1
|
Bruce CR, Ang T, Toms JD, Dao GM, Liu J, Ward GM, O'Neal DN, Morrison DJ, Kowalski GM. The Effect of Small Increases in Blood Glucose on Insulin Secretion and Endogenous Glucose Production in Humans. Diabetes 2025; 74:898-906. [PMID: 39508871 DOI: 10.2337/db24-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Small glycemic increments (≤0.5 mmol/L) can exert suppressive actions on endogenous glucose production (EGP); however, it is unclear if this is an insulin-dependent or -independent process. Here, we performed a low-rate glucose infusion in control participants without diabetes and in people with type 1 diabetes (T1D) to better understand this phenomenon. Glucose kinetics, hormones, and metabolites were measured during a 1 mg/kg/min glucose infusion (90 min), which rapidly increased glucose by ∼0.3 mmol/L in control participants. Insulin concentrations and secretion quickly increased by ∼20%, resulting in a ∼40% suppression of EGP, while glucose disposal remained unchanged. Free fatty acids (FFAs) and glucagon were gradually suppressed to ∼30% below baseline at 60 min. When repeated under constant basal insulin concentrations in participants with T1D, glucose infusion caused only partial and transient EGP suppression; hence, glucose increased in a near-linear manner, reaching levels ∼2 mmol/L above baseline at 90 min. FFAs and glucagon remained unchanged, while glucose disposal modestly increased. This demonstrates that small glycemic increments exert subtle stimulatory effects on insulin secretion that have potent metabolic actions on the liver and adipose tissue. It is conceivable that subtle increases in glucose could potentially serve as a signal for β-cell adaptation. ARTICLE HIGHLIGHTS Small glycemic increments (≤0.5 mmol/L [≤9 mg/dL]) can suppress endogenous glucose production (EGP), but it is unclear if this depends on insulin. We conducted a low-rate glucose infusion in control participants and people with type 1 diabetes to determine the metabolic impact of minor glucose elevations and their reliance on insulin secretion. Healthy β-cells responded to subtle blood glucose elevations with small, physiologically relevant increases in insulin secretion that suppress EGP and lipolysis without stimulating glucose disposal. Small glycemic increments exerted potent insulin-dependent effects on liver and adipose tissue metabolism and could potentially serve as a β-cell adaptation signal.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Jason D Toms
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Giang M Dao
- Institute for Physical Activity and Nutrition, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Jean Liu
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Glenn M Ward
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - David N O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dale J Morrison
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| |
Collapse
|
2
|
Apostolopoulou M, Lambadiari V, Roden M, Dimitriadis GD. Insulin Resistance in Type 1 Diabetes: Pathophysiological, Clinical, and Therapeutic Relevance. Endocr Rev 2025; 46:317-348. [PMID: 39998445 PMCID: PMC12063105 DOI: 10.1210/endrev/bnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 02/26/2025]
Abstract
People with type 1 diabetes (T1D) are usually considered to exclusively exhibit β-cell failure, but they frequently also feature insulin resistance. This review discusses the mechanisms, clinical features, and therapeutic relevance of insulin resistance by focusing mainly on human studies using gold-standard techniques (euglycemic-hyperinsulinemic clamp). In T1D, tissue-specific insulin resistance can develop early and sustain throughout disease progression. The underlying pathophysiology is complex, involving both metabolic- and autoimmune-related factors operating synergistically. Insulin treatment may play an important pathogenic role in predisposing individuals with T1D to insulin resistance. However, the established lifestyle-related risk factors and peripheral insulin administration inducing glucolipotoxicity, hyperinsulinemia, hyperglucagonemia, inflammation, mitochondrial abnormalities, and oxidative stress cannot always fully explain insulin resistance in T1D, suggesting a phenotype distinct from type 2 diabetes. The mutual interaction between insulin resistance and impaired endothelial function further contributes to diabetes-related complications. Insulin resistance should therefore be considered a treatment target in T1D. Aside from lifestyle modifications, continuous subcutaneous insulin infusion can ameliorate insulin resistance and hyperinsulinemia, thereby improving glucose toxicity compared with multiple injection insulin treatment. Among other concepts, metformin, pioglitazone, incretin-based drugs such as GLP-1 receptor agonists, sodium-glucose cotransporter inhibitors, and pramlintide can improve insulin resistance, either directly or indirectly. However, considering the current issues of high cost, side effects, limited efficacy, and their off-label status, these agents in people with T1D are not widely used in routine clinical care at present.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibnitz Center for Diabetes Research at Heinrich-Heine University, 40225 Düsseldorf, Germany
- German Center of Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibnitz Center for Diabetes Research at Heinrich-Heine University, 40225 Düsseldorf, Germany
- German Center of Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - George D Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| |
Collapse
|
3
|
Sharma T, Ranawat P, Garg A, Rastogi P, Kaushal N. Short-chain fatty acids as a novel intervention for high-fat diet-induced metabolic syndrome. Mol Cell Biochem 2025; 480:3169-3184. [PMID: 39709317 DOI: 10.1007/s11010-024-05185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology. Considering this, the aim of the current study was to explore the therapeutic potential of SCFA (butyrate, propionate, and acetate) supplementation against a high-fat diet (HFD)-induced experimental model of MetS in male Wistar rats. Alterations in body weight, lipid profile, histopathology, and adipose tissue accumulation were assessed to establish SCFA-mediated amelioration of experimental MetS. Further, the enzymatic (GPx, Catalase, GR, and GST) and non-enzymatic (LPO, total ROS, and Redox ratio were evaluated. The results indicated that SCFA supplementation could effectively mitigate key features of MetS. A significant reduction in body weight gain and fasting blood glucose levels, along with markedly lowered triglycerides, total cholesterol, and LDL levels, with partial restoration of HDL levels was observed following SCFA supplementation. SCFA administration also attenuated MetS-associated hepatic damage as studied by histopathological investigation and analysis of liver function marker enzyme activities. Such ameliorative effects of SCFA against HFD-induced MetS were owed to potential redox modulation studied using enzymatic and non-enzymatic oxidative stress markers. In conclusion, the study's outcomes show that SCFA supplementation could potentially be used against managing MetS. It underscores the therapeutic potential of SCFA by placing them as a novel gut microbiome-based dietary approach to improve metabolic health and reduce the risk of MetS-associated complications. However, more detailed mechanistic explorations are warranted in the future, leading to their beneficial role in MetS contributing to holistic health outcomes.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ayushi Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pulkit Rastogi
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
5
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
6
|
Bajaj G, Choudhary D, Singh V, Priyadarshi N, Garg P, Mantri SS, Rishi V, Singhal NK. MicroRNAs Dependent G-ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β-Cells in Type 2 Diabetic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409501. [PMID: 39648555 DOI: 10.1002/smll.202409501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Metabolic disorders such as Type 2 diabetes mellitus (T2DM) imposes a significant global health burden. Plant-derived exosome like nanoparticles (P-ELNs) have emerged as a promising therapeutic alternate for various diseases. Present data demonstrates that treatment with Ginger-derived exosome like nanoparticles (G-ELNs) enhance insulin dependent glucose uptake, downregulate gluconeogenesis and oxidative stress in insulin resistant HepG2 cells. Furthermore, oral administration of G-ELNs in T2DM mice decreases fasting blood glucose levels and improves glucose tolerance as effectively as metformin. These improvements are attributed to the enhanced phosphorylation of Protein kinase B (Akt-2), the phosphatidylinositol 3-kinase at serine 474 which consequently leads to increase in hepatic insulin sensitivity, improvement in glucose homeostasis and decrease in ectopic fat deposition. Oral administration of G-ELNs also exerts protective effect on Streptozotocin (STZ)-induced pancreatic β-cells damage, contributing to systemic amelioration of T2DM. Further, as per computational tools, miRNAs present in G-ELNs modulate the phosphatidylinositol 3-kinase (PI3K)/Akt-2 pathway and exhibit strong interactions with various target mRNAs responsible for hepatic gluconeogenesis, ectopic fat deposition and oxidative stress. Furthermore, synthetic mimic of G-ELNs miRNA effectively downregulates its target mRNA in insulin resistant HepG2 cells. Overall, the results indicate that the miRNAs present in G-ELNs target hepatic metabolism thus, exerting therapeutic effects in T2DM.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Diksha Choudhary
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur, 342005, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shrikant Subhash Mantri
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
7
|
Barroso E, Jurado-Aguilar J, Wahli W, Palomer X, Vázquez-Carrera M. Increased hepatic gluconeogenesis and type 2 diabetes mellitus. Trends Endocrinol Metab 2024; 35:1062-1077. [PMID: 38816269 DOI: 10.1016/j.tem.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Abnormally increased hepatic gluconeogenesis is a significant contributor to hyperglycemia in the fasting state in patients with type 2 diabetes mellitus (T2DM) due to insulin resistance. Metformin, the most prescribed drug for the treatment of T2DM, is believed to exert its effect mainly by reducing hepatic gluconeogenesis. Here, we discuss how increased hepatic gluconeogenesis contributes to T2DM and we review newly revealed mechanisms underlying the attenuation of gluconeogenesis by metformin. In addition, we analyze the recent findings on new determinants involved in the regulation of gluconeogenesis, which might ultimately lead to the identification of novel and targeted treatment strategies for T2DM.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, F-31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
8
|
Zhao Q, Wang Q, Li B, Han S, Zhang Y, Wang Y, Lu R, Chen Q, Sun Z, Ding M, Liang Z, Gao Y. The deubiquitinase OTUB1 inhibits gluconeogenesis by stabilizing YWHAB. Cell Signal 2024; 124:111408. [PMID: 39270917 DOI: 10.1016/j.cellsig.2024.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Hepatic gluconeogenesis plays a crucial role in maintaining glucose homeostasis and serves as a potential therapeutic target for type 2 diabetes, while its underlying mechanisms are not fully understood. This study elucidates the role of the deubiquitinase OTU domain-containing ubiquitin aldehyde binding protein 1 (OTUB1) in gluconeogenesis. We found that hepatic OTUB1 expression is reduced in both db/db mice and patients with type 2 diabetes. Deletion of hepatic OTUB1 significantly elevates fasting blood glucose levels and increases the expression of key gluconeogenic genes. Conversely, overexpression of OTUB1 in hepatocytes mitigates diabetic hyperglycemia and enhances insulin sensitivity. It is known that the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein β (YWHAB) functions as an inhibitor of hepatic gluconeogenesis by interacting with forkhead box protein O (FOXO1) and glucagon receptor (GPCR), but its own modification mechanism remains unclear. Our findings indicate that OTUB1 interacts with YWHAB and deubiquitinates it through a catalytic process, which in turn suppresses gluconeogenesis. Therefore, OTUB1 plays a pivotal role in inhibiting hepatic gluconeogenesis, highlighting its potential as a therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Qianzhuo Wang
- Department of General Practice, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Bei Li
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Shuang Han
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- Department of General Practice, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Qingyan Chen
- Department of General Practice, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhe Sun
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
9
|
Guo X, Pu J, Tang Z, Jia C, Yang F, Liu T, Ding Y. LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal Model Exp Med 2024; 7:696-706. [PMID: 38567757 PMCID: PMC11528380 DOI: 10.1002/ame2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ziqi Tang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
10
|
Letukienė A, Hendrixson V, Ginevičienė V. Current knowledge and scientific trends in myokines and exercise research in the context of obesity. Front Med (Lausanne) 2024; 11:1421962. [PMID: 39376657 PMCID: PMC11456489 DOI: 10.3389/fmed.2024.1421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
The relationship between exercise and obesity has attracted increasing attention from researchers worldwide in recent years. The aim of the present study was to analyze the current knowledge and scientific trends of research into myokines and exercise in the context of obesity and provide ideas for future research strategies to prevent obesity. The study conducted a comprehensive bibliometric analysis of 300 scientific publications related to myokines, exercise, and obesity from 2004 to 2024. Applying the VOSviewer tool, the analysis revealed a significant increase over time in the number of publications on these topics, with a total of 1,142 related keywords identified. Key themes identified in the analysis included molecular processes, new organokines, skeletal muscle research, model organism studies, and human studies based on sex and age differences. The study highlighted the growing interest in the molecular mechanisms of obesity and role of myokines. Results showed a substantial increase in publications from 2014 to 2024, with a focus on new organokines (myokines, adipokines) and animal models. The analysis underscored the importance of myokines in modulating metabolic processes and their potential therapeutic implications in managing non-communicable diseases such as obesity. Furthermore, the study revealed the close relationship between exercise, myokine production, and regulation of metabolism, stress response, and inflammation. In conclusion, over the last years, increasing research interest has been focused on the molecular mechanisms of obesity and benefits of exercise, and probably will be focused on a set of myokines released during muscle contraction. A newly identified myokines has emerged as a promising marker for the prevention and control of obesity.
Collapse
|
11
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Hernández-Gómez KG, Velázquez-Villegas LA, Granados-Portillo O, Avila-Nava A, González-Salazar LE, Serralde-Zúñiga AE, Palacios-González B, Pichardo-Ontiveros E, Guizar-Heredia R, López-Barradas AM, Sánchez-Tapia M, Larios-Serrato V, Olin-Sandoval V, Díaz-Villaseñor A, Medina-Vera I, Noriega LG, Alemán-Escondrillas G, Ortiz-Ortega VM, Torres N, Tovar AR, Guevara-Cruz M. Acute Effects of Dietary Protein Consumption on the Postprandial Metabolic Response, Amino Acid Levels and Circulating MicroRNAs in Patients with Obesity and Insulin Resistance. Int J Mol Sci 2024; 25:7716. [PMID: 39062958 PMCID: PMC11276941 DOI: 10.3390/ijms25147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, IMSS-Bienestar, Mérida 97130, Yucatán, Mexico
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación Sobre el Envejecimiento, Mexico City 14330, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, Mexico
| | - Viridiana Olin-Sandoval
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gabriela Alemán-Escondrillas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Victor M. Ortiz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
13
|
Li Z, Liu R, Gao X, Hou D, Leng M, Zhang Y, Du M, Zhang S, Li C. The correlation between hepatic controlled attenuation parameter (CAP) value and insulin resistance (IR) was stronger than that between body mass index, visceral fat area and IR. Diabetol Metab Syndr 2024; 16:153. [PMID: 38982535 PMCID: PMC11232147 DOI: 10.1186/s13098-024-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Hepatic controlled attenuation parameter (CAP) is a novel marker for quantifying hepatic fat accumulation. Insulin resistance (IR) plays a major role in the pathogenesis and natural history of hepatic steatosis. This study aimed to investigate the possible relationship between CAP value and IR. METHODS This study included a total of 420 patients with overweight or obesity who came to the obesity clinic at Tianjin Union Medical Center. Vibration-controlled transient elastography examination was conducted to detect CAP and liver stiffness measurement (LSM) values. Body composition, including visceral fat area (VFA), and body fat mass (BFM), was evaluated by the direct segmental multi-frequency bioelectrical impedance analysis (BIA). The associations between CAP value, body mass index (BMI), VFA, BFM and homeostasis model assessment of insulin resistance (HOMA-IR) were analyzed. RESULTS CAP value was positively associated with HOMA-IR (r = 0.568, P < 0.001), the strength of which was much stronger than BMI, VFA, and BFM. In multivariate linear regression, CAP value and HOMA-IR showed a significant positive association (adjusted β = 0.015, 95% CI 0.007-0.022, P < 0.001). Subgroup analysis suggested no significant interaction between CAP value and HOMA-IR across age, BMI, LSM, hypertension, and sex groups (all P for interaction > 0.05). CONCLUSIONS Hepatic CAP value is more remarkably than other obesity markers associated with HOMA-IR in individuals with overweight or obesity, regardless of age, BMI, LSM, hypertension, and sex.
Collapse
Affiliation(s)
- Zhouhuiling Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xinying Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dangmin Hou
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Yanju Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyang Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Chunjun Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.
| |
Collapse
|
14
|
Heni M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution. Diabetologia 2024; 67:1181-1191. [PMID: 38363340 PMCID: PMC11153284 DOI: 10.1007/s00125-024-06104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024]
Abstract
Insulin exerts its actions not only on peripheral organs but is also transported into the brain where it performs distinct functions in various brain regions. This review highlights recent advancements in our understanding of insulin's actions within the brain, with a specific emphasis on investigations in humans. It summarises current knowledge on the transport of insulin into the brain. Subsequently, it showcases robust evidence demonstrating the existence and physiological consequences of brain insulin action, while also introducing the presence of brain insulin resistance in humans. This pathophysiological condition goes along with an impaired acute modulation of peripheral metabolism in response to brain insulin action, particularly in the postprandial state. Furthermore, brain insulin resistance has been associated with long-term adiposity and an unfavourable adipose tissue distribution, thus implicating it in the pathogenesis of subgroups of obesity and (pre)diabetes that are characterised by distinct patterns of body fat distribution. Encouragingly, emerging evidence suggests that brain insulin resistance could represent a treatable entity, thereby opening up novel therapeutic avenues to improve systemic metabolism and enhance brain functions, including cognition. The review closes with an outlook towards prospective research directions aimed at further elucidating the clinical implications of brain insulin resistance. It emphasises the critical need to establish feasible diagnostic measures and effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany.
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Arsenault BJ, Carpentier AC, Poirier P, Després JP. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: Use and abuse of the body mass index. Atherosclerosis 2024; 394:117546. [PMID: 38692978 DOI: 10.1016/j.atherosclerosis.2024.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
The worldwide prevalence of individuals with an elevated body weight has increased steadily over the past five decades. Billions of research dollars have been invested to improve our understanding of the causes and consequences of having an elevated body weight. All this knowledge has, however, failed to influence populational body weight trajectories of most countries around the world. Research on the definition of "obesity" has also evolved. Body mass index (BMI), the most commonly used tool to make its diagnosis, has major limitations. In this review article, we will highlight evidence from observational studies, genetic association studies and randomized clinical trials that have shown the remarkable inter-individual differences in the way humans store energy as body fat. Increasing evidence also suggests that, as opposed to weight inclusive, lifestyle-based approaches, weight-centric approaches advising people to simply eat less and move more are not sustainable for most people for long-term weight loss and maintenance. It is time to recognize that this outdated approach may have produced more harm than good. On the basis of pathophysiological, genetic and clinical evidence presented in this review, we propose that it may be time to shift away from the traditional clinical approach, which is BMI-centric. Rather, emphasis should be placed on actionable lifestyle-related risk factors aiming at improving overall diet quality and increasing physical activity level in the general population.
Collapse
Affiliation(s)
- Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke (QC), Canada
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; Faculté de pharmacie, Université Laval, Québec (QC), Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; VITAM - Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec (QC), Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec (QC), Canada.
| |
Collapse
|
16
|
Ma Y, Han J, Wang K, Han H, Hu Y, Li H, Wu S, Zhang L. Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of Atherosclerosis. Heliyon 2024; 10:e33307. [PMID: 39022015 PMCID: PMC11253544 DOI: 10.1016/j.heliyon.2024.e33307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from dysregulated lipid metabolism, constituting the pathophysiological foundation of cardiovascular and cerebrovascular diseases. AS has a high incidence rate and mortality rate worldwide. As such, traditional Chinese medicine (TCM) has been widely used recently due to its stable therapeutic effect and high safety. Ganoderma lucidum polysaccharides (GLP) are the main active ingredients of Ganoderma lucidum, a Chinese herbal medicine. Research has also shown that GLP has anti-inflammatory and antioxidant properties, regulates gut microbiota, improves blood glucose and lipid levels, and inhibits obesity. Most of the current research on GLP anti-AS is focused on animal models. Thus, its clinical application remains to be discovered. In this review, we combine relevant research results and start with the pathogenesis and risk factors of GLP on AS, proving that GLP can prevent and treat AS, providing a scientific basis and reference for the future prevention and treatment of AS with GLP.
Collapse
Affiliation(s)
- YiZheng Ma
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - JingBo Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - KangFeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - Huan Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - YiBin Hu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - ShengXian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - LiJuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| |
Collapse
|
17
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
18
|
Carpentier AC, Blondin DP. Is stimulation of browning of human adipose tissue a relevant therapeutic target? ANNALES D'ENDOCRINOLOGIE 2024; 85:184-189. [PMID: 38871497 DOI: 10.1016/j.ando.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada.
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
19
|
Ahmed VA, Rahman HS, Mohammed Raheem MO, Othman HH, Algarawi M, Ibnaouf KH. Antidiabetic, Antihyperlipidemic, Antioxidant Effects and Regulation of miRNA Expression by Dianthus orientalisAdams Extract in Diabetic rat Model. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241259377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The Mediterranean area is a diversity center for the genus Dianthus. However, species belonging to this genus, including Dianthus orientalis Adams (DOA), have not been investigated for their medicinal activities. Objectives: To investigate antidiabetic, antihyperlipidemic, antioxidant effects and molecular mechanism of D. orientalis Adams leaf extract (DOAE) in an animal model. Materials and methods: The plant leaves were collected from July to August 2021 from Penjween district, Sulaimaniyah, Iraq and then identified, authenticated, shadow-dried, and extracted using pure methanol. Thirty rats were divided randomly into 5 groups of 6 animals each. Group 1 was control negative (CN) and received distilled water (DW). Group 2 was diabetic control (DC) that received DW, while group 3 was control positive (CP) treated with Glibenclamide (GLB, 0.6 mg/kg body weight). Groups 4 and 5 were diabetic rats who received a low-dose (30 mg/kg) and a high-dose (90 mg/kg) of DOAE orally for 4 weeks. Then, lipid profile, total antioxidant capacity, histopathological examinations, and molecular studies were conducted. Results: DOAE was more effective than GLB in reducing blood glucose, lipid parameters, liver enzymes, and renal function. Micromorphological assay of livers, kidneys, and pancreas revealed significant restoration in diabetic groups treated with DOAE (90 mg/kg) and GLB compared to the DC group. Microribonuclic acid-21 (miR-21) was significantly expressed in DC but markedly lowered in both DOAE groups, while miR-24 and miR-126 were significantly suppressed in DC and expressed in the DOAE-treated groups. Conclusions: DOAE exerted significant antihyperglycemic, anti-dyslipidemic, antioxidant, and hepatorenal protective effects in diabetic rats.
Collapse
Affiliation(s)
- Vian Abubaker Ahmed
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Heshu Sulaiman Rahman
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | | | - Hemn Hassan Othman
- Department of Basic Sciences, College of Pharmacy, University of Sulaimani, Sulaimaniyah, Iraq
| | - Maha Algarawi
- Physics Department, College of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Physics Department, College of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Bajaj G, Singh V, Sagar P, Gupta R, Singhal NK. Phosphoenolpyruvate carboxykinase-1 targeted siRNA promotes wound healing in type 2 diabetic mice by restoring glucose homeostasis. Int J Biol Macromol 2024; 270:132504. [PMID: 38772464 DOI: 10.1016/j.ijbiomac.2024.132504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
It is well-accepted that the liver plays a vital role in the metabolism of glucose and its homeostasis. Dysregulated hepatic glucose production and utilization, leads to type 2 diabetes (T2DM). In the current study, RNA sequencing and qRT-PCR analysis of nanoformulation-treated T2DM mice (TGthr group) revealed beneficial crosstalk of PCK-1 silencing with other pathways involved in T2DM. The comparison of precise genetic expression profiles of the different experimental groups showed significantly improved hepatic glucose, fatty acid metabolism and several other T2DM-associated crucial markers after the nanoformulation treatment. As a result of these improvements, we observed a significant acceleration in wound healing and improved insulin signaling in vascular endothelial cells in the TGthr group as compared to the T2DM group. Enhanced phosphorylation of PI3K/Akt pathway proteins in the TGthr group resulted in increased angiogenesis as observed by the increased expression of endothelial cell markers (CD31, CD34) thereby improving endothelial dysfunctions in the TGthr group. Additionally, therapeutic nanoformulation has been observed to improve the inflammatory cytokine profile in the TGthr group. Overall, our results demonstrated that the synthesized therapeutic nanoformulation referred to as GPR8:PCK-1siRNA holds the potential in ameliorating hyperglycemia-associated complications such as delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh 160014, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Ritika Gupta
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
21
|
Kang N, Ji Z, Li Y, Gao J, Wu X, Zhang X, Duan Q, Zhu C, Xu Y, Wen L, Shi X, Liu W. Metabolite-derived damage-associated molecular patterns in immunological diseases. FEBS J 2024; 291:2051-2067. [PMID: 37432883 DOI: 10.1111/febs.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are typically derived from the endogenous elements of necrosis cells and can trigger inflammatory responses by activating DAMPs-sensing receptors on immune cells. Failure to clear DAMPs may lead to persistent inflammation, thereby contributing to the pathogenesis of immunological diseases. This review focuses on a newly recognized class of DAMPs derived from lipid, glucose, nucleotide, and amino acid metabolic pathways, which are then termed as metabolite-derived DAMPs. This review summarizes the reported molecular mechanisms of these metabolite-derived DAMPs in exacerbating inflammation responses, which may attribute to the pathology of certain types of immunological diseases. Additionally, this review also highlights both direct and indirect clinical interventions that have been explored to mitigate the pathological effects of these DAMPs. By summarizing our current understanding of metabolite-derived DAMPs, this review aims to inspire future thoughts and endeavors on targeted medicinal interventions and the development of therapies for immunological diseases.
Collapse
Affiliation(s)
- Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Ji Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qinghui Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yue Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Luyao Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, the First Affiliated Hospital, and College of Clinical Medical of Henan University of Science and Technology, Luoyang, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
22
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
23
|
Zhang B, Yu Z, Zhao X, He T, Fan X, Zhu R, Feng Y, Lu W, Qi D, Ma X, Gu N. Foodborne Carbon Dots Aggravate High-Fat-Diet-Induced Glucose Homeostasis Imbalance by Disrupting the Gut-Liver Axis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12263-12276. [PMID: 38421240 DOI: 10.1021/acsami.3c17656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Foodborne carbon dots (CDs) are generally produced during cooking and exist in food items. Generally, CDs are regarded as nontoxic materials, but several studies have gradually confirmed the cytotoxicity of CDs, such as oxidative stress, reduced cellular activity, apoptosis, etc. However, studies focusing on the health effects of long-term intake of food-borne CDs are scarce, especially in populations susceptible to metabolic disease. In this study, we reported that CDs in self-brewing beer had no effect on glucose metabolism in CHOW-fed mice but exacerbated high-fat-diet (HFD)-induced glucose metabolism disorders via the gut-liver axis. Chronic exposure to foodborne CDs increased fasting glucose levels and exacerbated liver and intestinal barrier damage in HFD-fed mice. The 16s rRNA sequencing analysis revealed that CDs significantly altered the gut microbiota composition and promoted lipopolysaccharide (LPS) synthesis-related KEGG pathways (superpathway of (Kdo)2-lipid A, Kdo transfer to lipid IVA Ill (Chlamydia), lipid IVA biosynthesis, and so on) in HFD-fed mice. Mechanically, CD exposure increased the abundance of Gram-negative bacteria (Proteobacteria and Desulfovibrionaceae), thus producing excessive endotoxin-LPS, and then LPS was transferred by the blood circulation to the liver due to the damaged intestinal barrier. In the liver, LPS promoted TLR4/NF-κB/P38 MAPK signaling, thus enhancing systemic inflammation and exacerbating HFD-induced insulin resistance. However, pretreating mice with antibiotics eliminated these effects, indicating a key role for gut microbiota in CDs exacerbating glucose metabolism disorders in HFD-fed mice. The finding herein provides new insight into the potential health risk of foodborne nanoparticles in susceptible populations by disturbing the gut-liver axis.
Collapse
Affiliation(s)
- Boya Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China
| | - Ziteng Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tianyue He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150006, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiao Ma
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150006, China
- School of Chinese Material Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
24
|
Carpentier AC. Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38113392 PMCID: PMC11283904 DOI: 10.1152/physiol.00012.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.
Collapse
Affiliation(s)
- André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
25
|
Szablewski L. Changes in Cells Associated with Insulin Resistance. Int J Mol Sci 2024; 25:2397. [PMID: 38397072 PMCID: PMC10889819 DOI: 10.3390/ijms25042397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Insulin is a polypeptide hormone synthesized and secreted by pancreatic β-cells. It plays an important role as a metabolic hormone. Insulin influences the metabolism of glucose, regulating plasma glucose levels and stimulating glucose storage in organs such as the liver, muscles and adipose tissue. It is involved in fat metabolism, increasing the storage of triglycerides and decreasing lipolysis. Ketone body metabolism also depends on insulin action, as insulin reduces ketone body concentrations and influences protein metabolism. It increases nitrogen retention, facilitates the transport of amino acids into cells and increases the synthesis of proteins. Insulin also inhibits protein breakdown and is involved in cellular growth and proliferation. On the other hand, defects in the intracellular signaling pathways of insulin may cause several disturbances in human metabolism, resulting in several chronic diseases. Insulin resistance, also known as impaired insulin sensitivity, is due to the decreased reaction of insulin signaling for glucose levels, seen when glucose use in response to an adequate concentration of insulin is impaired. Insulin resistance may cause, for example, increased plasma insulin levels. That state, called hyperinsulinemia, impairs metabolic processes and is observed in patients with type 2 diabetes mellitus and obesity. Hyperinsulinemia may increase the risk of initiation, progression and metastasis of several cancers and may cause poor cancer outcomes. Insulin resistance is a health problem worldwide; therefore, mechanisms of insulin resistance, causes and types of insulin resistance and strategies against insulin resistance are described in this review. Attention is also paid to factors that are associated with the development of insulin resistance, the main and characteristic symptoms of particular syndromes, plus other aspects of severe insulin resistance. This review mainly focuses on the description and analysis of changes in cells due to insulin resistance.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
26
|
Rayas M, Gastaldelli A, Honka H, Pezzica S, Carli F, Peterson R, DeFronzo R, Salehi MS. GLP-1 enhances beta-cell response to protein ingestion and bariatric surgery amplifies it. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.22.23297377. [PMID: 37961500 PMCID: PMC10635165 DOI: 10.1101/2023.10.22.23297377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Protein ingestion stimulates β-cell secretion and alters glucose flux. Enhanced action of glucagon-like peptide 1 (GLP-1) and increased plasma glucose excursion contribute to prandial hyperinsulinemia after gastric bypass surgery (GB) and sleeve gastrectomy (SG). We examined the contribution of endogenous GLP-1 to glucose kinetics and β-cell response to protein ingestion under basal glucose concentrations in humans, and whether these responses are affected by rerouted gut after GB or SG. DESIGN Glucose fluxes, insulin secretion rate (ISR), and incretin responses to a 50-gram oral protein load were compared between 10 non-diabetic individuals with GB, 9 matched subjects with SG and 7 non-operated controls (CN) with and without intravenous infusion of exendin-(9- 39) [Ex-9), a specific GLP-1 receptor (GLP-1R) antagonist. RESULTS Blocking GLP-1R increased the plasma glucose concentration before and after protein ingestion in all 3 groups (p<0.05) and decreased β-cell sensitivity to glucose in the first 30 minutes of protein ingestion (p<0.05). Reduction in the prandial ISR3h by Ex-9 infusion, however, only was observed in GB and SG (p<0.05 for interaction) and not in controls. Also, GLP-1R blockade increased post-protein insulin action in GB and SG, but not CN (p=0.09 for interaction). Endogenous glucose production (EGP) during the first 60 minutes after protein ingestion was increased in all 3 groups but EGP3h only was accentuated in GB by Ex-9 infusion (p<0.05 for interaction). CONCLUSION These findings are consistent with both a pancreatic and extrapancreatic role for GLP-1 during protein ingestion in humans, and GLP-1 actions are exaggerated by bariatric surgery.
Collapse
|
27
|
Lee J, Xue X, Au E, McIntyre WB, Asgariroozbehani R, Tseng GC, Papoulias M, Panganiban K, Agarwal SM, Mccullumsmith R, Freyberg Z, Logan RW, Hahn MK. Central insulin dysregulation in antipsychotic-naïve first-episode psychosis: In silico exploration of gene expression signatures. Psychiatry Res 2024; 331:115636. [PMID: 38104424 PMCID: PMC10984627 DOI: 10.1016/j.psychres.2023.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
Antipsychotic drug (AP)-naïve first-episode psychosis (FEP) patients display premorbid cognitive dysfunctions and dysglycemia. Brain insulin resistance may link metabolic and cognitive disorders in humans. This suggests that central insulin dysregulation represents a component of the pathophysiology of psychosis spectrum disorders (PSDs). Nonetheless, the links between central insulin dysregulation, dysglycemia, and cognitive deficits in PSDs are poorly understood. We investigated whether AP-naïve FEP patients share overlapping brain gene expression signatures with central insulin perturbation (CIP) in rodent models. We systematically compiled and meta-analyzed peripheral transcriptomic datasets of AP-naïve FEP patients along with hypothalamic and hippocampal datasets of CIP rodent models to identify common transcriptomic signatures. The common signatures were used for pathway analysis and to identify potential drug treatments with discordant (reverse) signatures. AP-naïve FEP and CIP (hypothalamus and hippocampus) shared 111 and 346 common signatures respectively, which were associated with pathways related to inflammation, endoplasmic reticulum stress, and neuroplasticity. Twenty-two potential drug treatments were identified, including antidiabetic agents. The pathobiology of PSDs may include central insulin dysregulation, which contribute to dysglycemia and cognitive dysfunction independently of AP treatment. The identified treatments may be tested in early psychosis patients to determine if dysglycemia and cognitive deficits can be mitigated.
Collapse
Affiliation(s)
- Jiwon Lee
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - William B McIntyre
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Roshanak Asgariroozbehani
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.
| | - Maria Papoulias
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Kristoffer Panganiban
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Robert Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, Ohio, United States; ProMedica, Toledo, Ohio, United States.
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States; Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States.
| | - Margaret K Hahn
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Lin TY, Ramsamooj S, Perrier T, Liberatore K, Lantier L, Vasan N, Karukurichi K, Hwang SK, Kesicki EA, Kastenhuber ER, Wiederhold T, Yaron TM, Huntsman EM, Zhu M, Ma Y, Paddock MN, Zhang G, Hopkins BD, McGuinness O, Schwartz RE, Ersoy BA, Cantley LC, Johnson JL, Goncalves MD. Epinephrine inhibits PI3Kα via the Hippo kinases. Cell Rep 2023; 42:113535. [PMID: 38060450 PMCID: PMC10809223 DOI: 10.1016/j.celrep.2023.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Shakti Ramsamooj
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tiffany Perrier
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Louise Lantier
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Neil Vasan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Seo-Kyoung Hwang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | | | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mengmeng Zhu
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Owen McGuinness
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Baran A Ersoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
29
|
Sanni O, Nkomozepi P, Islam MS. Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose-Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 25:28. [PMID: 38203195 PMCID: PMC10778942 DOI: 10.3390/ijms25010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a global health challenge with increased morbidity and mortality rates yearly. Herbal medicine has provided an alternative approach to treating T2D with limited access to formal healthcare. Tectona grandis is being used traditionally in the treatment of diabetes. The present study investigated the antidiabetic potential of T. grandis leaves in different solvent extractions, and the crude extract that demonstrated the best activity was further fractionated through solvent-solvent partitioning. The ethyl acetate fraction of the ethanol crude extract showed the best antidiabetic activity in inhibiting α-glucosidase, delaying glucose absorption at the small intestine's lumen, and enhancing the muscle's postprandial glucose uptake. The ethyl acetate fraction was further elucidated for its ability to reduce hyperglycemia in diabetic rats. The ethyl acetate fraction significantly reduced high blood glucose levels in diabetic rats with concomitant modulation in stimulated insulin secretions through improved pancreatic β-cell function, insulin sensitivity by increasing liver glycogen content, and reduced elevated levels of liver glucose-6-phosphatase activity. These activities could be attributed to the phytochemical constituents of the plant.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
30
|
Monsalve FA, Delgado-López F, Fernández-Tapia B, González DR. Adipose Tissue, Non-Communicable Diseases, and Physical Exercise: An Imperfect Triangle. Int J Mol Sci 2023; 24:17168. [PMID: 38138997 PMCID: PMC10743187 DOI: 10.3390/ijms242417168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/24/2023] Open
Abstract
The study of adipose tissue has received considerable attention due to its importance not just in maintaining body energy homeostasis but also in playing a role in a number of other physiological processes. Beyond storing energy, adipose tissue is important in endocrine, immunological, and neuromodulatory functions, secreting hormones that participate in the regulation of energy homeostasis. An imbalance of these functions will generate structural and functional changes in the adipose tissue, favoring the secretion of deleterious adipocytokines that induce a pro-inflammatory state, allowing the development of metabolic and cardiovascular diseases and even some types of cancer. A common theme worldwide has been the development of professional guidelines for the control and treatment of obesity, with emphasis on hypocaloric diets and exercise. The aim of this review is to examine the pathophysiological mechanisms of obesity, considering the relationship among adipose tissue and two aspects that contribute positively or negatively to keeping a healthy body homeostasis, namely, exercise and noninfectious diseases. We conclude that the relationship of these aspects does not have homogeneous effects among individuals. Nevertheless, it is possible to establish some common mechanisms, like a decrease in pro-inflammatory markers in the case of exercise, and an increase in chronic inflammation in non-communicable diseases. An accurate diagnosis might consider the particular variables of a patient, namely their molecular profile and how it affects its metabolism, routines, and lifestyle; their underling health conditions; and probably even the constitution of their microbiome. We foresee that the development and accessibility of omics approaches and precision medicine will greatly improve the diagnosis, treatment, and successful outcomes for obese patients.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| | - Fernando Delgado-López
- Laboratories of Biomedical Research, Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3466706, Chile;
| | | | - Daniel R. González
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| |
Collapse
|
31
|
Ma L, La X, Zhang B, Xu W, Tian C, Fu Q, Wang M, Wu C, Chen Z, Chang H, Li JA. Total Astragalus saponins can reverse type 2 diabetes mellitus-related intestinal dysbiosis and hepatic insulin resistance in vivo. Front Endocrinol (Lausanne) 2023; 14:1190827. [PMID: 38053727 PMCID: PMC10694298 DOI: 10.3389/fendo.2023.1190827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Objective Intestinal flora homeostasis in rats with type 2 diabetes mellitus (T2DM) was evaluated to explore the effects of total Astragalus saponins (TAS) on hepatic insulin resistance (IR). Methods Six-week-old male Sprague-Dawley rats were fed high-fat and high-sugar diet for 4 weeks and intraperitoneally injected with streptozotocin to induce T2DM, and they were then randomly divided into control, model, metformin, and TAS groups. Stool, serum, colon, and liver samples were collected after 8 weeks of drug administration for relevant analyses. Results TAS reduced fasting blood glucose, 2-hour postprandial blood glucose, area under the curve of oral glucose tolerance test, glycated serum protein, homeostasis model assessment of insulin resistance, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels in T2DM rats but increased insulin, C-peptide, and high-density lipoprotein cholesterol levels. Moreover, TAS improved the morphology and structure of liver and colon tissues and improved the composition of the intestinal microbiome and bacterial community structure at different taxonomic levels. In addition, TAS increased the protein expression of hepatic IRS-1, PI3K, PDK1, and p-AKT and decreased the protein expression of p-GSK-3β. Meanwhile, TAS increased the mRNA expression of liver PDK1, PI3K, and GS and decreased the mRNA expression of GSK-3β. Conclusion TAS can ameliorate T2DM-related abnormal glucose and blood lipid metabolism, intestinal dysbiosis, and IR.
Collapse
Affiliation(s)
- Leilei Ma
- School of Public Health, North China University of Science and Technology, Tangshan, China
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Xiaojin La
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Biwei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wenxuan Xu
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chunyu Tian
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Qianru Fu
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Meng Wang
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chenxi Wu
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhen Chen
- Oriental Herbs Korlatolt felelossegu tarsasag, Budapest, Hungary
| | - Hong Chang
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ji-an Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
32
|
Su J, Tang L, Luo Y, Xu J, Ouyang S. Research progress on drugs for diabetes based on insulin receptor/insulin receptor substrate. Biochem Pharmacol 2023; 217:115830. [PMID: 37748666 DOI: 10.1016/j.bcp.2023.115830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The number of people with diabetes worldwide is increasing annually, resulting in a serious economic burden. Insulin resistance is a major pathology in the early onset of diabetes mellitus, and therefore, related drug studies have attracted research attention. The insulin receptor/insulin receptor substrate (INSR/IRS) serves as the primary conduit in the insulin signal transduction cascade, and dysregulation of this pathway can lead to insulin resistance. Currently, there exist a plethora of hypoglycemic drugs in the market; however, drugs that specifically target INSR/IRS are comparatively limited. The literature was collected by direct access to the PubMed database, and was searched using the terms "diabetes mellitus; insulin resistance; insulin receptor; insulin receptor substrate; diabetes drug" as the main keywords for literature over the last decade. This article provides a comprehensive analysis of the structure and function of INSR and IRS proteins, as well as the drugs used for the treatment of diabetes. Additionally, it serves as a valuable reference for the advancement of novel therapeutic agents for diabetes management.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jingran Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
33
|
Smith JG, Molendijk J, Blazev R, Chen WH, Zhang Q, Litwin C, Zinna VM, Welz PS, Benitah SA, Greco CM, Sassone-Corsi P, Muñoz-Cánoves P, Parker BL, Koronowski KB. Impact of Bmal1 Rescue and Time-Restricted Feeding on Liver and Muscle Proteomes During the Active Phase in Mice. Mol Cell Proteomics 2023; 22:100655. [PMID: 37793502 PMCID: PMC10651687 DOI: 10.1016/j.mcpro.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.
Collapse
Affiliation(s)
- Jacob G Smith
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, Texas, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA
| | - Qing Zhang
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christopher Litwin
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Hospital del Mar Research Institute Barcelona, Cancer Research Program, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, California, USA
| | - Pura Muñoz-Cánoves
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Inc, San Diego Institute of Science, San Diego, California, USA
| | - Benjamin L Parker
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kevin B Koronowski
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA; Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
34
|
AlSalem HS, Abdulsalam NM, Khateeb NA, Binkadem MS, Alhadhrami NA, Khedr AM, Abdelmonem R, Shoueir KR, Nadwa EH. Enhance the oral insulin delivery route using a modified chitosan-based formulation fabricated by microwave. Int J Biol Macromol 2023; 247:125779. [PMID: 37442506 DOI: 10.1016/j.ijbiomac.2023.125779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Chitosan (Cs) was subjected to ball milling and subsequently functionalized with Dinitro salicylic acid (Cs-DNS) to enhance the efficacy of oral insulin delivery. The hydrodynamic spherical particle sizes exhibited 33.29 ± 5.08 nm for modified Cs-DNS NPs. Irrespective of insulin entrapment, zeta potential measurements revealed positively charged Cs-DNS NPs (+ 35 ± 3.5 mV). The entrapment performance (EP%) was evaluated in vitro, and insulin release patterns at various pH levels. The EP% for Cs-DNS NPs was 99.3 ± 1.6. Cs- DNS NPs retained a considerable amount of insulin (92 %) in an acidic medium, and significant quantities were released at increasing pH values over time. In vivo investigations, the diabetic rats which taken insulin-incorporated NPs had lower serum glucose levels (SGL) after 3 h to (39.4 ± 0.6 %) for Cs- DNS NPs. For insulin-incorporated Cs- DNS NPs, the bioavailability (BA%) and pharmacological availability (PA%) were 17.5 ± 0.31 % and 8.6 ± 0.8 %, respectively. The assertion above highlights the significance and effectiveness of modified chitosan in promoting insulin delivery, decreasing SGL levels, and guaranteeing safety.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nisreen M Abdulsalam
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdul Aziz University, P.O. Box 42807, Jeddah 21551, Saudi Arabia
| | - Najla A Khateeb
- Clinical Nutrition Department, College of Applied Medical Sciences-King Saud bin Abdulaziz University for Health Sciences, P.O. Box 2477. Mail Code 527, Al Ahsa 31982, Saudi Arabia
| | - Mona S Binkadem
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Nahlah A Alhadhrami
- Chemistry Department, Faculty of Science, Taibah University, P.O. Box 30002, Medina 42353, Saudi Arabia.
| | - Abdalla M Khedr
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6th October, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Eman Hassan Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
35
|
Jiali L, Wu Z, Liu L, Yang J, Wang L, Li Z, Liu L. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit Rev Food Sci Nutr 2023; 64:10885-10902. [PMID: 37409451 DOI: 10.1080/10408398.2023.2230287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Resistant starch, also known as anti-digestion enzymatic starch, which cannot be digested or absorbed in the human small intestine. It can be fermented in the large intestine into short-chain fatty acids (SCFAs) and metabolites, which are advantageous to the human body. Starches can classify as rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS), which possess high thermal stability, low water holding capacity, and emulsification characteristics. Resistant starch has excellent physiological functions such as stabilizing postprandial blood glucose levels, preventing type II diabetes, preventing intestinal inflammation, and regulating gut microbiota phenotype. It is extensively utilized in food processing, delivery system construction, and Pickering emulsion due to its processing properties. The resistant starches, with their higher resistance to enzymatic hydrolysis, support their suitability as a potential drug carrier. Therefore, this review focuses on resistant starch with structural features, modification characteristics, immunomodulatory functions, and delivery system applications. The objective was to provide theoretical guidance for applying of resistant starch to food health related industries.
Collapse
Affiliation(s)
- Li Jiali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Lingyi Liu
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Junsi Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
36
|
Andonova M, Dzhelebov P, Trifonova K, Yonkova P, Kostadinov N, Nancheva K, Ivanov V, Gospodinova K, Nizamov N, Tsachev I, Chernev C. Metabolic Markers Associated with Progression of Type 2 Diabetes Induced by High-Fat Diet and Single Low Dose Streptozotocin in Rats. Vet Sci 2023; 10:431. [PMID: 37505836 PMCID: PMC10386364 DOI: 10.3390/vetsci10070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Science is still searching for readily available, cost-effective biomarkers to assess metabolic disorders occurring before the onset and during the development of type-2 diabetes (T2DM). The aim of the present study was to induce T2DM in rats through a high-fat diet, followed by a single administration of low dose streptozotocin (STZ), and make an assessment of the development of the disease. The rats were divided into two groups-experimental and control-and were monitored for a period of 10 days. Changes in anthropometric parameters, glucose, insulin, lipids, uric acid, advanced oxidation protein products (AOPP), as well as the histological changes in the liver and pancreas, were recorded. To assess insulin resistance, we used the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and beta cell function (HOMA-β) and visceral obesity-adiposity index (AI). The data demonstrate that the increasing values of glucose, HOMA-IR, AI, total cholesterol, triacylglycerols, low- and very-low-density lipoproteins are important markers of the pre-diabetic state. The stable hyperglycemia and increased levels of TC, TG, VLDL, LDL, uric acid and AOPP in experimental rats strongly suggest the development of T2DM. HOMA-IR, HOMA-β, AI, and uric acid are reliable criteria for T2DM in rats.
Collapse
Affiliation(s)
- Maria Andonova
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Petko Dzhelebov
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Krastina Trifonova
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Penka Yonkova
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Nikola Kostadinov
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Krasimira Nancheva
- Clinical Laboratory, University Multiprofile Hospital for Active Treatment "Professor Stoyan Kirkovich", Stara Zagora 6000, Bulgaria
| | - Veselin Ivanov
- Department of Social Medicine, Health Management and Disaster Medicine, Faculty of Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Krasimira Gospodinova
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Nikola Nizamov
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - Ilia Tsachev
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | | |
Collapse
|
37
|
Wu S, Stogios N, Hahn M, Navagnanavel J, Emami Z, Chintoh A, Gerretsen P, Graff-Guerrero A, Rajji TK, Remington G, Agarwal SM. Outcomes and clinical implications of intranasal insulin on cognition in humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0286887. [PMID: 37379265 DOI: 10.1371/journal.pone.0286887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Aberrant brain insulin signaling has been posited to lie at the crossroads of several metabolic and cognitive disorders. Intranasal insulin (INI) is a non-invasive approach that allows investigation and modulation of insulin signaling in the brain while limiting peripheral side effects. OBJECTIVES The objective of this systematic review and meta-analysis is to evaluate the effects of INI on cognition in diverse patient populations and healthy individuals. METHODS MEDLINE, EMBASE, PsycINFO, and Cochrane CENTRAL were systematically searched from 2000 to July 2021. Eligible studies were randomized controlled trials that studied the effects of INI on cognition. Two independent reviewers determined study eligibility and extracted relevant descriptive and outcome data. RESULTS Twenty-nine studies (pooled N = 1,726) in healthy individuals as well as those with Alzheimer's disease (AD)/mild cognitive impairment (MCI), mental health disorders, metabolic disorders, among others, were included in the quantitative meta-analysis. Patients with AD/MCI treated with INI were more likely to show an improvement in global cognition (SMD = 0.22, 95% CI: 0.05-0.38 p = <0.00001, N = 12 studies). Among studies with healthy individuals and other patient populations, no significant effects of INI were found for global cognition. CONCLUSIONS This review demonstrates that INI may be associated with pro-cognitive benefits for global cognition, specifically for individuals with AD/MCI. Further studies are required to better understand the neurobiological mechanisms and differences in etiology to dissect the intrinsic and extrinsic factors contributing to the treatment response of INI.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Philip Gerretsen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Costagliola di Polidoro A, Baghbantarghdari Z, De Gregorio V, Silvestri S, Netti PA, Torino E. Insulin Activation Mediated by Uptake Mechanisms: A Comparison of the Behavior between Polymer Nanoparticles and Extracellular Vesicles in 3D Liver Tissues. Biomacromolecules 2023; 24:2203-2212. [PMID: 37023462 PMCID: PMC10170511 DOI: 10.1021/acs.biomac.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In this work, we compare the role of two different uptake mechanisms in the effectiveness of a nanoformulated drug, specifically insulin. Insulin is activated by interacting with insulin receptors exposed on the liver cell membrane that triggers the uptake and storage of glucose. To prove that the uptake mechanism of a delivery system can interfere directly with the effectiveness of the delivered drug, two extremely different delivery systems are tested. In detail, hydrogel-based NPs (cHANPs) and natural lipid vesicles (EVs) encapsulating insulin are used to trigger the activation of this hormone in 3D liver microtissues (μTs) based on their different uptake mechanisms. Results demonstrated that the fusion mechanism of Ins-EVs mediates faster and more pronounced insulin activation with respect to the endocytic mechanism of Ins-cHANPs. Indeed, the fusion causes an increased reduction in glucose concentration in the culture medium EV-treated l-μTs with respect to free insulin-treated tissues. The same effect is not observed for Ins-cHANPs that, taken up by endocytosis, can only equal the reduction in glucose concentration produced by free insulin in 48 h. Overall, these results demonstrate that the effectiveness of nanoformulated drugs depends on the identity they acquire in the biological context (biological identity). Indeed, the nanoparticle (NP) biological identity, such as the uptake mechanism, triggers a unique set of nano-bio-interactions that is ultimately responsible for their fate both in the extracellular and intracellular compartments.
Collapse
Affiliation(s)
- Angela Costagliola di Polidoro
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Zahra Baghbantarghdari
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Biology, University of Naples ″Federico II″, Complesso Universitario di Monte S Angelo, Naples 80125, Italy
| | - Simona Silvestri
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Enza Torino
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| |
Collapse
|
39
|
Dakic T, Jevdjovic T, Lakic I, Ruzicic A, Jasnic N, Djurasevic S, Djordjevic J, Vujovic P. The Expression of Insulin in the Central Nervous System: What Have We Learned So Far? Int J Mol Sci 2023; 24:ijms24076586. [PMID: 37047558 PMCID: PMC10095302 DOI: 10.3390/ijms24076586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
After being discovered over a century ago, insulin was long considered to be a hormone exclusively produced by the pancreas. Insulin presence was later discovered in the brain, which was originally accounted for by its transport across the blood-brain barrier. Considering that both insulin mRNA and insulin were detected in the central nervous system (CNS), it is now known that this hormone is also synthesized in several brain regions, including the hypothalamus, hippocampus, cerebral and cerebellar cortex, and olfactory bulb. Although many roles of insulin in the CNS have been described, it was initially unknown which of them could be attributed to brain-derived and which to pancreatic insulin or whether their actions in the brain overlap. However, more and more studies have been emerging lately, focusing solely on the roles of brain-derived insulin. The aim of this review was to present the latest findings on the roles of brain-derived insulin, including neuroprotection, control of growth hormone secretion, and regulation of appetite and neuronal glucose uptake. Lastly, the impairment of signaling initiated by brain-derived insulin was addressed in regard to memory decline in humans.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Sinisa Djurasevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Jelena Djordjevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Xie C, Jalleh RJ, Watson LE, Huang W, Sun Y, Jones KL, Horowitz M, Rayner CK, Wu T. Determinants of blood glucose concentrations following a high carbohydrate meal in type 2 diabetes: A multiple linear regression analysis. Diabetes Res Clin Pract 2023; 198:110606. [PMID: 36893852 DOI: 10.1016/j.diabres.2023.110606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
This study showed that in relatively well-controlled type 2 diabetes blood glucose levels after a high carbohydrate meal were associated positively with fasting blood glucose, but also positively with gastric emptying in the first hour and negatively with the increments in plasma glucagon-like peptide-1 (GLP-1) in the later postprandial phase.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Ryan J Jalleh
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Linda E Watson
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
41
|
Shah H, Kramer A, Mullins CA, Mattern M, Gannaban RB, Townsend RL, Campagna SR, Morrison CD, Berthoud HR, Shin AC. Reduction of Plasma BCAAs following Roux-en-Y Gastric Bypass Surgery Is Primarily Mediated by FGF21. Nutrients 2023; 15:1713. [PMID: 37049555 PMCID: PMC10096671 DOI: 10.3390/nu15071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.
Collapse
Affiliation(s)
- Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alyssa Kramer
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Marie Mattern
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
42
|
Terra MF, García-Arévalo M, Avelino TM, Degaki KY, de Carvalho M, Torres FR, Saito A, Figueira ACM. Obesity-Linked PPARγ Ser273 Phosphorylation Promotes Beneficial Effects on the Liver, despite Reduced Insulin Sensitivity in Mice. Biomolecules 2023; 13:biom13040632. [PMID: 37189379 DOI: 10.3390/biom13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Since the removal of thiazolidinediones (TZDs) from the market, researchers have been exploring alternative anti-diabetic drugs that target PPARγ without causing adverse effects while promoting insulin sensitization by blocking serine 273 phosphorylation (Ser273 or S273). Nonetheless, the underlying mechanisms of the relationship between insulin resistance and S273 phosphorylation are still largely unknown, except for the involvement of growth differentiation factor (GDF3) regulation in the process. To further investigate potential pathways, we generated a whole organism knockin mouse line with a single S273A mutation (KI) that blocks the occurrence of its phosphorylation. Our observations of KI mice on different diets and feeding schedules revealed that they were hyperglycemic, hypoinsulinemic, presented more body fat at weaning, and presented an altered plasma and hepatic lipid profile, distinctive liver morphology and gene expression. These results suggest that total blockage of S273 phosphorylation may have unforeseen effects that, in addition to promoting insulin sensitivity, could lead to metabolic disturbances, particularly in the liver. Therefore, our findings demonstrate both the beneficial and detrimental effects of PPAR S273 phosphorylation and suggest selective modulation of this post translational modification is a viable strategy to treat type 2 diabetes.
Collapse
|
43
|
Evaluation the food safety of cultured fat via detection of residues of adipogenic differentiation cocktail in cultured fat with high performance liquid chromatography and enzyme-linked immunosorbent assay. Food Res Int 2023; 165:112486. [PMID: 36869499 DOI: 10.1016/j.foodres.2023.112486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Cultured fat is inducing adipose progenitor cells (APCs) to differentiate into mature adipocytes for consumption. The traditional adipogenic differentiation cocktail, including insulin, dexamethasone, indomethacin, isobutylmethylxanthine and rosiglitazone, has potential food safety problems in cultured fat. Therefore, the detection of these residues is necessary to ensure food safety. In this research, a method of high performance liquid chromatography (HPLC) was established to quantitatively analyze the potential residual content of dexamethasone, indomethacin, isobutylmethylxanthine and rosiglitazone in cultured fat and medium. Quantitative analysis showed that the content of four residues in cultured fat decreased to zero on Day 10. Subsequently, enzyme-linked immunosorbent assay (ELISA) was performed to detect the insulin content in the cultured fat and found that the insulin content in the cultured fat on Day 10 was 2.78 ± 0.21 μg/kg. After soaking with phosphate buffered saline (PBS), the insulin content decreased to 1.88 ± 0.54 μg/kg. In conclusion, this research provided an effective approach to clarify the content of potential residual components in cultured fat and it will provide reference for the safety of cultured fat in the future.
Collapse
|
44
|
Wang Y, Fan M, Qian H, Ying H, Li Y, Wang L. Whole grains-derived functional ingredients against hyperglycemia: targeting hepatic glucose metabolism. Crit Rev Food Sci Nutr 2023; 64:7268-7289. [PMID: 36847153 DOI: 10.1080/10408398.2023.2183382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycemia. However, concerns have been raised about the safety and efficacy of current hypoglycemic drugs due to undesirable side effects. Increasing studies have shown that whole grains (WG) consumption is inversely associated with the risk of T2DM and its subsequent complications. Thus, dietary strategies involving functional components from the WG provide an intriguing approach to restoring and maintaining glucose homeostasis. This review provides a comprehensive understanding of the major functional components derived from WG and their positive effects on glucose homeostasis, demonstrates the underlying molecular mechanisms targeting hepatic glucose metabolism, and discusses the unclear aspects according to the latest viewpoints and current research. Improved glycemic response and insulin resistance were observed after consumption of WG-derived bioactive ingredients, which are involved in the integrated, multi-factorial, multi-targeted regulation of hepatic glucose metabolism. Promotion of glucose uptake, glycolysis, and glycogen synthesis pathways, while inhibition of gluconeogenesis, contributes to amelioration of abnormal hepatic glucose metabolism and insulin resistance by bioactive components. Hence, the development of WG-based functional food ingredients with potent hypoglycemic properties is necessary to manage insulin resistance and T2DM.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key laboratory of nutrition, metabolism and food safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
45
|
Gaique TG, Boechat SK, Neto JGO, Bento-Bernardes T, Medeiros RF, Pazos-Moura CC, Oliveira KJ. Cinnamaldehyde supplementation acts as an insulin mimetic compound improving glucose metabolism during adolescence, but not during adulthood, in healthy male rats. Hormones (Athens) 2023; 22:295-304. [PMID: 36810755 DOI: 10.1007/s42000-023-00442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Adolescence is a critical period of increased vulnerability to nutritional modifications, and adolescents may respond differently from adults to dietary intake and nutraceuticals. Cinnamaldehyde, a major bioactive compound of cinnamon, improves energy metabolism, as has been shown in studies conducted primarily in adult animals. We hypothesized that cinnamaldehyde treatment may have a higher impact on the glycemic homeostasis of healthy adolescent rats than on healthy adult rats. METHODS Male adolescent (30 days) or adult (90 days) Wistar rats received cinnamaldehyde (40 mg/kg) for 28 days by gavage. The oral glucose tolerance test (OGTT), liver glycogen content, serum insulin concentration, serum lipid profile, and hepatic insulin signaling marker expression were evaluated. RESULTS Cinnamaldehyde-treated adolescent rats showed less weight gain (P = 0.041), improved OGTT (P = 0.004), increased expression of phosphorylated IRS-1 (P = 0.015), and a trend to increase phosphorylated IRS-1 (P = 0.063) in the liver of adolescent rats in the basal state. None of these parameters was modified after treatment with cinnamaldehyde in the adult group. Cumulative food intake, visceral adiposity, liver weight, serum insulin, serum lipid profile, hepatic glycogen content, and liver protein expression of IRβ, phosphorylated IRβ, AKT, phosphorylated AKT, and PTP-1B in the basal state were similar between both age groups. CONCLUSION In a healthy metabolic condition, cinnamaldehyde supplementation affects glycemic metabolism in adolescent rats while promoting no changes in adult rats.
Collapse
Affiliation(s)
- Thaiane G Gaique
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Silvia K Boechat
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Jessika Geisebel O Neto
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais Bento-Bernardes
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Renata F Medeiros
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karen J Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil.
| |
Collapse
|
46
|
Liu H, Ju A, Dong X, Luo Z, Tang J, Ma B, Fu Y, Luo Y. Young and undamaged recombinant albumin alleviates T2DM by improving hepatic glycolysis through EGFR and protecting islet β cells in mice. J Transl Med 2023; 21:89. [PMID: 36747238 PMCID: PMC9903539 DOI: 10.1186/s12967-023-03957-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Albumin is the most abundant protein in serum and serves as a transporter of free fatty acids (FFA) in blood vessels. In type 2 diabetes mellitus (T2DM) patients, the reduced serum albumin level is a risk factor for T2DM development and progression, although this conclusion is controversial. Moreover, there is no study on the effects and mechanisms of albumin administration to relieve T2DM. We examined whether the administration of young and undamaged recombinant albumin can alleviate T2DM in mice. METHODS The serum albumin levels and metabolic phenotypes including fasting blood glucose, glucose tolerance tests, and glucose-stimulated insulin secretion were studied in db/db mice or diet-induced obesity mice treated with saline or young, undamaged, and ultrapure rMSA. Apoptosis assays were performed at tissue and cell levels to determine the function of rMSA on islet β cell protection. Metabolic flux and glucose uptake assays were employed to investigate metabolic changes in saline-treated or rMSA-treated mouse hepatocytes and compared their sensitivity to insulin treatments. RESULTS In this study, treatment of T2DM mice with young, undamaged, and ultrapure recombinant mouse serum albumin (rMSA) increased their serum albumin levels, which resulted in a reversal of the disease including reduced fasting blood glucose levels, improved glucose tolerance, increased glucose-stimulated insulin secretion, and alleviated islet atrophy. At the cellular level, rMSA improved glucose uptake and glycolysis in hepatocytes. Mechanistically, rMSA reduced the binding between CAV1 and EGFR to increase EGFR activation leading to PI3K-AKT activation. Furthermore, rMSA extracellularly reduced the rate of fatty acid uptake by islet β-cells, which relieved the accumulation of intracellular ceramide, endoplasmic reticulum stress, and apoptosis. This study provided the first clear demonstration that injections of rMSA can alleviate T2DM in mice. CONCLUSION Our study demonstrates that increasing serum albumin levels can promote glucose homeostasis and protect islet β cells, which alleviates T2DM.
Collapse
Affiliation(s)
- Hongyi Liu
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Anji Ju
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Xuan Dong
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Zongrui Luo
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Jiaze Tang
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Boyuan Ma
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Zhao M, Meng Q, Zhang M. Urinary insulin signaling pathway related proteins may serve as potential biomarkers for monitoring diabetes mellitus without hypertension and hyperlipidemia. Medicine (Baltimore) 2023; 102:e32862. [PMID: 36749274 PMCID: PMC9901961 DOI: 10.1097/md.0000000000032862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The insulin signaling pathway plays an important role in the development of diabetes mellitus. The expression of insulin signaling pathway related proteins in the urine of diabetic patients has not been reported. The aim of this study was to analyze and verify the expression of insulin signaling pathway related proteins in the urine of diabetic patients without hypertension and hyperlipidemia, and to explore their clinical application value. Based on data-independent acquisition proteomics technology and bioinformatics, the urinary protein expression profile of diabetic patients without hypertension and hyperlipidemia was established. Western blot and enzyme-linked immunoassay were performed to verify the expression of insulin signaling pathway related proteins in the urine of diabetic patients. Sixteen proteins related to the insulin signaling pathway were screened in urine, and 7 of them were differentially expressed in the urine of diabetic patients without hypertension and hyperlipidemia. Further quantitative analysis showed that the downregulation of protein kinase CAMP-dependent type II regulatory subunit α, growth factor receptor bound protein 2, and guanine nucleotide-binding protein G(s) in the urine of diabetic patients without hyperlipidemia and hypertension was consistent with the preliminary screening results. In this exploratory study, we detected the expression of insulin signaling pathway related proteins in the urine of diabetic patients without hypertension and hyperlipidemia. protein kinase CAMP-dependent type II regulatory subunit α, growth factor receptor bound protein 2, and guanine nucleotide-binding protein G(s) in the urine of diabetic patients were downregulated, which was associated with diabetes. They may be promising noninvasive biomarkers for monitoring diabetes.
Collapse
Affiliation(s)
- Man Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Qian Meng
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- * Correspondence: Man Zhang, Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Community, Haidian District, Beijing 100038, China (e-mail: )
| |
Collapse
|
48
|
Emerging Role of Protein O-GlcNAcylation in Liver Metabolism: Implications for Diabetes and NAFLD. Int J Mol Sci 2023; 24:ijms24032142. [PMID: 36768465 PMCID: PMC9916810 DOI: 10.3390/ijms24032142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
O-linked b-N-acetyl-glucosaminylation (O-GlcNAcylation) is one of the most common post-translational modifications of proteins, and is established by modifying the serine or threonine residues of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc signaling is considered a critical nutrient sensor, and affects numerous proteins involved in cellular metabolic processes. O-GlcNAcylation modulates protein functions in different patterns, including protein stabilization, enzymatic activity, transcriptional activity, and protein interactions. Disrupted O-GlcNAcylation is associated with an abnormal metabolic state, and may result in metabolic disorders. As the liver is the center of nutrient metabolism, this review provides a brief description of the features of the O-GlcNAc signaling pathway, and summarizes the regulatory functions and underlying molecular mechanisms of O-GlcNAcylation in liver metabolism. Finally, this review highlights the role of O-GlcNAcylation in liver-associated diseases, such as diabetes and nonalcoholic fatty liver disease (NAFLD). We hope this review not only benefits the understanding of O-GlcNAc biology, but also provides new insights for treatments against liver-associated metabolic disorders.
Collapse
|
49
|
Liu X, Kong F, Xiao N, Li X, Zhang M, Lv F, Liu X, Kong X, Bi J, Lu X, Kong D, Hao G, Zhou L, Pan G. Prenylated indole-terpenoids with antidiabetic activities from Penicillium sp. HFF16 from the rhizosphere soil of Cynanchum bungei Decne. Front Microbiol 2023; 14:1099103. [PMID: 36937284 PMCID: PMC10018213 DOI: 10.3389/fmicb.2023.1099103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Finding novel and effective suppression of hepatic glucagon response antidiabetic compounds is urgently required for the development of new drugs against diabetes. Fungi are well known for their ability to produce new bioactive secondary metabolites. In this study, four new prenylated indole-terpenoids (1-4), named encindolenes I-L, as well as a known analogue (5), were isolated from the fungus Penicillium sp. HFF16from the rhizosphere soil of Cynanchum bungei Decne. The structures of the compounds were elucidated by spectroscopic data and ECD analysis. In the antidiabetic activity assay, compounds 1-5 could inhibit glucagon-induced hepatic glucose output with EC50 values of 67.23, 102.1, 49.46, 25.20, and 35.96 μM, respectively, and decrease the intracellular cAMP contents in primary hepatocytes.
Collapse
Affiliation(s)
- Xijin Liu
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Fandong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Na Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, Shandong, China
| | - Xiaoyu Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Mingyu Zhang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Fujin Lv
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Xiaolin Liu
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Xiangchuan Kong
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Jing Bi
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Xinyi Lu
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Daqing Kong
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Gangping Hao
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Liman Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Guojun Pan
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
- *Correspondence: Guojun Pan,
| |
Collapse
|
50
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|