1
|
Zhao Y, Liu J, Hu L, Yao X, Tu R, Goto T, Zhang L, Wu X, Liu G, Dai H. Novel "hot spring"-mimetic scaffolds for sequential neurovascular network reconstruction and osteoporosis reversion. Biomaterials 2025; 320:123191. [PMID: 40056610 DOI: 10.1016/j.biomaterials.2025.123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Neurovascular network damage and excessive hydrogen peroxide (H2O2) accumulation are the main obstacles for osteoporotic bone defect repair. It is extremely essential to endow the implants with sequential neuroangiogenesis promotion and osteoporosis pathological microenvironment improvement. Hot springs exhibits excellent facilitation on angiogenesis and bone regeneration due to abundant minerals, trace elements and modest thermal stimulation. Inspired by the hot spring effect, we propose a novel porous photothermal calcium magnesium phosphate bone cement (MCPC) compounded with manganese-substituted Fe3O4 (MnxFe3-xO4), which is perfused by temperature-responsive PLGA hydrogel loaded with vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). At the initial stage of implantation, MnxFe3-xO4 scavenges excessive H2O2 under the heat stimulation triggered by near-infrared (NIR) light, and the factors are released from the hydrogel that stimulate the impaired neurovascular network reconstruction; at the later stage, the continuous hot spring effect maintains mild thermal stimulation and sustained release of bioactive ions (Ca2+, Mn2+, Mg2+ and PO43-), which inhibits osteoclast function and activity, and promotes osteogenic differentiation and mineralization. The osteoporotic bone defect model in ovariectomized (OVX) rats further verifies that a synergy effect of photothermal therapy and bioactive factors/ions significantly promotes neurovascular bone regeneration. It demonstrates that the hot spring mimetic effect possesses huge potential for the sequential treatment of osteoporosis bone defect.
Collapse
Affiliation(s)
- Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaokang Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Takashi Goto
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China; National energy key laboratory for new hydrogen-ammonia energy technologies,Foshan Xianhu Laboratory, Foshan 528200, China.
| |
Collapse
|
2
|
PiyadehKouhsar M, Ghoorchi T, Toghdory A, HosseinAbadi M, Bokharaeian M. Effects of Different Levels of Dietary Curcumin Nano-Micelles on Nutrient Digestibility, Skeletal Growth Indices, and Faecal Consistency of Suckling Simmental Calves Under Heat Stress Conditions. Vet Med Sci 2025; 11:e70454. [PMID: 40515673 PMCID: PMC12166549 DOI: 10.1002/vms3.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/19/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
This study evaluated the effects of dietary curcumin nano-micelles (CNM) on growth performance, nutrient digestibility, skeletal development, and faecal consistency in heat-stressed suckling Simmental calves. Thirty-two male calves (10 days old; 43.7 ± 2.5 kg) were randomly assigned to one of four dietary treatments: CTRL (control), T20, T40, and T80, corresponding to 0, 20, 40, and 80 mg of CNM per calf per day, with eight replicates per group. The trial lasted 45 days, including a 7-day adaptation period. CNM supplementation significantly improved growth performance, with average daily gain (ADG) increasing in T40 and T80 groups (0.31 kg/day) compared to CTRL (0.29 kg/day; p = 0.029). Dry matter intake (DMI) was higher in T80 (1.58 kg/day) than CTRL (1.47 kg/day; p = 0.003), while feed conversion ratio was unaffected. Nutrient digestibility was generally unchanged, except for neutral detergent fibre (NDF) digestibility, which showed a quadratic response (p = 0.010), with the lowest value observed in T40 (22.33%). CNM significantly enhanced skeletal growth: body length (p = 0.041), hip height (p < 0.001), heart girth (p = 0.005), abdominal girth (p = 0.025), ankle circumference (p = 0.006), pin bone width (p < 0.001), hip width (p = 0.031), and body depth (p = 0.012) increased notably in T40 and T80 groups over time. Faecal consistency remained stable (p = 0.964), indicating no negative effects on intestinal health over time. These findings demonstrate that CNM supplementation can improve feed intake and promote skeletal development in heat-stressed calves, potentially enhancing resilience under thermal stress. Further research is warranted to optimise CNM dosing for sustainable ruminant production.
Collapse
Affiliation(s)
- Mehdi PiyadehKouhsar
- Department of Animal and Poultry NutritionAnimal Science FacultyGorgan University of AgriculturalScience and Natural ResourcesGorganIran
| | - Taghi Ghoorchi
- Department of Animal and Poultry NutritionAnimal Science FacultyGorgan University of AgriculturalScience and Natural ResourcesGorganIran
| | - Abdolhakim Toghdory
- Department of Animal and Poultry NutritionAnimal Science FacultyGorgan University of AgriculturalScience and Natural ResourcesGorganIran
| | - Mostafa HosseinAbadi
- Department of Animal and Poultry NutritionAnimal Science FacultyGorgan University of AgriculturalScience and Natural ResourcesGorganIran
| | - Mostafa Bokharaeian
- Department of Animal and Poultry NutritionAnimal Science FacultyGorgan University of AgriculturalScience and Natural ResourcesGorganIran
| |
Collapse
|
3
|
Li Z, Yu Q, Cui X, Wang Y, Xu R, Lu R, Chen J, Zhou X, Zhang C, Li L, Xu W. Exosomes from young plasma stimulate the osteogenic differentiation and prevent osteoporosis via miR-142-5p. Bioact Mater 2025; 49:502-514. [PMID: 40206195 PMCID: PMC11979483 DOI: 10.1016/j.bioactmat.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Osteoporosis (OP) is a multifactorial metabolic bone disorder commonly observed in the elderly, particularly prevalent in postmenopausal women. However, many conventional anti-osteoporosis drugs have undesirable side effects, limiting their long-term use. Here, we demonstrated that exosomes derived from both young and old healthy human plasma, which exhibited similar morphology, could significantly enhance the proliferation and migration of mesenchymal stem cells (MSCs). Furthermore, treatment with these exosomes increased alkaline phosphatase (ALP) activity, enhanced the mineralization of MSCs, and decreased the number of osteoclasts in vitro. When intravenously injected into rats, these exosomes accumulated in bone tissue. In vivo experiments demonstrated that both types of exosomes had a beneficial effect on osteoporosis by facilitating bone formation and suppressing osteoclast differentiation in an ovariectomized (OVX)-induced osteoporotic rat model. Strikingly, exosomes derived from young healthy human plasma exhibited stronger anti-osteoporosis effect. The miRNA sequencing analysis showed that miR-142-5p expression was significantly higher in the exosomes from young healthy adult plasma compared to in exosomes from older controls. Importantly, miR-142-5p overexpression exerted similar pro-osteogenic effects to those of exosomes from young healthy human plasma, while miR-142-5p downregulation had the opposite effect on osteogenic differentiation of MSCs. The anti-osteoporosis effect of exosomes from young healthy adult plasma were reversed upon miR-142-5p inhibition. In addition, ZFPM2 was a potential target of miR-142-5p involved in osteoporosis. Therefore, our study reveals the potential anti-osteoporosis effects of plasma exosomes and their underlying mechanisms, thereby providing an effective therapeutic strategy for clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Qifeng Yu
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Xiang Cui
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yi Wang
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Ruijun Xu
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaohan Zhou
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Wei Xu
- Department of Orthopedic, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Orthopedic, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| |
Collapse
|
4
|
Huang M, Huang M, Liu L, Yang F, He C, Sun YC, Jiao YR, Tang X, Hou J, Chen KX, He WZ, Wei J, Chen HL, Li X, Zeng C, Lei GH, Li CJ. Gut Microbiota Modulates Obesity-Associated Skeletal Deterioration Through Macrophage Aging and Grancalcin Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502634. [PMID: 40349163 DOI: 10.1002/advs.202502634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/08/2025] [Indexed: 05/14/2025]
Abstract
Obesity is associated with skeletal deterioration and increased fracture risk, but the underlying mechanism is unclear. Herein, it is shown that obese gut microbiota promotes skeletal deterioration by inducing bone marrow macrophages (BMMs) senescence and grancalcin (GCA) secretion. Obese mice and those receiving obese fecal microbiota transplants exhibit increased senescent macrophages and elevated GCA expression in the bone marrow. In a study of 40 participants, it is found that obese patients are associated with higher serum GCA levels. It is further revealed that obese gut-microbiota derived lipopolysaccharides (LPS) stimulate GCA expression in senescent BMMs via activating Toll-like receptor 4 pathway. Mice with depletion of the Gca gene are resistant to the negative effects of obesity and LPS on bone. Moreover, neutralizing antibody against GCA mitigates skeletal deterioration in obese mice and LPS-induced chronic inflammation mouse model. The data suggest that the interaction between gut microbiota and the immune system contributes to obesity-associated skeletal deterioration, and targeting senescent macrophages and GCA shows potential of protecting skeletal health in obese population.
Collapse
Affiliation(s)
- Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fang Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu-Chen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wen-Zhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hui-Ling Chen
- Department of Endocrine Subspecialty of Gerontology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xia Li
- Department of General Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Chao Zeng
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guang-Hua Lei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- FuRong Laboratory, Changsha, 410008, China
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
5
|
Chen L, Lu L, Fan C, Zhu X, Pan L, Tang S, Wang Y, Peng Y, You L. Autophagy-induced osteoblast-derived exosomes maintain bone formation and prevent osteoporosis by remodeling gut microbiota-metabolism. Biomed J 2025:100870. [PMID: 40339904 DOI: 10.1016/j.bj.2025.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/06/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Osteoporosis is a chronic disease of bone metabolism with high incidence rates. Recently, exosome therapy has emerged as a promising avenue for the treatment of osteoporosis. However, the role of autophagy-induced osteoblast-derived exosomes (Auto-exo) in osteoporosis has yet to be elucidated. METHODS The effect of Auto-exo in bone formation was assessed in vivo. The composition of gut microbiota was determined through 16S rDNA sequencing, and metabolite profiles were analyzed using liquid chromatography-mass spectrometry (LC-MS). Cell experiments were conducted to explore the role of bilirubin in bone formation. RESULTS Auto-exo were successfully isolated and identified. Auto-exo promoted bone formation and alleviated osteoporosis progression in a mouse model of osteoporosis. 16S rDNA sequencing revealed that Auto-exo changed diversity and composition of gut microbiota in osteoporotic mice, with a notable increase in Lactobacillus and a decrease in Dubosiella and Faecalibaculum. LC-MS analysis indicated that Auto-exo treatment reduced the elevated levels of bilirubin in osteoporotic mice. Cell experiments uncovered that bilirubin remarkably inhibited osteoblast differentiation. Furthermore, Auto-exo promoted osteoblast differentiation via inhibiting bilirubin production. CONCLUSIONS Our findings demonstrated that Auto-exo promoted bone formation by modulating the gut microbiota-metabolites bilirubin axis, thereby alleviating osteoporosis progression. This discovery provides a novel perspective on the mechanisms underlying the therapeutic effects of Auto-exo in osteoporosis.
Collapse
Affiliation(s)
- Lin Chen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liesheng Lu
- Department of Endocrinology, Shanghai Tenth People`s Hospital, Tongji University, Shanghai, 200072, China
| | - Chunyi Fan
- General Department of Community Health Service Center, Guangzhong Road, Hongkou District, Shanghai, 200083, China
| | - Xiaonan Zhu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ling Pan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shanshan Tang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Li You
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
6
|
Ma P, Wang R, Chen H, Zheng J, Yang W, Meng B, Liu Y, Lu Y, Zhao J, Gao H. Fecal microbiota transplantation alleviates lipopolysaccharide-induced osteoporosis by modulating gut microbiota and long non-coding RNA TUG1 expression. Front Cell Infect Microbiol 2025; 15:1535666. [PMID: 40292220 PMCID: PMC12021831 DOI: 10.3389/fcimb.2025.1535666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose To study whether fecal microbiota transplantation (FMT) can alleviate lipopolysaccharide (LPS)-induced osteoporosis (OP) by regulating the composition and abundance of gut microbiota and the expression level of long non-coding RNA (lncRNA) TUG1. Methods Twenty C57BL/6 mice were selected. Two mice were randomly designated as fecal donors, while the remaining mice were randomly divided into control group, LPS group, and LPS + FMT group. Each group consisted of 6 mice. The mice in the LPS and LPS + FMT groups were intraperitoneally injected with LPS to establish the OP model, and the mice in the LPS + FMT group were treated with donor feces by gavage. Micro-CT was used to scan the femur specimens of mice, and the bone structural parameters of the control and LPS groups were compared to verify the effectiveness of the OP model. HE staining was used to compare the microstructure of femurs in the 3 groups. 16S rRNA gene sequencing was used to analyze the composition and abundance of gut microbiota in mice. Immunofluorescence staining was used to compare the expression levels of Runt-related transcription factor 2 (RUNX2) in the femur of the 3 groups. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to compare the expression levels of lncRNA TUG1 in the intestines and serum of mice in the 3 groups. Results Micro-CT showed that compared with the control group, the mice in the LPS group had more bone loss. The bone mineral density, trabecular number, and trabecular thickness of the control group was higher, and the trabecular separation was smaller. The models were validated effectively. HE staining showed that compared with the control group, the bone trabeculae in the LPS group were thinner and sparse, while that in the LPS + FMT group were dense and clear. The 16s rRNA sequencing showed that the abundance of Bacteroides and Lactobacillus in LPS+FMT group was significantly higher than that in LPS group. Immunofluorescence staining showed that the RUNX2 level in the control group and LPS + FMT group was similar, and both were higher than that in the LPS group. The qRT-PCR results showed that the TUG1 mRNA level in the control group and LPS + FMT group was similar and significantly higher than that in the LPS group. Conclusion FMT can enhance osteoblast levels and improve bone structure by modulating the abundance of gut microbiota in OP mice (such as increasing Bacteroides and Lactobacillus populations) and promoting the expression of lncRNA TUG1, thereby alleviating LPS-induced OP.
Collapse
Affiliation(s)
- Pengcheng Ma
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Ruoyi Wang
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Huizhi Chen
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Jiachun Zheng
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Weijie Yang
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Bo Meng
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Yifan Liu
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongwei Gao
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
- School of Mechanical Engineering, Shandong University, Jinan, China
| |
Collapse
|
7
|
Zhao Z, Deng Y, Li L, Zhu L, Wang X, Sun H, Li X, Han X, Li J. Enhancing Akkermansia growth via phytohormones: a strategy to modulate the gut-bone axis in postmenopausal osteoporosis therapy. J Transl Med 2025; 23:410. [PMID: 40205438 PMCID: PMC11984252 DOI: 10.1186/s12967-025-06426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Phytohormones have garnered considerable interest as potential modulators of the gut-bone axis. Denosumab (Deno), a widely utilized therapeutic agent for postmenopausal osteoporosis, has not been previously investigated for its effects on gut health. The objective of this study was to assess the efficacy of isoflavones (SI), naringin (Nar), and Deno in the management of postmenopausal osteoporosis by targeting the gut-bone axis. METHODS The postmenopausal osteoporosis model in mice was established via bilateral oophorectomy. Subsequently, mice in the Deno group received subcutaneous injections of Deno at a dosage of 10 mg/kg, administered twice weekly. In contrast, mice in the SI and Nar groups were subjected to oral gavage with 200 mg/kg/day of SI and Nar, respectively. The treatment period for all groups lasted for 8 weeks. Upon the conclusion of the experiment, a thorough evaluation of the effects of SI, Nar, and Deno on bone and gut health in mice was conducted through immunological, pathological, imaging, and multi-omics methodologies. RESULTS Deno, SI, and Nar significantly alleviated the physical symptoms in postmenopausal mice. However, only SI and Nar significantly modulated the gut microbiota. Akkermansia was significantly enriched after the gavage of SI and Nar. Akkermansia has the capacity to not only augment bone mass and alleviate strength deterioration via extracellular vesicles, but it also influences bone metabolism by diminishing inflammation and modulating lipid metabolism. Notably, no significant changes in the gut microbiota were observed in the Deno group, which may be attributed to the differences in the method of administration, as Deno was administered via subcutaneous injection rather than gavage. CONCLUSION SI and Nar may influence the gut-bone axis through Akkermansia and have the potential of alternative treatment options for postmenopausal osteoporosis. Although the gut microbiota is not significantly affected by the subcutaneous administration of Deno, the long-term management of postmenopausal osteoporosis and the exploration of various management models warrant additional scrutiny. Furthermore, this study has yet to establish a dose-response relationship, indicating that further research is essential to clarify the regulatory effects of varying doses of SI and Nar on postmenopausal osteoporosis especially the modulation of gut microbiota.
Collapse
Affiliation(s)
- Zhiqi Zhao
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Yixuan Deng
- School of Medicine, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Li Li
- Clinical Medical College, Hangzhou Normal University, Hangzhou, 30021, China
| | - Liying Zhu
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin Wang
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoqiong Li
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Jinjun Li
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Li S, Zhang Y, Ding S, Chang J, Liu G, Hu S. Curcumin Ameliorated Glucocorticoid-Induced Osteoporosis While Modulating the Gut Microbiota and Serum Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8254-8276. [PMID: 40139762 DOI: 10.1021/acs.jafc.4c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of secondary osteoporosis. Recently, the "bone-gut axis" theory has linked bone development with gut microbial diversity, community composition, and metabolites. Curcumin, a well-studied polyphenol, shows potential in mitigating bone loss and osteoporosis. Alendronate, a standard therapeutic agent for osteoporosis, serves as a positive control in this investigation. The study demonstrates the potency of curcumin in reducing bone loss and restoring bone mineral density, enhancing trabecular parameters notably through increased trabecular number, volume, and thickness and reduced bone marrow cavity size. Gut microbiome sequencing revealed that both curcumin and alendronate treatments similarly enhanced gut microbial diversity and altered microbiota composition, increasing beneficial bacteria (Akkermansia_muciniphila, Dubosiella_sp910585105, and Ruminococcus_sp910584195) while reducing harmful bacteria (Treponema_D_sp910584475 and Duncaniella_sp910584825). Furthermore, significant changes in serum levels of metabolites including raffinose, ursolic acid, spermidine, inosine, hypoxanthine, thiamine, and pantothenic acid were observed post-treatment with curcumin or alendronate. Importantly, these beneficial metabolites and microorganisms were negatively correlated with inflammatory cytokines. In conclusion, curcumin holds promise for use against GIOP by modulating the gut microbiome and serum metabolome as well as reducing systemic inflammation.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yating Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiang Chang
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Siwang Hu
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
9
|
Yin J, Guan Q, Chen M, Cao Y, Zou J, Zhang L. Effects of Thermal Environment on Bone Microenvironment: A Narrative Review. Int J Mol Sci 2025; 26:3501. [PMID: 40332035 PMCID: PMC12027220 DOI: 10.3390/ijms26083501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 05/08/2025] Open
Abstract
Research findings reveal that thermal environments precisely regulate the skeletal system through a triple regulation of "structural morphology-cellular dynamics-molecular mechanisms": At the tissue morphology level, moderate heat exposure can promote increased bone density and longitudinal growth, as well as improved fracture load and yield point, but may negatively affect geometric shape and cortical bone thickness. Continuous high-temperature exposure harms bone structure, manifested as changes in biomechanical characteristics such as decreased toughness and rigidity. At the cellular level, thermal environments directly affect the proliferation/apoptosis balance of osteoblasts and osteoclasts, and by regulating osteocyte network activity and bone marrow mesenchymal stem cell fate decisions, these four cell populations form temperature-dependent metabolic regulatory circuits. At the molecular dimension, heat stress can activate the release of neural factors such as CGRP and NPY, which possess dual regulatory functions promoting both bone formation and resorption; simultaneously achieving coordinated regulation of angiogenesis and fat inhibition through VEGF and TGFβ. The thermal environment-bone regulatory mechanisms revealed in this study have important translational value: they not only provide theoretical basis for biomechanical protection strategies for high-temperature workers and athletes, but also offer innovative entry points for analyzing the pathological mechanisms of heat stroke secondary bone injury and osteoporosis through heat stress-related signaling pathways, while establishing a theoretical foundation for the development of temperature-responsive functionalized biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Jiahao Yin
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China; (J.Y.); (M.C.); (Y.C.)
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Q.G.); (J.Z.)
| | - Minyou Chen
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China; (J.Y.); (M.C.); (Y.C.)
| | - Yanting Cao
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China; (J.Y.); (M.C.); (Y.C.)
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Q.G.); (J.Z.)
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China; (J.Y.); (M.C.); (Y.C.)
| |
Collapse
|
10
|
Lyu Y, Hu J, Wang X, Zhang J, Li X, Cui M, Tang X, Zhou P. Lactopontin regulates gut microbiota and calcium absorption to promote bone growth in growing rats. Int J Biol Macromol 2025; 302:140557. [PMID: 39894097 DOI: 10.1016/j.ijbiomac.2025.140557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Lactopontin (LPN) is an important milk protein with the potential to improve bone health, however, the specific effects have not been determined. This study investigates the effects of LPN on early bone growth and development. 3-week-old SD rats (n = 16) were assigned to the control group and LPN group, receiving intragastric administration of deionized water and 15 mg/kg LPN for 30 days respectively. LPN supplementation increased body length, femur length and femur strength, improved femoral bone volume and microarchitecture, and upregulated the expression of osteoblast activity related mRNA (Bmp2, Smad8, Wnt10b and β-catenin) in the femur. The abundance of Parabacteroides in feces and the content of glycochenodeoxycholic acid (GCDCA) in serum were significantly elevated following LPN intervention. Additionally, the bile acid receptor TGR5 in the femur was activated in the LPN group, suggesting that LPN may regulate bone health via the microbiota-metabolites-bone axis. Furthermore, LPN promoted calcium absorption through transcellular and cellular bypass pathways, resulting in a significant increase in serum calcium content. These results indicate that LPN has potential application value in regulating bone metabolism during growth.
Collapse
Affiliation(s)
- Yipin Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianqiang Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyan Wang
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengjun Cui
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Fu J, Liang Z, Chen Z, Zhou Y, Xiong F, Liang Q, Gao H. Deciphering the Therapeutic Efficacy and Underlying Mechanisms of Dendrobium officinale Polysaccharides in the Intervention of Alzheimer's Disease Mice: Insights from Metabolomics and Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5635-5648. [PMID: 39536176 DOI: 10.1021/acs.jafc.4c07913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As a traditional drug-food homologous plant, Dendrobium officinale is widely recognized for its nutritional and medicinal value. Specifically, D. officinale polysaccharide (DOP) has garnered attention as a potential prebiotic for its protective effects on gut microbiota and the nervous system. However, the underlying mechanism by which DOP improves cognitive dysfunction in Alzheimer's disease (AD) remains unclear. This study intends to elucidate the beneficial effects of DOP on AD mice from the perspectives of metabolomics and the intestinal microbiome. The results showed that DOP significantly ameliorated cognitive dysfunction, attenuated hippocampal neuronal damage and Aβ plaque deposition, and restored intestinal barrier integrity in AD mice. The antibiotic-cocktail-induced germ-free mouse model confirmed that the neuroprotective effect of DOP was dependent on gut microbiota. Further investigations demonstrated that DOP influenced the composition of gut microbiota and restored its diversity. Additionally, DOP reshaped metabolic profile disorders in AD mice and increased the short-chain fatty acids (SCFAs) content. Correlation analysis further highlighted that specific gut microbiota was associated with the metabolism of AD mice. In conclusion, this study sheds light on the positive impact of DOP in reshaping the gut microbiota and enhancing cognitive function, offering important perspectives for the possible advancement and utilization of DOP.
Collapse
Affiliation(s)
- Jun Fu
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhaohan Liang
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Zihao Chen
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Yiyang Zhou
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Fen Xiong
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Liang
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
12
|
Zhang J, Li S, Cheng X, Tan X, Shi Y, Su G, Huang Y, Zhang Y, Xue R, Li J, Fan Q, Dong H, Deng Y, Zhang Y. Graphene-Based Far-Infrared Therapy Promotes Adipose Tissue Thermogenesis and UCP1 Activation to Combat Obesity in Mice. Int J Mol Sci 2025; 26:2225. [PMID: 40076847 PMCID: PMC11900916 DOI: 10.3390/ijms26052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Hyperthermia (HT) has broad potential for disease treatment and health maintenance. Previous studies have shown that far-infrared rays (FIRs) at 8-10 μm can potentially reduce inflammation, oxidative stress, and gut microbiota imbalance. However, the effects of FIR HT on energy metabolism require further investigation. To investigate the effects of graphene-FIR HT therapy on diet-induced obesity and their regulatory mechanisms in energy metabolism disorders. After 8 weeks of hyperthermia, mice fed standard chow or a high-fat diet (HFD) underwent body composition analysis. Energy expenditure was measured using metabolic cages. The protein changes in adipose tissue were detected by molecular technology. Graphene-FIR therapy effectively mitigated body fat accumulation, improved dyslipidemia, and impaired liver function while enhancing insulin sensitivity. Furthermore, graphene-FIR therapy increased VO2, VCO2, and EE levels in HFD mice to exhibit enhanced metabolic activity. The therapy activated the AMPK/PGC-1α/SIRT1 pathway in adipose tissue, increasing the expression of uncoupling protein 1 (UCP1) and glucose transporter protein four (GLUT4), activating the thermogenic program in adipose tissue, and improving energy metabolism disorder in HFD mice. In short, graphene-FIR therapy represents a comprehensive approach to improving the metabolic health of HFD mice.
Collapse
Affiliation(s)
- Jinshui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Xin Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Xiaocui Tan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yingxian Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Guixin Su
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yulong Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Jingcao Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Qiongyin Fan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Huajin Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yun Deng
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| |
Collapse
|
13
|
Zhu K, Liu W, Peng Y, Wang X, Wang Z, Zheng J, Deng G, Wang Q. Study on the mechanism of Shuanghe decoction against steroid-induced osteonecrosis of the femoral head: insights from network pharmacology, metabolomics, and gut microbiota. J Orthop Surg Res 2025; 20:202. [PMID: 40001178 PMCID: PMC11863617 DOI: 10.1186/s13018-025-05619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a challenging and debilitating orthopedic condition with a rising incidence in recent years. Shuanghe Decoction (SHD), a traditional Chinese medicine formula, has shown significant efficacy in treating SONFH, though its underlying mechanisms remain unclear. PURPOSE This study aims to elucidate the therapeutic effects and potential mechanisms of SHD on SONFH through in vivo experiments, combined with network pharmacology, metabolomics, and gut microbiota analysis. MATERIALS AND METHODS Forty male Sprague-Dawley rats (300 ± 20 g) were randomly assigned to four groups: Control, Model, SHD-L, and SHD-H, with 10 rats each. SONFH was induced in all groups except the Control group using lipopolysaccharide and methylprednisolone. The SHD-L and SHD-H groups were treated with Shuanghe decoction at doses of 4.86 g/kg/day and 9.72 g/kg/day, respectively, for eight weeks. Bone morphology, pathological changes, and osteogenic factors were evaluated using Micro-CT, histological staining, and immunohistochemistry. Network pharmacology, metabolomics, and gut microbiota analyses were conducted to explore SHD's mechanisms. RESULTS SHD improved bone morphology and increased osteogenic factor expression (RUNX2, OCN, COL-I). Network pharmacology indicated that metabolic pathways play a key role in SHD's therapeutic effects. Metabolomic analysis identified 14 differential metabolites, including 21-hydroxypregnenolone and tyramine, which were restored to normal levels by SHD. Gut microbiota analysis revealed that SHD modulated bacterial abundance, particularly Verrucomicrobia, Allobaculum, and Burkholderiales. A comprehensive network identified two key metabolites (tyramine, 21-hydroxypregnenolone), seven targets (CYP19A1, CYP1A2, CYP1B1, CYP2C9, CYP3A4, MIF, and HSD11B1), two metabolic pathways (tyrosine metabolism, steroid hormone biosynthesis), and four bacterial taxa (Jeotgalicoccus, Clostridium, Corynebacterium, rc4-4) as central to SHD against SONFH. CONCLUSION SHD alleviates SONFH by reshaping gut microbiota, reversing metabolic imbalances, and enhancing osteogenesis. Our findings provide novel insights into the pharmacological mechanisms of SHD, laying a foundation for its clinical application in treating SONFH.
Collapse
Affiliation(s)
- Kai Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Wanxin Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Yuanyuan Peng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Xiaoqiang Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Zhenhao Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Jun Zheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China.
| | - Guoying Deng
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, P.R. China.
| | - Qiugen Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China.
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, P.R. China.
| |
Collapse
|
14
|
Cressman A, Fierro FA. Methods to study polyamine metabolism during osteogenesis. Methods Enzymol 2025; 715:293-307. [PMID: 40382144 DOI: 10.1016/bs.mie.2025.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Mammalian polyamines, namely putrescine, spermidine, and spermine, have been implicated in many cellular homeostatic processes. Polyamines play a critical role in skeletal health as evidenced by recent studies and by skeletal disorders caused by polyamine imbalances, such as Snyder-Robinson Syndrome (SRS). However, very little is still known about the role of polyamines within bone development, homeostasis, and metabolism. Human bone marrow derived mesenchymal stromal cells (MSCs) provide a unique opportunity to study polyamines at a cellular and molecular level within the context of osteogenic differentiation and calcium deposition. Through in vitro work, mechanistic understanding of the role of polyamines within osteogenesis as well as the consequences of polyamine imbalance can provide new insights into potential therapeutics for those experiencing polyaminopathies. This chapter describes procedures to develop a human primary cell culture system and quantify osteoblastogenesis as a function of polyamine modulation.
Collapse
Affiliation(s)
- Amin Cressman
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, United States
| | - Fernando A Fierro
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, United States; Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, United States.
| |
Collapse
|
15
|
Li Q, Wu X, Niu X, Yu Z, Fang S, Chu X, Zhu J, Song Q, Hou C, Wei X. Integrated metagenomic and metabolomic analyses of the effects of total flavonoids of Rhizoma Drynariae on reducing ovariectomized-induced osteoporosis by regulating gut microbiota and related metabolites. PLoS One 2025; 20:e0317832. [PMID: 39951448 PMCID: PMC11828363 DOI: 10.1371/journal.pone.0317832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
TFRD has been widely used in China to treat osteoporosis (OP). However, the specific molecular mechanism of TFRD against OP has not been fully clarified. Our previous studies have also proved that TFRD could attenuate OP and the clinical equivalent dose of 67.5mg/kg/d is the effective dose for TFRD treating OP. Therefore, this study used 67.5mg/kg as the dosage of TFRD in combination with multi omics to investigate the mechanism of action of TFRD in the treatment of OP. The aim of this study was to further elucidate molecular mechanism of TFRD for treating OP based on metagenomic and metabolomic analyses. In this study, hematoxylin-eosin (H&E) staining, micro computed tomography (micro-CT) and bone mineral density (BMD) analysis were used to observe pharmacological effects of TFRD against ovariectomized (OVX)-induced OP. Subsequently, multiomics analysis including metagenomics, untargeted and short chain fatty acids (SCFAs) metabolomics were carried out to identify whether the anti-osteoporosis mechanism of TFRD correlated with gut microbiota and related metabolites. Our results indicate that TFRD could improve the microstructure and density of trabecular bone in OVX rats. 17 differential species, which mainly from Akkermansia, Bacteroides, and Phascolarctobacterium genus, 14 related differential metabolites and acetic acid in SCFAs were significantly altered by OVX and reversed by TFRD. Furthermore, according to results of untargeted metabolomics analysis, it was found that several metabolic pathways such as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and so on might play an important role in TFRD against OP. In order to further study the relationship between gut microbiota and related metabolites, spearman correlation analysis was used, and showed that gut microbiota such as Akkermansia muciniphila might be closely related to several metabolites and metabolic pathways. These findings suggest that TFRD treatment could reduce the effects of OVX-induced OP by altering community composition and abundance of gut microbiota, regulating metabolites and SCFAs. It was speculated that the gut microbiota especially Akkermansia muciniphila and related metabolites might play an important role in TFRD against OP, and deserve further study by follow-up experiment. This conclusion provides new theoretical support for mechanism research of TFRD against OP.
Collapse
Affiliation(s)
- Qiuyue Li
- Pharmacological Laboratory of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelin Wu
- Pharmacological Laboratory of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyu Niu
- Pharmacological Laboratory of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhangjingze Yu
- Pharmacological Laboratory of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Fang
- Department of Education, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Chu
- Department of Education, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Zhu
- Pharmacological Laboratory of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghui Song
- Pharmacological Laboratory of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengzhi Hou
- Department of Education, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Department of Academic Development, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Lyu Y, Hu J, Wang X, Zhang J, Li X, Cui M, Liu D, Tang X, Zhou P. Bovine lactopontin promotes bone development in growing rats by altering the composition of intestinal flora and bile acid metabolism. Food Funct 2025; 16:928-942. [PMID: 39806933 DOI: 10.1039/d4fo05555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Lactopontin (LPN) is an important milk protein with the potential to improve bone health; however, its specific effects have not been determined. This study aims to investigate the effects of LPN on early bone growth and development. 3 week-old SD rats (n = 32) were assigned to the control group, whey protein concentration (WPC) group, LPN-L (low-dose LPN) group, and LPN-H (high-dose LPN) group, with intragastric administration of deionized water, 65.8 mg kg-1 WPC, and 5 and 45 mg kg-1 LPN for 30 days, respectively. LPN-H supplementation increased body length and femur length, improved femoral bone volume and microarchitecture, and upregulated osteoblast activity-related mRNA (Bmp2, Smad8, and Runx-2) expression in the femur. The content of secondary bile acid glycolithocholic acid (GLCA) in stool and serum was significantly increased after LPN-H intervention and positively correlated with the increased abundance of Parabacteroides in feces. In addition, the bile acid receptor FXR in femur was also activated in the LPN-H group, suggesting that LPN may regulate bone health through the microbiota-metabolite-bone axis. The results of this study suggest that LPN has potential application value in regulating bone metabolism during growth.
Collapse
Affiliation(s)
- Yipin Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jianqiang Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xinyan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mengjun Cui
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dasong Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Yi L, Han N, Li Z, Jiang H, Cao Z. Relaxin-2 promotes osteoblastic differentiation mediated by epidermal growth factor and epidermal growth factor receptor signaling. Biotechnol Appl Biochem 2025; 72:260-267. [PMID: 39219221 DOI: 10.1002/bab.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Loss of osteogenic differentiation potential of osteoblasts has been associated with the pathogenesis of osteoporosis. Thus, stimulation of osteoblastic differentiation is a therapeutic strategy for osteoporosis. Relaxin-2 is a peptide hormone with potent biological functions. However, the effects of Relaxin-2 in osteoblastic differentiation and osteoporosis have not been reported before. Here, we report a novel physiological role of Relaxin-2 in promoting osteoblastic differentiation and mineralization of MC3T3-E1 cells. Our results indicate that exposure to Relaxin-2 upregulated the expression, and elevated the activity of alkaline phosphatase (ALP) when MC3T3-E1 cells were cultured in osteogenic differentiation medium (OM). Additionally, Relaxin-2 upregulated the mRNA levels of osteocalcin (ocn), osteopontin (opn), and collagen type I alpha 1 (Col1a1). The alizarin red S staining assay revealed that Relaxin-2 promoted the mineralization of MC3T3-E1 cells. We also found that Relaxin-2 increased the expression of Runx-2 as well as the epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Importantly, silencing of EGF abolished the effects of Relaxin-2 in osteoblastic differentiation and related gene expression. These findings suggest that Relaxin-2 stimulates osteogenic differentiation through activating EGF/EGFR signaling.
Collapse
Affiliation(s)
- Lankai Yi
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Ning Han
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Zhong Li
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Housen Jiang
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Zhenhao Cao
- Department of Hand, Foot, and Orthopedics Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| |
Collapse
|
18
|
Ju C, Liu R, Ma Y, Dong H, Xu R, Hu H, Hao D. Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury. Ageing Res Rev 2025; 104:102648. [PMID: 39725357 DOI: 10.1016/j.arr.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.
Collapse
Affiliation(s)
- Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Yanming Ma
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Hui Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Ruiqing Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
19
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
20
|
Guo Y, Liu Z, Zhou M, Kuang W, Liu Y, Huang Y, Yin P, Xia Z. Heat exposure promotes sarcopenia via gut microbiota-derived metabolites. Aging Cell 2025; 24:e14370. [PMID: 39468887 PMCID: PMC11822625 DOI: 10.1111/acel.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
The unprecedented rise in global ambient temperatures in the last decade has significantly impacted human health, yet how heat exposure affects the development of sarcopenia remains enigmatic. Here, we demonstrate that chronic heat exposure induces skeletal muscle volume loss, leading to muscle strength and functional decline in mice. The microbiota composition of heat-exposed mice was analyzed using 16S ribosomal DNA analysis. Liquid chromatography-mass spectrometry (LC-MS) was used to explore the effects of heat exposure on the blood metabolome and to further analyze the correlation between blood metabolism and gut microbiota. Transplantation of microbiota from heat-exposed mice to germ-free mice was sufficient to increase adverse effects on skeletal muscle function in the host. Mechanistically, using an untargeted metabolomics strategy, we reveal that altered gut microbiota due to high temperatures is associated with elevated serum levels of homocitrulline. Homocitrulline causes mitochondrial dysfunction in myocytes by exacerbating ferroptosis levels. And Nrf2 activator (Oltipraz) supplementation alleviates muscle atrophy and dysfunction induced by heat exposure. Our findings reveal the detrimental effects of heat exposure on muscle function and provide new strategies for treating sarcopenia.
Collapse
Affiliation(s)
- Yi‐Fan Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhe‐Yu Liu
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Wei‐Hong Kuang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, Center of Stomatology,Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhu‐Ying Xia
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
21
|
Yu C, Sun R, Yang W, Gu T, Ying X, Ye L, Zheng Y, Fan S, Zeng X, Yao S. Exercise ameliorates osteopenia in mice via intestinal microbial-mediated bile acid metabolism pathway. Theranostics 2025; 15:1741-1759. [PMID: 39897551 PMCID: PMC11780523 DOI: 10.7150/thno.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. Methods: We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. Results: We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Conclusion: Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Xiaozhang Ying
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Yang Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang 310016, China
| |
Collapse
|
22
|
Wei J, Liu Q, Yuen HY, Lam ACH, Jiang Y, Yang Y, Liu Y, Zhao X, Xiao L. Gut-bone axis perturbation: Mechanisms and interventions via gut microbiota as a primary driver of osteoporosis. J Orthop Translat 2025; 50:373-387. [PMID: 40171106 PMCID: PMC11960541 DOI: 10.1016/j.jot.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 04/03/2025] Open
Abstract
A growing number of studies have highlighted the significance of human gut microbiota (GM) as a potential target for osteoporosis. In this review, we discuss the effect of GM to bone metabolism focusing on two aspects: the local alterations of the human gut permeability that modify how the GM interact with the gut-bone axis (e.g., intestinal leakage, nutrient absorption), and the alterations of the GM itself (e.g., changes in microbiota metabolites, immune secretion, hormones) that modify the events of the gut-bone axis. We then classify these changes as possible therapeutic targets of bone metabolism and highlight some associated promising microbiome-based therapies. We also extend our discussions into combinatorial treatments that incorporate conservative treatments, such as exercise. We anticipate our review can provide an overview of the current pathophysiological and therapeutic paradigms of the gut-bone axis, as well as the prospects of ongoing clinical trials for readers to gain further insights into better microbiome-based treatments to osteoporosis and other bone-degenerative diseases. The translational potential of this article: This paper reviewed the potential links between gut microbiota and osteoporosis, as well as the prospective therapeutic avenues targeting gut microbiota for osteoporosis management, presenting a thorough and comprehensive literature review.
Collapse
Affiliation(s)
- Jingyuan Wei
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qi Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Yin Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong, 528000, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| |
Collapse
|
23
|
Chen T, Wang N, Hao Y, Fu L. Fecal microbiota transplantation from postmenopausal osteoporosis human donors accelerated bone mass loss in mice. Front Cell Infect Microbiol 2024; 14:1488017. [PMID: 39703374 PMCID: PMC11655470 DOI: 10.3389/fcimb.2024.1488017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Objectives To investigate the effect of gut microbiota from postmenopausal osteoporosis patients on bone mass in mice. Methods Fecal samples were collected from postmenopausal women with normal bone mass (Con, n=5) and postmenopausal women with osteoporosis (Op, n=5). Microbial composition was identified by shallow shotgun sequencing. Then fecal samples were transplanted into pseudo-sterile mice previously treated with antibiotics for 4 weeks. These mice were categorized into two groups: the Vehicle group (n=7) received fecal samples from individuals with normal bone mass, and the FMT group (n=7) received fecal samples from individuals with osteoporosis. After 8 weeks, bone mass, intestinal microbial composition, intestinal permeability and inflammation were assessed, followed by a correlation analysis. Results The bone mass was significantly reduced in the FMT group. Microbiota sequencing showed that Shannon index (p < 0.05) and Simpson index (p < 0.05) were significantly increased in Op groups, and β diversity showed significant differences. the recipient mice were similar. linear discriminant analysis effect size (LEfSe) analysis of mice showed that Halobiforma, Enterorhabdus, Alistipes, and Butyricimonas were significantly enriched in the FMT group. Lachnospiraceae and Oscillibacter were significantly enriched in the Vehicle group. H&E staining of intestinal tissues showed obvious intestinal mucosal injury in mice. Intestinal immunohistochemistry showed that the expression of Claudin and ZO-1 in the intestinal tissue of the FMT group mice was decreased. The FITC-Dextran (FD-4) absorption rate and serum soluble CD14 (sCD14) content were increased in FMT mice. Correlation analysis showed that these dominant genera were significantly associated with bone metabolism and intestinal permeability, and were associated with the enrichment of specific enzymes. Serum and bone tissue inflammatory cytokines detection showed that the expression of TNF-α and IL-17A in the FMT group were significantly increased. Conclusion Overall, our findings suggested gut microbiota from postmenopausal osteoporosis patients accelerate bone mass loss in mice. Aberrant gut microbiota might play a causal role in the process of bone mass loss mediated by inflammation after the destruction of the intestinal barrier.
Collapse
Affiliation(s)
- Tinglong Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| |
Collapse
|
24
|
Hosain O, Clinkenbeard EL. Adiposity and Mineral Balance in Chronic Kidney Disease. Curr Osteoporos Rep 2024; 22:561-575. [PMID: 39394545 DOI: 10.1007/s11914-024-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE OF REVIEW Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.
Collapse
Affiliation(s)
- Ozair Hosain
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46022, USA
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
25
|
Lv J, Qin X, Wang J, Li J, Bai J, Lan Y. The causal relationship between gut microbiota and 2 neoplasms, malignant and benign neoplasms of bone and articular cartilage: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40519. [PMID: 39560555 PMCID: PMC11576038 DOI: 10.1097/md.0000000000040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Previous research has demonstrated a close connection between the development of bone neoplasms and variations in the abundance of specific gut microbiota. It remains unclear, however, how the gut microbiota and bone neoplasms are causally related. Hence, in our study, we aim to clarify this relationship between gut microbiota and 2 neoplasms, malignant neoplasm of bone and articular cartilage (MNBAC) and benign neoplasm of bone and articular cartilage (BNBAC), by employing a two-sample Mendelian randomization (MR) approach. In this study, single nucleotide polymorphisms (SNPs) from genome-wide association studies-pooled data related to bone neoplasms and gut microbiota abundance were evaluated. The inverse variance weighted was employed as the major method for assessing the aforementioned causal relationship. Furthermore, the horizontal multiplicity was evaluated utilizing the Mendelian randomization pleiotropy residual sum and outlier and the MR-Egger intercept test. Finally, inverse MR analysis was performed to assess reverse causality. Inverse variance weighted results indicate a potential genetic relationship between 4 gut microbiota and MNBAC, and 3 gut microbiota and BNBAC. On the one hand, Eubacterium eligens group (OR = 0.16, 95% CI = 0.04-0.67, P = .01), Odoribacter (OR = 0.23, 95% CI = 0.06-0.84, P = .03), Slackia (OR = 0.35, 95% CI = 0.13-0.93, P = .04), and Tyzzerella3 (OR = 0.44, 95% CI = 0.24-0.82, P = .01) exhibited a protective effect against MNBAC. On the other hand, of the 3 gut microbes identified as potentially causally related to BNBAC, Oscillibacter (OR = 0.79, 95% CI = 0.63-0.98, P = .03) and Ruminococcus torques group (OR = 0.62, 95% CI = 0.39-0.98, P = .04) were regarded as protective strains of B, while Eubacterium ruminantium group (OR = 1.24, 95% CI = 1.04-1.47, P = .02) was considered to be a risk factor for increasing the incidence of BNBAC. Additionally, the bone neoplasms were not found to have a reverse causal relationship with the above 7 gut microbiota taxa. Four gut microbiota showed causal effects on MNBAC, and 3 gut microbiota demonstrated causality in BNBAC, providing insights into the design of future interventions to reduce the burden of neoplasms.
Collapse
Affiliation(s)
- Jia Lv
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiuyu Qin
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiani Wang
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Junjun Bai
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanping Lan
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Yorgan TA, Zhu Y, Wiedemann P, Schöneck K, Pohl S, Schweizer M, Amling M, Barvencik F, Oheim R, Schinke T. Inactivation of spermine synthase in mice causes osteopenia due to reduced osteoblast activity. J Bone Miner Res 2024; 39:1606-1620. [PMID: 39331754 DOI: 10.1093/jbmr/zjae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analyzed in Gy mice, where a large genomic deletion also includes the neighboring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation. In the present manuscript, we describe 2 patients carrying distinct SMS variants, both diagnosed with osteoporosis. Whereas the first patient displayed all characteristic hallmarks of SRS, the second patient was initially diagnosed, based on laboratory findings, as a case of adult-onset hypophosphatasia. To study the impact of SMS inactivation on bone remodeling, we took advantage of a newly developed mouse model carrying a pathogenic SMS variant (p.G56S). Compared to their wildtype littermates, 12-wk-old male SMSG56S/0 mice displayed reduced trabecular bone mass and cortical thickness, as assessed by μCT analysis of the femur. This phenotype was histologically confirmed by the analysis of spine and tibia sections, where we also observed a moderate enrichment of non-mineralized osteoid in SMSG56S/0 mice. Cellular and dynamic histomorphometry further identified a reduced bone formation rate as a main cause of the low bone mass phenotype. Likewise, primary bone marrow cells from SMSG56S/0 mice displayed reduced capacity to form a mineralized matrix ex vivo, thereby suggesting a cell-autonomous mechanism. Taken together, our data identify SMS as an enzyme with physiological relevance for osteoblast activity, thereby demonstrating an important role of polyamine metabolism in the control of bone remodeling.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Yihao Zhu
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Philip Wiedemann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany
| |
Collapse
|
27
|
Wang X, Zhang H, Hu L, He J, Jiang Q, Ren L, Yu K, Fu M, Li Z, He Z, Zhu J, Wang Y, Jiang Z, Yang G. The high-bone-mass phenotype of novel transgenic mice with LRP5 A241T mutation. Bone 2024; 187:117172. [PMID: 38909879 DOI: 10.1016/j.bone.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) can cause high-bone-mass (HBM) phenotype, with 19 identified mutations so far. The A242T mutation in LRP5 has been found in 9 families, making it one of the most prevalent mutations. However, the correlation between the A242T mutation and HBM phenotype remains unverified in animal models. This study aimed to investigate the bone properties in a new transgenic mouse model carrying the LRP5 A241T missense mutation, equivalent to A242T in humans. Heterozygous Lrp5A241T mice were generated using CRISPR/Cas9 genome editing. Body weight increased with age from 4 to 16 weeks, higher in males than females, with no difference between Lrp5A241T mice and wild-type control. Micro-CT showed slightly longer femur and notably elevated trabecular bone mass of the femur and fifth lumbar spine with higher bone mineral density, bone volume fraction, and trabecular thickness in Lrp5A241T mice compared to wild-type mice. Additionally, increased cortical bone thickness and volume of the femur shaft and skull were observed in Lrp5A241T mice. Three-point bending tests of the tibia demonstrated enhanced bone strength properties in Lrp5A241T mice. Histomorphometry confirmed that the A241T mutation increased bone formation without affecting osteoblast number and reduced resorption activities in vivo. In vitro experiments indicated that the LRP5 A241T mutation enhanced osteogenic capacity of osteoblasts with upregulation of the Wnt signaling pathway, with no significant impact on the resorptive activity of osteoclasts. In summary, mice carrying the LRP5 A241T mutation displayed high bone mass and quality due to enhanced bone formation and reduced bone resorption in vivo, potentially mediated by the augmented osteogenic potential of osteoblasts. Continued investigation into the regulatory mechanisms of its bone metabolism and homeostasis may contribute to the advancement of novel therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Hui Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Ling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Qifeng Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - Zhikun Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310000, China
| | - Zhixu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310000, China
| | - Junhao Zhu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310000, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China.
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China.
| |
Collapse
|
28
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
29
|
Hao L, Yan Y, Huang G, Li H. From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management. Front Cell Infect Microbiol 2024; 14:1416739. [PMID: 39386168 PMCID: PMC11461468 DOI: 10.3389/fcimb.2024.1416739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density (BMD) and increased fracture risk, poses a significant global health burden. Recent research has shed light on the bidirectional relationship between gut microbiota (GM) and bone health, presenting a novel avenue for understanding OP pathogenesis and developing targeted therapeutic interventions. This review provides a comprehensive overview of the GM-bone axis, exploring the impact of GM on OP development and management. We elucidate established risk factors and pathogenesis of OP, delve into the diversity and functional changes of GM in OP. Furthermore, we examine experimental evidence and clinical observations linking alterations in GM composition or function with variations in BMD and fracture risk. Mechanistic insights into microbial mediators of bone health, such as microbial metabolites and products, are discussed. Therapeutic implications, including GM-targeted interventions and dietary strategies, are also explored. Finally, we identify future research directions and challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
30
|
Kim HB, Cho YJ, Choi SS. Metformin increases gut multidrug resistance genes in type 2 diabetes, potentially linked to Escherichia coli. Sci Rep 2024; 14:21480. [PMID: 39277620 PMCID: PMC11401871 DOI: 10.1038/s41598-024-72467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Metformin is the most commonly prescribed medication for treating type 2 diabetes (T2D). It is known that metformin can alter the gut microbiome, which influences the effectiveness of metformin treatment. We posited that if the gut microbiome, a reservoir of the resistome, is altered, then the resistome should change as well. To test this hypothesis, we reanalyzed microbiome data generated by Wu et al. (Nat Med 23(7):850-858, 2017), identifying antibiotic resistance genes (ARGs) and bacterial species. Through read-based analysis, we observed that the abundance of ARGs indeed changed in many samples treated with metformin. Moreover, the altered pattern was sufficiently heterogeneous across individual samples to allow subcategorization. We also found a strong correlation between the abundance of multidrug-resistant ARGs (MDR-ARGs) and the presence of E. coli. The contig-based analysis led to the same conclusion: an increase in MDR-ARGs due to metformin was associated with an increase in E. coli. In relation to this, we were able to confirm that the majority of MDR-ARGs are likely to originate from E. coli. These results suggest that metformin may have the potential side effect of increasing E. coli carrying ARGs, particularly MDR-ARGs, which could be a concern in T2D therapy that relies on metformin.
Collapse
Affiliation(s)
- Han-Bin Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
31
|
Chen ZY, Panga MJ, Zhang X, Qiao S, Chen S, Appiah C, Zhao Y. Estrogen alleviates liver fibrosis and restores metabolic homeostasis in ovariectomy-induced liver injury and carbon tetrachloride (CCl 4) exposure. Eur J Pharmacol 2024; 978:176774. [PMID: 38936452 DOI: 10.1016/j.ejphar.2024.176774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
AIM Given estrogen's recognized regulatory influence on diverse metabolic and immune functions, this study sought to explore its potential impact on fibrosis and elucidate the underlying metabolic regulations. METHODS Female mice underwent ovary removal surgery, followed by carbon tetrachloride (CCl4) administration to induce liver injury. Biochemical index analysis and histopathological examination were then conducted. The expression levels of alpha-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and collagen type 1 alpha 1 chain (COL1A1) were assessed using western blotting to further elucidate the extent of liver injury. Finally, metabolite extraction and metabolomic analysis were performed to evaluate metabolic changes. RESULTS Ovary removal exacerbated CCl4-induced liver damage, while estrogen supplementation provided protection against hepatic changes resulting from OVX. Furthermore, estrogen mitigated liver injury induced by CCl4 treatment in vivo. Estrogen supplementation significantly restored liver damage induced by OVX and CCl4. Comparative analysis revealed significant alterations in pathways including aminoacyl-tRNA biosynthesis, glycine, serine, and threonine metabolism, lysine degradation, and taurine and hypotaurine metabolism in estrogen treatment. CONCLUSION Estrogen supplementation alleviates liver injury induced by OVX and CCl4, highlighting its protective effects against fibrosis and associated metabolic alterations.
Collapse
Affiliation(s)
- Zi Yi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Xiangrui Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Shuai Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
32
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
33
|
Ma F, Zhang W, Zhou G, Qi Y, Mao HR, Chen J, Lu Z, Wu W, Zou X, Deng D, Lv S, Xiang N, Wang X. Epimedii Folium decoction ameliorates osteoporosis in mice through NLRP3/caspase-1/IL-1β signalling pathway and gut-bone axis. Int Immunopharmacol 2024; 137:112472. [PMID: 38897131 DOI: 10.1016/j.intimp.2024.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
AIM OF THE STUDY This study aimed to determine the effect of Epimedium brevicornu Maxim. (EF) on osteoporosis (OP) and its underlying molecular mechanisms, and to explore the existence of the "Gut-Bone Axis". MATERIAL AND METHODS The impact of EF decoction (EFD) on OP was evaluated using istopathological examination and biochemical assays. Targeted metabolomics was employed to identify key molecules and explore their molecular mechanisms. Alterations in the gut microbiota (GM) were evaluated by 16S rRNA gene sequencing. The role of the GM was clarified using an antibiotic cocktail and faecal microbiota transplantation. RESULTS EFD significantly increased the weight (14.06%), femur length (4.34%), abdominal fat weight (61.14%), uterine weight (69.86%), and insulin-like growth factor 1 (IGF-1) levels (59.48%), while reducing serum type I collagen cross-linked carboxy-terminal peptide (CTX-I) levels (15.02%) in osteoporotic mice. The mechanism of action may involve the regulation of the NLRP3/cleaved caspase-1/IL-1β signalling pathway in improving intestinal tight junction proteins and bone metabolism. Additionally, EFD modulated the abundance of related GM communities, such as Lactobacillus, Coriobacteriaceae, bacteria of family S24-7, Clostridiales, and Prevotella, and increased propionate and butyrate levels. Antibiotic-induced dysbiosis of gut bacteria disrupted OP regulation of bone metabolism, which was restored by the recovery of GM. CONCLUSIONS Our study is the first to demonstrate that EFD works in an OP mouse model by utilising GM and butyric acid. Thus, EF shows promise as a potential remedy for OP in the future.
Collapse
Affiliation(s)
- Fuqiang Ma
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, 24 Jinghua Road, Luoyang, Henan 471003, PR China
| | - Weiming Zhang
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Dermatology, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Wuhan, Hubei 430022, PR China
| | - Guangwen Zhou
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Yu Qi
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - He-Rong Mao
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Jie Chen
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Zhilin Lu
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Xinrong Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Danfang Deng
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Shenhui Lv
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| | - Nan Xiang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China.
| | - Xiaoqin Wang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| |
Collapse
|
34
|
Tian J, Moon JS, Nga HT, Lee HY, Nguyen TL, Jang HJ, Setoyama D, Shong M, Lee JH, Yi HS. Brown fat-specific mitoribosomal function is crucial for preventing cold exposure-induced bone loss. Cell Mol Life Sci 2024; 81:314. [PMID: 39066814 PMCID: PMC11335241 DOI: 10.1007/s00018-024-05347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.
Collapse
Affiliation(s)
- Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
35
|
Fu L, Zhang P, Wang Y, Liu X. Microbiota-bone axis in ageing-related bone diseases. Front Endocrinol (Lausanne) 2024; 15:1414350. [PMID: 39076510 PMCID: PMC11284018 DOI: 10.3389/fendo.2024.1414350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Bone homeostasis in physiology depends on the balance between bone formation and resorption, and in pathology, this homeostasis is susceptible to disruption by different influences, especially under ageing condition. Gut microbiota has been recognized as a crucial factor in regulating host health. Numerous studies have demonstrated a significant association between gut microbiota and bone metabolism through host-microbiota crosstalk, and gut microbiota is even an important factor in the pathogenesis of bone metabolism-related diseases that cannot be ignored. This review explores the interplay between gut microbiota and bone metabolism, focusing on the roles of gut microbiota in bone ageing and aging-related bone diseases, including osteoporosis, fragility fracture repair, osteoarthritis, and spinal degeneration from different perspectives. The impact of gut microbiota on bone metabolism during aging through modification of endocrinology system, immune system and gut microbiota metabolites are summarized, facilitating a better grasp of the pathogenesis of aging-related bone metabolic diseases. This review offers innovative insights into targeting the gut microbiota for the treatment of bone ageing-related diseases as a clinical therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Li S, Miao XY, Zhang JS, Wei DD, Dong HJ, Xue R, Li JC, Zhang Y, Feng XX, Li J, Zhang YZ. Far-infrared therapy promotes exercise capacity and glucose metabolism in mice by modulating microbiota homeostasis and activating AMPK. Sci Rep 2024; 14:16314. [PMID: 39009692 PMCID: PMC11251280 DOI: 10.1038/s41598-024-67220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Yao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dong-Dong Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
37
|
Dou J, Liang Z, Liu J, Liu N, Hu X, Tao S, Zhen X, Yang L, Zhang J, Jiang G. Quinoa alleviates osteoporosis in ovariectomized rats by regulating gut microbiota imbalance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5052-5063. [PMID: 38284744 DOI: 10.1002/jsfa.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMO) is associated with dysregulation of bone metabolism and gut microbiota. Quinoa is a grain with high nutritional value, and its effects and potential mechanisms on PMO have not been reported yet. Therefore, the purpose of this study is to investigate the bone protective effect of quinoa on ovariectomy (OVX) rats by regulating bone metabolism and gut microbiota. RESULTS Quinoa significantly improved osteoporosis-related biochemical parameters of OVX rats and ameliorated ovariectomy-induced bone density reduction and trabecular structure damage. Quinoa intervention may repair the intestinal barrier by upregulating the expression of tight junction proteins in the duodenum. In addition, quinoa increased the levels of Firmicutes, and decreased the levels of Bacteroidetes and Prevotella, reversing the dysregulation of the gut microbiota. This may be related to estrogen signaling pathway, secondary and primary bile acid biosynthesis, benzoate degradation, synthesis and degradation of ketone bodies, NOD-like receptor signaling pathway and biosynthesis of tropane, piperidine and pyridine alkaloids. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and parameters related to osteoporosis. CONCLUSION Quinoa could significantly reverse the high intestinal permeability and change the composition of gut microbiota in OVX rats, thereby improving bone microstructure deterioration and bone metabolism disorder, and ultimately protecting the bone loss of OVX rats. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengting Liang
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Jiaxian Liu
- Zhong Li Science and Technology Limited Company, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehong Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lihua Yang
- Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jinghua Zhang
- Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Lee CC, Chuang CC, Chen CH, Huang YP, Chang CY, Tung PY, Lee MJ. In vitro and in vivo studies on exogenous polyamines and α-difluoromethylornithine to enhance bone formation and suppress osteoclast differentiation. Amino Acids 2024; 56:43. [PMID: 38935136 PMCID: PMC11211182 DOI: 10.1007/s00726-024-03403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Exogenous polyamines, including putrescine (PUT), spermidine (SPD), and spermine (SPM), and the irreversible inhibitor of the rate-limiting enzyme ornithine decarboxylase (ODC) of polyamine biosynthesis, α-difluoromethylornithine (DFMO), are implicated as stimulants for bone formation. We demonstrate in this study the osteogenic potential of exogenous polyamines and DFMO in human osteoblasts (hOBs), murine monocyte cell line RAW 264.7, and an ovariectomized rat model. The effect of polyamines and DFMO on hOBs and RAW 264.7 cells was studied by analyzing gene expression, alkaline phosphatase (ALP) activity, tartrate-resistant acid phosphatase (TRAP) activity, and matrix mineralization. Ovariectomized rats were treated with polyamines and DFMO and analyzed by micro computed tomography (micro CT). The mRNA level of the early onset genes of osteogenic differentiation, Runt-related transcription factor 2 (Runx2) and ALP, was significantly elevated in hOBs under osteogenic conditions, while both ALP activity and matrix mineralization were enhanced by exogenous polyamines and DFMO. Under osteoclastogenic conditions, the gene expression of both receptor activator of nuclear factor-κB (RANK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) was reduced, and TRAP activity was suppressed by exogenous polyamines and DFMO in RAW 264.7 cells. In an osteoporotic animal model of ovariectomized rats, SPM and DFMO were found to improve bone volume in rat femurs, while trabecular thickness was increased in all treatment groups. Results from this study provide in vitro and in vivo evidence indicating that polyamines and DFMO act as stimulants for bone formation, and their osteogenic effect may be associated with the suppression of osteoclastogenesis.
Collapse
Affiliation(s)
- Chien-Ching Lee
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chia-Chun Chuang
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Yuan-Pin Huang
- Department of Cosmetics and Fashion Styling, Cheng Shiu University, Kaohsiung, 83347, Taiwan
| | - Chiao-Yi Chang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Pei-Yi Tung
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan.
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan.
| |
Collapse
|
39
|
Lei LM, Li FXZ, Lin X, Xu F, Shan SK, Guo B, Zheng MH, Tang KX, Wang Y, Xu QS, Ouyang WL, Duan JY, Wu YY, Cao YC, Zhou ZA, He SY, Wu YL, Chen X, Lin ZJ, Pan Y, Yuan LQ, Li ZH. Cold exposure-induced plasma exosomes impair bone mass by inhibiting autophagy. J Nanobiotechnology 2024; 22:361. [PMID: 38910236 PMCID: PMC11194967 DOI: 10.1186/s12951-024-02640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.
Collapse
Affiliation(s)
- Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ouyang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Si-Yang He
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Pan
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, No. 374 The Dianmian Avenue, Wuhua, Kunming, Yunnan, 650101, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
40
|
Mao Y, Jin Z, Yang J, Xu D, Zhao L, Kiram A, Yin Y, Zhou D, Sun Z, Xiao L, Zhou Z, Yang L, Fu T, Xu Z, Jia Y, Chen X, Niu FN, Li X, Zhu Z, Gan Z. Muscle-bone cross-talk through the FNIP1-TFEB-IGF2 axis is associated with bone metabolism in human and mouse. Sci Transl Med 2024; 16:eadk9811. [PMID: 38838134 DOI: 10.1126/scitranslmed.adk9811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.
Collapse
Affiliation(s)
- Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zhen Jin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jing Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Lei Zhao
- Department of Neurology, Children,s Hospital of Fudan University, Shanghai 201102, China
| | - Abdukahar Kiram
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Xinyi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Feng-Nan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xihua Li
- Department of Neurology, Children,s Hospital of Fudan University, Shanghai 201102, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| |
Collapse
|
41
|
Ahire JJ, Kumar V, Rohilla A. Understanding Osteoporosis: Human Bone Density, Genetic Mechanisms, Gut Microbiota, and Future Prospects. Probiotics Antimicrob Proteins 2024; 16:875-883. [PMID: 37874496 DOI: 10.1007/s12602-023-10185-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Osteoporosis is a systemic condition of the skeleton that leads to diminished bone mass, a breakdown in the bone tissue's microscopic architecture, and an elevated risk of breaking a bone. The elderly and women particularly after menopause are disproportionately affected, and the condition generally stays undiagnosed until a broken bone causes severe pain and immobility. Causes of osteoporosis include low bone mass, more than normal bone loss, changes in hormone levels (decreased estrogen or testosterone), certain diseases and therapies, and lifestyle factors like smoking and inactivity. The spine, hip, and forearm are particularly vulnerable to osteoporosis-related fractures. The purpose of this article is to present a thorough understanding of osteoporosis, including the disease's connection to bone density in humans, and the major part played by genetic pathways and gut flora. The causes of osteoporosis, the effects of aging on bone density, and why some groups experience a higher incidence of the disease than others are investigated. The paper also includes animal and human experiments investigating the link between gut flora and osteoporosis. Finally, it looks to the future and speculates on possible developments in osteoporosis prevention and therapy.
Collapse
Affiliation(s)
- Jayesh J Ahire
- Dr. Reddy's Laboratories Limited, Hyderabad, 500016, India.
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028, India
| | - Alka Rohilla
- Institute of Biology Sciences, Faculty of Science, University of Malaya, 5060, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Ren H, Wang P, Huang H, Huang J, Lu Y, Wu Y, Xie Z, Tang Y, Cai Z, Shen H. N-Halaminated spermidine-containing polymeric coating enables titanium to achieve dual functions of antibacterial and osseointegration. Biomater Sci 2024; 12:2648-2659. [PMID: 38573023 DOI: 10.1039/d4bm00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Titanium (Ti) and its alloys have been widely employed in the treatment of orthopedics and other hard tissue diseases. However, Ti-based implants are bioinert and suffer from bacterial infections and poor osseointegration in clinical applications. Herein, we successfully modified Ti with a porous N-halaminated spermidine-containing polymeric coating (Ti-SPD-Cl) through alkali-heat treatment, surface grafting and chlorination, and it has both excellent antibacterial and osteogenic abilities to significantly enhance osseointegration. The as-obtained Ti-SPD-Cl contains abundant N-Cl groups and demonstrates effective antibacterial ability against S. aureus and E. coli. Meanwhile, due to the presence of the spermidine component and construction of a porous hydrophilic surface, Ti-SPD-Cl is also beneficial for maintaining cell membrane homeostasis and promoting cell adhesion, exhibiting good biocompatibility and osteogenic ability. The rat osteomyelitis model demonstrates that Ti-SPD-Cl can effectively suppress bacterial infection and enhance bone-implant integration. Thus, Ti-SPD-Cl shows promising clinical applicability in the prevention of orthopedic implant infections and poor osseointegration.
Collapse
Affiliation(s)
- Hang Ren
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Peng Wang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Hanwen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Junshen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yuheng Lu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yanfeng Wu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhongyu Xie
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Youchen Tang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Huiyong Shen
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| |
Collapse
|
43
|
Ren L, Liu G, Bai Y, Gu L, Wang Y, Sun L. NLRC3 attenuates osteoclastogenesis by limiting TNFα + Th17 cell response in osteoporosis. J Mol Med (Berl) 2024; 102:655-665. [PMID: 38436712 PMCID: PMC11055730 DOI: 10.1007/s00109-024-02422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
NOD-like receptor family CARD domain containing 3 (NLRC3) is the intracellular protein belonging to NLR (NOD-like receptor) family. NLRC3 can negatively regulate inflammatory signal transduction pathways within the adaptive and innate immunocytes. However, studies need to elucidate the biological role of NLRC3 in bone remodeling. Herein, our study proved that NLRC3 prevents bone loss by inhibiting TNFα+ Th17 cell responses. In osteoporosis, NLRC3 attenuated TNFα+ Th17 cell accumulation in the bone marrow. However, osteoporosis (OP) development was aggravated without affecting bone marrow macrophage (BMM) osteoclastogenesis in NLRC3-deficient ovariectomized (OVX) mice. In this study, we transferred the wild-type and NLRC3-/- CD4+ cells into Rag1-/- mice. Consequently, we evidenced the effects of NLRC3 in CD4+ T cells on inhibiting the accumulation of TNFα + Th17 cells, thus restricting bone loss in the OVX mice. Simultaneously, NLRC3-/- CD4+ T cells promoted the recruitment of osteoclast precursors and inflammatory monocytes into the OVX mouse bone marrow. Mechanism-wise, NLRC3 reduced the secretion of TNFα + Th17 cells of RANKL, MIP1α, and MCP1, depending on the T cells. In addition, NLRC3 negatively regulated the Th17 osteoclastogenesis promoting functions via limiting the NF-κB activation. Collectively, this study appreciated the effect of NLRC3 on modulating bone mass via adaptive immunity depending on CD4+ cells. According to findings of this study, NLRC3 may be the candidate anti-OP therapeutic target. KEY MESSAGES: NLRC3 negatively regulated the Th17 osteoclastogenesis promoting functions via limiting the NF-κB activation. NLRC3 may be the candidate anti-OP therapeutic target.
Collapse
Affiliation(s)
- Lingyan Ren
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550003, China
- Antenatal Diagnosis Centre, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550003, China
| | - Guangjun Liu
- Institute of Traumatic Orthopedics, The 80th, Army Hospital of the Chinese People's Liberation Army, Weifang Shandong Province, 500000, China
| | - Yun Bai
- Institute of Traumatic Orthopedics, The 80th, Army Hospital of the Chinese People's Liberation Army, Weifang Shandong Province, 500000, China
| | - Liling Gu
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550003, China
| | - Yuan Wang
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai, Jiao Tong University, Shanghai, 200336, China.
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550003, China.
| |
Collapse
|
44
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
45
|
Jiang RX, Hu N, Deng YW, Hu LW, Gu H, Luo N, Wen J, Jiang XQ. Potential therapeutic role of spermine via Rac1 in osteoporosis: Insights from zebrafish and mice. Zool Res 2024; 45:367-380. [PMID: 38485506 PMCID: PMC11017079 DOI: 10.24272/j.issn.2095-8137.2023.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
Osteoporosis is a prevalent metabolic bone disease. While drug therapy is essential to prevent bone loss in osteoporotic patients, current treatments are limited by side effects and high costs, necessitating the development of more effective and safer targeted therapies. Utilizing a zebrafish ( Danio rerio) larval model of osteoporosis, we explored the influence of the metabolite spermine on bone homeostasis. Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption. Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity. Notably, spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae. At the molecular level, Rac1 was identified as playing a pivotal role in mediating the anti-osteoporotic effects of spermine, with P53 potentially acting downstream of Rac1. These findings were confirmed using mouse ( Mus musculus) models, in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions, suggesting strong potential as a bone-strengthening agent. This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development, highlighting pivotal molecular mediators. Given their efficacy and safety, human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.
Collapse
Affiliation(s)
- Rui-Xue Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Nan Hu
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yu-Wei Deng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Long-Wei Hu
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hao Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Nan Luo
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China. E-mail:
| | - Xin-Quan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China. E-mail:
| |
Collapse
|
46
|
Wen X, Wu P, Li F, Pi G. Study on the relationship between tea polyphenols alleviating osteoporosis and the changes of microorganism-metabolite-intestinal barrier. Microb Pathog 2024; 188:106564. [PMID: 38307369 DOI: 10.1016/j.micpath.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024]
Abstract
Tea polyphenols are known to alleviate osteoporosis; however, the role of intestinal flora in this process has not been studied. This research employed 16s rRNA sequencing and non-targeted metabonomics to investigate the potential link between osteoporosis mitigation and changes in intestinal flora. MicroCT and tissue staining results demonstrated that tea polyphenols improved bone microstructure, modulated bone metabolism, and significantly alleviated osteoporosis. The administration of tea polyphenols led to alterations in the intestinal flora's composition, marked by increased abundance of Firmicutes and Lactobacillus and decreased prevalence of Bacteroidetes and Bacteroides. Concurrently, the levels of serum metabolites such as Spermidine and 5,6-Dihydrouracil, associated with intestinal microorganisms, underwent significant changes. These variations in intestinal flora and metabolites are closely linked to bone metabolism. Furthermore, tea polyphenols partially repaired intestinal barrier damage, potentially due to shifts in intestinal flora and their metabolites. Overall, our findings suggest that tea polyphenol intervention modifies the intestinal flora and serum metabolites in osteoporotic mice, which could contribute to the repair of intestinal barrier damage and thereby mitigate osteoporosis. This discovery aids in elucidating the mechanism behind tea polyphenols' osteoporosis-relieving effects.
Collapse
Affiliation(s)
- Xin Wen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Panyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Feng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guofu Pi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
47
|
Wang H, Ülgen M, Trajkovski M. Importance of temperature on immuno-metabolic regulation and cancer progression. FEBS J 2024; 291:832-845. [PMID: 36152006 DOI: 10.1111/febs.16632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapies emerge as promising strategies for restricting tumour growth. The tumour microenvironment (TME) has a major impact on the anti-tumour immune response and on the efficacy of the immunotherapies. Recent studies have linked changes in the ambient temperature with particular immuno-metabolic reprogramming and anti-cancer immune response in laboratory animals. Here, we describe the energetic balance of the organism during change in temperature, and link this to the immune alterations that could be of relevance for cancer, as well as for other human diseases. We highlight the contribution of the gut microbiota in modifying this interaction. We describe the overall metabolic response and underlying mechanisms of tumourigenesis in mouse models at varying ambient temperatures and shed light on their potential importance in developing therapeutics against cancer.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Melis Ülgen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Cressman A, Morales D, Zhang Z, Le B, Foley J, Murray-Stewart T, Genetos DC, Fierro FA. Effects of Spermine Synthase Deficiency in Mesenchymal Stromal Cells Are Rescued by Upstream Inhibition of Ornithine Decarboxylase. Int J Mol Sci 2024; 25:2463. [PMID: 38473716 PMCID: PMC10931026 DOI: 10.3390/ijms25052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.
Collapse
Affiliation(s)
- Amin Cressman
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - David Morales
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Zhenyang Zhang
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Bryan Le
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Jackson Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Fernando A. Fierro
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
49
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
50
|
López-Agudelo VA, Falk-Paulsen M, Bharti R, Rehman A, Sommer F, Wacker EM, Ellinghaus D, Luzius A, Sievers LK, Liebeke M, Kaser A, Rosenstiel P. Defective Atg16l1 in intestinal epithelial cells links to altered fecal microbiota and metabolic shifts during pregnancy in mice. Gut Microbes 2024; 16:2429267. [PMID: 39620359 PMCID: PMC11622647 DOI: 10.1080/19490976.2024.2429267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease. Here, we explored the longitudinal dynamics of gut microbiota composition and functional potential during pregnancy and after lactation in Atg16l1∆IEC mice carrying an intestinal epithelial deletion of the Crohn's disease risk gene Atg16l1. Using 16S rRNA amplicon and shotgun metagenomic sequencing, we demonstrated divergent temporal shifts in microbial composition between Atg16l1 wildtype and Atg16l1∆IEC pregnant mice in trimester 3, which was validated in an independent experiment. Observed differences included microbial genera implicated in IBD such as Lachnospiraceae, Roseburia, Ruminococcus, and Turicibacter. Changes partially recovered after lactation. Additionally, metagenomic and metabolomic analyses suggest an increased capacity for chitin degradation, resulting in higher levels of free N-acetyl-glucosamine products in feces, alongside reduced glucose and myo-inositol levels in serum around the time of delivery. On the host side, we found that the immunological response of Atg16l1∆IEC mice is characterized by higher colonic mRNA levels of TNFα and CXCL1 in trimester 3 and a lower weight of offspring at birth. Understanding pregnancy-dependent microbiome changes in the context of IBD may constitute the first step in the identification of fecal microbial biomarkers and microbiota-directed therapies that could help improve precision care for managing pregnancies in IBD patients.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Katharina Sievers
- Department of General Internal Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manuel Liebeke
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|