu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Vivian A Paschoal
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Haiyan Chu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Camila O de Souza
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Joseph V Varre
- Dept. of Nutrition & Integrative Physiology, University of Utah College of Health, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Da Young Oh
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jennifer J Kohler
- Dept. of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xue Xiao
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Lin Xu
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - William L Holland
- Dept. of Nutrition & Integrative Physiology, University of Utah College of Health, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA; Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
47
|
Khin PP, Lee JH, Jun HS. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Phyu Phyu Khin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Han Lee
- Department of Marine Bio-industry, Hanseo University, Seosan, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, 21, Namdong-daero 774, beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
48
|
Fujita M, Miyazawa T, Uchida K, Uchida N, Haji S, Yano S, Iwahashi N, Hatayama T, Katsuhara S, Nakamura S, Takeichi Y, Yokomoto-Umakoshi M, Miyachi Y, Sakamoto R, Iwakura Y, Ogawa Y. Dectin-2 Deficiency Promotes Proinflammatory Cytokine Release From Macrophages and Impairs Insulin Secretion. Endocrinology 2023; 165:bqad181. [PMID: 38038367 DOI: 10.1210/endocr/bqad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic islet inflammation plays a crucial role in the etiology of type 2 diabetes (T2D). Macrophages residing in pancreatic islets have emerged as key players in islet inflammation. Macrophages express a plethora of innate immune receptors that bind to environmental and metabolic cues and integrate these signals to trigger an inflammatory response that contributes to the development of islet inflammation. One such receptor, Dectin-2, has been identified within pancreatic islets; however, its role in glucose metabolism remains largely unknown. Here we have demonstrated that mice lacking Dectin-2 exhibit local inflammation within islets, along with impaired insulin secretion and β-cell dysfunction. Our findings indicate that these effects are mediated by proinflammatory cytokines, such as interleukin (IL)-1α and IL-6, which are secreted by macrophages that have acquired an inflammatory phenotype because of the loss of Dectin-2. This study provides novel insights into the mechanisms underlying the role of Dectin-2 in the development of islet inflammation.
Collapse
Affiliation(s)
- Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Miyazawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiichiro Uchida
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shojiro Haji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Seiichi Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomomi Hatayama
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shunsuke Katsuhara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yukina Takeichi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasutaka Miyachi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
49
|
Lee J, Jeon S, Lee M, Yoon M. Fenofibrate alleviates insulin resistance by reducing tissue inflammation in obese ovariectomized mice. Nutr Diabetes 2023; 13:19. [PMID: 37935669 PMCID: PMC10630285 DOI: 10.1038/s41387-023-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Fenofibrate is a hypolipidemic peroxisome proliferator-activated receptor α (PPARα) agonist used clinically to reduce hypercholesterolemia and hypertriglyceridemia. OBJECTIVE We investigated the effects of fenofibrate on insulin resistance and tissue inflammation in a high-fat diet (HFD)-fed ovariectomized (OVX) C57BL/6J mice, a mouse model of obese postmenopausal women. METHODS Female OVX mice were randomly divided into 3 groups and received a low-fat diet, an HFD, or an HFD supplemented with 0.05% (w/w) fenofibrate for 9 weeks. Parameters of insulin resistance and tissue inflammation were measured using blood analysis, histological analysis, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS When fenofibrate was administered to HFD-fed OVX mice for 9 weeks, we observed reductions in body weight gain, adipose tissue mass, and the size of visceral adipocytes without the change of food intake. Fenofibrate improved mild hyperglycemia, severe hyperinsulinemia, and glucose tolerance in these mice. It also reduced pancreatic islet size and insulin-positive β-cell area to levels similar to those in OVX mice fed a low-fat diet. Concomitantly, administration of fenofibrate not only suppressed pancreatic lipid accumulation but also decreased CD68-positive macrophages in both the pancreas and visceral adipose tissue. Treatment with fenofibrate reduced tumor necrosis factor α (TNFα) mRNA levels in adipose tissue and lowered serum TNFα levels. CONCLUSION These results suggest that fenofibrate treatment attenuates insulin resistance in part by reducing tissue inflammation and TNFα expression in HFD-fed OVX mice.
Collapse
Affiliation(s)
- Jungu Lee
- Department of Biological Sciences, Mokwon University, Daejeon, 35349, Korea
| | - Suyeon Jeon
- Department of Biological Sciences, Mokwon University, Daejeon, 35349, Korea
| | - Mijeong Lee
- Department of Biological Sciences, Mokwon University, Daejeon, 35349, Korea
| | - Michung Yoon
- Department of Biological Sciences, Mokwon University, Daejeon, 35349, Korea.
| |
Collapse
|
50
|
Fignani D, Pedace E, Licata G, Grieco GE, Aiello E, de Luca C, Marselli L, Marchetti P, Sebastiani G, Dotta F. Angiotensin I-converting enzyme type 2 expression is increased in pancreatic islets of type 2 diabetic donors. Diabetes Metab Res Rev 2023; 39:e3696. [PMID: 37466955 DOI: 10.1002/dmrr.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
AIMS Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.
Collapse
Affiliation(s)
- Daniela Fignani
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
| | - Erika Pedace
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
| | - Giada Licata
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
| | - Carmela de Luca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guido Sebastiani
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, C/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|