1
|
Zhang Y, Ding R, Hu L, Liu E, Qu P. Epigenetics in metabolic dysfunction-associated steatohepatitis. Cell Signal 2025; 130:111684. [PMID: 39999913 DOI: 10.1016/j.cellsig.2025.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complex disease involving genetics, environment, and lifestyle, with the potential to progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Although the pathogenesis of MASH is not fully clear, increasing evidence has indicated that epigenetics plays an important role in the genesis and progression of MASH, during which, as drastic changes in metabolites, epigenetics undergo drastic changes. Roles of chromatin structure, chromatin accessibility, DNA methylation, histone modification, and non-coding RNAs were considered as bridges of pathogenic factors and MASH. In this review, the research progress on the epigenetics of MASH was summarized, and indepth research and therapeutic strategies based on epigenetics is expected to bring new hope to MASH patients.
Collapse
Affiliation(s)
- Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| |
Collapse
|
2
|
Hu Y, Sang N, Wu A, Pu J, Yan H, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Different types of bile acids exhibit opposite regulatory effects on lipid metabolism in finishing pigs through bile acid receptors. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:25-36. [PMID: 40135169 PMCID: PMC11930731 DOI: 10.1016/j.aninu.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 03/27/2025]
Abstract
The purpose of this research was to investigate how different bile acids impact lipid metabolism and carcass characteristics in finishing pigs, along with the potential mechanisms involved. Twenty-one finishing pigs (Duroc×Landrace×Yorkshire [DLY]; average BW = 144.38 ± 8.92 kg) were assigned to three dietary treatments, with each treatment containing seven replicates, each consisting of one pig. The three dietary treatments included: a basic diet, a basic diet supplemented with 500 mg/kg of hyodeoxycholic acid (HDCA), and a basic diet supplemented with 500 mg/kg of lithocholic acid (LCA). The trial lasted for 28 d. Hyodeoxycholic acid was used in the in vitro experiments and added to mature 3T3-L1 adipocytes for 4 d to elucidate the mechanism by which bile acids regulate lipid metabolism. The results suggested that HDCA tended to decrease backfat thickness in finishing pigs (P = 0.094) and reduced the size of lipid droplets in 3T3-L1 adipocytes (P = 0.012), whereas LCA increased backfat thickness (P = 0.016) and induced larger lipid droplets in the abdominal adipose tissue (P = 0.003). Furthermore, HDCA enhanced the expression of Takeda G-protein-coupled receptor 5 protein and hormone-sensitive lipase (HSL) gene in backfat of pigs (P < 0.05) and increased the protein expression of phosphorylated HSL (p-HSL) in vitro (P = 0.093). Compared to HDCA, LCA addition increased the gene and protein expression of peroxisome proliferator activated receptor gamma in backfat of pigs (P < 0.05) and enhanced the expression of hepatic genes sterol regulatory element-binding protein-1c and fatty acid synthase (P < 0.05). In conclusion, HDCA enhanced lipolysis and partially decreased backfat thickness in finishing pigs, while LCA promoted lipid synthesis and increased backfat thickness of pigs. The variations in the effects of various bile acids on bile acid receptors could explain these functional differences.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ni Sang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
3
|
Ma F, Longo M, Meroni M, Bhattacharya D, Paolini E, Mughal S, Hussain S, Anand SK, Gupta N, Zhu Y, Navarro-Corcuera A, Li K, Prakash S, Cogliati B, Wang S, Huang X, Wang X, Yurdagul A, Rom O, Wang L, Fried SK, Dongiovanni P, Friedman SL, Cai B. EHBP1 suppresses liver fibrosis in metabolic dysfunction-associated steatohepatitis. Cell Metab 2025; 37:1152-1170.e7. [PMID: 40015280 PMCID: PMC12058419 DOI: 10.1016/j.cmet.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
Excess cholesterol accumulation contributes to fibrogenesis in metabolic dysfunction-associated steatohepatitis (MASH), but how hepatic cholesterol metabolism becomes dysregulated in MASH is not completely understood. We show that human fibrotic MASH livers have decreased EH-domain-binding protein 1 (EHBP1), a genome-wide association study (GWAS) locus associated with low-density lipoprotein (LDL) cholesterol, and that EHBP1 loss- and gain-of-function increase and decrease MASH fibrosis in mice, respectively. Mechanistic studies reveal that EHBP1 promotes sortilin-mediated PCSK9 secretion, leading to LDL receptor (LDLR) degradation, decreased LDL uptake, and reduced TAZ, a fibrogenic effector. At a cellular level, EHBP1 deficiency affects the intracellular localization of retromer, a protein complex required for sortilin stabilization. Our therapeutic approach to stabilizing retromer is effective in mitigating MASH fibrosis. Moreover, we show that the tumor necrosis factor alpha (TNF-α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway suppresses EHBP1 in MASH. These data not only provide mechanistic insights into the role of EHBP1 in cholesterol metabolism and MASH fibrosis but also elucidate an interplay between inflammation and EHBP1-mediated cholesterol metabolism.
Collapse
Affiliation(s)
- Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Shama Mughal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Syed Hussain
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Neha Gupta
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiwei Zhu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaia Navarro-Corcuera
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth Li
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Satya Prakash
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Cogliati
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Alam N, Ding X, Fu Y, Jia L, Ali S, Liu E. Oryzanol ameliorates MCD-induced metabolic dysfunction-associated steatohepatitis in mice via gut microbiota reprogramming and TLR4/NF-κB signaling suppression. Am J Physiol Gastrointest Liver Physiol 2025; 328:G578-G593. [PMID: 40243180 DOI: 10.1152/ajpgi.00190.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 03/03/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) has emerged as a major global health concern that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as key mechanistic pathways in MASH development. Oryzanol (ORY), a rice bran bioactive compound, exhibits antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic properties. Here, we investigated the potential of ORY in alleviating MASH and its association with gut microbiota and MASH progression. Male C57BL/6J mice were fed normal chow diet or methionine-choline-deficient diet and received ORY supplementation at 300 mg/kg/day via gavage for 4 wk. Liver injury, inflammation, lipid accumulation, and TLR4/NF-κB signaling protein levels were assessed. In addition, changes in gut microbiota diversity and abundance across groups were evaluated using 16S rDNA sequencing. Our results demonstrated that ORY significantly reduced lipid accumulation and liver enzymes, ameliorated liver and ileum damage, and restored intestinal barrier function in MASH mice. Furthermore, ORY decreased plasma lipopolysaccharide levels, and inflammatory cytokines and downregulated TLR4, MyD88, and NF-κB protein levels in the liver. ORY enhanced tight junction protein level (ZO-1, occludin) in the gut. Microbial analysis revealed that ORY positively impacted Firmicutes and Bacteroidetes abundance, promoted beneficial bacteria like Lactobacillus and Lachnospiraceae_NK4A136_group, and inhibited harmful bacteria such as Mucispirillum, Bacteroides, and Colidextribacter. Notably, ORY increased Akkermansia abundance, potentially modulating metabolic and inflammatory pathways. ORY exerted restorative and reversible effects on the pathophysiological damage within the gut-liver axis in MASH mice. The therapeutic mechanism may be related to the modulation of the gut microbiota and TLR4/NF-κB signaling pathway.NEW & NOTEWORTHY This study demonstrates that oryzanol (ORY), a bioactive rice bran compound, alleviates metabolic dysfunction-associated steatohepatitis (MASH) in mice by reducing lipid accumulation and inflammation. ORY beneficial effects are associated to the modulation of gut microbiota, enhancing gut barrier integrity, and lowering endotoxemia and TLR4/NF-κB signaling pathway. These findings suggest ORY potential in MASH prevention and treatment, highlighting its influence on gut-liver axis dynamics.
Collapse
Affiliation(s)
- Naqash Alam
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xinhua Ding
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu Fu
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Linying Jia
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sadiq Ali
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Enqi Liu
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
5
|
Duarte L, Magne F, Gotteland M. Gut microbiota in patients with metabolic, dysfunction-associated steatotic liver disease. Curr Opin Clin Nutr Metab Care 2025:00075197-990000000-00217. [PMID: 40294087 DOI: 10.1097/mco.0000000000001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent condition that can progress to fibrosis, steatohepatitis, and hepatocellular carcinoma. This review examines recent advances concerning the role of gut microbiota in MASLD and microbiota-focused interventions to positively impact disease outcome. RECENT FINDINGS Dysbiotic microbiota and a compromised gut barrier facilitate the translocation of microbial-associated molecular patterns and harmful metabolites into the portal circulation and liver, where they exacerbate inflammatory and fibrogenic processes. Conversely, other bacterial metabolites have protective effects in the liver. Therefore, microbiota homeostasis is essential for maintaining liver health. SUMMARY Levels of harmful bacterial metabolites including ethanol, NH3, trimethylamine-L-oxide, 2-oleylglycerol, and litocholic acid are often increased in patients with MASLD. Conversely, short-chain fatty acids, indole derivatives, histidine, and the acids taurodeoxycholic, 3-succinylcholic, and hyodeoxycholic are decreased. The main aim of current interventions/treatments is to reduce harmful metabolites and increase beneficial ones. These interventions include drugs (pemafibrate, metformin, obeticholic acid), natural compounds (silymarin, lupeol, dietary fiber, peptides), exogenous bacteria (probiotics, gut symbionts), special diets (Mediterranean diet, time-restricted feeding), as well as microbiota transplantation, and phage therapy. Most improve gut permeability, liver inflammation, and fibrosis through microbiota regulation, and are promising alternatives for MASLFD management. However, most results come from animal studies, while clinical trials in MASLD patients are lacking. Further research is therefore needed in this area.
Collapse
Affiliation(s)
| | - Fabien Magne
- Microbiology and Mycology Program, ICBM, Faculty of Medicine
| | - Martin Gotteland
- Department of Nutrition
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Jia L, Qu P, Zhao Y, Bai L, Ren H, Cheng A, Ma Z, Ding C, Deng Y, Kong L, Zhao Y, Rom O, Chen Y, Alam N, Cao W, Zhai S, Zheng Z, Hu Z, Wang L, Chen Y, Zhao S, Zhang J, Fan J, Chen YE, Liu E. Tripeptide DT-109 (Gly-Gly-Leu) attenuates atherosclerosis and vascular calcification in nonhuman primates. Signal Transduct Target Ther 2025; 10:122. [PMID: 40195303 PMCID: PMC11977015 DOI: 10.1038/s41392-025-02201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Advanced atherosclerotic lesions and vascular calcification substantially increase the risk of cardiovascular events. However, effective strategies for preventing or treating advanced atherosclerosis and calcification are currently lacking. This study investigated the efficacy of DT-109 (Gly-Gly-Leu) in attenuating atherosclerosis and calcification in nonhuman primates, exploring its broader therapeutic potential. In this study, twenty male cynomolgus monkeys were administered a cholesterol-rich diet ad libitum for 10 months. Then, the animals were treated either orally with DT-109 (150 mg/kg/day) or a vehicle (H2O) for 5 months while continuing on the same diet. Plasma lipid levels were measured monthly and at the end of the experiment, pathological examinations of the aortas and coronary arteries and RNA sequencing of the coronary arteries were performed. To explore possible molecular mechanisms, the effects of DT-109 on smooth muscle cells (SMCs) were examined in vitro. We found that DT-109 administration significantly suppressed atherosclerotic lesion formation in both the aorta and coronary arteries. Pathological examinations revealed that DT-109 treatment reduced lesional macrophage content and calcification. RNA sequencing analysis showed that DT-109 treatment significantly downregulated the pro-inflammatory factors NLRP3, AIM2, and CASP1, the oxidative stress factors NCF2 and NCF4, and the osteogenic factors RUNX2, COL1A1, MMP2, and MMP9, while simultaneously upregulating the expression of the SMCs contraction markers ACTA2, CNN1, and TAGLN. Furthermore, DT-109 inhibited SMC calcification and NLRP3 inflammasome activation in vitro. These results demonstrate that DT-109 effectively suppresses both atherosclerosis and calcification. These findings, in conjunction with insights from our previous studies, position DT-109 as a novel multifaceted therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Linying Jia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yang Zhao
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Honghao Ren
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ao Cheng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Zeyao Ma
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Cheng Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yongjie Deng
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Lingxuan Kong
- Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ying Zhao
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Oren Rom
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Pathology and Translational Pathobiology, Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529000, China
| | - Naqash Alam
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Sixue Zhai
- Department of Imaging, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Zuowen Zheng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi, 538000, China
| | - Zhi Hu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University; Research Department, Portland Veterans Affairs Medical Center, Portland, OR, 97239, USA
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529000, China.
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
7
|
Shao W, Li W, Yuan X, Zhang H, Zhao J. Obesity alters testicular gene expression in mice, monkeys and humans. ZYGOTE 2025:1-7. [PMID: 40114606 DOI: 10.1017/s0967199425000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Obesity, a global health issue, is associated with numerous diseases and has been shown to affect male reproductive health by inducing endocrine hormonal changes, chronic inflammation, oxidative stress and epigenetic alterations in reproductive cells. This study investigates the impact of obesity on testicular gene expression across mice, monkeys and humans, identifying 730 conserved testis-specific genes. High-fat diet-induced obesity upregulates GNG5, INHA, MSH5, SLC30A8 and SLC7A4 in testes, suggesting their potential as regulatory targets in testicular damage associated with obesity. Single-cell analysis reveals species-conserved expression patterns of SLC7A4 in Sertoli cells and SLC30A8 in SPG cells. It also confirmed that SLC30A8 and SLC7A4 were significantly upregulated in the testes of spontaneously obese mice. The findings highlight the potential of these genes as regulatory targets in obesity-related testicular dysfunction, providing insights into male reproductive health impairments caused by obesity.
Collapse
Affiliation(s)
- Wen Shao
- State-owned Assets Management Office, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
| | - Weijie Li
- State-owned Assets Management Office, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
| | - Xingjuan Yuan
- Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
| | - Haifeng Zhang
- Xi'an International Medical Center Hospital, Xi'an, SN, China
| | - Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
- Laboratory Animal Center, School of Basic Science, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, SN, 710061, China
| |
Collapse
|
8
|
Yang D, Wuyunsiqin, YanNiu, Hashentuya, Tana, Anna, Ma M, Zhao W, Menggenduxi, Wang M. Traditional Mongolian Medicine Qiqirigan-8 alleviates non-alcoholic fatty liver disease via restoring gut microbiota and metabolism. Front Microbiol 2025; 16:1517082. [PMID: 40083784 PMCID: PMC11905161 DOI: 10.3389/fmicb.2025.1517082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Background Mongolian Medicine Qiqirigan-8 (MMQ-8) is a traditional Mongolian medicine formula used to treat fatty liver disease. However, the material basis and in vivo metabolic process of the therapeutic effect of MMQ-8 on non-alcoholic fatty liver disease (NAFLD) remain unclear. Methods The chemical composition of MMQ-8 was determined using Ultra-high-performance liquid chromatography-quadrupole Exactive Mass spectrometry analysis (UHPLC-QE-MS). C57BL/6J mice were fed a choline-deficient diet for 12 weeks to induce a NAFLD model. Hematoxylin and Eosin (H&E)-staining, combined with serum biochemical indexes, was used to observe liver appearance and characterize the pathological changes and functions of the liver. HE staining and Alcian Blue-Phosphoric Acid Schiff (AB-PAS) staining of the colon, along with ZO-1 immunofluorescence expression in the colon were used to reveal the effect of MMQ-8 on the disruption of the intestinal epithelial mucosal barrier in the NAFLD. The expression of intestinal tight junction genes was analyzed by qRT-PCR to observe the protective effect of MMQ-8 against intestinal epithelial mucosal barrier disruption. Fecal metagenomics and serum non-targeted metabolomics were used to reveal the effects of MMQ-8 on the gut microbiota and metabolism in mice with NAFLD. Finally, we emphasize the interaction between gut microbiota and metabolites through Spearman correlation coefficient analysis. Results Mongolian Medicine Qiqirigan-8 contains 17 active ingredients, which can reduce hepatic steatosis and lobular inflammation in mice with NAFLD, and have protective effects against liver injury. MMQ-8 reduced the infiltration of inflammatory cells in the colon epithelium of model mice while restoring the number of goblet cells. MMQ-8 significantly enhanced ZO-1 protein expression in the colon, as well as the mRNA expression of both ZO-1 and Occludin. Fecal metagenomics results showed that MMQ-8 reduced the Bacillota/Bacteroidota ratio in NAFLD mice. Increased the abundance of beneficial bacteria such as Porphyromonadaceae, Prevotella, and Bacteroidota. and suppressed the abundance of dysfunctional bacteria, such as Bacillota, Acetatifactor, and Erysipelotrichaceae. Furthermore, metabolomics studies revealed that MMQ-8 intervention significantly regulated the expression of metabolites related to glutathione metabolism, butyric acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism in NAFLD mice compared to the model group. These metabolic pathways play key roles in NAFLD. According to Spearman's correlation coefficient analysis, up-regulation of Porphyromonadaceae, Prevotella, and Bacteroidota after MMQ-8 intervention was negatively correlated with LPC levels in glycerophospholipid metabolic pathways, while positively correlated with PC levels. In contrast, the relationship between Bacillota and Acetatifactor, which were down-regulated after MMQ-8 intervention, was the opposite. In addition, the up-regulation of Porphyromonadaceae, Prevotella, and Bacteroidota after MMQ-8 intervention was positively correlated with fumaric acid, 2-oxoglutaric acid, adenosine, and L-glutathione levels, while those down-regulated after MMQ-8 intervention were positively correlated with the levels of Bacillota, Acetatifactor were negatively correlated with all the above metabolites. Thus, glutathione metabolism, butyric acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism and gut microbial ecosystem are tightly intertwined in this process. Conclusion In summary, these findings indicate that MMQ-8 has a synergistic anti-NAFLD effect through its multi-component, multi-target, gut microbiota-modulating and multi metabolic pathway characteristics. The host's regulation of specific gut microbiota and involvement in multiple metabolic pathways may be one of the important mechanisms by which MMQ-8 exerts its therapeutic effects on NAFLD. It is worth noting that metabolic pathways such as glutathione metabolism, butyric acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and the gut microbiota ecosystem are closely intertwined in this process.
Collapse
Affiliation(s)
- Dandan Yang
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Quality Research and Pharmacodynamic Evaluation of Traditional Chinese Medicine and Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wuyunsiqin
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Quality Research and Pharmacodynamic Evaluation of Traditional Chinese Medicine and Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - YanNiu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hashentuya
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Tana
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Anna
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Mingxing Ma
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wenhui Zhao
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Menggenduxi
- School of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Key Laboratory of Quality Research and Pharmacodynamic Evaluation of Traditional Chinese Medicine and Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Carter MM, Zeng X, Ward CP, Landry M, Perelman D, Hennings T, Meng X, Weakley AM, Cabrera AV, Robinson JL, Nguyen T, Higginbottom S, Maecker HT, Sonnenburg ED, Fischbach MA, Gardner CD, Sonnenburg JL. A gut pathobiont regulates circulating glycine and host metabolism in a twin study comparing vegan and omnivorous diets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25320192. [PMID: 39830242 PMCID: PMC11741504 DOI: 10.1101/2025.01.08.25320192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Metabolic diseases including type 2 diabetes and obesity pose a significant global health burden. Plant-based diets, including vegan diets, are linked to favorable metabolic outcomes, yet the underlying mechanisms remain unclear. In a randomized trial involving 21 pairs of identical twins, we investigated the effects of vegan and omnivorous diets on the host metabolome, immune system, and gut microbiome. Vegan diets induced significant shifts in serum and stool metabolomes, cytokine profiles, and gut microbial composition. Despite lower dietary glycine intake, vegan diet subjects exhibited elevated serum glycine levels linked to reduced abundance of the gut pathobiont Bilophila wadsworthia. Functional studies demonstrated that B. wadsworthia metabolizes glycine via the glycine reductase pathway and modulates host glycine availability. Removing B. wadsworthia from a complex microbiota in mice elevated glycine levels and improved metabolic markers. These findings reveal a previously underappreciated mechanism by which diet regulates host metabolic status via the gut microbiota.
Collapse
Affiliation(s)
- Matthew M. Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine P. Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Matthew Landry
- Department of Population Health and Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, Irvine, CA, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tayler Hennings
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Xiandong Meng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Allison M. Weakley
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ashley V. Cabrera
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jennifer L. Robinson
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tran Nguyen
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A. Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Durazzo M, Ferro A, Navarro-Tableros VM, Gaido A, Fornengo P, Altruda F, Romagnoli R, Moestrup SK, Calvo PL, Fagoonee S. Current Treatment Regimens and Promising Molecular Therapies for Chronic Hepatobiliary Diseases. Biomolecules 2025; 15:121. [PMID: 39858515 PMCID: PMC11763965 DOI: 10.3390/biom15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic hepatobiliary damage progressively leads to fibrosis, which may evolve into cirrhosis and/or hepatocellular carcinoma. The fight against the increasing incidence of liver-related morbidity and mortality is challenged by a lack of clinically validated early-stage biomarkers and the limited availability of effective anti-fibrotic therapies. Current research is focused on uncovering the pathogenetic mechanisms that drive liver fibrosis. Drugs targeting molecular pathways involved in chronic hepatobiliary diseases, such as inflammation, hepatic stellate cell activation and proliferation, and extracellular matrix production, are being developed. Etiology-specific treatments, such as those for hepatitis B and C viruses, are already in clinical use, and efforts to develop new, targeted therapies for other chronic hepatobiliary diseases are ongoing. In this review, we highlight the major molecular changes occurring in patients affected by metabolic dysfunction-associated steatotic liver disease, viral hepatitis (Delta virus), and autoimmune chronic liver diseases (autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis). Further, we describe how this knowledge is linked to current molecular therapies as well as ongoing preclinical and clinical research on novel targeting strategies, including nucleic acid-, mesenchymal stromal/stem cell-, and extracellular vesicle-based options. Much clinical development is obviously still missing, but the plethora of promising potential treatment strategies in chronic hepatobiliary diseases holds promise for a future reversal of the current increase in morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Marilena Durazzo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Arianna Ferro
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Victor Manuel Navarro-Tableros
- 2i3T, Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Paolo Fornengo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy;
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy;
| | - Søren K. Moestrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
11
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
12
|
Zhao J, Zhao Y, Qin H, Ye Y, Zhang L, Ding R, Cao W, Zhang Y, Duan C, Leng H, Li Y, Wang B, Hu L, Liu E, Qu P. Characterization of small RNAs in the spleen of MASH in a non-human primate model. Genomics 2024; 116:110953. [PMID: 39419194 DOI: 10.1016/j.ygeno.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its advanced stage, metabolic dysfunction-associated steatohepatitis (MASH), are increasingly recognized as a global health issue. This study examines the role of small RNAs in the spleen of MASH using a non-human primate model. We performed high-throughput small RNA sequencing on spleen tissues from MASH-primates, revealing significant alterations in the expression of small non-coding RNAs, especially miRNAs. Notably, miR-96, miR-182, miR-183, and miR-122 showed differential expression in MASH spleens. Predictive and validation studies have identified potential target genes, such as PTX3 and NFIX, that were significantly dysregulated in spleens of MASH. These findings characterized small RNAs in spleen of MASH and offer a novel insight for further research for MASH.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yuelei Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Hongyu Qin
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yun Ye
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Liwei Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Chenjing Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Haoze Leng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi,China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.
| | - Pengxiang Qu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China; Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi 538000, China.
| |
Collapse
|
13
|
Duan Y, Dai J, Lu Y, Qiao H, Liu N. Disentangling the molecular mystery of tumour-microbiota interactions: Microbial metabolites. Clin Transl Med 2024; 14:e70093. [PMID: 39568157 PMCID: PMC11578933 DOI: 10.1002/ctm2.70093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
The profound impact of the microbiota on the initiation and progression of cancer has been a focus of attention. In recent years, many studies have shown that microbial metabolites serve as key hubs that connect the microbiome and cancer progression, but the underlying molecular mechanisms have not been fully elucidated. Multiple mechanisms that influence tumour development and therapy resistance, including disrupting cellular signalling pathways, triggering oxidative stress, inducing metabolic reprogramming and reshaping tumour immune microenvironment, are reviewed. Focusing on recent advancements in this field, this review also summarises the methodological framework of studies regarding microbial metabolites. In this review, we outline the current state of research on tumour-associated microbial metabolites and describe the challenges in future scientific research and clinical applications. KEY POINTS: Metabolites derived from both gut and intratumoural microbiota play important roles in cancer initiation and progression. The dual roles of microbial metabolites pose an obstacle for clinical translations. Absolute quantification and tracing techniques of microbial metabolites are essential for addressing the gaps in studies on microbial metabolites. Integrating microbial metabolomics with multi-omics transcends current research paradigms.
Collapse
Affiliation(s)
- Yu‐Fei Duan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Jia‐Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Ying‐Qi Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| |
Collapse
|
14
|
Cao C, Liu W, Guo X, Weng S, Chen Y, Luo Y, Wang S, Zhu B, Liu Y, Peng D. Identification and validation of efferocytosis-related biomarkers for the diagnosis of metabolic dysfunction-associated steatohepatitis based on bioinformatics analysis and machine learning. Front Immunol 2024; 15:1460431. [PMID: 39497821 PMCID: PMC11532026 DOI: 10.3389/fimmu.2024.1460431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is a highly prevalent liver disease globally, with a significant risk of progressing to cirrhosis and even liver cancer. Efferocytosis, a process implicated in a broad spectrum of chronic inflammatory disorders, has been reported to be associated with the pathogenesis of MASH; however, its precise role remains obscure. Thus, we aimed to identify and validate efferocytosis linked signatures for detection of MASH. Methods We retrieved gene expression patterns of MASH from the GEO database and then focused on assessing the differential expression of efferocytosis-related genes (EFRGs) between MASH and control groups. This analysis was followed by a series of in-depth investigations, including protein-protein interaction (PPI), correlation analysis, and functional enrichment analysis, to uncover the molecular interactions and pathways at play. To screen for biomarkers for diagnosis, we applied machine learning algorithm to identify hub genes and constructed a clinical predictive model. Additionally, we conducted immune infiltration and single-cell transcriptome analyses in both MASH and control samples, providing insights into the immune cell landscape and cellular heterogeneity in these conditions. Results This research pinpointed 39 genes exhibiting a robust correlation with efferocytosis in MASH. Among these, five potential diagnostic biomarkers-TREM2, TIMD4, STAB1, C1QC, and DYNLT1-were screened using two distinct machine learning models. Subsequent external validation and animal experimentation validated the upregulation of TREM2 and downregulation of TIMD4 in MASH samples. Notably, both TREM2 and TIMD4 demonstrated area under the curve (AUC) values exceeding 0.9, underscoring their significant potential in facilitating the diagnosis of MASH. Conclusion Our study comprehensively elucidated the relationship between MASH and efferocytosis, constructing a favorable diagnostic model. Furthermore, we identified potential therapeutic targets for MASH treatment and offered novel insights into unraveling the underlying mechanisms of this disease.
Collapse
Affiliation(s)
- Chenghui Cao
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenwu Liu
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Guo
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwei Weng
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Chen
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yonghong Luo
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Wang
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Botao Zhu
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuxuan Liu
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Daoquan Peng
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Huang H, Liu C, Sun X, Wei R, Liu L, Chen H, Abdugheni R, Wang C, Wang X, Jiang H, Niu H, Feng L, He J, Jiang Y, Zhao Y, Wang Y, Shu Q, Bi M, Zhang L, Liu B, Liu S. The rheumatoid arthritis gut microbial biobank reveals core microbial species that associate and effect on host inflammation and autoimmune responses. IMETA 2024; 3:e242. [PMID: 39429876 PMCID: PMC11487554 DOI: 10.1002/imt2.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Gut microbiota dysbiosis has been implicated in rheumatoid arthritis (RA) and influences disease progression. Although molecular and culture-independent studies revealed RA patients harbored a core microbiome and had characteristic bacterial species, the lack of cultured bacterial strains had limited investigations on their functions. This study aimed to establish an RA-originated gut microbial biobank (RAGMB) that covers and further to correlates and validates core microbial species on clinically used and diagnostic inflammation and immune indices. We obtained 3200 bacterial isolates from fecal samples of 20 RA patients with seven improved and 11 traditional bacterial cultivation methods. These isolates were phylogenetically identified and selected for RAGMB. The RAGMB harbored 601 bacterial strains that represented 280 species (including 43 novel species) of seven bacterial phyla. The RAGMB covered 93.2% at species level of medium- and high-abundant (relative abundances ≥0.2%) RA gut microbes, and included four rare species of the phylum Synergistota. The RA core gut microbiome was defined and composed of 20 bacterial species. Among these, Mediterraneibacter tenuis and Eubacterium rectale were two species that statistically and significantly correlated with clinically used diagnostic indices such as erythrocyte sedimentation rate (ESR) and IL-10. Thus, M. tenuis and E. rectale were selected for experimental validation using DSS-treated and not DSS-treated mice model. Results demonstrated both M. tenuis and E. rectale exacerbated host inflammatory responses, including shortened colon length and increased spleen weight, decreased IL-10 and increased IL-17A levels in plasma. Overall, we established the RAGMB, defined the RA core microbiome, correlated and demonstrated core microbial species effected on host inflammatory and immune responses. This work provides diverse gut microbial resources for future studies on RA etiology and potential new targets for new biomedical practices.
Collapse
Affiliation(s)
- Hao‐Jie Huang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Chang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xin‐Wei Sun
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Rui‐Qi Wei
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Ling‐Wei Liu
- Department of RheumatologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Hao‐Yu Chen
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÜrűmqiChina
| | - Chang‐Yu Wang
- School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xiao‐Meng Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - He Jiang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Han‐Yu Niu
- College of Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Li‐Juan Feng
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Jia‐Hui He
- College of Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Yu Jiang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Yan Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yu‐Lin Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Qiang Shu
- Department of RheumatologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Ming‐Xia Bi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Lei Zhang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- Microbiome‐XSchool of Public Health, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Bin Liu
- Department of RheumatologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Das S, Finney AC, Anand SK, Rohilla S, Liu Y, Pandey N, Ghrayeb A, Kumar D, Nunez K, Liu Z, Arias F, Zhao Y, Pearson-Gallion BH, McKinney MP, Richard KSE, Gomez-Vidal JA, Abdullah CS, Cockerham ED, Eniafe J, Yurochko AD, Magdy T, Pattillo CB, Kevil CG, Razani B, Bhuiyan MS, Seeley EH, Galliano GE, Wei B, Tan L, Mahmud I, Surakka I, Garcia-Barrio MT, Lorenzi PL, Gottlieb E, Salido E, Zhang J, Orr AW, Liu W, Diaz-Gavilan M, Chen YE, Dhanesha N, Thevenot PT, Cohen AJ, Yurdagul A, Rom O. Inhibition of hepatic oxalate overproduction ameliorates metabolic dysfunction-associated steatohepatitis. Nat Metab 2024; 6:1939-1962. [PMID: 39333384 PMCID: PMC11495999 DOI: 10.1038/s42255-024-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid β-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid β-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-β targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Collapse
Grants
- R01 HL162294 NHLBI NIH HHS
- R00 HL150233 NHLBI NIH HHS
- R01 DK134011 NIDDK NIH HHS
- HL138139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141155 NHLBI NIH HHS
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL134569 NHLBI NIH HHS
- R01 DK136685 NIDDK NIH HHS
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153710 NHLBI NIH HHS
- HL139755 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL153710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL159871 NHLBI NIH HHS
- P01 AI127335 NIAID NIH HHS
- DK136685 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- HL133497 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138139 NHLBI NIH HHS
- 24POST1196650 American Heart Association (American Heart Association, Inc.)
- HL141155 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL109946 NHLBI NIH HHS
- P20 GM134974 NIGMS NIH HHS
- K99 HL150233 NHLBI NIH HHS
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 19POST34380224 American Heart Association (American Heart Association, Inc.)
- 24POST1199805 American Heart Association (American Heart Association, Inc.)
- DK134011 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AI056077 NIAID NIH HHS
- 23POST1026505 American Heart Association (American Heart Association, Inc.)
- R01 HL158546 NHLBI NIH HHS
- HL145131 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20CDA3560123 American Heart Association (American Heart Association, Inc.)
- AI127335 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R00 HL145131 NHLBI NIH HHS
- R01 HL145753 NHLBI NIH HHS
- R01 HL139755 NHLBI NIH HHS
- HL145753-01S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162294 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL150233 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167758 NHLBI NIH HHS
- K99 HL145131 NHLBI NIH HHS
- HL145753-03S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL172970 NHLBI NIH HHS
- P20GM134974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL173972 NHLBI NIH HHS
- T32 HL155022 NHLBI NIH HHS
- R56 AI159672 NIAID NIH HHS
- R56-AI159672 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- DK131859 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F31 DK131859 NIDDK NIH HHS
- R01 HL133497 NHLBI NIH HHS
- HL158546 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RP190617 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumati Rohilla
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alia Ghrayeb
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Kelley Nunez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Fabio Arias
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Brenna H Pearson-Gallion
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Koral S E Richard
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jose A Gomez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Elizabeth D Cockerham
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyal Gottlieb
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Salido
- Department of Pathology, Hospital Universitario de Canarias, Universidad de La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ari J Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
17
|
Demagny H, Perino A, Schoonjans K. Protecting liver health with microbial-derived succinylated bile acids. LIFE METABOLISM 2024; 3:loae023. [PMID: 39872141 PMCID: PMC11749272 DOI: 10.1093/lifemeta/loae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/29/2025]
Affiliation(s)
- Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Fu Y, Hua Y, Alam N, Liu E. Progress in the Study of Animal Models of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3120. [PMID: 39339720 PMCID: PMC11435380 DOI: 10.3390/nu16183120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as an alternative term to NAFLD. MASLD is a globally recognized chronic liver disease that poses significant health concerns and is frequently associated with obesity, insulin resistance, and hyperlipidemia. To better understand its pathogenesis and to develop effective treatments, it is essential to establish suitable animal models. Therefore, attempts have been made to establish modelling approaches that are highly similar to human diet, physiology, and pathology to better replicate disease progression. Here, we reviewed the pathogenesis of MASLD disease and summarised the used animal models of MASLD in the last 7 years through the PubMed database. In addition, we have summarised the commonly used animal models of MASLD and describe the advantages and disadvantages of various models of MASLD induction, including genetic models, diet, and chemically induced models, to provide directions for research on the pathogenesis and treatment of MASLD.
Collapse
Affiliation(s)
- Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Yuxin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
| | - Naqash Alam
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
19
|
Gallegos EM, Simon L, Molina PE. Chronic binge alcohol mediated hepatic metabolic adaptations in SIV-infected female rhesus macaques. Alcohol Alcohol 2024; 59:agae060. [PMID: 39233472 PMCID: PMC11374886 DOI: 10.1093/alcalc/agae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
AIMS As the interactions of alcohol and HIV/SIV infection and their impact on liver metabolic homeostasis remain to be fully elucidated, this study aimed to determine alcohol-mediated hepatic adaptations of metabolic pathways in SIV/ART-treated female rhesus macaques fed a nutritionally balanced diet. METHODS Macaques were administered chronic binge alcohol (CBA; 13-14 g ethanol/kg/week for 14.5 months; n = 7) or vehicle (VEH; n = 8) for 14.5 months. Livers were excised following an overnight fast. Gene and protein expression, enzymatic activity, and lipid content were determined using frozen tissue and histological staining was performed using paraffin-embedded tissue. RESULTS CBA/SIV macaques showed increased hepatic protein expression of electron transport Complex III and increased gene expression of glycolytic (phosphofructokinase and aldolase) and gluconeogenic (pyruvate carboxylase) enzymes and of genes involved in lipid turnover homeostasis (perilipin 1, peroxisome proliferator-activated receptor gamma, carbohydrate responsive binding protein, and acetyl-CoA carboxylase B) as compared to that of livers from the VEH/SIV group. Plasma triglyceride concentration had a significant positive association with liver triglyceride content in the CBA/SIV group. CONCLUSIONS These results reflect CBA-associated alterations in expression of proteins and genes involved in glucose and lipid metabolism homeostasis without significant evidence of steatosis or dysglycemia. Whether these changes predispose to greater liver pathology upon consumption of a high fat/high sugar diet that is more aligned with dietary intake of PWH and/or exposure to additional environmental factors warrants further investigation.
Collapse
Affiliation(s)
- Eden M Gallegos
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liz Simon
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia E Molina
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
20
|
Shi J, Liu Y, Xu YJ. MS based foodomics: An edge tool integrated metabolomics and proteomics for food science. Food Chem 2024; 446:138852. [PMID: 38428078 DOI: 10.1016/j.foodchem.2024.138852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Foodomics has become a popular methodology in food science studies. Mass spectrometry (MS) based metabolomics and proteomics analysis played indispensable roles in foodomics research. So far, several methodologies have been developed to detect the metabolites and proteins in diets and consumers, including sample preparation, MS data acquisition, annotation and interpretation. Moreover, multiomics analysis integrated metabolomics and proteomics have received considerable attentions in the field of food safety and nutrition, because of more comprehensive and deeply. In this context, we intended to review the emerging strategies and their applications in MS-based foodomics, as well as future challenges and trends. The principle and application of multiomics were also discussed, such as the optimization of data acquisition, development of analysis algorithm and exploration of systems biology.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Alam N, Jia L, Cheng A, Ren H, Fu Y, Ding X, Haq IU, Liu E. Global research trends on gut microbiota and metabolic dysfunction-associated steatohepatitis: Insights from bibliometric and scientometric analysis. Front Pharmacol 2024; 15:1390483. [PMID: 39070791 PMCID: PMC11273336 DOI: 10.3389/fphar.2024.1390483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory subtype of metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as a replacement term for NAFLD, a common, multifactorial and poorly understood liver disease whose incidence is increasing worldwide. In recent years, there has been increasing scientific interest in exploring the relationship between gut microbiota and MASH. To learn more about the gut microbiota in MASH, this study aims to provide a comprehensive analysis of the knowledge structure and research hotspots from a bibliometric perspective. Methods We searched the Web of Science Core Collection for articles and reviews that covered the connections between gut microbiota and MASH over the last decade. The Online Analysis Platforms, VOSviewer, CiteSpace, the R tool "bibliometrix" were used to analyzed existing publications trends and hotspots. Results A total of 4,069 documents related to the interaction between gut microbiota and MASH were retrieved from 2014 to 2023. The number of annual publications increased significantly over the last decade, particularly in the United States and China. The University of California-San Diego was the most productive institution, while researcher Rohit Loomba published the most papers in the field. Younossi ZM was ranked as the first co-cited author and largest contributor of highly cited articles in the field. Gastroenterology and hepatology were the most common specialty category. The most cited journal in the last decade was Hepatology. The Keyword Bursts analysis highlighted the importance of studying the association between gut microbiota and MASH, as well as related factors such as metabolic syndrome, insulin resistance, endotoxemia and overgrowth of gut bacteria. Keyword clusters with co-citation were used to illustrate important topics including intestinal permeability, insulin sensitivity and liver immunology. The most common keywords include insulin resistance, obesity, dysbiosis, inflammation and oxidative stress, which are current hotspots. Conclusion Our analysis highlights key aspects of this field and emphasizes multiorgan crosstalk in MASLD/MASH pathogenesis. In particular, the central role of the gut-liver axis and the significant influence of gut microbiota dysbiosis on disease progression are highlighted. Furthermore, our results highlight the transformative potential of microbiota-specific therapies and cover the way for innovative healthcare and pharmaceutical strategies.
Collapse
Affiliation(s)
- Naqash Alam
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Linying Jia
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ao Cheng
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Honghao Ren
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yu Fu
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinhua Ding
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ihtisham Ul Haq
- Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Enqi Liu
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Xie Y, Jin Y, Wen J, Li G, Huai X, Duan Y, Ni F, Fu J, Li M, Li L, Yan M, Cao L, Xiao W, Yang H, Wang ZZ. A novel Alisma orientale extract alleviates non-alcoholic steatohepatitis in mice via modulation of PPARα signaling pathway. Biomed Pharmacother 2024; 176:116908. [PMID: 38850668 DOI: 10.1016/j.biopha.2024.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), particularly advanced non-alcoholic steatohepatitis (NASH), leads to irreversible liver damage. This study investigated the therapeutic effects and potential mechanism of a novel extract from traditional Chinese medicine Alisma orientale (Sam.) Juzep (AE) on free fatty acid (FFA)-induced HepG2 cell model and high-fat diet (HFD) + carbon tetrachloride (CCl4)-induced mouse model of NASH. C57BL/6 J mice were fed a HFD for 10 weeks. Subsequently, the mice were injected with CCl4 to induce NASH and simultaneously treated with AE at daily doses of 50, 100, and 200 mg/kg for 4 weeks. At the end of the treatment, animals were fasted for 12 h and then sacrificed. Blood samples and liver tissues were collected for analysis. Lipid profiles, oxidative stress, and histopathology were examined. Additionally, a polymerase chain reaction (PCR) array was used to predict the molecular targets and potential mechanisms involved, which were further validated in vivo and in vitro. The results demonstrated that AE reversed liver damage (plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte ballooning, hepatic steatosis, and NAS score), the accumulation of hepatic lipids (TG and TC), and oxidative stress (MDA and GSH). PCR array analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that AE protects against NASH by regulating the adipocytokine signaling pathway and influencing nuclear receptors such as PPARα. Furthermore, AE increased the expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PPARGC1α) and reversed the decreased expression of PPARα in NASH mice. Moreover, in HepG2 cells, AE reduced FFA-induced lipid accumulation and oxidative stress, which was dependent on PPARα up-regulation. Overall, our findings suggest that AE may serve as a potential therapeutic approach for NASH by inhibiting lipid accumulation and reducing oxidative stress specifically through the PPARα pathway.
Collapse
Affiliation(s)
- Yan Xie
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Kanion School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Yimin Jin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Kanion School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, PR China
| | - Jianhui Wen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Guiping Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Xue Huai
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Yueyang Duan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Fuyong Ni
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Juan Fu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Ming Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Liang Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Ming Yan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Hao Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China.
| | - Zhen-Zhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, PR China; Kanion School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, PR China; Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, PR China.
| |
Collapse
|
23
|
Chen L, Duan Y, Jiang T, Mao C, Zhu X, Wan M. Therapy of liver fibrosis: From conventional approaches to nanomaterials delivery systems. Sci Bull (Beijing) 2024; 69:1829-1832. [PMID: 38664093 DOI: 10.1016/j.scib.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tingting Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xinhua Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
24
|
Deng GH, Zhao CC, Cai X, Zhang XQ, Ma MZ, Lv JH, Jiang WL, Peng DY, Wang YY, Xing LH, Yu NJ. Untargeted metabonomics and TLR4/ NF-κB signaling pathway analysis reveals potential mechanism of action of Dendrobium huoshanense polysaccharide in nonalcoholic fatty liver disease. Front Pharmacol 2024; 15:1374158. [PMID: 38887554 PMCID: PMC11180771 DOI: 10.3389/fphar.2024.1374158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is marked by hepatic steatosis accompanied by an inflammatory response. At present, there are no approved therapeutic agents for NAFLD. Dendrobium Huoshanense polysaccharide (DHP), an active ingredient extracted from the stems of Dendrobium Huoshanense, and exerts a protective effect against liver injury. However, the therapeutic effects and mechanisms of action DHP against NAFLD remain unclear. DHP was extracted, characterized, and administered to mice in which NAFLD had been induced with a high-fat and high-fructose drinking (HFHF) diet. Our results showed that DHP used in this research exhibits the characteristic polysaccharide peak with a molecular weight of 179.935 kDa and is composed primarily of Man and Glc in a molar ratio of 68.97:31.03. DHP treatment greatly ameliorated NAFLD by significantly reducing lipid accumulation and the levels of liver function markers in HFHF-induced NAFLD mice, as evidenced by decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and total triglyceride (TG). Furthermore, DHP administration reduced hepatic steatosis, as shown by H&E and Oil red O staining. DHP also inhibited the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway expression, thereby reducing levels of hepatic proinflammatory cytokines. Besides, untargeted metabolomics further indicated that 49 metabolites were affected by DHP. These metabolites are strongly associated the metabolism of glycine, serine, threonine, nicotinate and nicotinamide, and arachidonic acid. In conclusion, DHP has a therapeutic effect against NAFLD, whose underlying mechanism may involve the modulation of TLR4/NF-κB, reduction of inflammation, and regulation of the metabolism of glycine, serine, threonine, nicotinate and nicotinamide metabolism, and arachidonic acid metabolism.
Collapse
Affiliation(s)
- Guang-hui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Chen-chen Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Xiao-qian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Meng-zhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Jia-hui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Wen-li Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Dai-yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Yan-yan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Li-hua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Nian-jun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Traditional Chinese Medicine and Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
25
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
26
|
Perino A, Demagny H, Schoonjans K. A microbial-derived succinylated bile acid to safeguard liver health. Cell 2024; 187:2687-2689. [PMID: 38788691 DOI: 10.1016/j.cell.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.
Collapse
Affiliation(s)
- Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Nie Q, Luo X, Wang K, Ding Y, Jia S, Zhao Q, Li M, Zhang J, Zhuo Y, Lin J, Guo C, Zhang Z, Liu H, Zeng G, You J, Sun L, Lu H, Ma M, Jia Y, Zheng MH, Pang Y, Qiao J, Jiang C. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 2024; 187:2717-2734.e33. [PMID: 38653239 DOI: 10.1016/j.cell.2024.03.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as β-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.
Collapse
Affiliation(s)
- Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; State Key Laboratory of Food Science and Resources, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Kai Wang
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Shumi Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Meng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jinxin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chenghao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jie You
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China; Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
28
|
Zhou X, Xu S, Zhang Z, Tang M, Meng Z, Peng Z, Liao Y, Yang X, Nüssler AK, Liu L, Yang W. Gouqi-derived nanovesicles (GqDNVs) inhibited dexamethasone-induced muscle atrophy associating with AMPK/SIRT1/PGC1α signaling pathway. J Nanobiotechnology 2024; 22:276. [PMID: 38778385 PMCID: PMC11112783 DOI: 10.1186/s12951-024-02563-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zixuan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Mingmeng Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
29
|
Miao G, Guo J, Zhang W, Lai P, Xu Y, Chen J, Zhang L, Zhou Z, Han Y, Chen G, Chen J, Tao Y, Zheng L, Zhang L, Huang W, Wang Y, Xian X. Remodeling Intestinal Microbiota Alleviates Severe Combined Hyperlipidemia-Induced Nonalcoholic Steatohepatitis and Atherosclerosis in LDLR -/- Hamsters. RESEARCH (WASHINGTON, D.C.) 2024; 7:0363. [PMID: 38694198 PMCID: PMC11062505 DOI: 10.34133/research.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.
Collapse
Affiliation(s)
- Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jingxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Zihao Zhou
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Gonglie Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jinxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yijun Tao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research,
Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Zhu L, Fang S, Zhang Y, Sun X, Yang P, Lu W, Yu L. Effects of sn-2 Palmitic Triacylglycerols and the Ratio of OPL to OPO in Human Milk Fat Substitute on Metabolic Regulation in Sprague-Dawley Rats. Nutrients 2024; 16:1299. [PMID: 38732546 PMCID: PMC11085268 DOI: 10.3390/nu16091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Shuaizhen Fang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Puyu Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
31
|
Cheng S, Guo H, Bai M, Cui Y, Tian H, Mei X. Inhibition of UHRF1 Improves Motor Function in Mice with Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:39. [PMID: 38649645 PMCID: PMC11035417 DOI: 10.1007/s10571-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.
Collapse
Affiliation(s)
- Shuai Cheng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China
- Jinzhou Medical University, Jinzhou, China
| | - Hui Guo
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China
- Jinzhou Medical University, Jinzhou, China
| | - Mingyu Bai
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China
- Jinzhou Medical University, Jinzhou, China
| | - Yang Cui
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China
- Jinzhou Medical University, Jinzhou, China
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
- Jinzhou Medical University, Jinzhou, China.
- Jinzhou Medical University, Linghe District, No. 40, Section 3, Songpo Road, Jinzhou, Liaoning Province, China.
| | - Xifan Mei
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
- Jinzhou Medical University, Jinzhou, China.
- Jinzhou Medical University, Linghe District, No. 40, Section 3, Songpo Road, Jinzhou, Liaoning Province, China.
| |
Collapse
|
32
|
Anand SK, Governale TA, Zhang X, Razani B, Yurdagul A, Pattillo CB, Rom O. Amino Acid Metabolism and Atherosclerotic Cardiovascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:510-524. [PMID: 38171450 PMCID: PMC10988767 DOI: 10.1016/j.ajpath.2023.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Despite significant advances in medical treatments and drug development, atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death worldwide. Dysregulated lipid metabolism is a well-established driver of ASCVD. Unfortunately, even with potent lipid-lowering therapies, ASCVD-related deaths have continued to increase over the past decade, highlighting an incomplete understanding of the underlying risk factors and mechanisms of ASCVD. Accumulating evidence over the past decades indicates a correlation between amino acids and disease state. This review explores the emerging role of amino acid metabolism in ASCVD, uncovering novel potential biomarkers, causative factors, and therapeutic targets. Specifically, the significance of arginine and its related metabolites, homoarginine and polyamines, branched-chain amino acids, glycine, and aromatic amino acids, in ASCVD are discussed. These amino acids and their metabolites have been implicated in various processes characteristic of ASCVD, including impaired lipid metabolism, endothelial dysfunction, increased inflammatory response, and necrotic core development. Understanding the complex interplay between dysregulated amino acid metabolism and ASCVD provides new insights that may lead to the development of novel diagnostic and therapeutic approaches. Although further research is needed to uncover the precise mechanisms involved, it is evident that amino acid metabolism plays a role in ASCVD.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Theresea-Anne Governale
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xiangyu Zhang
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| |
Collapse
|
33
|
Ghrayeb A, Finney AC, Agranovich B, Peled D, Anand SK, McKinney MP, Sarji M, Yang D, Weissman N, Drucker S, Fernandes SI, Fernández-García J, Mahan K, Abassi Z, Tan L, Lorenzi PL, Traylor J, Zhang J, Abramovich I, Chen YE, Rom O, Mor I, Gottlieb E. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab 2024; 36:116-129.e7. [PMID: 38171331 PMCID: PMC10777734 DOI: 10.1016/j.cmet.2023.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.
Collapse
Affiliation(s)
- Alia Ghrayeb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Daniel Peled
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahasen Sarji
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natan Weissman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shani Drucker
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sara Isabel Fernandes
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Jonatan Fernández-García
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Kyle Mahan
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Zaid Abassi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Inbal Mor
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
34
|
McBride MJ, Hunter CJ, Zhang Z, TeSlaa T, Xu X, Ducker GS, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. Cell Metab 2024; 36:103-115.e4. [PMID: 38171330 PMCID: PMC11892390 DOI: 10.1016/j.cmet.2023.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gregory S Ducker
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
35
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [PMID: 39958385 PMCID: PMC11792070 DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 01/03/2025]
Abstract
Bile acids (BAs) play important roles in the digestion of dietary fats and molecular signal transduction, and modulation of the BA composition usually affects the progression of metabolic diseases. While the liver produces primary BAs, the gut microbiota modifies these products into various forms that greatly increase their diversity and biological functions. Mechanistically, BAs can regulate their own metabolism and transport as well as other key aspects of metabolic processes via dedicated BA receptors. Disruption of BA transport and homeostasis leads to the progression of liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). Here, we summarize the microbial transformations of BAs and their downstream signaling in the development of metabolic diseases and present new insights into novel therapeutic strategies targeting BA pathways that may contribute to these diseases.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Siqi Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Crunkhorn S. Tripeptide treats NASH in non-human primates. Nat Rev Drug Discov 2023:10.1038/d41573-023-00070-4. [PMID: 37142700 DOI: 10.1038/d41573-023-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|